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The Basic HMC Scheme
Hamiltonian dynamics (from mechanics) is used in 
combination with Metropolis sampling to construct an MCMC 
method.

The motivation for HMC is to sample the state space more 
efficiently, so that larger movements from the current state 
could be made in one step than what is possible in Metropolis-
Hastings (M-H) sampling. This comes at the price of increased 
computation per time step. Despite this, HMC typically 
samples states much faster than M-H.

When reading this, 
1. first have a look at this site.
2. Refer to it when reading.
3. After having stumbled this through, read it through and 

play around with the graphical models.

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html


The Basic HMC Scheme
Hamiltonian function 𝐻(𝑞, 𝑝) is determined in terms of the 
probability distribution we want to sample from.

The “position” variables 𝑞 are the ones we are interested in.

The ”momentum” variables 𝑝 are auxiliary that we need in 
order to move within the distribution and so to do the 
sampling. These momentum – or velocity – variables provide 
the more efficient sampling.

Simple updates of these variables alternate with Metropolis 
updates.

Gain: Proposed states can be distant from the current states 
and still have a high probability of acceptance.



Hamiltonian Dynamics
Hamiltonian (function) gives the total - here constant - energy
of a dynamical system.

𝐻 𝑞, 𝑝 = 𝑈 𝑞 + 𝐾 𝑝 = 𝐸!"!,

where 𝑈(𝑞) is the potential energy and 𝐾(𝑝) is the kinetic energy.

The dynamical system is completely described when we know 
how 𝑞 and 𝑝 change over time 𝑡. This is stated by equations of 
motion, here Hamilton’s equations

𝑑𝑞#
𝑑𝑡 =

𝜕𝐻
𝜕𝑝#

,

𝑑𝑝#
𝑑𝑡

= −
𝜕𝐻
𝜕𝑞#

.

𝑖 = 1,… , 𝑑 ; (𝑑 is dimension)



Hamiltonian Dynamics
Combining vectors 𝑞 and 𝑝 into the vector 𝑧 = (𝑞, 𝑝) we get

𝑑𝑧
𝑑𝑡

= 𝐽∇𝐻 𝑧 ,

where the gradient ∇𝐻 = ∇𝐻 $ = ⁄𝜕𝐻 𝜕𝑧$, and 

𝐽 = 0%×% 𝐼%×%
−𝐼%×% 0%×%

.

Potential and Kinetic Energy

In 𝑑 dimensions, the kinetic energy

𝐾 𝑝 =
𝑝'𝑀()𝑝

2
.

𝑀 is a symmetric, positive-definite 
mass matrix, often iagonal, and a 
scalar multiple of the identity 
matrix.



Hamiltonian Dynamics
Potential and Kinetic Energy

In 𝑑 dimensions, the kinetic energy

𝐾 𝑝 =
𝑝'𝑀()𝑝

2
.

𝑀 is a symmetric, positive-definite 
mass matrix, often diagonal, and a 
scalar multiple of the identity 
matrix.

Note that 𝑝 = 𝑀𝑣, where 𝑣 = 𝑞̇, so 

𝐾 𝑣 =
𝑣'𝑀𝑣
2

.



Hamiltonian Dynamics

This form of 𝐾(𝑝) corresponds to − log 𝑝* 𝑝 + Const. Here, 
𝑝* 𝑝 = 𝑁 0, Σ = 𝑀 (zero-mean Gaussian with covariance 
matrix 𝑀).

With these forms, Hamilton’s equations become

𝑑𝑞#
𝑑𝑡

= 𝑀()𝑝 #,

𝑑𝑝#
𝑑𝑡

= −
𝜕𝑈
𝜕𝑞#

. (Force.)

(Velocity.)

𝑝* 𝑝 = )
+ exp

(, -
' = )

+ exp
-!."#-

/ . (𝑇 = 1 . )



Hamiltonian Dynamics

Solution (𝑎 and 𝑟 are constants determined by initial conditions):

Example: One-dimensional harmonic oscillator

𝐻 𝑞, 𝑝 = 𝑈 𝑞 + 𝐾 𝑝 , 𝑈 𝑞 =
𝑞/

2
, 𝐾 𝑝 =

𝑝/

2𝑚
=
𝑝/

2
.

