Fractals and Kleinian groups

Shapes in Action 16th Oct 2020

Program schedule for Oct $16^{\text {th }}$

13:15 Some principles of Fractal geometry 14:00 Break
14:15 Kleinian groups and orbifolds
15:00 Break
15:15 Schottky groups and orbifolds

Heptagonal tiling by Severi Virolainen

Aalto University
Severi Virolainen

Daina Taimina and a hyperbolic soccer ball

A workshop at Heureka 2017

Self similar waves by Elias Seeve

Wacław Franciszek Sierpiński 1882-1969

A self similar process in Sierpiński gasket (1916)

The Chaos Game (Barnsley)

Cathedral Anagni (Italy) 1104

Fig. 6 SS. Giovanni e Paolo (13 $3^{\text {th }}$ century), Rome

Santa Maria in Cosmedin, Rome

Escher's studies of Sierpinski gasket-type patterns

On twelfth-century pulpit of Ravello Cathedral, 1923

Sierpiński Carpet and generalizations

Karl Menger 1902-1985 and his sponge 1926

Menger sponge via business card origami

Three interlinked Level One Menger Sponges, by Margaret Wertheim.

Jeannine Mosely 66048 business cards

Niels Fabian Helge von Koch (1870-1924) and his snowflake (1904)

Evolution à la Mandelbrot

Canopy, by Craig Harris 2008

Gaston Maurice Julia 1893-1978

Aalto University

Iteration of planar rational functions

Squaring transformation: $s: s(r, \alpha)=\left(r^{2}, 2 \alpha\right)$ Power n: pn: pn(r, α)=(rn, na)

Preserves angles outside the origin!

Aalto University

... and (geometric) inversion (=reflection) in a circle

Planar rational maps are compositions of similarities, powers and inversions.

Some (amazing!) properties of reflection wrt a circle

Pierre Joseph Louis Fatou 1878-1929

- 'Fatou set'
- Holomorphic dynamics

Benoit Mandelbrot 1924-2010

Mandelbrot coined (70's) the word 'fractal' to explain self similar objects

Fractus= fractured, broken

Mandelbrot set

Parameter space for C=($\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{y}}$) under $f: f(r, \alpha)=\left(r^{2}, 2 \alpha\right)+C$

Look at $\mathbf{C = 0}$ once more!

C=-1, Julia/Fatou set

Douady's rabbit (Adrien Douady 1935-2006)

Aalto University

$$
C=-0.12256+0.74486 i .
$$

Dragon c=0.360284+0.100376i

A

Dendrite and Cantor dust

Higher dimensional analogues of complex polynomials (joint work in progress with G. Martin)

Aalto University

Kleinian groups

Ex: pairing of circles under
 Möbius transformations

An artistic interpretation by Jos Leys

Fractals in approximating natural forms

Change from
mechanical/geometrical to organic by using mathematical algorithm

Aristid Lindenmayer 1925-1989 (L-systems) in plant biology

Artistic inventions of fractals a bit earlier and its reproduction by a process called Iterated Function System IFS.

'Driving Rain' by Ando Hiroshige (1797-1858)

Aalto University

'A Thousand Pictures of the Sea' by Katsushika Hokusai (1817-1859) and IFS again

Frank Lloyd Wright (1867-1959)

Palmer house in Michigan (1950-51)

Fallingwater, Pennsylvania (1937) and Li Cheng (960-1127): Solitary Temple

African fractals: Ron Eglash

 http//www.ted.com/talks/ron_eglash_on_african_fractals.html

Felix Christian Klein (1849-1925)

- Erlangen program (1872): Proposal for a radical extension of the view of symmetry
- Geometry = study of the properties of a space which are invariant under a given group of transformations
- Ingredients to study geometry:
- Objects (triangles, circles, fractals,...)
- Movements (not just rigid motions of the Euclidean space)
=> Much wider setups by using the group concept

Groups, tiling, inversions and stereographic projection in one picture

- Octahedral symmetry (*432) on the sphere
- 120° degree rotation wrt the line
- Tiles in the plane move accordingly via stereographic projection
=> Induces (new) symmetry for the plane

Circles and lines in the plane correspond circles on the sphere via stereographic projection

Symmetries generated by Möbius maps

All compositions of

- Translations
- Rotations
- Reflections wrt lines and circles
- Scalings

Note: These induce bijective maps (via stereographic projection) on the sphere!

August Ferdinand Möbius (1790-1868)

Emphasis on geometrical and dynamical

 effects of Möbius maps- Angle preserving maps (=conformal)
- Map circles to circles or lines
- Map lines to circles or lines

What patterns are simultaneously symmetrical under two Möbius maps ?

