Lecture 6: Graph algorithms II

- Breadth-first search and shortest paths in graphs
- Shortest paths in weighted graphs: Dijkstra’s algorithm
6.1 Breadth-first search and shortest paths

- Recall: the distance from vertex s to vertex u in a (di)graph G is the length of the shortest path in G leading from s to u.

- Breadth-first search (BFS) started at vertex s:

  ```
  for $d = 0, 1, 2, \ldots, \text{max\_dist}$ :
      visit all vertices at distance $d$ from $s$.
  ```

- Implementing this simple idea requires some bookkeeping, conveniently managed by a queue Q of vertices:
 - Initially $Q = [s]$.
 - When vertex v is visited (ejected from front of Q), all its so far undiscovered neighbours are injected to end of Q.

- Note that in this arrangement, Q contains at all times vertices from (at most) two “layers” of G: distance d from s (fully discovered, being visited) and distance $d + 1$ from s (being discovered, none yet visited).
BFS: exploration and search tree

Note that all the paths starting from the root \(s \) of a BFS search tree are shortest possible, i.e. it is a shortest-path tree.
BFS: the exploration algorithm

1 function BFS(G, s);

Input: Graph $G = (V, E)$, start vertex s
Output: for all vertices u reachable from s, dist[u] is set to the distance from s to u

2 for all $u \in V$ do dist[u] \leftarrow ∞;
3 dist[s] \leftarrow 0;
4 $Q \leftarrow$ [s];
5 while Q is not empty do
6 \hspace{1em} $u \leftarrow$ EJECT(Q);
7 \hspace{1em} for all edges $(u, v) \in E$ do
8 \hspace{2em} if dist[v] = ∞ then
9 \hspace{3em} INJECT(Q, v);
10 \hspace{3em} dist[v] \leftarrow dist[u] + 1;
11 \hspace{1em} end
12 end
13 end
BFS: correctness and complexity

- **Correctness (by induction on the following):**
 Claim. In an execution of algorithm BFS(G, s) there is for each $d = 0, 1, 2, \ldots$, some moment at which:

 (i) for each vertex v at distance $\leq d$ from s, the value $\text{dist}[v]$ is correctly set;

 (ii) for all other vertices u, $\text{dist}[u] = \infty$;

 (iii) the queue Q contains exactly the vertices at distance d from s.

- **Complexity (similarly as in DFS):**
 The running time of BFS(G, s) is $O(|V| + |E|)$:

 - Each vertex is injected in Q when it is discovered and ejected from Q when visiting it is completed; for a total of $2|V|$ queue operations.

 - Each edge is examined once (in digraphs) or twice (in graphs); for a total of $O(|E|)$ processing time related to examining the edges.
6.2 Shortest paths in weighted graphs

- BFS determines shortest paths in graphs where all edges have the same length.
- This is of course not the case in many real-life applications, e.g. actual road networks:

![Graph with weights between cities]

- How to extend BFS to this case?
Adapting BFS to weighted graphs

- Consider a weighted graph \(G = (V, E, \ell) \), where all the edge weights ("lengths") \(\ell_e \) are positive integers.\(^1\)
- Shortest paths in \(G \) can in principle be computed by replacing weighted edges by sequences of unit-length ones and then running BFS on the resulting graph \(G' \):

This is conceptually correct, but of course not efficient, in particular for graphs with large \(\ell_e \)'s.

\(^1\)The length of edge \(e = (u, v) \) is denoted alternately by \(\ell_e \), \(\ell(u, v) \), \(\ell_{uv} \).
Alarm clocks

➢ In the previous extension of BFS to weighted graphs, most of the exploration consists of uneventful traversal over the dummy nodes:

➢ The process can be speeded up (and the dummy nodes eliminated) by associating to each vertex \(v \) an “alarm clock” indicating when some activity pertinent to \(v \) may next happen.

➢ The search algorithm then proceeds in the order of increasing alarm times, and for each alarm attends to the vertex \(u \) to which the alarm was associated.
The “alarm clock” BFS algorithm

Set $\text{dist}[s] \leftarrow \infty$ for all vertices v
Set $\text{alarm}[s] \leftarrow 0$ and $\text{alarm}[v] \leftarrow \bot$ for $v \neq s$
Repeat until $\text{alarm}[v] = \bot$ for all vertices v:

Say the next alarm is $\text{alarm}[u] = T$. Then:

Set $\text{dist}[u] \leftarrow T$
Set $\text{alarm}[u] \leftarrow \bot$
For each (out-)neighbour v of u in G:

If $\text{dist}[v] = \infty$, If $\text{alarm}[v] = \bot$ or $\text{alarm}[v] > T + \ell(u, v)$,
Set $\text{alarm}[v] \leftarrow T + \ell(u, v)$
Dijkstra’s algorithm and priority queues

- The well-known shortest-path algorithm for positive-weight networks by E. Dijkstra (1959) is essentially the “alarm-clock” method, with an efficient implementation for the system of alarms.