Here, we choose 𝑚 = 1.

So, distributions for both 𝑞 and 𝑝 are 𝑁(0, 1).

The dynamics: 𝑑𝑞#
𝑑𝑡 = 𝑝,

𝑑𝑝#
𝑑𝑡

= −𝑞.

𝑞 𝑡 = 𝑟 cos(𝑎 + 𝑡),      𝑝 𝑡 = −𝑟 sin(𝑎 + 𝑡)

(Hamilton’s equations)



Hamiltonian Dynamics
Properties of Hamiltonian dynamics

Reversibility

The mapping from the state at time 𝑡, (𝑞 𝑡 , 𝑝 𝑡 ), to the state 
at time 𝑡 + 𝑠, (𝑞 𝑡 + 𝑠 , 𝑝 𝑡 + 𝑠 ), is one-to-one and so has an 
inverse, which is obtained by negating the time derivatives in 
Hamilton’s equations.

Conservation of the Hamiltonian (= Conservation of Energy)

The dynamics keeps the Hamiltonian invariant.

𝑑𝐻
𝑑𝑡

=Q
#0)

%
𝜕𝐻
𝜕𝑞#

𝑑𝑞#
𝑑𝑡

+
𝜕𝐻
𝜕𝑝#

𝑑𝑝#
𝑑𝑡

=Q
#0)

%
𝜕𝐻
𝜕𝑞#

𝜕𝐻
𝜕𝑝#

−
𝜕𝐻
𝜕𝑝#

𝜕𝐻
𝜕𝑞#

= 0

𝐻 is a constant of motion.



Hamiltonian Dynamics
Volume Preservation

Any phase-space volume evolving in time may change its 
shape but the volume does not change

∇ R
𝑑𝒒
𝑑𝑡
,
𝑑𝒑
𝑑𝑡

=Q
#0)

%
𝜕
𝜕𝑞#

𝑑𝑞#
𝑑𝑡

+
𝜕
𝜕𝑝#

𝑑𝑝#
𝑑𝑡

=Q
#0)

%
𝜕
𝜕𝑞#

𝜕𝐻
𝜕𝑝#

−
𝜕
𝜕𝑝#

𝜕𝐻
𝜕𝑞#

=

=Q
#0)

%
𝜕/𝐻
𝜕𝑞#𝜕𝑝#

−
𝜕/𝐻
𝜕𝑝#𝜕𝑞#

= 0.

(A vector field with zero divergence preserves volume.)
In the present context this means that probability measure is 
invariant in time. (My wording, so subject to 
misinterpretations J)



Hamiltonian Dynamics
Symplectictness

The volume preservation is the most important 
consequence of this more universal property. Hamiltonian 
dynamics is symplectic. In dynamics symplectictness and 
volume preservation are often treated as synonyms. 
Symplectictness can be defined via the Jacobian of the 
transformation defining the propagation in time 
(dynamics).

In Hamiltonian dynamics the symplectic form is defined as 
𝜔 = 𝑑𝑞 ∧ 𝑑𝑝. Hamiltonian flow keeps ∫1𝜔 invariant. (See e.g. 
differentiable manifolds, if you are interested.) 

(∧ is the exterior (vector) product (×).)



Hamiltonian Dynamics
Discretization of Hamilton’s Equations

Euler’s Method

𝑝# 𝑡 + 𝜀 = 𝑝# 𝑡 + 𝜀
𝑑𝑝#
𝑑𝑡

𝑡 = 𝑝# 𝑡 − 𝜀
𝜕𝑈
𝜕𝑞#

𝑞 𝑡 ,

𝑞# 𝑡 + 𝜀 = 𝑞# 𝑡 + 𝜀
𝑑𝑞#
𝑑𝑡

𝑡 = 𝑞# 𝑡 + 𝜀
𝜕𝐾
𝜕𝑝#

(𝑝 𝑡 )

We use 𝐾 𝑝 = ∑#0)% -$
%

/2$
⇒ 𝑞# 𝑡 + 𝜀 = 𝑞# 𝑡 + 𝜀

𝑝#(𝑡)
𝑚#

.

