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Estimate signal gain using maximum likelihood method

Consider a measurement model
y(n) = gx(n) + v(n),

where g is gain, x(n) is known signal and v(n) is measurement noise. The measurement noise is i.i.d
and Gaussian such that for all n

v(n) ∈ N (0, σ2)

and Cov (v(n), v(m)) = 0 for all n 6= m and σ2 is measurement noise power.

The following vector notation will be utilized in the derivations

y = gx + v

where y = [y(1), ..., y(N)]T , x = [y(1), ..., y(N)]T , v = [v(1), ..., v(N)]T , and N is number of samples

measured. The energy of the signal ‖x‖22 > 0.

a) Find maximum likelihood estimate for gain parameter g.

The Gaussian probability density function (pdf) can be written as follows

f(y(n)|g) = (2πσ2)−
1
2 exp

(
− 1

2σ2
[y(n)− gx(n)]2

)
where mean of the distribution is gx(n) and variance σ2. The likelihood function is

f(y|g) = (2πσ2)−
N
2 exp

(
− 1

2σ2

N∑
i=1

[y(i)− gx(i)]2

)

It is equivalent to solve ML problem after taking a logarithm. Therefore, natural logarithm of the
likelihood function is calculated

l(y|g) = −N
2

(2πσ2)− 1

2σ2

N∑
i=1

[y(i)− gx(i)]2

which is called the log-likelihood function.
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In order to find the maximum of the log-likelihood function, lets differentiate l(y|g)

∂

∂g
l(y|g) = − 1

2σ2

∂

∂g

N∑
i=1

[y(i)− gx(i)]2

=
1

σ2

N∑
i=1

[y(i)x(i)− gx(i)x(i)],

which is also called the score function.

Now let’s find roots of the derivative to caculate the ML estimate

1

σ2

N∑
i=1

[y(i)x(i)− gMLx(i)x(i)] = 0

N∑
i=1

y(i)x(i) = gML

N∑
i=1

x(i)x(i)

gML =

∑N
i=1 y(i)x(i)∑N
i=1 x(i)x(i)

gML =
yTx

‖x‖22

which is a candidate ML estimator since we have not yet proved that it is the maximum of the log-
likelihood function.

To ensure that the gML is actually maximum of the function l(y|g), the 2nd derivative is calculated

∂

∂g

1

σ2

N∑
i=1

[y(i)x(i)− gx(i)x(i)] = − 1

σ2

N∑
i=1

x(i)x(i)

= −
‖x‖22
σ2

< 0.

Since the second derivative is negative for all g, the log-likelihood is concave and thus the maximum
was found.

b) Prove that gML is unbiased.

For deterministic parameter g, unbiased estimator means that

E[gML] = g.
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Therefore, let’s calculate the expected value of the obtained ML estimate

E

[
yTx

‖x‖22

]
=

1

‖x‖22
E
[
yTx

]
=

1

‖x‖22
(x(1)E[y(1)] + x(2)E[y(2)] + · · ·+ x(N)E[y(N)])

=
1

‖x‖22

(
gx(1)2 + gx(2)2 + · · ·+ gx(N)x(N)2

)
=
g ‖x‖22
‖x‖22

= g.

Thus the ML estimate is unbiased.

c) Find variance of the ML estimate.

The following properties of variance are used used in the derivations

Var[cX] = c2Var[X]

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov (X,Y ) ,

where X and Y are random variables and c is a constant.

The variance of the ML estimator can be calculated as follows

Var[gML] = Var

[
yTx

‖x‖22

]

=
1

‖x‖42
Var

[
N∑
i=1

x(i)y(i)

]

=
1

‖x‖42

N∑
i=1

Var[x(i)y(i)]

=
1

‖x‖42

N∑
i=1

x(i)2Var[y(i)] =
1

‖x‖42

N∑
i=1

x(i)2σ2

=
‖x‖22
‖x‖42

σ2 =
σ2

‖x‖22
.

c) Is there a complete sufficient statistic for the observations y?

Fisher–Neyman factorization theorem states that

f(y|g) = h(y)u(T (y)|g)

where T (y) is the sufficient statistic and h(y), u(T (y)|g) are arbitrary functions.
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The likelihood function was written as follows

f(y|g) = (2πσ2)−
N
2 exp

(
− 1

2σ2

N∑
i=1

[y(i)− gx(i)]2

)

= (2πσ2)−
N
2 exp

(
− 1

2σ2

N∑
i=1

[y(i)2]

)

= (2πσ2)−
N
2 exp

(
− 1

2σ2

N∑
i=1

y(i)2

)
︸ ︷︷ ︸

h(y)

exp

(
− 1

2σ2
g2

N∑
i=1

x(i)2

)
exp

 1

σ2
g

T (y)︷ ︸︸ ︷
N∑
i=1

[y(i)x(i)]


︸ ︷︷ ︸

u(T (y)|g)

where we see that

T (y) =

N∑
i=1

[y(i)x(i)] = yTx.

To prove that the statistic is complete, the following lemma is utilized: the sufficient statistic T (y) is
complete if

E[r(T (y))] = 0

for all r only if the function is r(T (y)) = 0.

The statistic T (y) is distributed as follows N (g ‖x‖22 , g2σ2 ‖x‖22). The proof is based on the fact that a
linear combination of Gaussian variables is also Gaussian with mean and variance calculated similarly
to in questions b) and c).

Thus,
E[g(T (y))] = 0

only if r(T (y)) = 0 for all T (y) ∈ R and ‖x‖22 > 0.

The ML estimate can be written using the sufficient statistic

gML =
T (y)

‖x‖22
.

Therefore according to Lehmann–Scheffé theorem, the ML estimator is minimum variance unbiased
estimator (MVUE) since the complete sufficient statistic exists, the ML estimator is unbiased and is
dependent on the sufficient statistic.

d) Find Cramér-Rao lower bound (CRLB) of the parameter g. Is the estimator efficient?

The CRLB is defined as follows

Var[ĝ] >=
1

−E
[
∂2l(y|g)

∂g2

] .
By substituting the second derivative calculated in a) we obtain the CRLB

Var[ĝ] >=
σ2

‖x‖22
.

The CRLB is equal to variance calculated in c). Therefore, the ML estimator attains the CRLB and
is efficient. However, note that in general MVUE is not necessarily efficient.
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