$A P$
 Aalto University

 Hyperbolic

 Hyperbolic geometry \& geometry \& Fractals

 Fractals}

Shapes in Action 13th Oct 2020

Program schedule for Oct $13^{\text {th }}$

15:15 Hyperbolic geometry (cont.)
16:00 Break
16:15 Some ideas about fractals
17:00 Break
17:15 A folding activity

Euclidean (=flat), spherical and hyperbolic models of 2D geometry

$\mathrm{K}=0$ (17 types)

$K>0$ (14)

$K<0(\infty)$

What is curvature?

Curvature of a smooth planar curve at point P is $\boldsymbol{\mu}(\mathrm{P})=1 / \boldsymbol{\rho}$

- works also for curves in space or higher dimensions
- points should be approachable with circles
- extrinsic quantity

What is curvature of a surface?

Gauss curvature

$K(p)=\varkappa_{1}(p) \varkappa_{2}(p)$

Theorema Egregium (Gauss, 1827)

Curvature K is an intrinsic quantity!

 of principal curvaturestangent plane

What are possible constant Gauss curvature geometries for smooth closed surfaces?

A possible construction for a torus

Eugenio Beltrami (1835-1900)

Pseudosphere (1866) : A local model via 'lazy dogs curve' (tractrix) rotating around x-axis

Antonio Candido Capelo, Mario
Ferrarí, $\mathfrak{L a}$ "cuffía" di Beltrami: storía e descrizione, Bollettíno
di Storía delle Scienze Matematiche 2 (1982): 233-237.

Aalto University

University of Pavia

David Hilbert (1862-1943)

Answer (1901) to the question (*) posed by Riemann:

It is not possible to have an equation describe a surface in 3-space that has constant negative curvature and that is extended indefinitely in all directions.

Improvements by Erik Holmgren (1902),
Marc Amsler (1955)

On various ways to map hyperbolic surfaces to Euclidean 3-space

Analogous problem as studying geography of our spherical planet by looking a flat map.

Ex: stereographic projection

Beltrami-Klein model for the hyperbolic plane $(1868,1871)$
 Disk model, boundary not included
 Advantage: shortest distances between points are straight lines
 Weakness: Does not preserve angles, Circles are not circular in general

Henri Poincaré (1854-1912) models

- Preserve angles (conformal model)
- Circular arcs perpendicular to the boundary realise shortest distances between points

$\Delta>$ Aalto University
Isometries = Möbius maps preserving half plane/unit circle !

*642 if colours ignored 642 if not

A 57 Aalto University
Price($\left.{ }^{*} 642\right)=1+5 / 12+3 / 8+1 / 4=2+2 / 48$; Price(642) $=5 / 6+3 / 4+1 / 2=2+2 / 24$

Source of inspiration for M.C. Escher (1898-1972)

*443 symmetry

Cost: $1+3 / 8+3 / 8+2 / 6=21 / 12>2$!

http://www.josleys.com/

$$
3 / 4+3 / 4+2 / 3=13 / 6>2
$$

333

$4^{*} 3$ total prize $3 / 4+1+1 / 3=21 / 12$

$4 * 3$ or *3333 ?

$3 / 4+1+1 / 3=2+2 / 24$
$1+1 / 3+1 / 3+1 / 3+1 / 3$
$=21 / 3=2+2 / 6$

Interpretation for 24 and 6 ?

Magic theorem fails but
*3333 index 4 subgroup of $4 * 3$

Riemann mapping theorem \& Escher

Every domain (= open and connected set) without holes (=simply connected) whose exterior contains at least one point in the plane can be mapped conformally to a disk

Space-time interpretation of the hyperbolic space

$\Delta>$ Aalto University

$$
q(x)=x_{1}^{2}+\ldots+x_{n-1}^{2}-x_{n}^{2}
$$

What surfaces support hyperbolic structures?

