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Topics of this lecture
Lecture topics:

I Reaction probabilities, microscopic and macroscopic cross sections

I Sampling the reaction mode: capture, fission, scattering

I Production of secondary fission neutrons

I Collision kinematics for elastic scattering

3rd programming exercise

Good background material:

https://www.reactor-physics.com/what-is-nuclear-reaction-definition/

and other pages under pull-down menu “Nuclear fission”.

https://www.reactor-physics.com/what-is-nuclear-reaction-definition/
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Simulated random walk
The simulated random walk in Monte Carlo particle transport calculation proceeds from one inter-
action to the next, following a very simple procedure:

1) Sample path length (distance to next collision)

2) Transport neutron to the collision point

3) Sample interaction

If the sampled interaction is scattering, the procedure restarts from beginning by sampling the
distance to the next collision. The direction and energy are changed in the scattering event.

If the sampled interaction is fission, a number of new neutrons are produced with energy and
direction sampled from the associated distributions.

This lecture is focused on interaction physics, without considering the actual transport of neutrons
through space. This essentially corresponds to Monte Carlo simulation in an infinite homogeneous
medium.

The next lecture combines the physics routines with the geometry model discussed in Lecture 2,
which allows performing transport simulations in heterogeneous geometries.

The “laws of physics” are represented by isotopic continuous-energy cross sections and probabil-
ity distributions describing the emission of secondary particles.
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Reaction probabilities: microscopic cross section
Interaction probability between the neutron and a single target nucleus is characterized by the
microscopic cross section, σ. The total microscopic cross section can be interpreted as the
effective cross-sectional area of the nucleus. The standard unit is barn: 1b = 10−24 cm2.

Total cross section is the sum over partial cross sections (capture, fission, elastic, etc.):

σtot(E) = σcapt(E) + σfiss(E) + σela(E) + . . . (1)

and it represents the total collision probability between the neutron and the target.

The conditional probability of reaction mode x is simply:

Px =
σx(E)

σtot(E)
(2)

Similar definitions are often used for total absorption, total fission, total scattering, total inelastic
scattering, total non-elastic, etc. reaction modes.

Microscopic cross sections are essentially natural constants, which depend on the target nuclide,
reaction type and neutron energy.1 Scattering cross sections can also be associated with en-
ergy transfer and scattering angle, in which case the parameter is referred to as the differential
scattering cross section.

1To be precise, the relative kinetic energy between neutron and the target.
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Reaction probabilities: macroscopic cross section
Macroscopic cross section, Σ, describes the neutron interaction probability in a medium, and it is
defined using the microscopic cross section σ and the nuclide density N :

Σ(r, E) = N(r)σ(E) (3)

The physical interpretation is that the total macroscopic cross section Σtot gives the total inter-
action probability per path length traveled by the neutron. The average neutron mean-free-path
(mfp) in a homogeneous medium is given by 1/Σtot.

Similar to microscopic cross sections, total macroscopic cross section can be defined as the sum
over partial reaction modes:

Σtot(r, E) = Σcapt(r, E) + Σfiss(r, E) + Σela(r, E) + . . .

= N(r)
[
σcapt(E) + σfiss(E) + σela(E) + . . .

] (4)

And if the medium consists of multiple nuclides:

Σ(r, E) =
∑
i

Σi(r, E) =
∑
i

Ni(r)σi(E) (5)

where index i refers to the nuclide species and cross sections Σ and σ to any partial or total
reaction mode.
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Reaction probabilities: examples
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Figure 1: Microscopic cross sections of fuel and moderator isotopes. Left: fission and radiative capture
cross sections of actinides. Right: elastic scattering and radiative capture cross sections of hydrogen,
deuterium and 12C. Capture cross section of 238U is plotted in the background for comparison. Molecular
and lattice bonding has a significant effect for light elements at low energy. This is not reflected in the
free-atom scattering cross sections.
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Reaction probabilities: examples
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Figure 2: Left: absorption cross sections of fission product poisons. Right: elastic and inelastic scattering
cross sections of 238U.
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Reaction probabilities: continuous-energy cross section format
One of the advantages of the Monte Carlo method is its capability to utilize cross sections in a
continuous-energy format. The data is provided as energy-cross section pairs, and the resolution
can be arbitrarily refined by adding more points in the energy grid.

