First Intermediate Exam

* First intermediate exam on Thursday 22.10.2020,
14:00-16:30, Distant Open Book exam. 3 problems,
max 5+5+5=15 points. Instructions will come in
course pages. Shortly: the exam will be given as an
Assignment open between 14:00-16:30. Submission
like in a homework Assignment as a pdf file. All
material is available, but you are not allowed to be in
contact with any person by any means during the
exam.

* You do not have to register to the exam.

* Note that on the next week (evaluation period) there
are no lectures and no exercises of the course. Only
the exam.
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Fundamental Limitations in Control
Design

Is there a limit to how good compensator it is possible
to design for a given process?
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Signal scaling:
Example. Room temperature dynamics
7 =K -2")-K,(z" -w')
¥ =K@ -x/)-K,(x/ -z7)

z is the room temperature

x1 is the temperature of the heating radiator

w is the outdoor temperature (disturbance)

u is the temperature of the heating water (control)

The superscript findicates that the variable is in physical
(unscaled) units.
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Constants K; =K, =K, =07, K,=35

Possible stationary point

xf'=50°C, zf=200C. W =-10°C, ¥ =506"C

Purpose of control: keep room temp within = +1°C  when

the outdoor temp varies as +10°C ;control range +20°C
In what follows the variables denote variations from the
steady state. 0.5 ;. 001s+05

& u + wr
(0.035+1)0.7s+1) (0.035+1)0.75+1)

The time constants of the radiator and room are 0.03 and
0.7 (hours).

S
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Because the outdoor temperature cannot change
arbitrarily fast, let us model it as

w’ = —1 a’
s+1

where ¢/ is within the range +10°C

Use the scalings w=u’/20, ==z, d=d” /10
. 10 0.1s+5
to obtain == - d
o ob (0.035+1)(0.75+1)” (0.035 +1(0.7s +1)s +1)
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Formalize the procedure:

Physical system
()= G (pu’ (1) + G (p)d” (1)
Y@= +n" 1)
dy=r'(n-:7(t)

scaling matrices Du=u’, D,d=d’

z=z/, Dy=y’, Dn=n', Dr=+7,

”D”:s are diagonal matrices, with which different
components of the variables are changed into the
same scale.

De=¢’
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Scaled system variables
2(1) = G(p)u(t) + G, (p)d(r)
y(t) = z(t) + n(t)
e(t) =r(1)—z(r)
where G=D"'G’D, G,=D"G/D,

After proper scaling the transfer functions
Gand G, are fully comparable as functions of frequency.

Earlier that would have been impossible, because the
functions are related to different physical variables.

C
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Performance limitations:

* unstable systems

« systems with delay

* non-minimum phase systems

* limitations in control signal range
* system inverse

C
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Meaning of the system inverse

Let the system be

=(t) = G(p)u(t) + w(r)
y(0) = =) + n(?)

(for simplicity, assume n = 0)
controller  # = F,r —F,.y

It follows that
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F F,

5

H=—=~-—p-——=1
I+FG 1+FG

w=G"[G,r-(1-S)w]

Perfect control, if G. =1 and S=0

in which case 0= Gil(?‘—W)

Note. If w were measurable, this result could have been
obtained directly from the system model.

Aalto University
School of Electrical
®m  Engineering 10

u=G'(r—w)

Generally:

sperfect control means using the process inverse

*in practice, control methods are based on the search

for the (approximative) inverse model

sthis explains,why systems with delay and nonminimum
phase systems are difficult to control

10
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Ex. Consider the system

y=Gu+G,d
in which the variables have been scaled such that
lam| <1, u@)|<1
Perfectcontrol = -GG .

A necessary (but not sufficient) condition for the exist-
ence of a control that compensates all allowed disturban-

ces is G(iw) 2 |G, (i), Ve
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Let us return to the room temperature control example

Loop gain:
S+7 =1 (consider the SISO-case)

-keep S small in low frequencies

-keep T small in high frequencies

But the loop gain GF,  determines uniquely
these functions

1

|S|< & < |GF,|> =

e

(approximative)
T <& < |GF,|<&

C
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Bode equations
For a minimum phase system it holds

d
log &

arg G(iw) ~ %d ‘log|G(ie)|

Stability requirement: if at the gain crossover frequency
the gain decreases

20-a dB  (per decade), the phase is (about) —«-

SR

In order to have a positive phase margin, the gain must
not drop faster than 40 dB /decade

But this is against the above requirements!
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L 10 v 0.1s +5 d
T (0,035 +1)0.7s+1)  (0.035+1)(0.7s +1)(s +1)
3 N
: N
\ -
. B
s+1 with s+1 not with
compensation Ok for all compensation not perfect
frequencies in high frequencies
A Aalto University
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b for)
1
& forbidden
1 region
forbidden
: region
=
ﬂ)u ﬂ)( w\ @
The change should be fast (as S must grow, let it
happen fast in a small frequency range, in order
to force 7 to be small).
But the loop gain and phase are interconnected!
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Assume that the loop gain [£|=|6%| decreases as fast as|s|"as || tends t
infinity. Then the Bode integral holds :

J}Elog |S(ia))| do = zri Re(p,)
0 i=1

where 7, :s are the RHP poles of the loop gain G(s)F, (s)
(here log means the natural logarithm (In)).

