
Gradient calculations with PyTorch

October 9, 2020

1 Introduction

The latest Reinforcement learning assignment involves some gradient computations. While all of this can be
done using only NumPy, the calculations can be made easier by using automatic differentiation packages,
such as PyTorch. The PyTorch interface resembles NumPy, but PyTorch enhances it with a bunch of new
features and improvements, such as calculating derivatives, GPU computing, etc. The PyTorch documentation
is available at https://pytorch.org/docs/stable/index.html.

2 Getting started

Let’s have a look at the provided least squares example in Python, where we estimate the parameters a and b
of a linear function given sample noisy data. The model for the data is thus

ŷi = axi +b. (1)

The code calculates the solution to the least squares problem in two different ways— 1) using the pseudoin-
verse and 2) by optimizing the random initial values of a and b. The pseudoinverse provides an analytical
least squares solution; gradient descent is an iterative procedure, which—in the end—converges to the same
values.

The optimization objective for least squares is the mean squared error:

L = 1
N

N∑
i=1

(yi − ŷi)2 = 1
N

N∑
i=1

(yi −axi −b)2. (2)

In order to perform the optimization with gradient descent, we have to manually calculate the derivatives
of the objective w.r.t. the parameters:

dL

da
= 1

N

N∑
i=1

−2xi(yi −axi −b)= 1
N

N∑
i=1

(2ax2
i +2bxi −2xi yi), (3)

Reinforcement Learning course staff
Intelligent Robotics Group

aalto.fi, irobotics.aalto.fi

https://pytorch.org/docs/stable/index.html

2/6

dL

db
= 1

N

N∑
i=1

−2(yi −axi −b)= 1
N

N∑
i=1

(2axi +2b−2yi). (4)

Then, we finally perform the gradient descent step:

a ← a−β
dL

da
(5)

b ← b−β
dL

db
, (6)

where β represents the learning rate.

We can then put equations (3) and (4) in code as:

1 # Gradients of loss w.r.t. a and b

2 dlda = np.mean(2 * xs**2 * self.a + 2*self.b * xs - 2*xs*ys)

3 dldb = np.mean(2*xs * self.a + 2*self.b - 2*ys)

And equations (5) and (6) as

1 self.a = self.a - self.lr * dlda

2 self.b = self.b - self.lr * dldb

While calculating derivatives is generally easy, it may quickly become a tedious task if the model is
complex. However, since the calculations are usually straightforward (and narrow down to applying the chain,
product and quotient rules multiple times), this process can be automated — and here’s where automatic
differentiation libraries, like PyTorch, come in handy.

Let’s see how that program could be rewritten using PyTorch.

2.1 Converting least squares

The basic class in PyTorch is torch.Tensor, which can be thought of as the PyTorch equivalent of a NumPy
array (numpy.ndarray).

The first step in rewriting the least squares code is to replace our NumPy arrays with Torch tensors. The
most general way of doing that is to directly convert an array to a tensor with the torch.from_numpy function:

1 tensor = torch.from_numpy(some_numpy_array)

However, usually a cleaner code can be produced by directly replacing NumPy calls with corresponding
Torch functions. In many cases, the names and syntax remain the same — for example, np.ones(shape)

becomes torch.ones(shape), and np.linspace(start, stop, n) can be replaced with torch.linspace(start,

stop, n). There are, however, cases where the names are slightly different — for example, the pseudoinverse
is calculated in NumPy with np.linalg.pinv(matrix), while in PyTorch it’s torch.pinverse(matrix). Similarly,
the randn function is located within the core module in PyTorch — so, np.random.randn(*shape) becomes
torch.randn(*shape).

