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1 Bayesian estimation

Three ingredients of Bayesian estimation (x is unknown parameter, y is data):

• Bayes rule:

p(x; y) = p(x|y)p(y) = p(y|x)p(x)

• Minimum mean squared error (MMSE) estimator:

x̂MS , arg min
x̂

E(|x− x̂(y)|2) = E(x|y) =

∫
xp(x|y)dx

• Maximum a posteriori (MAP) estimator:

x̂MAP , arg max
x

p(x|y) = arg max
x

p(y|x)p(x)

p(y)
= arg max

x
p(y|x)p(x).

For details and examples complementary to the lecture handouts, see

• S. M. Kay, Fundamentals of statistical signal processing: Estimation the-
ory. Prentice Hall PTR, 1993 (check library or try googling. . . )

2 Sensor array processing

Consider an M sensor linear array observing a scalar wavefield produced by K
uncorrelated far field point sources, as illustrated in Fig. 1. A snapshot in time
of the received signal x ∈ CM is

x(n) = A(θ)s(n) + v(n), (1)

where A ∈ CM×K is the array steering matrix whose columns are parametrized
by the (distinct) source angles in vector θ ∈ RK . In the case of the Uniform
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Figure 1: Canonical array processing model.

Linear Array (ULA) with omnidirectional sensors and a half wavelength inter-
sensor spacing (see Fig. 1), the (m, k)th entry of A assumes the form

Am,k = exp(jπ(m− 1) sin θk).

Furthermore, s ∈ CK is the source signal vector and v ∈ CM a noise vector,
both typically assumed circularly symmetric complex Gaussian random vec-
tors. Under standard assumptions (see lecture handouts p. 401), the covariance
matrix of the measurements becomes

Σ , E(xxH) = APAH + σ2I, (2)

where P , E(ssH) = diag([p1, p2, . . . , pK ]) is the diagonal source power matrix
with pk denoting the power of the kth source, and σ2 is the noise variance. In
practice, we compute a finite sample estimate of the covariance matrix:

Σ̂ =
1

N

N∑
n=1

x(n)xH(n),

where N denotes the number of snapshots (time samples).
A typical task of array processing is to estimate quantities of interest from

(1), such as the source angles θ, signals waveforms s, or signal covariance P .
We briefly consider these three cases next.

2.1 Source signal estimation

The source signals s can be estimated using the MMSE or MAP estimators. By
Bayes rule, the posterior distribution of s after observing data x is

p(s|x) =
p(x|s)p(s)

p(x)
.

Here p(s) and p(x) are probability density functions of circularly symmetric
complex Gaussian vectors, and p(x|s) is the density of a complex Gaussian
vector with non-zero mean As. Since all terms are Gaussian, one may explicitly
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evaluate the posterior and conclude that it is also Gaussian1. This distribution
has a non-zero mean, which is given by the MMSE estimator:

ŝMS = PAHΣ−1x.

Due to the symmetry (Gaussianity) of the posterior, the MAP estimator is
equivalent to the MMSE estimator (e.g,, see [2]). Note that P and A(θ) are
typically unknown and need to be estimated. The estimation of the source
angles θ is known as direction-of-arrival (DoA) estimation.

2.2 DoA estimation

2.2.1 Beamforming

Beamforming is a simple and versatile nonparametric approach for spatial fil-
tering, which can be employed at both the transmitter and the receiver. For
example, consider the received power of the array steered in direction φ after
applying beamforming weight vector w ∈ CM :

b(φ) = E(|wH(φ)x|2) = wH(φ)Σw(φ) ≥ 0.

The choice of w affects the shape of the beampattern by trading off main lobe
width (resolution) and side lobe levels (interference suppression capability), as
demonstrated in Fig. 2. A common choice is the spatial matched filter, for which

w(φ) = a(φ)/‖a(φ)‖22.

The DoA estimates are given by the peaks of b(φ). For simplicity, assume that
‖a(φ)‖22 = 1 ∀φ (e.g., omnidirectional sensors). For a single source with power
p in direction θ, the matched beamformer output power is thus

b(φ) = aH(φ)Σa(φ) = aH(φ)(pa(θ)aH(θ) + σ2I)a(φ) = p|aH(φ)a(θ)|2 + σ2.

The Cauchy-Schwartz inequality therefore implies that

|aH(φ)a(θ)|2 ≤ 1,

where equality holds if and only if a(φ) and a(θ) are linearly dependent, i.e.,
a(φ) = ejϕa(θ) for some ϕ ∈ R. Suppose that a(φ) and a(θ) are linearly
independent if φ 6= θ. For example, the ULA with omnidirectional sensors and
an inter-sensor spacing of half a wavelength or less satisfies this property. In
this case, the beamformer power is maximized by the true DoA, i.e.,

θ = arg max
φ

b(φ).

For a finite sample realization of b, it is unknown whether the angle correspond-
ing to the peak of the beamformer power spectrum yields an unbiased estimate
of θ. In the case of K > 1 sources, the peaks do not generally yield unbiased
estimates of the source DoAs, even when the number of snapshots approaches
infinity. The modest statistical performance of beamforming, as well as its lim-
ited resolution, motivates developing alternative DoA estimators.