Cross section σ at energy E is obtained from the point-wise data by linear interpolation:

σ(E) =
σj+1 − σj
Ej+1 − Ej

(E − Ej) + σj (6)

Energy grid index j for which Ej ≤ E < Ej+1 is obtained by a search algorithm (e.g. binary
search).

For threshold reactions (inelastic scattering, etc.) there is a minimum energy Emin below which
the reaction probabilities and cross sections are zero.

The current standard for storing cross sections and other nuclear and reaction data is the ENDF
data format, in which each reaction mode is identified with a specific MT number (see Table 1).
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Reaction probabilities: continuous-energy cross section format

Table 1: ENDF MT numbers for the most common reaction modes.

MT Reaction
1 total
2 elastic scattering

16 (n,2n)
18 total fission (sum over partial fission channels)

51-90 inelastic scattering to discrete excited states
91 inelastic scattering to continuum

102 (n,γ)
103 (n,p)
104 (n,d)
105 (n,t)
106 (n,3He)
107 (n,α)
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Sampling the reaction mode
The physics routine in a Monte Carlo simulation is called after the particle has reached the collision
site. The simulation proceeds to sampling the target nuclide. The probability of selecting nuclide
n is given by:

Pn =
Σn

Σ
=

Nnσtot,n∑
i

Niσtot,i

(7)

where Σ is the total macroscopic cross section of the medium where the collision occurs, and N
and σ are the atomic densities and microscopic total cross sections of the constituent nuclides,
respectively.

The selection is carried out by sampling a uniformly distributed random variable ξ on the unit
interval and searching index n such that:

n−1∑
i=1

Σi < ξΣ ≤
n∑
i=1

Σi (8)

Once the target nuclide is sampled, the reaction mode is selected in a similar way, using the
microscopic cross sections. The probability of reaction mode x is given by:

Px =
σx

σtot

(9)

In practice, the procedure is similar to (8).
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Neutron interactions: capture
Neutron interactions can be roughly divided into three categories:

1) Capture

2) Fission

3) Scattering

Capture covers all reactions, in which the incident neutron is lost, and no secondary neutrons are
emitted, for example:

I Radiative capture (MT 102):

238
92U + 1

0n −→ 239
92U + γ (10)

I Alpha emission (MT 107):
10
5B + 1

0n −→ 7
3Li + 4

2He (11)

I Proton emission (MT 103):
3
2He + 1

0n −→ 3
1H + 1

1H (12)

In analog Monte Carlo, capture terminates the neutron history. Capture can also be handled
implicitly, by reducing the statistical weight of the neutron according to the capture probability.2

2See Lux & Koblinger, Chapter 3/II.B.
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Neutron interactions: fission
Fission (MT 18) terminates the history and a number of new neutrons are emitted. The typical
method for sampling the number of fission neutrons is to take the average fission neutron yield ν,
truncate the value to the nearest integer n, and include one extra neutron if:

ξ < ν − n (13)

where ξ is a uniformly distributed random number on the unit interval.

The direction of emitted neutrons is sampled isotropically,3 and the energy distribution follows the
Maxwell:

f(E) = C0

√
Ee
−E/T (14)

or Watt:
f(E) = C0e

−E/a
sinh
√
bE (15)

fission spectrum, where C0 is a normalization constant and T, a and b depend on the fissioned
nuclide and the incident neutron energy. In most recent evaluated nuclear data files the fission
spectra are given as tabular distributions.

Secondary fission neutrons are stored in a “bank”, which is a data structure that holds the position,
direction, energy and time of each new particle. The transport routine retrieves particles from the
bank, and moves on to the next source particle when the bank is empty.

3For an algorithm for sampling the direction vector from an isotropic distribution see Lux & Koblinger,
Chapter 2/I.J.



Lecture 3: Interaction physics
Oct. 13, 2020

13/27

Neutron interactions: fission

Algorithm 1 Sampling from a Maxwellian energy distribution

1: input: T . Distribution parameter (nuclear temperature)
2: do
3: Sample ξ1 and ξ2 . Sample two random numbers on the unit interval
4: R← ξ2

1 + ξ2
2

5: while R > 1
6: Sample ξ3 and ξ4 . Sample two random numbers on the unit interval
7: E ← −T (ξ2

1 log(ξ3)/R+ log(ξ4)) . Calculate final energy
8: output: E . Energy sampled from Maxwellian distribution

Notes:

I The algorithm is from MCNP4C manual, page 2-44.

