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Lecture 1.1 Theory and analysis: Energy and 
mass conservation, Newton’s cooling law, 

Fourier’s law and conduction (1d heat equation)

ILO 1: Student can derive and explain physical origin of the heat 
equation, describe solution behavior by example solutions and 
boundary conditions, and solve the heat equation (1d) and 
Newton’s cooling law (0d) numerically in Matlab. 



  

Remarks on temperature, thermal energy and 
transport mechanisms

Temperature
● For gases or liquids: temperature is actually closely related to the speed of the 

molecules on the molecular scales (molecules bouncing around). Molecular speeds are 
much higher (e.g. 2000-10000 m/s) than macroscopic fluid flow velocities (e.g. 0.1-10 m/s) 
in cooling/heating applications. 

● For solids: temperature is related to the vibrational motion (velocity around an average 
position) of molecules/atoms in a lattice structure. 

Energy
● Fluid=gas or liquid

● Fluids have kinetic energy and thermal energy. On the course we assume that 

kinetic energy does not change form and are typically only interested in thermal energy 
changes  dE=mcpdT

● Main mechanisms of thermal energy transport: convection, diffusion (conduction), 
radiation. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3AIdeal_Gas_Law.jpg&psig=AOvVaw05UbJ19Q3ydzSQ6WXX-1FJ&ust=1603788775676000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCMia_vPw0ewCFQAAAAAdAAAAABAL

Mean squared molecule velocity relates to
temperature. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3AIdeal_Gas_Law.jpg&psig=AOvVaw05UbJ19Q3ydzSQ6WXX-1FJ&ust=1603788775676000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCMia_vPw0ewCFQAAAAAdAAAAABAL


  

Energy conservation (the “J/s” thinking)

● Heat transfer course is largely involved with thermal 
energy balance considerations for a system. 

● [Energy] = J = kgm2/s2 [Power] = W = J/s

● Typically we consider heating/cooling of fluid and/or solid 

● Fluids = gas/liquid are assumed to be of constant density.

Heat = Power = J/s 

Cool gas/liquid 
enters: J/s 

Heated gas/liquid 
exits: J/s 

Heat losses: J/s 

System



  

Thermal energy and mass conservation
(assume here: losses small)

● Mass conservation (kg/s): 

● Energy conservation (J/s): 

Heat = Power = J/s 

Cool gas/liquid 
enters: J/s 

Heated gas/liquid 
exits: J/s 

System

ρU in A in=ρU out Aout=ṁ

c p ρU out Aout T out−c p ρU in A in T in=Pheat c p ṁ ΔT=Pheat=q



  

Even convective heat transfer problems involve 
typically conduction: Thermal conductivity vs diffusivity

k=αρ c p
thermal conductivity

thermal diffusivity

specific heat

density

[cp]=J /kg⋅K  [ρ]=kg /m3  [α]=m2/ s



  

Some thermal properties for air, water, 
aluminum and copper

Substance Density
[kg/m³]

Specific heat
[kJ/kgK]

Thermal 
conductivity 
[W/mK]

Thermal 
diffusivity [m²/s]

Air 1.2 1.007 0.026 ~1.6·10⁻⁵

Water 1000 4.217 0.569 ~10⁻⁶

Aluminum 2700 0.900 237 ~0.97·10⁻⁴

Copper 8933 0.385 401 ~1.2·10⁻⁴

Iron 7870 0.447 80.2 ~10⁻⁵

Table: Some material property estimates close to NTP conditions (see: Inc.deWitt Appendix) 



  

Water vs air as coolants

● By Fourier’s law the heat flux depends on temperature gradient 
and thermal conductivity

● For a given temperature gradient, heat flux ratio and thermal capacitance
ratios are:  

● These matters explain why water is much more efficient heat exchange 
fluid than air offering e.g. more compact heat exchanger (fin) design 

● Air and water are by far the most common heat transfer fluids

kwater

kair

≈22
ρwater c p , water

ρair c p , air

≈3500



  

Dimensional analysis – “light version” - 
a useful tool to reason dependencies and 

eliminate redundant parameters
● Example: [Velocity] = m/s 

→ velocity depends on [x]=m and [t]=s

→ We make an Ansatz:  u = xatb

→ m/s = masb 

→ For the units on lhs and rhs to match, the only option is: a=1, b = -1

● Example: [Thermal energy flux of flowing fluid] = [φ] = J/m²s = W/m²

→ energy flux depends on 

[ρ]=kg/m³

[U]=m/s

[cp] = J/kgK

[T] = K 

→ We make an Ansatz:  φ = ρaUbcp
cTd

→ For the units on lhs and rhs to match, the only option is: a=b=c=d=1 and φ = ρUcpT