- The right data structure for this purpose is the priority queue (usually implemented as a heap), which supports the following operations on a set H of (element, key) -value pairs:

 - $\text{INSERT}(H, (u, x))$: Add element u with key value x to set H.
 - $\text{DECREASEKEY}(H, (u, x'))$: Update the key associated to element u to a new (lower) value x'.
 - $\text{DELETEMIN}(H)$: Return the element u with the presently lowest key value contained in H, and remove u from H.
 - $\text{MAKEQUEUE}(S)$: Arrange S, a set of elements and their associated key values, into a priority queue structure.

\[\text{Concrete implementations of this structure will be discussed at Lect. 15.}\]
Dijkstra’s shortest path algorithm (1/2)

1 function Dijkstra(G, s);

Input: Graph or digraph $G = (V, E)$ with positive edge lengths ℓ_e, start vertex s

Output: For all vertices u reachable from s, dist[u] is set to the distance from s to u

2 for all $u \in V$ do
3 dist[u] \leftarrow ∞;
4 prev[u] \leftarrow ⊥ \{Predecessor on shortest path from s\};
5 end
6 dist[s] \leftarrow 0;

(Continued on next slide.)
Dijkstra’s shortest path algorithm (1/2)

1. $H \leftarrow \text{MAKEQUEUE}(\langle V, \text{dist} \rangle)$;
2. while H is not empty do
 3. $u \leftarrow \text{DELETEMIN}(H)$;
 4. for all edges $(u, v) \in E$ do
 5. if $\text{dist}[v] > \text{dist}[u] + \ell(u, v)$ then
 6. $\text{dist}[v] \leftarrow \text{dist}[u] + \ell(u, v)$;
 7. $\text{prev}[v] \leftarrow u$;
 8. $\text{DECREASEKEY}(H, (v, \text{dist}[v]))$;
 9. end
10. end
11. end
Dijkstra’s algorithm: example (1/2)
Dijkstra’s algorithm: example (2/2)
Dijkstra’s algorithm: an alternative derivation (1/3)

- An alternative scheme for growing shortest paths from a given start vertex s in a network with positive edge lengths:
 - Maintain a region R of vertices to which distances and shortest paths from s are known.
 - At each expansion step, add to R that vertex v outside of R that is closest to s.

![Diagram showing the known region R and vertices s, u, and v.]
Dijkstra’s algorithm: an alternative derivation (2/3)

- How to identify the correct v?
 - Consider the shortest path from s to v, and the vertex u just preceding v on this path.
 - Since $\ell_{uv} > 0$, it must be the case that $\text{dist}(s, u) < \text{dist}(s, v)$, and so u is already in R. (For otherwise v would not be the closest vertex outside of R.)
 - Thus, the next v to be added to R is one of the outside-R neighbours of one of the inside-R vertices u.

- But which $u \in R$, $v \not\in R$?
 - Well, the ones that minimise $\text{dist}(s, u) + \ell_{uv}$.
 - It is namely easy to see that this defines the shortest distance to this v (for otherwise there would be another $u' \in R$, $v' \not\in R$ with smaller value of $\text{dist}(s, u') + \ell_{u'v'}$), and there cannot be another $w \not\in R$ with $\text{dist}(s, w) < \text{dist}(s, v)$ (by the same argument).
Dijkstra’s algorithm: an alternative derivation (3/3)

The preceding idea leads to the following algorithm scheme:

```
for all \( u \in V \) do dist[\( u \)] \( \leftarrow \) \( \infty \);
;
dist[s] \( \leftarrow \) 0;
\( R \leftarrow \emptyset \);
while \( R \neq V \) do
    pick node \( v \notin R \) with dist[\( v \)] = min;
    \( R \leftarrow R \cup \{v\} \);
    for all edges \((v, z) \in E\) do
        if dist[\( z \)] > dist[\( v \)] + \( \ell(v, z) \) then
            dist[\( z \)] \( \leftarrow \) dist[\( v \)] + \( \ell(v, z) \);
        end
    end
end
```

A proper implementation of this scheme is again D’s algorithm.
Dijkstra’s algorithm: complexity

- At an abstract level, Dijkstra’s algorithm corresponds to BFS, and so would have linear complexity.
- However, the priority queue operations are slower than the constant-time queue inject’s and eject’s of BFS.\(^3\)
- Since MakeQueue(\(V\)) takes at most as much time as \(|V|\) Insert operations, there are at most a total of:
 - \(|V|\) Insert operations
 - \(|V|\) DeleteMin operations
 - \(|E|\) DecreaseKey operations
- Using e.g. binary heaps as an implementation structure, these give an overall running time of \(O((|V| + |E|) \log |V|)\).

\(^3\)Implementation options will be discussed at Lecture 16.