(𝜀 is the step size)

The following examples of numerical integration is for the 
1-D harmonic oscillator →



Hamiltonian Dynamics
Discretization of Hamilton’s Equations

Euler’s Method

Integrating in time using Euler involves numerical error; 
try to minimise it →



Hamiltonian Dynamics

A Modified Euler’s Method

𝑝# 𝑡 + 𝜀 = 𝑝# 𝑡 − 𝜀
𝜕𝑈
𝜕𝑞#

𝑞 𝑡 ,

𝑞# 𝑡 + 𝜀 = 𝑞# 𝑡 + 𝜀
𝑝#(𝑡 + 𝜀)
𝑚#

.

The computed trajectory deviates less from the exact trajectory.

→



Hamiltonian Dynamics
A Modified Euler’s Method

We can do still better →



Hamiltonian Dynamics
The Leapfrog Method

Propagate in half steps.

𝑝# 𝑡 + 𝜀/2 = 𝑝# 𝑡 − 𝜀/2
𝜕𝑈
𝜕𝑞#

𝑞 𝑡 ,

𝑞# 𝑡 + 𝜀 = 𝑞# 𝑡 + 𝜀
𝑝#(𝑡 + 𝜀/2)

𝑚#
.

𝑝# 𝑡 + 𝜀 = 𝑝# 𝑡 + 𝜀/2 − 𝜀/2
𝜕𝑈
𝜕𝑞#

𝑞 𝑡 + 𝜀 .



Hamiltonian Dynamics
The Leapfrog Method Even with increased time step 

the computation is stable.



MCMC from Hamiltonian Dynamics

The requirement: Translate the density function for the 
distribution to be sampled from to a potential energy 
function and introduce momentum variables to go with the 
original variables of interest, now seen as position variables. 

The task: Simulate a Markov chain in which each iteration 
resamples the momentum and then performs a Metropolis 
update with a proposal found by using Hamiltonian 
dynamics.

How do we map the probability distribution to a potential 
energy function?



MCMC from Hamiltonian Dynamics

Probability and the Hamiltonian: Canonical Distributions

From statistical physics we know that in a canonical system 
(temperature and volume are constant) the probability 
density function for the state 𝒙, whose energy is 𝐸(𝑥), is the 
canonical distribution (Gibbs ensemble). The probability

𝑝3 𝑥 =
1
𝑍
exp

−𝐸 𝑥
𝑘𝑇

Here, 𝑇 is the temperature and 𝑘 is the Boltzmann constant, 
which we just set to 1, since absolute energy values are of no 
consequence in what we do.

⇒ 𝑝3 𝑥 =
1
𝑍
exp

−𝐸 𝑥
𝑇



MCMC from Hamiltonian Dynamics
𝑍 is the partition function. It is the sum over all states in the 
system. It corresponds to the normalisation constant in the 
distributions we encounter in statistics/stochastics. Incalculable.

Since the Hamiltonian 𝐻 𝑞, 𝑝 = 𝑈 𝑞 + 𝐾(𝑝) is an energy 
function for the joint state of position 𝑞 and momentum 𝑝, it 
defines the joint distribution

𝑝4,- 𝑞, 𝑝 =
1
𝑍
exp

−𝑈 𝑞
𝑇

exp
−𝐾 𝑝
𝑇

𝒒 represent the variables of interest and 𝒑 provide the dynamics.
𝐻 𝑞, 𝑝 = 𝐸67689 = const. ⇒ 𝑝4,- 𝑞, 𝑝 = const. when 
computation is exact.

In our liberal spirit we also set 𝑇 = 1 and write 
𝐸 𝑥 = − log𝑃 𝑥 − log 𝑍 and choose for 𝑍 a convenient value. 



MCMC from Hamiltonian Dynamics

In Bayesian statistics, the distribution of interest is the 
posterior distribution for the model. The posterior 
distribution can be expressed as a canonical distribution    
(𝑇 = 1) using a potential energy function defined as:

𝑈 𝑞 = − log 𝜋 𝑞 𝐿 𝑞 𝐷 ,

where 𝜋(𝑞) is the prior density and 𝐿(𝑞|𝐷) is the likelihood 
function given data 𝐷. (log = ln.)