- Sphere supports spherical structure
- Torus has a flat structure
- Surfaces of higher genus can be equipped with a hyperbolic structure

Classification of closed (compact without boundary) surfaces

Connected sum operation

All orientable surfaces are connected sums of a sphere and finitely many tori

All non-orientable surfaces are connected sums of a sphere and finitely many projective spaces

All surfaces can be described as polygons with boundary identifications (normal form)
The Euler characteristic of a surface $\chi(S)=2-2 \mathrm{~g}$ is a topological invariant!
$\mathrm{g}=0$ sphere
$\mathrm{g}=1$ torus
$\chi(\mathbf{S})=\mathrm{V}-\mathrm{E}+\mathrm{F}, \mathrm{V}=$ number of vertices, $\mathrm{E}=$ number of edges, $\mathrm{F}=$ number of faces of any cell subdivision of the surface

Especially $\boldsymbol{\chi}(\mathbf{S})=\mathbf{2}$ for all
 polyhedrons!

Pair of pants decompositions of surfaces

A pair of pants

Pair of pants decomposition of a two holed torus

Pair of pants decomposition of a three holed torus

Gauss-Bonnet Theorem for compact orientable surfaces at least genus 2

Every two pair of pant decomposition of a surface S have the same number of pair of pants and this number is even. The number of pair of pants is $-\chi(S)=2 g-2, g \geq 2$ and the (normalized) hyperbolic surface area is $-2 \pi \chi(S)$

Hyperbolic structure can be given for example through hexagons with 90 degree angles

A construction by Daina Taimina

A hyperbolic octagon with 45 deg interior angles can be glued to a hyperbolic pair of pants

Thurston model to approximate hyperbolic plane

- Cut out a hexagon formed by 6 equilateral
 triangles
- Make a slit and tape one more triangle so that 7 triangles meet at a vertex
- Add at least two layers of triangles so that every vertex is adjacent to 7 triangles

Thurston vs Poincaré \& Beltrami-Klein

732 (or *732 by ignoring colours)

The Eightfold way by Helaman Ferguson

24 heptagons

The title refers to the fact that starting at any vertex of the triangulated surface and moving along any edge, if you alternately turn left and right when reaching a vertex, you always return to the original point after eight edges.
http://library.msri.org/books/Book35/files/thurston.pdf

Klein Quartic $x^{3} y+y^{3} z+z^{3} x=0 . \quad \mathrm{x}, \mathrm{y}, \mathrm{z}$ complex (homogenous) coordinates

Why hyperbolic geometry?

- Connections to cellular automata (Margenstern-Morita etc.)
- Visualizations of Web, Network security
- Modular functions in number theory (Fermat's last theorem)
- Algebraic geometry, differential geometry, complex variables, dynamical systems
- Biology

(a) A Cortical Surface with Multiple Boundaries

(c) Canonical Fundamental Domain for Hyperbolic Harmonic Map

(b) Universal Covering Space of the Cortical Surface

(d) Hyperbolic Power Voronoi Diagram for Optimal Mass Transport Map
- Self folding materials in chemistry
- R. Nesper, S. Leoni structural chemistry
- Medicine ex. M. Steiner brain image analysis
- Physics J. Richard Gott III : multiply connected universe model
- Ergodic theory, string theory

- J. Vigoureux, R. Giust: Multilayers in optics
- Music Dmitri Tymoczko and his music chord orbifolds
- Why not !

Aalto University

Fractal Geometry

Phenomena that cannot be explained by classical geometry
Shapes in Action Tue $13^{\text {th }}$ Oct

Contents

1. An introduction to Fractal Geometry
2. Times before computers
3. Benoit Mandelbrot
4. Self similar wave origami
5. Indra's pearl
6. Fractals and Nature
7. Self similarity in architecture

‘Natural' vs. ‘man-made’ objects

What do these pictures present?

What happened ? Why does the trick work?

Many objects look the same in different scales.

How can one distinguish the correct size?

Who invented 'fractal geometry' in the sense of ‘new geometry of nature'?

Many fundamental examples due to classical mathematics!
 George Ferdinand Ludwig Philipp Cantor 1845-1918

- the crisis of the dimension
- exceptional objects
- 'mathematical monsters'
- limits of fundamental notions
('curve', 'continuous')
 Typical Nature?