  

Ordinary differential equations 
vs partial differential equations on the course

● Example ODE: 

Initial condition:

● Example PDE:

Initial condition       Boundary condition (here fixed values)

∂ϕ

∂ t
+u

∂ϕ

∂ x
=ν

∂2 ϕ

∂ x2 , 0<x< L

dy
d t

=− y ( t)

y (t=0)= y o

ϕ (x , t=0)=ϕ o(x ) ϕ (x=0 , t)=ϕ 1,ϕ (x=L ,t )=ϕ 2

Here: solution to an ODE/PDE gives

ODE → the unknown function y=y(t) which 
could represent at given time e.g. average 
radioactivity of an object,  average 
temperature, average concentration, … 

PDE → the unknown function φ=φ(x,t) 
which could represent at given time and  
point e.g. radioactivity, temperatur , …  



  

Example ordinary differential equation

• A storage box is insulated at initial temperature To and heat escapes only 

through one side at rate q ([q]=W). Find the average box temperature T=T(t).

E ( t=0)=c p mT o

mc p
dT
dt

=−q

Δ E=c p mΔT =q Δ t

dT=
−q
mc p

dt

T (t )=
−q
mcp

t+T o

q

∫T o

T
dT=−∫0

t q
mc p

dt



  

Example ordinary differential equation

• A storage box is insulated at initial temperature To and heat escapes only 

through one side at rate q ([q]=W). Find the average box temperature T=T(t).

E ( t=0)=c p mT o

mc p
dT
dt

=−q

Δ E=c p mΔT =q Δ t

dT=
−q
mc p

dt

T (t )=
−q
mcp

t+T o

q

∫T o

T
dT=−∫0

t q
mc p

dt

Note: this is formally correct 
for T>0.



  

Newton’s cooling law – an engineering tool

• Newton's cooling law: Rate of change of heat (W=J/s) for an object is proportional to 
temperature difference between the object and its surroundings.

• The temperature T=T(t) could represent e.g. the average temperature of a beverage in the fridge. 

• More generally, T=Ts i.e. the object surface temperature (either average/representative or even 

local but then we talk about PDE’s as in HW3-4) and heat transfer (either average or local) 
typically is attempted to be cast in the form below

• Here h is the convective heat transfer coefficient 

q=hA s(T s−T∞ )

[q]=J / s ,[m ]=kg , [c p]=J / kg⋅K ,[T ]=K , [h]=W / m2 K ,[ A s]=m2

mc p
dT
dt

=−hA s (T−T ∞) T∞=const .



  

Fourier’s law – a physical law/principle

• Fourier’s law: Heat flux results from a temperature gradient.

• Fourier in 1d: 

• Heat rate vs heat flux:

q ' '=−k ∇ T

[q ' ' ]=W /m2 ,[T ]=K , [k ]=W /m K ,[∇ T ]=K /m

q ' ' =−k
∂T
∂ x

=−k
ΔT
Δ x

[q]=W , q=q ' ' A



  

Heat Equation

● Heat equation is a partial differential equation describing heat diffusion
● Solution of heat equation offers temperature distribution in a solid or 

fluid (gas or liquid) as a function of space and time i.e. T=T(x,t)

● Important: Heat equation represents simply 1d energy conservation 
and transport via diffusion. 

● Note: If second space derivative is positive/negative, then function T has 
a local minimum/maximum and temperature changes towards 
positive/negative i.e. heat flows from hot to cold.

● To solve the heat equation, also initial conditions (IC’s) and boundary
conditions (BC’s) are needed 

ρ cp
∂T
∂ t

= ∂
∂ x

(k
∂T
∂ x

)



  

Example solutions of heat equation with two 
different boundary conditions

● Diffusive processes are very slow in comparison to convective processes
● Below, two examples of heat diffusion in iron (profiles taken from different

times)
● Simulation time is in the order of 0.03-0.1s

Early time

Late time Late time

Early

Left and right end insulated i.e. dT/dx = 0 Left and right end fixed temperatures



  

Derivation of the Heat Equation from Energy 
Conservation Principle

● Heat equation can be derived easily by considering energy balance 
for an infinitesimal element of fluid/solid and flow of energy through 
the sides of the element by conduction via Fourier’s law

● Dividing by ΔxΔyΔzΔt and taking the limit when all Δ-variables → 0 
gives the heat eqn.