So, to construct the potential function to go with the 
distribution, use 𝜋 𝑞 𝐿 𝑞 𝐷 = exp[−𝑈 𝑞 ].



MCMC from Hamiltonian Dynamics
Betancourt writes the (joint) canonical density as 
𝜋 𝑞, 𝑝 = 𝑒(:(4,-).

⇔ 𝐻 𝑞, 𝑝 = − log 𝜋 𝑞, 𝑝 = −log[𝜋 𝑝 𝑞 𝜋 𝑞 ].

Accordingly, the decomposition of the Hamiltonian and the 
joint density correspond as

𝐻 𝑞, 𝑝 = − log 𝜋 𝑝 𝑞 − log 𝜋 𝑞
≡ 𝐾 𝑞, 𝑝 + 𝑉(𝑞).

https://arxiv.org/abs/1701.02434


MCMC from Hamiltonian Dynamics
The Hamiltonian Monte Carlo Algorithm

HMC can be used to sample only from continuous 
distributions on ℝ% for which
- the density function can be evaluated (up to an unknown 

normalising constant)
- the partial derivative of the density function (or the gradient 

of 𝑈(𝑞)) can be computed: the derivatives must exist except 
for on a set of points with probability zero, where some 
arbitrary value can be returned

HMC samples from the canonical distribution 𝑝4,- 𝑞, 𝑝 .
𝑞 has the distribution of interest, as specified by 𝑈(𝑞).
The distribution of 𝑝 can be chosen freely via 𝐾(𝑝). Common 
practise is to use quadratic 𝑲 𝒑 ; 𝐜𝐨𝐧𝐬𝐞𝐪𝐮𝐞𝐧𝐭𝐥𝐲 𝒑 has a zero-
mean multivariate Gaussian distribution.



MCMC from Hamiltonian Dynamics

𝑝# defined as independent with component 𝑖 having variance 𝑚#
(and setting 𝑇 = 1):

𝐾 𝑝 =Q
#0)

%
𝑝#/

2𝑚#



MCMC from Hamiltonian Dynamics
The Two Steps of the HMC Algorithm

The First Step

Draw new values for 𝑝#, independently of the current values 
of 𝑞#. For 𝐾 𝑝 = ∑#0)% -$

%

/2$
the 𝑑 variables 𝑝#~𝑁(0, 𝜎#/). This 

step leaves 𝑝4,- 𝑞, 𝑝 invariant. 

→The Second Step



MCMC from Hamiltonian Dynamics
The Second Step

Propose a new state by performing a Metropolis update with 
Hamiltonian dynamics:

Start with the current state 𝑞, 𝑝 .
Simulate Hamiltonian dynamics for 𝐿 steps using the leapfrog 
method (or some other reversible volume-preserving method) 
with a step size 𝜀. (When 𝐿 = 1, HMC is also called 
L(angevin)MC.)
At the end of 𝐿 steps, negate 𝑝# (𝑝# → −𝑝#).
Now you have the proposed state 𝑞∗, 𝑝∗ .
Accept this proposed state (as the next state of the Markov 
chain) with probability (Metropolis)

𝑃 = min 1, exp −𝐻 𝑞∗, 𝑝∗ +𝐻 𝑝, 𝑞
= min 1, exp −𝑈 𝑞∗ + 𝑈 𝑞 − 𝐾 𝑝∗ + 𝐾(𝑝) .



MCMC from Hamiltonian Dynamics

If the proposed state is rejected, the next state is the current 
state. Be sure to count the occurrences of these states also, 
when computing expectations etc.

The negation of the momentum is done to ensure that the 
Metropolis proposal is symmetric (Neal). 
In fact, there is a more fundamental reason to momentum 
reversal (Betancourt): If only states going forward can be 
proposed, i.e. 𝑝∗ > 𝑝, the Metropolis-Hastings acceptance 
probability becomes ill-posed (see Betancourt p. 39). 

