

Exercises 1.

Convexity and seminorms

Exercise 1.1. Let $A : V \to W$ be linear. Show that Ker(A) is a vector subspace of V and that Ran(A) is a vector subspace of W. Let [u] := u + Ker(A) for $u \in V$. Prove that $\widetilde{A}[u] := Au$ gives a well-defined linear bijection

$$\widetilde{A}: V/\operatorname{Ker}(A) \to \operatorname{Ran}(A).$$

Exercise 1.2. Let $s: X \to \mathbb{R}$ a be seminorm, and for r > 0 define the *r*-strip by

$$S_r := \{ u \in X : \ s(u) < r \}.$$
(1.1)

Prove that $S_r \subset X$ is

- (a) absorbing, (for all $u \in X$, $u \in tS_r$ whenever t > 0 is large enough),
- (b) balanced $(\lambda u \in S_r \text{ whenever } |\lambda| \le 1 \text{ and } u \in S_r),$
- (c) convex $(tx + (1 t)y \in S_r \text{ whenever } 0 < t < 1 \text{ and } x, y \in S_r).$

Exercise 1.3. Let $S \subset X$ be an absorbing balanced convex subset of a vector space X. Show that the *Minkowski functional* $s : X \to \mathbb{R}$ is a seminorm, where

$$s(u) := \inf \{r > 0 : u/r \in S\}.$$

Exercise 1.4. Let s be a seminorm on a \mathbb{K} -vector space X, and define

$$u \sim v \quad \stackrel{\text{definition}}{\iff} \quad s(u-v) = 0.$$

Let $[u] := \{v \in X : u \sim v\}$. Prove the following claims: (a) \sim is an equivalence relation on X. (b) $L := X/s^{-1}(0) = \{[u] : u \in X\}$ is a normed space with

$$[u] + [v] := [u + v], \quad \lambda[u] := [\lambda u], \quad \text{quotient norm} \quad [u] \mapsto s(u).$$