Cantor's middle third set (1883)

- are there any points left in the limit?
- subintervals left (2/3) ${ }^{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
- endpoints never removed!
- infinite decimal presentation of 0's and 2 's in a base 3 ($1 / 3=0.0222 \ldots$!)
- is it possible to numerate them?
- size of the limit set vs $[0,1]$?
- dimension of the limit set?
- connectedness of the limit set?
- a self-similar set
- a prototype of a fractal set

Giuseppe Peano, 1858-1932

What is a curve?

What is the dimension of a curve?
Can a curve fill a square/cube/hypercube/...?

A Peano curve by David Hilbert（1862－1943）

צֹת亿约

 $\cdots)^{4}$ ת जरที่

亿约 תֻת

 ज

 ค运

 $\boxed{\pi}$

Ueber die stetige Abbildung einer Linie auf ein Flächenstũck．＊） Von
David Hllbert in Königsberg i．Pr．

Peano nat kürzlich in den Mathematischen Annalen＊＊）durch eine arithmetische Betrachtung gezeigt，wie die Punkte einer Linie stetig auf die Punkte eines Flächenstilckes abgebildet werden könuen．Die für eine solche Abbildung erforderlichen Functionen lassen sich in übersichtlicherer Weise herstellen，wenn man sich der folgenden geo－ metrischen Anschauung bedient．Die abzubildende Linie－etwa eine Gerade von der Länge 1 －theilen wir zunächst in 4 gleiche Theile $1,2,3,4$ und das Flächenstück，welches wir in der Gestalt eines Quadrates von der Seitenlänge 1 annehmen，theilen wir durch zwei zu einander senkrechte Gerade in 4 gleiche Quadrate 1，2，3， 4 （Fig．1）． Zweitens theilen wir jede der Theilstrecken 1，2，3， 4 wiederum in 4 gleiche Theile，so dass wir auf der Geraden die 16 Theilstrecken $1,2,3, \ldots, 16$ erhalten；gleichzeitig werde jedes der 4 Quadrate 1,2 ， 3，4 in 4 gleiche Quadrate getheilt und den so entstehenden 16 Quadraten
$\xrightarrow{\prime, 2, t, 4} \quad!$ \qquad $\stackrel{10}{4}$

MIg． 2.

werden dann die Zahlen 1，2．．． 16 eingeschricbon，wobei jedoch die Reihenfolge der Quadrate so zu wählen ist，dass jedes folgende Quadrat sich mit einer Seite an das vorhergehende anlehnt（Fig．2）．Denken wir uns dieses Verfahren fortgesetzt－Fig． 3 veranschaulicht den
－）Vergl．eine Mittheilung über denselben Gegenetaad in den Verbandlongen der Gesellichaft deutscher Naturforscher und Aerzte．Bremen 1890.
＊＊）Bd．36，S． 157.

A 3D generalisation of Hilbert's construction by W. Gilbert (Mathematical Intelligencer 6(3) (1984), page 78)

Space filling structures in Nature

Wacław Franciszek Sierpiński 1882-1969

A self similar process in Sierpiński gasket (1916)

The Chaos Game (Barnsley)

Cathedral Anagni (Italy) 1104

Fig. 6 SS. Giovanni e Paolo (13 $3^{\text {th }}$ century), Rome

Santa Maria in Cosmedin, Rome

Escher's studies of Sierpinski gasket-type patterns

On twelfth-century pulpit of Ravello Cathedral, 1923

Sierpiński Carpet and generalizations

Karl Menger 1902-1985 and his sponge 1926

Menger sponge via business card origami

Three interlinked Level One Menger Sponges, by Margaret Wertheim.

Jeannine Mosely 66048 business cards

Niels Fabian Helge von Koch (1870-1924) and his snowflake (1904)

Evolution à la Mandelbrot

Canopy, by Craig Harris 2008

Similarity mapping

A plane transformation f is a similarity if there exists a positive number k such that for every point A and $B, d(f(A), f(B))=k d(A, B)$. The number k Is a stretching factor of the similarity. Case $\mathrm{k}=1$ gives a symmetry.