Return to The First Step.



MCMC from Hamiltonian Dynamics

Viewing HMC as sampling from the joint distribution of 𝑞 and 
𝑝, the Metropolis step using a proposal found by Hamiltonian 
dynamics – i.e. the second step - leaves the probability density 
for (𝑞, 𝑝) unchanged; in fact almost unchanged due to 
truncation in the Euler’s method and finite numerical 
precision.

Movement to (𝑞, 𝑝) points with a different probability density is  
accomplished only by the first step, the replacement of 𝑝 by a 
new value. This replacement can change the probability density 
for (𝑞, 𝑝) by a large amount. 



MCMC from Hamiltonian Dynamics
To rephrase, a value for 𝑞 with a very different probability 
density and equivalently potential energy 𝑈(𝑞) can be 
produced by Hamiltonian dynamics. Still, resampling of 𝑝 is 
necessary for obtaining the proper distribution for 𝑞, since 
without resampling the Hamiltonian 𝐻 𝑞, 𝑝 = 𝑈 𝑞 + 𝐾(𝑝)
would be (nearly) constant and 𝑈 𝑞 could never exceed the 
initial value of 𝐻 𝑞, 𝑝 .

First Step:
Random lift from the 
target parameter space 
onto phase space.

Second Step:
Deterministic Hamiltonian trajectory through phase space
and a projection down to the target parameter space. 



MCMC from Hamiltonian Dynamics

Note: Energy level trajectories of this form are for the 
harmonic oscillator (see page 8).



MCMC from Hamiltonian Dynamics

Proof of the Invariance of the Canonical Distribution 

Mentally partition the 𝑞, 𝑝 space into regions 𝐴$, each of the 
same small volume 𝑉. Define 𝑂 as the operation of 𝐿 leapfrog 
steps plus a negation of the momenta such that 𝑂: 𝐴$ → 𝐵$. 
(𝐵$ is the image of 𝐴$.)
Leapfrog steps are reversible, so 𝐵$ also partition the 𝑞, 𝑝
space. Since leapfrog steps and negation preserve volume, 
each 𝐵$ has volume 𝑉.

Detailed balance holds if ∀𝑖, 𝑗, 𝑃 𝐴# 𝑇 𝐵>|𝐴# = 𝑃 𝐵# 𝑇 𝐴#|𝐵> .

Here, 𝑃 is probability under the canonical distribution, and 
𝑇(𝑋|𝑌) is the conditional probability of proposing and then 
accepting a move to region 𝑋 if the current state is in region 
𝑌.



MCMC from Hamiltonian Dynamics

When 𝑖 ≠ 𝑗, 𝑇 𝐴#|𝐵> = 𝑇 𝐵>|𝐴# = 0 and detailed balance holds.

When 𝑖 = 𝑗:
In the limit as regions 𝐴$ and 𝐵$ become smaller, the 
Hamiltonian 𝐻3 within each region 𝑋 becomes effectively 
constant. → The canonical probability density and the 
transition probabilities become effectively constant within 
each region. → The detailed balance condition when 𝑖 = 𝑗
reads: 𝑉

𝑍
exp −𝐻?& min 1, exp −𝐻@& +𝐻?& =

𝑉
𝑍
exp −𝐻@& min 1, exp −𝐻?& +𝐻@&

This is seen to be true, so detailed balance holds.



MCMC from Hamiltonian Dynamics

We know from the stuff before that if the detailed balance 
holds, the Markov chain renders the distribution invariant.

So, the HMC algorithm leaves the canonical distribution 
invariant.

Ergodicity

Typically HMC is ergodic → all states can be reached, i.e. no 
traps. This may be compromised by periodic trajectories in 
the Leapfrog, when 𝐿𝜀 ≈ 2𝜋.



MCMC from Hamiltonian Dynamics
Benefits of HMC

Consider sampling from a distribution for two variables that 
is bivariate Gaussian, with means of zero, and correlation 
0.95. Regard these as “position” variables.