I Nuclear temperature T can be set to 1.2895 MeV for 235U fission.

I The same algorithm can be used to sample target energies for the free-gas model, in
which case T is the material temperature in MeV (Temperature in Kelvin multiplied by
Boltzmann constant k = 8.6167·10−11 MeV/K).
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Neutron interactions: fission
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Figure 3: Left: Fission neutron yields of various actinides as function of neutron energy. The yield is
actually a linear function of energy, which only appears to increase sharply in the MeV-range because of
the logarithmic scale. The number of emitted neutrons increases along with actinide mass.
Right: The Maxwellian energy distributions of 235U, 238U, 239Pu and 241Am fission neutrons. The peak
position varies slightly for different actinides, but is practically independent of neutron energy. The average
energy for 235U fission neutrons is around 2 MeV.
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Neutron interactions: scattering
Scattering includes all elastic and inelastic reaction modes in which the incident neutron is not
lost. Additional neutrons may be produced in multiplying (n,2n), (n,3n), etc. reactions. In Monte
Carlo simulation, scattering is handled by sampling a new direction and energy for the collided
neutron and continuing the random walk.4

In two-particle collisions the scattering angle is coupled to energy transfer by conservation of
energy and momentum. In such case, it is sufficient to sample the scattering angle and calculate
the corresponding value for energy on-the-fly.

This is not the case for:

I Neutron-multiplying reactions: (n,2n), (n,3n), etc.

I Reactions where additional particles are emitted: (n,np), (n,nα)

I Continuum inelastic scattering (no discrete Q-value)

and the solution is to sample energy and angle from their own distributions, which preserve the
conservation laws on the average.

4The additional neutrons emitted in multiplying scattering reactions are banked and their random walk is
simulated once the original history is completed. In implicit Monte Carlo simulation the multiplication can be
accounted for by increasing the neutron weight.
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Neutron interactions: scattering
The most common interaction in reactor applications is elastic scattering (MT 2), which in LWR’s
constitutes over 90% of all interactions. Accurate modeling of collision kinematics is therefore
absolutely essential for neutron slowing-down and thermalization.

Handling of elastic scattering can be divided into three different approximations:

1) Scattering from stationary nuclides

2) Scattering with free-gas model

3) Thermal scattering from bound moderator nuclides

The collision kinematics is best understood by defining three coordinate systems:

1) Laboratory frame-of-reference (L-frame), where the coordinates are fixed to the geometry

2) Target-at-rest frame-of-reference (T-frame), where the coordinates are fixed on the target

3) Center-of-mass frame-of-reference (C-frame), where the coordinates are fixed on the
center-of-mass of the neutron-target system

The center-of-mass frame of reference is a coordinate system where the total momentum of the
neutron-target system is zero, and neutron kinetic energy is preserved in elastic scattering.

In the execises it is assumed that all scattering is isotropic in the C-frame.
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Neutron interactions: scattering
Handling of elastic scattering is greatly simplified by the fact that the reaction is in most cases
isotropic in the C-frame.5

The relation between neutron L-frame and C-frame velocities can be written as:

vC = vL −VCM (16)

where the center-of-mass velocity is given by:

VCM =
vL + AVL

1 + A
(17)

where VL is the target velocity in L-frame and A is the atomic weight ratio, i.e. the ratio of the
target mass M to neutron mass m:

A =
M

m
(18)

When elastic scattering is assumed isotropic in C-frame:

I Neutron speed |vC| is not changed (kinetic energy is preserved)

I New direction can be sampled isotropically

In the case of anisotropic scattering, the scattering angle µ is sampled and the new direction
vector is randomly rotated over the azimuthal angle.

5This is a good approximation for hydrogen, but it also applies to heavier nuclides away from resonances.
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Neutron interactions: scattering
The procedure for C-frame isotropic inelastic level-scattering is very similar, but some fraction of
the initial kinetic energy is lost to the excited state of the target nucleus.6

From the conservation of energy and momentum it follows that the neutron speeds before and
after the collision are related by:

|v′C| =

√
v2
C +

2AQ

(A+ 1)m
(19)

where Q is the energy of the excited state. Similar to the elastic case, the C-frame direction can
be sampled randomly when the reaction is isotropic.