Reinforcement Learning course staff
Intelligent Robotics Group

aalto.fi, irobotics.aalto.fi

3/6

Therefore, if we look at the GradientRegressor.fit function, the following snippet

1 # Randomly initialize a and b (a,b ~ N(0, 1))

2 self.a = np.random.randn()

3 self.b = np.random.randn()

would change to

1 # Randomly initialize a and b (a,b ~ N(0, 1))

2 self.a = torch.randn(1) # PyTorch requires the shape to be explicitly set to 1

3 self.b = torch.randn(1)

In the same way, np.mean in lines 24, 32 and 33, np.ones in line 53 of the original NumPy tutorial change
to torch.mean and torch.ones, respectively. Similar changes have to be made throughout the code to calls to
other NumPy functions in the code.

The code after these changes can be found in least_squares_torch_0.py

2.2 Automatic differentiation

So far, so good — the code still works (hopefully) but so far, except for changing the library, we haven’t really
seen any benefits from using Torch. Let’s look again at the derivative calculations:

1 # Gradients of loss w.r.t. a and b

2 dlda = np.mean(2 * xs**2 * self.a + 2*self.b * xs - 2*xs*ys)

3 dldb = np.mean(2*xs * self.a + 2*self.b - 2*ys)

We’d like to have those derivatives calculated by itself, instead of specifying the formulas manually. First,
we need to tell PyTorch that we’re interested in gradients w.r.t. a and b. This can be done by passing
requires_grad=True to the function creating the tensor:

1 self.a = torch.randn(1, requires_grad=True)

2 self.b = torch.randn(1, requires_grad=True)

Now every term calculated based on a and b will allow us to calculate the gradient using the backward

function:

1 loss = torch.mean((ys - self.a * xs - self.b)**2)

2 loss.backward()

The gradient is calculated w.r.t. every term with requires_grad=True that the loss variable depends on; so,
in our case, it calculates ∇a,bL . The resulting gradient for each parameter is stored in param.grad — in this
case, self.a.grad and self.b.grad.

The parameter update thus becomes:

Reinforcement Learning course staff
Intelligent Robotics Group

aalto.fi, irobotics.aalto.fi

4/6

1 # Update values

2 self.a.data = self.a - self.lr * self.a.grad

3 self.b.data = self.b - self.lr * self.b.grad

The .data field has to be used, such that our parameter updates are not tracked by the gradient computation
mechanism (which would cause a huge mess). Don’t worry about this; this procedure will be simplified in the
next section.

The backward function, by default, accumulates gradients in the .grad buffer. This means that every call to
backward adds the gradient to what is currently stored in the buffer, instead of overwriting it. This is useful
when dealing with large models and dataset/batch sizes, where the whole data doesn’t fit into memory and
the gradients have to be calculated for a larger number of samples and averaged. In our case, we want to
calculate the current gradient value at each iteration, so we have to manually zero out the gradients:

1 self.a.grad[:] = 0

2 self.b.grad[:] = 0

There’s one more change that needs to be made. All Torch tensors have to be converted to NumPy arrays
for plotting. However, tensors which are part of the derivative computation cannot be converted to NumPy
arrays directly, and require either to be detached from the graph (briefly explained on another example in
Section 3.1), or the computations have to be run without keeping track of the derivatives (which is a bit
faster):

Thus, we need to change

1 ys_grad = regressor.eval(xs_test)

to the following:

1 with torch.no_grad():

2 ys_grad = regressor.eval(xs_test)

Any code run within a with torch.no_grad() block will not have the derivatives available (and will be thus
be a bit faster to run).

Alternatively, we could take out the result from the graph by using the detach" function, and instead change
it to

1 ys_grad = regressor.eval(xs_test).detach()

And that’s it! Now we’re able to perform our optimizations without calculating any derivatives manually.
The code can be found in least_squares_torch_1.py

Reinforcement Learning course staff
Intelligent Robotics Group

aalto.fi, irobotics.aalto.fi

5/6

2.3 Using optimizers

Even though the code is now simpler, it still includes a bunch of manual steps, such as updates and gradient
resets performed for each parameter. These can also be simplified by using optimizers.

