October 9th 2020
Shapesin Action:

sYMMETRY IN PROJECTIVE GEOMETRY

Taneli Luotoniemi
Postdoctoral Researcher in the Arts

Topics (with links) discussed during Friday's session:

One-dimensional correspondences:
A correspondence is a rule for associating every point X with every point X ' so that there is exactly one X^{\prime} for each X and exactly one X for each X^{\prime}. (H.S.M. Coxeter)

Perspectivity
(https://en.wikipedia.org/wiki/Perspectivity)
Projectivity
(https://en.wikipedia.org/wiki/Homography)
A projectivity may be defined as the product of several perspectivities.

- Hyperbolic projectivity (two invariant points)

Where are the invariant points?
What determines if the projectivity is direct or opposite?

- Parabolic projectivity (one invariant point)
- Connection to arithmetic

Geometric series
(https://en.wikipedia.org/wiki/Geometric_series)
Exercise: Construct a range of points related to each other by a parabolic projectivity, then project that range to another line so that the fixed point goes to infinity.

- Elliptic projectivity (no invariant points)
- A projectivity having more than one invariant points can only be the identity.

Desargues's theorem
(https://en.wikipedia.org/wiki/Desargues\'s_theorem)
Two triangles are in perspective with respect to a point if and only if they are in perspective with respect to a line.

Configurations
(https://en.wikipedia.org/wiki/Configuration_(geometry))
quadrilateral / quadrangle
Desargues configuration
(https://en.wikipedia.org/wiki/Desargues_configuration)
Exercise: In the Desargues configuration you constructed, find another instance of the Desargues's theorem, there are ten of them.

Desargues's theorem's three-dimensional proof, Aalto Math\&Arts logo (http://matharts.aalto.fi/AaltoMathArts.jpg)