1The computations are cumbersome and therefore omitted. For a proof, see, e.g., [1,
Appendix 10A]. This also yields the identity of the MMSE estimator for jointly Gaussian
random vectors on p. 269 of the lecture handouts.

3



(a) Beamforming weights (b) Beamformer output

Figure 2: Different beamforming weight choices trade off between a narrow main
lobe and low side-lobe levels.

2.2.2 MUSIC

MUSIC (MUltiple SIgnal Classification) is a widely used parametric line spec-
trum estimation algorithm applicable to DoA estimation. The main advantage
of MUSIC is its ability to surpass the resolution limit of beamforming, as shown
in Fig. 3. The main steps of the MUSIC algorithm can be summarized as follows:

Step I: Compute (estimate) covariance matrix Σ

Step II: Evaluate eigenvalue decomposition of Σ

Σ = UΛUH =
[
Us Un

] [L+ σ2IK 0
0 σ2IM−K

] [
UH

s

UH
n

]
Step III: Find peaks of pseudospectrum

b(φ) =
1

‖UH
n a(φ)‖22

.

Here L = diag([l1, l2, . . . , lK ]) is a diagonal matrix containing the nonzero eigen-
values of the signal component of Σ, i.e.,

APAH = UsLU
H
s .

Since APAH is positive semi-definite, we have lk > 0. Sorting the eigenvalues
of Σ is descending order,

λ1 ≥ λ2 ≥ . . . ≥ λK ≥ . . . ≥ λM ,

we have

λm =

{
lm + σ2, if 1 ≤ m ≤ K
σ2, otherwise.

Consequently, the K largest eigenvalues are associated with the signal subspace
spanned by the range space of A (or columns of Us), with the remaining M−K
eigenvalues associated with the noise subspace, i.e., the orthogonal complement
of the range space of A (or columns of Un). The denominator of the MUSIC
pseudospectrum is therefore zero if the steering angle equals a true source di-
rection, i.e., φ ∈ {θk}Kk=1. Most notably, the zeros are unique for the previously
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Figure 3: Comparison of beamforming and MUSIC for two sources. MUSIC has
superior resolution compared to beamforming.

discussed ULA. Uniqueness means that the peaks in the MUSIC pseudospec-
trum correspond to only the true DoAs.

The previous derivation assumes that Σ is known exactly, which is equivalent
to assuming that the number of snapshots N → ∞. For a finite number of
snapshots, spurious peaks may occur in the pseudospectrum due to use of a
finite-sample estimate of Σ, and the eigenvalues corresponding to the noise
subspace may be difficult to distinguish from those of weak sources. Also note
that the number of signals K is often unknown in practice. In this case, K needs
to be estimated, e.g., using model order selection techniques, such as minimum
description length (MDL) or the Akaike information criterion (AIC) [3].

2.3 Source covariance matrix estimation

Estimating the source covariance matrix P is straightforward once the DoAs
have been estimated. One possible estimator is

P̂ = A†(Σ− σ2I)(A†)H,

where A† = (AHA)−1AH is the pseudoinverse of A. Recall that A is a function
of the source angles θ. The noise variance σ2 can in turn be estimated using
the noise subspace of Σ (see Section 2.2.2) as

σ̂2 =
1

M −K
tr(UH

n ΣUn),

where tr(·) is the trace operator (sum of diagonal elements). In practice, quanti-
ties Σ, Un, σ2 and θ above should be replaced by their finite sample estimates.

2.4 Resources

MATLAB tutorials (you should program your own functions and not use the
Phased Array System Toolbox):

• DoA estimation using beamforming, MVDR, and MUSIC:
https://se.mathworks.com/help/phased/ug/direction-of-arrival-estimation-with-beamscan-mvdr-and-music.html

• High resoution DoA estimation using MUSIC, ESPRIT, and root-WSF:
https://se.mathworks.com/help/phased/ug/high-resolution-direction-of-arrival-estimation.html
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Textbooks:

• P. Stoica and R. L. Moses, Spectral analysis of signals. Pearson Pren-
tice Hall Upper Saddle River, NJ, 2005 (http://user.it.uu.se/~ps/
SAS-new.pdf)

• S. J. Orfanidis, Electromagnetic waves and antennas. Rutgers University
New Brunswick, NJ, 2014 (http://eceweb1.rutgers.edu/~orfanidi/
ewa/) — especially Ch. 20 on antenna arrays (Ch. 22 in 2016 edition)

3 Kalman filtering

The Kalman filter is a sequential MMSE estimator and generalizaton of the
Wiener filter. It can be thought of as a dynamical filter, which estimates the
internal state of interest using partial state measurements, and a prediction
based on the assumed dynamical model. For details and examples beyond the
lecture handouts, see Kay’s book [1] and

• Wikipedia example: https://en.wikipedia.org/wiki/Kalman_filter#
Example_application,_technical
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