After the procedure for elastic or inelastic level scattering is completed, a coordinate transforma-
tion is made back to L-frame:

v
′
L = v

′
C + VCM (20)

and the tracking continues.

NOTE: It is important to note that scattering isotropy in C- and L-frame are two completely different
concepts. Scattering from hydrogen is an anisotropic reaction in the L-frame, which is easy to see
by considering the collision between two billiard balls (the ball hitting a stationary target ball cannot
bounce backwards).

6Level-scattering refers to an inelastic reaction in which the target is left at an excited state. Cross sections for
each excited level are provided separately, and unresolved levels summed into a single “continuum” channel.
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Neutron interactions: scattering
When the neutron collides at high energy, the velocity of the target can be approximated as zero.

The probability of up-scattering increases as the neutron is slowed down, and the stationary target
approximation becomes poor when the neutron velocity is comparable to thermal motion.

A better approximation is then the free-gas model, which essentially means that the target velocity
is sampled from a Maxwellian-based distribution before the collision: 7

f(V, µ) = C0vT
V

2
e
−γ2V 2

(21)

where C0 is a normalization constant,

γ =

√
M

2kT
(22)

and M is the target mass, k is the Boltzmann-constant and T is the temperature of the medium.

7The difference between Eq. (21) and the Maxwell-Boltzmann distribution for speed is term v
T

, which is the
neutron speed in T-frame, i.e. the relative speed between the neutron and the target:

v
T

= ‖v
L
−V‖ =

√
v2
L

+ V 2 − 2v
L
V µ (23)

where µ = cos θ is the cosine of the angle between the two velocity vectors.
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Neutron interactions: scattering
NOTE: In the exercises it is assumed for simplicity that the kinetic energy of the target follows the
Maxwell-Boltzmann distribution, i.e. (21) without multiplier (23).

Algorithm 2 Elastic scattering with free-gas model

1: if E < Efg then . Check if free-gas model should be used
2: E ← fMB(T ) . Sample target energy from Maxwellian distribution at temperature T
3: V ←

√
2E/M . Calculate target speed and sample direction randomly

4: else
5: V ← 0 . Ignore target motion
6: end if
7: VCM ← (vL +AVL)/(1 +A) . Calculate center-of-mass velocity
8: vC ← vL −VCM . Coordinate transformation from L- to C-frame
9: Ω̂C ← [isotropic] . Sample direction isotropically

10: v′L ← v′C + VCM . Coordinate transformation from C- to L-frame

The free-gas model can be omitted when the target is heavier than hydrogen and neutron energy
is above ∼200 eV.

Inelastic scattering is a threshold reaction that (typically) occurs well above 200 eV, and can be
handled without the free-gas model.
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Neutron interactions: scattering
The free-gas approximation is capable of modeling up-scattering and the collection of neutrons in
the thermal region, but the model has two limitations:

1) Approximating scattering as a collision between two free particles fails when the neutron
energy is comparable to the molecular and lattice binding energies of the target

2) The distribution of target velocity given by (21) assumes that the cross section is constant
within the range of relative energy between the neutron and the target, which is a poor
approximation near low-energy resonances

Molecular and lattice binding effects become important in moderator materials, such as light and
heavy water and graphite, and they can be accounted for by using scattering laws with explicit
cross sections and energy and angular distributions in the thermal region.

The second problem can be taken into account using the so-called Doppler-broadening rejection
correction (DBRC) method, which is beyond the scope of this course.
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Neutron interactions: scattering
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Figure 4: Left: Free-atom elastic scattering cross sections of 1H and carbon compared to corresponding
bound-atom cross sections in light water and graphite (all cross sections at 300 K). The secondary
angular and energy distributions are given using so-called S(α, β) scattering laws. Right: thermal peak
formed in water (BWR) and graphite (HTGR) in a Monte Carlo neutron transport simulation using the
free-gas model and explicit thermal scattering laws (600 K temperature). The peaks in the distributions
are not physical, but rather the result of sampling from discrete energy-angle distributions.
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3rd programming exercise
The main goal in the 3rd programming exercise is to implement the physics routine for neutron
interactions. The tasks involve simulation of neutron histories starting from a given distribution
until all neutrons are absorbed. The geometry is assumed infinite and homogeneous (no coupling
to geometry routine).