Introduce two corresponding “momentum” variables, defined 
to have a Gaussian distribution with means of zero, standard 
deviations of one, and zero correlation.
The Hamiltonian will then be 

𝐻 𝑞, 𝑝 = 𝑞'Σ() ⁄𝑞 2 + 𝑝' ⁄𝑝 2, with covariance Σ = 1 0.95
0.95 1 .

(In multiple dimensions the inverse Σ() is computed by e.g. 
Gauss-Jordan.)



MCMC from Hamiltonian Dynamics

Trajectories of a simulation based on this Hamiltonian. 𝐿 = 25, 
𝜀 = 0.25. The initial state 

𝑞 moves from lower left to upper right corned and reverses –
nothing like a random walk; efficient sampling.
This comes from the projection of 𝑝 in diagonal direction 
changing slowly (gradient in this direction is small) → the 
direction of 𝑝 stays the same for many leapfrog steps.



MCMC from Hamiltonian Dynamics
Smaller-scale oscillations result from high correlation between 
the variables. These oscillations set an upper limit to the step 
size. For this example, at a critical step size 𝜀 = 0.45 the 
trajectory becomes unstable → the value of the Hamiltonian 
grows without bound.

For this example, at the end of 𝐿 steps the difference in 𝐻 is 
2.61 − 2.2 = 0.41, so the probability of accepting the endpoint 
as the next state is exp −0.41 = 0.66. 



MCMC from Hamiltonian Dynamics
Comparing 𝑞’s of 2d random-walk and HMC. Correlation is 
0.98. 
RW of 20 iterations with 20 updates or leapfrog steps  per 
iteration Metropolis and HMC of 20 leapfrog steps per 
trajectory.



MCMC from Hamiltonian Dynamics
Two hundred iterations, starting with the 20 iterations shown 
above.



MCMC from Hamiltonian Dynamics

The benefit of HMC stated naively.
RW MCMC: The variance in the position after 𝑛 iterations of 
RW MCMC is proportional to 𝑛→ The standard deviation of 
the amount moved (the distance) in 𝑞-space ∝ 𝑛.
HMC:  The distance moved after 𝑛 will tend to be proportional 
to 𝑛. 

The advantage of HMC compared to movement by a random 
walk will be a factor roughly equal to the ratio of the 
standard deviations in the least confined direction and most 
confined direction.

There are ways to enhance HMC like using multiple step sizes.



MCMC from Hamiltonian Dynamics
Pseudo algorithm for a single iteration of HMC in 1d (R.M. Neal, p 14):

1. Initiate 𝑞. 𝑞∗ = 𝑞".
2. Sample 𝑝"~ 𝑁(0,1)
3. Make a half step for momentum

𝑝∗ ≔ 𝑝" − ⁄𝜀 2 1 ⁄𝑑𝑈(𝑞∗) 𝑑𝑞
4. Alternate full steps for position and momentum

for (i := 1, L)
Make a full step for the position
𝑞∗ ≔ 𝑞∗ + 𝜀 1 𝑝∗
Make a full step for the momentum, except at the end
If 𝑖 ≠ 𝐿, 𝑝∗ ≔ 𝑝∗ − 𝜀 1 ⁄𝑑𝑈(𝑞∗) 𝑑𝑞

5. Make a half step for momentum at the end
𝑝∗ ≔ 𝑝∗ − ⁄𝜀 2 1 ⁄𝑑𝑈(𝑞∗) 𝑑𝑞

6. Negate momentum at the end of trajectory
𝑝∗ ≔ −𝑝∗

7. Evaluate potential and kinetic energies at start and end of trajectory
𝑈" = 𝑈 𝑞" ; 𝐾" = ⁄𝑝"# 2; 𝑈∗ = 𝑈 𝑞∗ ; 𝐾∗ = ⁄𝑝∗ # 2

8. Accept or reject the proposed state
𝑞∗ = 𝑞∗, if 𝑢 < exp(𝑈"- 𝑈∗+ 𝐾"- 𝐾∗); 𝑞∗ = 𝑞", if 𝑢 ≥ exp(𝑈"- 𝑈∗+ 𝐾"- 𝐾∗) 
(𝑢~𝑈(0,1)) 

https://arxiv.org/abs/1206.1901