Similarities here are central similarities or dilations

Classification of similarities in the plane

Spiral symmetry: rotation composed with a central similarity (w.r.t same point)
Dilative reflection: central similarity w.r.t. point O composed with a reflection w.r.t. a line going through O.

Can show: Every similarity is a symmetry, a spiral similarity or a dilative reflection.

The self similar wave by Tom Hull

Is the outcome a fractal?

Aalto University

Question 1

Suppose we started with a square paper with side length 1 and folded the wave with an infinite number of levels, what would the coordinates of the limit point P of the spiral be ?

Geometric transformation solution

- Find affine mapping (scaling+ translation) taking $(1,0)$ to $(1, y)$ (and hence unit square to a square of side length $1-\mathrm{y}$
- $\quad y=\sqrt{ } 2-1$ from the picture=> scaling factor $=1-y=2-\sqrt{ } 2$

Self similarity in the folded wave pattern

\Rightarrow Rotation of 45° counter clockwise wrt to the origin + scaling by factor $2-\sqrt{ } 2$ + translation from origin to point ($\mathrm{x}, 0$)
$\Rightarrow \mathrm{P}=(2 / 3, \sqrt{ } 2 / 3)$

Solution through complex (= nature's) numbers

$$
P_{0}=0, P_{1}=a=2-\sqrt{ } 2
$$

$$
\mathrm{P}_{2}=\mathrm{P}_{1}+\mathrm{a}^{2} \mathrm{e}^{i \theta}, \theta=\frac{\pi}{4}
$$

$$
P_{3}=P_{2}+a^{3} e^{i 2 \theta}
$$

$$
P_{n}=P_{n-1}+a^{n} e^{i(n-1) \theta}
$$

$$
\Rightarrow P=a \sum\left(a e^{i \theta}\right)^{n}=2 / 3+\sqrt{ } 2 / 3 i
$$

The spiral is logarithmic: $\left|P-P_{n}\right|=\sqrt{ } 6 / 3(2-\sqrt{ } 2)^{n+1}$

Some other self similar origami patterns

Sometimes called 'fractal origami' but are they fractals really?

Aalto University

Gaston Maurice Julia 1893-1978

Aalto University

Iteration of planar rational functions

Squaring transformation: $s: s(r, \alpha)=\left(r^{2}, 2 \alpha\right)$ Power n: pn: pn(r, α)=(rn, na)

Preserves angles outside the origin!

... and (geometric) inversion in a circle

Planar rational maps are compositions of similarities, powers and inversions.

Pierre Joseph Louis Fatou 1878-1929

- 'Fatou set'
- Holomorphic dynamics

Benoit Mandelbrot 1924-2010

Mandelbrot coined (70's) the word 'fractal' to explain self similar objects

Fractus= fractured, broken

Mandelbrot set

Parameter space for C=($\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{y}}$) under $f: f(r, \alpha)=\left(r^{2}, 2 \alpha\right)+C$

Look at $\mathbf{C = 0}$ once more!

C=-1, Julia/Fatou set

Douady's rabbit (Adrien Douady 1935-2006)

(2)

Aalto University

$$
C=-0.12256+0.74486 i .
$$

Dragon c=0.360284+0.100376i

A

Dendrite and Cantor dust

Higher dimensional analogues of complex polynomials (joint work in progress with G. Martin)

Aalto University

Kleinian groups

Ex: pairing of circles under
 Möbius transformations

Aalto University

An artistic interpretation by Jos Leys

Fractals in approximating natural forms

Change from
mechanical/geometrical to organic by using mathematical algorithm

Aristid Lindenmayer 1925-1989 (L-systems) in plant biology

Artistic inventions of fractals a bit earlier and its reproduction by a process called Iterated Function System IFS.

'Driving Rain' by Ando Hiroshige (1797-1858)

Aalto University

'A Thousand Pictures of the Sea' by Katsushika Hokusai (1817-1859) and IFS again

Frank Lloyd Wright (1867-1959)

Palmer house in Michigan (1950-51)

Fallingwater, Pennsylvania (1937) and Li Cheng (960-1127): Solitary Temple

African fractals: Ron Eglash

 http//www.ted.com/talks/ron_eglash_on_african_fractals.html