ρcp ΔT (x , t)Δ x Δ y Δ z=[k
∂T (x+Δ x /2 , t )

∂ x
−k

∂T (x−Δ x /2 ,t)
∂ x

]Δ y Δ zΔ t

Energy change in a short
time [J]

Power entering/exiting
[W/m²]

Power exiting/entering
[W/m²]



  

Example: Time-Dependent Analytic 
Solution of the Heat 

Equation in a Periodic (Infinite) Domain
● Assuming constant properties, it is convenient to write:

● In a periodic domain of length L with trigonometric (sinusoidal) initial 
condition,T(x,t=0)=T

o
+T

1
sin(kx) the equation can be easily solved for 

unknown temperature 
● It is noted that a general solution is of the form

where the wavenumber k=2π/L.
● Exercise: show that the solution above fulfills the equation by inserting

it to the heat eqn. 

∂T
∂ t

= ∂
∂ x

(α
∂ T
∂ x

)

T (x , t )=T o+T 1sin (k x)exp (−k 2α t )



  

Example: Steady State Solution of the Heat 
Equation with Fixed Temperature BC’s

● In steady state time approaches infinity and we can write: 

● Integrate twice to obtain: 

● The requirement to fulfill BC’s gives:

0= ∂
∂ x

(α
∂ T
∂ x

), 0≤x≤L

T (x=0)=T 1  and T (x=L)=T 2

T (x , t )=A+Bx

T (x , t )=T 1+(T2−T 1) x /L



  

How Long Time Would it Take for 
the Heat to Diffuse Across Distance L? 

Insight by dimensional analysis:

● The transient heat eqn tells that essentially the only parameter 
affecting temperature diffusion is α having units m²/s

● t is unknown but obviously t increases as L having unit meter increases
● Dimensionally, we try to find an expression t=t(L, α)
● We make an Ansatz t

diff
 ~ Laαb 

● Match dimensions: s = mam2bs-b. Thus: a+2b=0 and b=-1 → a=2
● Thereby t

diff
 ~ L2/α

● For an iron plate of thickness L=1mm the diffusion time estimate would
be t

diff
 ~ 1e-6/1e-5 s~ 0.1 s

● Exercise: Estimate diffusion time for iron plate of thickness L=4mm.  



  

How Long Time Would it Take for 
the Heat to Diffuse Across Distance L? 

Insight by Fourier series:
● The earlier considered periodic solution in an infinite domain is:

● The exponential damping timescale is seen to be:

● Summary: two different scalings  t
diff

 ~ L2/α and t
damping

 = L2/4π²α were
obtained with similar looking characteristic timescale (with a constant 
pre-factor difference).

● The scaling t
diff

 ~ L2/α is a famous relationship and a very useful concept 
in heat transfer analysis. 

  

T (x , t)=T o+T 1sin (k x)exp (−k 2α t )

τdamping=1/k2
α=

L2

4 π
2
α



  

Lecture 1.2 Numerical approach: Newton’s 
cooling law and 1d heat equation

ILO 1: Student can derive and explain physical origin of the heat 
equation, describe solution behavior by example solutions and 
boundary conditions, and solve the heat equation (1d) and 
Newton’s cooling law (0d) numerically in Matlab. 



  

Newton’s cooling law applied for a soda-can 
example solved numerically in Matlab



  

Recall: Newton’s cooling law

dT
dt

=
−hA s

cp m
(T−T ∞)

T (t=0)=T o  initial condition

T (t)=(T o−T ∞)exp(
−hA s

c p m
t)+T ∞

Analytical solution exists → good starting point for the computer learning: 
how to numerically solve temperature development in the above equation?

Analytical solution



  

Solving temperature over a short time interval 
(timestep)

dT
dt

=
−hA s

c p m
(T −T ∞) dT=−dt

hA s

c p m
(T −T ∞)

ΔT=−Δ t
hA s

c p m
(T−T ∞) ΔT n=−Δ t

hA s

c p m
(T n−T ∞)

T n+1=T n+ΔT n

Discretization by 

explicit E
uler m

ethod

Find new temperature

t n=nΔ t ,n=0,1,2,...

Solution proceeds in discrete 
timesteps



  

Pseudo-code

Step 0: T o known

Step 1: ΔT n=−Δ t
hA s

c p m
(Tn−T ∞)

Step 2: T n+1=T n+ΔT n

Step 3:  go to Step 1 until simulation time exceeded



  

Temperature of a cooling soda can 
 computed by Newton’s cooling law numerically 

and analytically



  

Matlab implementation

Program: /Example0d/cool0d.m
Execution: >> cool0d
What it does: Solves 0d Newton's cooling law for temperature of a “0d” drink can.

