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1 General homework tips

1. MS and MAP estimators

• We observe a (single) measurement of the form Y = X +N

• What does the distribution of the measurement fY (y) look like1?

• Try visualizing the likelihood fY |X=x(y) for different values of x

• Both fY (y) and fY |X=x(y) have very simple expressions

• If you’re stuck, try the above steps assuming X is deterministic. For
example, try X = c, for some constant c ∈ R

• Remember that a probability density function should integrate to 1

2. MS and MAP estimators

• Straightforward, albeit slightly more cumbersome computations

3. Direction-of-arrival estimation using real-world data

• Consider the conceptual difference between LS and TLS

• Why is TLS-ESPRIT reasonable in our case?

• Compare at least the DoA estimates of MUSIC and TSL-ESPRIT

• Can you say something about the sensitivity of either method to the
(model/algorithm specific) assumptions?

4. Target tracking using Kalman filter

• See link in previous exercise handout

1Nice to know: In general, the distribution of Y is the convolution of the marginal distri-
butions of X and N , for arbitrarily distributed but independent X and N . However, you do
not need to evaluate the convolution integral in this exercise (but of course you may).
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2 More examples of Bayesian estimation

See Example 11.2 on p. 351 in Kay’s book [1] for an intuitive understanding of
the interplay between the prior, likelihood, and posterior. For convenience, we
solve a similar problem, namely Exercise 11.4 in [1, p. 370], below.

Solution: Since the noise is Gaussian, its PDF is

p(w[n]) =
1√

2πσ2
exp

(
− w2[n]

2σ2

)
.

Consequently, the conditional probability of x[n] given A is also a Gaussian
process with mean A, i.e.,

p(x[n]|A) =
1√

2πσ2
exp

(
− (x[n]−A)2

2σ2

)

For simplicity, collect the observations into vector x = [x[0], x[1], . . . , x[n−1]]T.
The likelihood of the i.i.d. observations is therefore the conditional PDF

p(x|A) =

N−1∏
n=0

p(x[n]|A) =
1

√
2πσ2

N
exp

(
− 1

2σ2

N−1∑
n=0

(x[n]−A)2

)
.

The MAP estimator of A maximizes the posterior, that is,

ÂMAP = arg max
A

p(A|x) = arg max
A

p(x|A)p(A) = arg max
A

(
log p(x|A) + log p(A)

)
.

For the given p(A) and p(x|A), the MAP becomes (ignoring irrelevant constants)

ÂMAP = arg max
A

(
− 1

2σ2

N−1∑
n=0

(x[n]−A)2 − λA︸ ︷︷ ︸
f(A)

)
.

Setting the derivative of f(A) w.r.t. A equal to zero yields

df(A)

dA
=

1

σ2

N−1∑
n=0

(x[n]−A)− λ = 0 ⇐⇒ A = x̄− λσ2

N
,

where x̄ = 1
N

∑N−1
n=0 x[n] denotes the sample mean. Indeed, the above argument

maximizes f(A), since

d2f(A)

dA2
= −N

σ2
− λ < 0.
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However, we also need to take into account2 that A ≥ 0, since it may occur that
x̄ < λσ2/N . Consequently, the MAP estimator is

ÂMAP = max

(
0, x̄− λσ2

N

)
.

Fig. 1 illustrates the MAP estimate, together with the prior and posterior PDFs,
as well as the likelihood function, for the case N = 1 and x = 2.0558. We see
that the prior biases the MAP estimate towards smaller values of A compared
to the mode of the likelihood function, i.e., the maximum likelihood estimate
(MLE). Note that the MLE is the sample mean, which equals the measurement
x in this single observation case.

Figure 1: MAP estimate together with prior, likelihood, and posterior PDFs.
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2Since we previously solved an unconstrained optimization problem, for simplicity.
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