To get started, we need to instiantiate an optimizer inside our GradientRegressor class. We can do it inside
the fit method (or inside __init__, with a self prefix):

1 optimizer = torch.optim.SGD([self.a, self.b], lr=self.lr)

This call instantiates the basic Stochastic Gradient Descent (SGD) optimizer. The first argument is an
iterable (tuple, list, generator...) with parameters that the optimizer will update, and lr represents the
learning rate.

Now, the parameter update can be replaced with a call to optimizer.step(), and gradients can be zeroed
with optimizer.zero_grad():

1 # Update values

2 optimizer.step()

3 optimizer.zero_grad()

In addition to the basic SGD optimizer, more advanced algorithms are also available (RMSprop, Adagrad,
Adam...). The final code can be found in least_squares_torch_2.py

3 More complex operations

In this section, we will talk about scaling gradients using the stop-gradient operator.

3.1 Scaling gradients

Imagine a scenario where we have a parametrized function (for example, a neural network) fθ(x) and we are
interested in scaling the calculated gradients by the values of some other function, g(x), before performing the
parameter update:

θ← θ+α
N∑
i

g(xi)∇θ fθ(xi) (7)

We have seen this scenario in the policy gradient case, where the gradients were modulated with the
discounted return G. The gradients can easily be calculated with

1 f_values = f(x) # Parametrized by theta

2 g_values = g(x) # Not parametrized by theta

3
4 objective = torch.sum(g_values * f_values)

5 objective.backward()

Reinforcement Learning course staff
Intelligent Robotics Group

aalto.fi, irobotics.aalto.fi

6/6

Keep in mind, however, that the backward call actually calculates the gradient of the sum ∇θ
∑N

i g(xi) fθ(xi),
and not

∑N
i g(xi)∇θ fθ(xi). These terms are, however, the same — the sum of gradients is gradient of the sum,

and g(x) does not depend on θ, and can therefore be treated as a constant for the sake of differentiation:

∇θ

N∑
i

g(xi) fθ(xi) =
N∑
i
∇θg(xi) fθ(xi) =

N∑
i

g(xi)∇θ fθ(xi) (8)

But how about a scenario where g is also parametrized by the same parameter vector θ (for example, both
are the output of the same neural network)? In that case, the second part of Equation (8) does not hold
anymore, as we cannot simply pull gθ(xi) outside of the differentiation operator ∇θ. If we follow the approach
from the listing above, we end up calculating

∑N
i ∇θg(xi) fθ(xi), and end up with a different result.

This can be changed by treating the values of gθ(x) as numbers, and forgetting about the parametrization
w.r.t. θ. In math, this is sometimes denoted by the stop-gradient operator ⊥. The resulting function is identical
in terms of values:

⊥ (gθ(x))→ gθ(x) (9)

The derivatives w.r.t. parameters, however, are set to zero:

∇θ ⊥ (gθ(x))→ 0 (10)

Therefore, if we take the gradient of the product (summation omitted for notation clarity):

∇θ ⊥ (gθ(xi)) fθ(xi) = ∇θ ⊥ (gθ(xi)) fθ(xi) = ⊥ (gθ(xi))∇θ fθ(xi) + fθ(xi)∇θ ⊥ (gθ(xi)) (11)

However, since by definition of ⊥ we get ∇θ ⊥ (gθ(x))→ 0, the last term of (11) disappears:

⊥ (gθ(xi))∇θ fθ(xi) + fθ(xi)∇θ ⊥ (gθ(xi))= gθ(xi)∇θ fθ(xi) (12)

In PyTorch, the stop-gradient operation can be done by detaching the tensor from its computation graph
with the detach function:

1 f_values = f(x) # Parametrized by theta

2 g_values = g(x) # Also parametrized by theta

3
4 g_stopgrad = g_values.detach() # Same as g_values, but not parametrized by theta anymore

5
6 objective = torch.sum(g_stopgrad * f_values)

7 objective.backward()

Reinforcement Learning course staff
Intelligent Robotics Group

aalto.fi, irobotics.aalto.fi

	Introduction
	Getting started
	Converting least squares
	Automatic differentiation
	Using optimizers

	More complex operations
	Scaling gradients