Snapshot of code that does the job:
cp = 4190;             % specific heat J/kgK
dt = 20;               % timestep in s
To = 273+20;           % initial temperature K
Tinf=273+4;            % fridge temperature K
simutime  = 3*3600;    % simulation time s
simusteps = round(simutime/dt); 
T  = To;   % initial temperature 

for(k=1:simusteps)
    dT = -(h*As/(m*cp))*dt*(T-Tinf);
    T = T+dT;
    Tcol(k) = T; % collect temperatures to Tcol
end

HOW TO IMPLEMENT THIS 
IN PRACTICE?
→ open Matlab terminal
→ open text editor
→ create new file with
some name e.g. cool0d.m
→ add the text from the 
left to file cool0d.m
→ run by typing text 
cool0d on terminal 



  

figure(1), clf, box, hold on
alltime = linspace(0,simutime/3600, simusteps);
plot(alltime, Tcol, 'k-','Linewidth',2)
plot(alltime, (To-Tinf)*(exp(-h*As*3600*alltime/(m*cp))) 
+ Tinf, 'b--','Linewidth',2)
plot(alltime, (273+7)*(ones(length(alltime),1)), 'r-', 
'Linewidth',2)
plot(alltime, (Tinf)*(ones(length(alltime),1)), 'g-', 
'Linewidth',2)

h=xlabel('Time (h)'); 
h=ylabel('Temperature (K)'); 
h=legend('Numerical solution',  'Analytical solution','T 
= 7 deg C','T = 4 deg C'); set(h,'Fontsize', 16)
print -dpng TcoolingCan    
    

Plotting the results
1) e.g. plot(x,y,'k-') where
x and y are vectors
2) Note: length(x)=length(y) 
3) >> help plot



  

Heat equation solved in 1d by finite difference 
method in Matlab



  

“Numerical solution of heat equation” is a 
“solution at discrete data points”

● Heat equation is already quite challenging equation to solve by 
pen/paper even in simple cases

● Typically, even if it would be possible to obtain an analytical 
solution, one would need a computer to evaluate/visualize the 
solution (e.g. sum of infinite Fourier series) 

● Discretization of solution points means that in numerics e.g. 
temperature is evaluated in a finite value of evaluation points in 
space and time e.g. T(x,t) → T(x

i
,t

i
) where x

i
 = iΔx and t

n
 = nΔt 

● Discretization of partial derivatives means that the continuous 
partial derivatives are replaced by the discrete counterparts 
obtained by Taylor series expansions



  

      Numerical solution and values 
stored in a table

>> T

ans =

  293.7484
  293.7484
  293.7498
  293.7525
  293.7565
  293.7619
  293.7687
  293.7769
  293.7864
  293.7973
  293.8096
  293.8233
  293.8385
  293.8551
  293.8731
  293.8927
  293.9137
  293.9362
  293.9603
  293.9859
  294.0131
  294.0419

“Ghost cell”
value First cell

inside the
domain

Here: 198 internal cells, 2 ghost cells



  

t=t
n

t=t
n+1

t=t
n+2

t n=nΔ t ,n=0,1,2,...

T1
n T2

n T3
n TN +1

n TN +2
n

T 1
n+1 T 2

n+1 T 3
n+1 TN +1

n+1 TN +2
n+1

T 1
n+2 T 2

n+2 T3
n+2 TN +1

n+2 TN +2
n+2

x=0 x=L

Domain boundary is 
defined on cell face

Outside the boundary a 
“ghost” cell is imagined
where a temperature 
value is set to implement
a given type of boundary
condition.   

Solution points 
can be considered as average
values stored at discretization
cell centroids.

x=Δx/2
x=3Δx/2

x

x=0

t



  

Numerical approximation of partial derivatives
● Practically all heat transfer phenomena involve PDE’s
● Finite difference formulas offer a way to approximate partial 

derivatives
● Once partial derivatives are known in space and time, then one 

obtains a way to solve temperature distributions
● The following convection diffusion equation type appears 

commonly on this course. 

∂T
∂ t

+u
∂T
∂ x

=α
∂2 T

∂ x2

(
∂T
∂ t )

i

n

≈
T i

n+1
−T i

n

Δ t (∂
2T

∂ x2 )
i

n

≈
T i+1

n
−2T i

n
+T i−1

n

Δ x2(∂T
∂ x )

i

n

≈
T i+1

n −T i−1
n

2Δ x

Observation: if the solution points from time level n are known in each point I the new solution
values at time level n+1 can be solved for.