Step 1: Circle pairing

- Map outside of D_{A} onto the inside of D_{a}
- Induces an attracting fixed point inside D_{a} and a repelling fixed point inside D_{A}
- Iterating a shrinks D_{a} to smaller disks containing the attracting fixed point
- Denote $A=a^{-1}$

a: Map outside D_{A} to inside D_{a}

Repeat

Step 2: Two pairs of disk pairs

a: Map outside of D_{A} onto the inside of D_{a} b: Map outside of D_{B} onto the inside of D_{b}
\Rightarrow Schottky group of two generators:

- All possible compositions of a and b and their inverses $A=a^{-1}$ and $B=b^{-1}$

Friedrich Schottky (1851-1935)

a: Map outside D_{A} to inside D_{a}

Step1: Inversion wrt D_{A}

Step2: Move\&scale D_{A} to D_{a}

b: Map outside D_{B} to inside D_{b}

Step1: Inversion wrt D_{B}

First a and then b

- Limit set = the collection of those points that belong to disks at every level
- What is the symmetrical tiling of the group?
- What is the orbifold of this tiling?

A Schottky group with 3 generators

- Orbifold is a genus 3 surface
- Limit set (=chaotic set) is 'fractal dust'
- Compare to Cantor middle third
■

Felix Hausdorff (1868-1942) and his dimension (1919)

- Idea of a d-dimensional measurement where d is not an integer
- Basic properties
- Breaking an object apart into pieces keeps the measure of the whole equal to the sum of the parts
- Expanding/contracting object by factor k changes the size by factor k^{d}
- $d=1$ length, $d=2$ area, $d=3$ volume

Hausdorff dimension of the Cantor middle third set

Indra's necklace

From dust to necklace

- Symmetry generated by two maps as before
- Choose tangential circles

Limit circle

- Continuous loop
- Quasicircle
- Quasifuchsian group
(Lazarus Fuchs, 1833 - 1902)

Fricke and Klein, 1897

Building the orbifold with a cusp

63

Apollonian gasket

Plane vs Sphere Curt McMullen $d \approx 1,306688$

Apollonius meet Sierpinski

Aalto University

Classical construction of Apollonian circles

- 3 tangent circles bound an ideal triangle (zero angles)
- unique incircle tangent to the given 3 outer circles
- Note: construction on the sphere does not distinguish inside from outside

Lines interpreted as circles going through infinity

The glowing gasket

- Generating 4 solid red disks as Schottky pairs
- Traditional construction activated by the dual (yellow) circles

Strip gasket and other variants

In fact they are all the same up to conjugation by a Möbius transformation....

Numbers in the gasket?

Soddy circles (Nature 1936)

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the center.
Though their intrigue Ceft Euclid dumb
There's now no need for rule of thumb.
Since zero bends a dead straight line And concave Gends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

$$
\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)^{2}=2\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}\right)
$$

Frederick Soddy (1877-1956)

- Chemistry Nobel 1921
- Packing spherical atoms

Apollonian circles in Japanese Sangaku tradition (Edo period 1603-1868)

Random Apollonian packings in physics

- Models for foams and powders
- Ex: Number of bubbles of radius bigger than r in the foam $\sim r^{d}$

Tiling related to the glowing gasket

Building the corresponding orbifold....

Two triply punctured spheres

3D variants of Apollonian gasket

- By just turning circles to spheres

http://www.josleys.com/

Genuinely 3D Kleinian group interpretations

Apollonian sphere packing

- Tetrahedral base
- $\mathrm{d} \approx 2,473946$

Approximation by 40000 spheres

Aalto University

Dance of spirals and Jordan curve theorem

Aalto University
RHS generated by two maps, circle pairs not known

Playing with the parameters

(iii) $t_{a}=2.0+0.05 i, t_{b}=3$

(iv) $t_{a}=1.9+0.05 i, t_{b}=3$
14.10.2020

(iii) $t_{a}=1.888+0.05 i, t_{b}=2$

(iv) $t_{a}=1.887+0.05 i, t_{b}=2$

Caroline Series

INDRA'S
PEARLS

Webropol feedback

Please remember to answer!
Extra 2 points for giving feedback ©

Please also note the forthcoming Math \& Arts Minor courses https://into.aalto.fi/display/ensivuaineet2020/Aalto+Math+and+Arts

UWAS-C1400 Spatial structures (period II)
MS-E1000 Crystal Flowers in Halls of Mirrors: Mathematics meets Art and Architecture (periods III-V)