Cross sections are provided in ASCII files with simple format:8

SYM Z A AW T
NNU
E1 NU1
E2 NU2
...
MT1 Q1 NE1
E1 XS1
E2 XS2
...
MT2 Q2 NE2
...

The first line gives the nuclide symbol, proton number, mass number, atomic weight and temper-
ature in Kelvin. This is followed by fission nubar data (number of energy-nubar pairs and values)
and the reactions (MT number, Q-value, number of energy-cross section pairs and values).

Energy distribution of fission neutrons is assumed to follow the maxwellian 235U fission spectrum
and the directional distribution is isotropic.

8http://virtual.vtt.fi/virtual/montecarlo/misc/PHYS-E0565/

http://virtual.vtt.fi/virtual/montecarlo/misc/PHYS-E0565/
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3rd programming exercise
Mandatory tasks:

I Implement an input routine that reads cross section data in the previously described
format. Extract the following cross sections and plot the data using Matlab (or similar):

1) Microscopic total cross sections of 1H and 16O

2) Microscopic fission and radiative capture cross sections of 235U and 238U

3) Microscopic inelastic scattering cross sections of 238U

4) Macroscopic total cross sections of water and natural uranium (0.72% 235U, 99.28% 238U)

The data should be plotted in 4 figures, using log-log scale and 500 energy points
log-uniformly distributed between 1E-11 and 20.0 MeV.

I Implement the simplified random walk procedure (no geomery) described on Slide 3 and
the physics routines to handle capture, fission and elastic scattering, including the
production of secondary fission neutrons and free-gas model for elastic scattering.

I Simulate the slowing-down of 14 MeV neutrons in pure hydrogen (1H) and deuterium
(2H). Calculate the average neutron energy as function of collisions. Plot and explain the
results (use log-scale for energy).

I Simulate the multiplication of 1 MeV neutrons in uranium oxide (UO2) comprised of pure
238U and natural uranium. Calculate the average total number of fission neutrons
produced per each source neutron. Repeat the calculation for a 50/50 molar mixture of
natural uranium and water. Explain the results.
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3rd programming exercise
Bonus tasks:

1. Calculate the average number of sampled reactions (per nuclide and reaction mode) in
the previous cases and the associated relative statistical errors. (+1 point)

2. Include inelastic level scattering in the physics routine and repeat the calculation involving
neutron multiplication. Report the differences. (+1 point)

3. Find a rough estimate for the critical enrichment of 235U in homogeneous uranium and
50/50 molar mixture of uranium and water. The system is critical when multiplication
becomes infinite (plot results on a curve and extrapolate). (+2 points)

4. Add time-dependence in the simulation by sampling the distance between collisions from:

l = − log(ξ)/Σtot (24)

where Σtot is the macroscopic total cross section and ξ is a uniformly distributed random
variable on the unit interval. Plot the number of emitted fission neutrons as function of
time in a homogeneous medium consisting of natural uranium and uranium enriched to
50% 235U. (+3 points)

5. Evaluate keff and the terms in the four-factor formula (google) for a 50/50 molar mixture
of natural uranium and water. (+3 points)
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3rd programming exercise
Milestones:

I Implementation of physics routines needed later for neutron transport simulation.

I Expanding input routine to read cross section data.

Tips:

I The average relative energy loss in C-frame isotropic elastic scattering from a stationary
target is:

∆E

E0

=
1− α

2
(25)

where

α =

(
1− A
1 + A

)2

(26)

and A is defined in (18). This result is useful for checking that the elastic scattering
routine works as expected. The expected shapes of the slowing-down curves are plotted
in Figure 5.

I Simulating super-critical systems (infinite multiplication) requires applying a time or
generation cut-off to terminate expanding fission chains.
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3rd programming exercise
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Figure 5: Average energy of fission neutrons slowed down by collisions from different light nuclides.
Slowing-down curves predicted by Eq. (25) are plotted with dashed lines. The moderator is at 300K
temperature, and the slowing-down process is terminated by up-scattering when the neutron energy is
comparable to thermal motion of the collision targets. NOTE: The curves were calculated using the
Serpent code, applying a model that slightly differs from the one used in the exercises.