1st order Euler formula for time 
derivative at fixed space point.

2nd order central difference for 1st 
space derivative at a fixed time.

2nd order central difference for 2nd  
space derivative at a fixed time.



  

Discretization of 1d Heat Equation 
by Finite Difference Method

∂T
∂ t

=α
∂

2T
∂ x2

T i
n+1

=T i
n
+Δ t α

T i+1
n

−2 T i
n
+T i−1

n

Δ x2
CFL=

αΔ t

Δ x2

Courant-
Friedrichs-
Lewy number
(CFL<0.5 for
stability).

T i
n+1

−T i
n

Δ t
=α

T i+ 1
n

−2 T i
n
+T i−1

n

Δ x2

Now we have an explicit update scheme for T in each discrete grid 
point i. This is the explicit Euler scheme (most simple timestepping). 

Continuous PDE Discretized PDE



  

Boundary condition types

Ghost
cell
i=1

i=2
T2 

i=3
T3

i=N+1
TN+1

Ghost
cell
i=N+2

• The problem: some numerical value needs to be assigned to the ”ghost cells”

• Otherwise: we can not calculate second derivative of T in cells i=2 and i=N+1

• Case 1: Boundary temperature fixed → boundary heat flux follows

• Case 2: Boundary heat flux zero (insulated) → zero temperature gradient through boundary

• Case 3: Boundary heat flux fixed → boundary temperature follows.

x=0 x=L

(T1
n+T 2

n)/2=T min
Case 1: 

T 1
n
=T 2

n T N +1
n

=T N +2
nCase 2: 

Case 3: −k (T 2
n−T 1

n)/Δ x=qL

→ In all the cases a “ghost cell” value is needed. 
→ Ghost cell: we can imagine a virtual cell outside the domain
where we enter a temperature value so that the desired BC 
becomes exactly fulfilled. 



  

Update scheme for 1d heat equation

T i
n+1

=T i
n
+Δ t α

T i+1
n

−2 T i
n
+T i−1

n

Δ x2

1) Set boundary conditions to cells 1 and N+2 
using T from step n. 

2) Update new temperature at timestep n+1 in the 
internal cells 2...N+1

3) Update time according to t = t + dt t n+1=t n+Δ t

T i
n

4) Go back to 1)

T i
n+1



  

This update scheme is very easy to program in 
Matlab for-loop

Program: /Example1d/HeatDiffusion.m
Execution: >> HeatDiffusion
What it does: Solves 1d heat equation in equispaced grid, fixed T

left
 and T

right
.

for(t=1:K)
    % set boundary conditions 
    T(1)  = 2*Tleft - T(2); T(N+2) = 2*Tright - T(N+1);                     
      
    % update temperature in inner points                                    
    T(in) = T(in) + (dt*kappa/dx^2)*(T(in+1)-2*T(in)+T(in-1)); 
end

Main for-loop:

Note: I use constantly the “trick” which makes Matlab-programs often very fast.
% define a table which refers to the 'inner points'
in = 2:(N+1);
 

Example for N+1 = 5



  

Supplementary material: Cooling demo from a 
class experiment in 2018



  

The next experimental demo (15 min) is 
strongly influenced by a hot hotel room



  

Group A: Experimenting on energy conservation 
analysis of homemade air-conditioner (AC)

Warm air T
in
 entering

Ice inside the box

Tasks:
1) Measure velocities of inflow and outflow. Is mass conservation fulfilled? 
2) Measure temperature of inflow and outflow?
3) Measure the velocity also at different positions. What do you observe?  

Cool air T
out 

exiting

Acknowledgement: 
Mika Ahlgren and Kari Saari



  

Group B: Energy conservation analysis of self-
made air-conditioner

● It is quite clear that in watts the average energy absorption rate of the ice (in Watts): 
dE/dt = Pin  -  Pout = ρUinAin cpTin- ρUinAincpTout

● For incompressible fluid (air is incompressible to very high precision at low speeds < 100m/s) and thus mass 
conservation would imply ρUinAin = ρUoutAout=const.

● However, it is not so clear where Tout comes from

● Class room thinking tasks: 
1) How does dE/dt depend on:
- ice mass
- other aspects ? 

2) How does Tout  and dE/dt depend on 
- inflow velocity
- inflow temperature
- other factors
- dE/dt being a constant 

3) What kind of 3d features would this problem have?
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