If there are no RHP-poles, it follows

Ilog ISGe)|do =0 These are again fundamental
S limitations.

Sometimes the phrase “waterbed formula” is used in the
literature
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abs(5)

10" 10° 10’
w

‘_1

Note that the condition: gain |z|=|o7| must decrease as fast as |s
as |s| tends to infinity holds for practically all physical systems.
(Both elements in L are at least 1st order systems).
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Concequences:
1. Let the process have an unstable pole p, >0
For the bandwidth the (approximative) bound
o, > p,
can be set, in order to be able to control the unstable mode.

2. Let the process have delay T,

For the gain crossover frequency @,

1
@, < (appr) T_d

C
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3. Let the process have a nonminimum phase zero, z

w, <=

Ex. 1. Control of the inverted pendulum

control

u=¢

s
&+—sin y
5 oSl

I
—cos ¥
2

C
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Dynamic equations

2

i 1, .. 2
Fcos y—ing =m—s(=cos y)=m—(-ysin y— ¥~ cos y)
dr” 2 2

2

. -- . I . 2.
Fsiny=m&+m 7 (Esm V) =mu +mE(1'cos y— vy~ sin y)

L. I . ;
By eliminating EJ' —gsin y=-wucosy

and linearizing with respect to small deviations

Gls) = -2/1
s$-==
1

C

The poles are + J? (unstable)

The bandwidth should exceed /2g/]

say, 2m+2g/l

It is seen that a short pendulum is more difficult to control

than a long one.

Ex. 2. Process with delay

G(s) = G,(s)e”™

C
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Again, for the control it can be written

u= Gfl[GCr -(1- S)w]

Perfect control G, —1, §—0 isimpossible, because

it would mean
=" (s)e™ (r —w)
which contains anticipation.

But choose ideally G, =e™" ; T =¢™T¢ (=1-5)
so that the delay term is cancelled from control equation.

C
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An ”ideal” sensitivity function is then
—5T,
S=1-e7"
| S, when Td=1
10
10’
g
10"
»‘DZ 1 o 1
10 10 10
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For small frequencies

Slio)~ioT,

Then the amplitude of the (ideal) sensitivity function is
smaller than one in frequencies

® <1/T,

This approximates the bandwidth, so that

1
Dy <—

d
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Ex. Consider again the delay but now by means of the
Padé-approximation

r 1=sT/2

*1+sT/2 1. degree Padé-approximation

But this transfer function has a non-minimum phase
Zero

z=2/T

But by earlier results

®, <==

same result!

[SERT
Nl
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Interpolation constraints

Let z be a RHP zero of the loop transfer function L(z) = 0.
Then (SISO case)

S(z)=——1  (Interpolation condition 1)
1+ L(=z)
In control: [V, S|, <1<>[S|< . Vo
|
= (2)|<1
A? s .

26
Let p, be a RHP pole of the loop transfer function L, L(p,) =
Then
T(p)= =t I S (Interpolation condition 2)
1+L(p) |, 1
Lip)
In control: 1
|7.T|, <1< |T|<—. Ve
|
= (p)|=1
A? FEE .
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Ifwe choose 7, =2 — @, >2p,

C

Aalto University
School of Electrical
m  Engineering 29

We want T'to lie
g ] below this curve.
T, <1 [Ta)|< ——
1 |W,(1co)|
w. =i+_l_:>_l.=; U 1 1 1 d 2
Let AT W ) 1 3 se interpolation condition 2:
T, @
p 1 p2)
W, <loD=+—<IDa >
| I(pl)l o T, Dy 1-1/T,

-

Let

|W5(:)|g1:>:§7"fs”glz>q L=

If we accept S, =2=a, <

W,

_5+rq]SD: I S
2 S5 Wy s+aS,

1
5"
0

(]

But Sy>o=>m,<z

We want S to lie
below this curve.

1
W.S| <le |S(io)< ———
sl <1 s [sto< o

Use interpolation condition 1:

C
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