
  

Prof. Ville Vuorinen
November 10th - 11th 2020

Aalto University, School of Engineering

EEN-1020 Heat transfer

Week 3: Convective Heat Transfer, 
Internal Flow and Numerical 

Solution in 2d



  

1) Energy conservation 

2) Fourier’s law

3) Newton’s cooling law 

4) Bonus “helpers”: 

4.1) heat eqn, conv.-diff. eqn (relatives of friend #1)

4.2) Navier-Stokes eqn (momentum conservation)

4.3) non-dimensional numbers (follow from the other 
friends) 

In heat transfer course, we have “4 friends” 
who typically help us to approach and solve any

problem 



  

Recommended reading: Ch 8 “Internal flow” selective
parts from “Principles of Heat and Mass Transfer”, 
Incropera

Remember: These slides may contain typos or other 
mistakes so please be cautious when reading. 

Remember: Fluid and solid properties depend in reality 
on thermodynamic conditions so please use always 
values taken from a proper source (e.g. Incropera 
Appendix contains some reasonable values)



  

During weeks 1 and 2 we have mostly envisioned 
conduction in solid materials (often metals).
Also the material properties for solids were 

often used earlier.

During weeks 3-5, we will focus on 
convection/conduction heat transfer in fluids 

(gases and liquids). Also the material properties 
for fluids are now used mostly.

In fin theory & Newton’s law, the convective  
heat transfer coefficient h was introduced. 

Now we study where h actually comes from. 



  

Air: At relatively low velocities (<100m/s) and moderate 
temperature differences air flow can be assumed to be 
incompressible (density = constant) which is the 
most typical assumption also in Incropera text book. 

Liquids: Liquids are assumed to be incompressible on 
this course.

Unless otherwise stated, all fluids (liquids and gases) are
assumed incompressible on the present course.  



  

Lecture 3.1 Theory: Flow through a fin system, 
governing equations and analysis 

ILO 3: Student can write the governing equations of fluid/heat 
flow in a channel, estimate the energy balance and estimate 
temperature rise for different heating conditions. The student 
can confirm the channel heat transfer using generated/provided 
simulation data.



  

The table below illustrates Nusselt numbers 
(non-dim.heat trans.coefficient) for different channel types 

with different boundary conditions. 
Relevance: Lecture 3 +HW3 → understand physics beyond the table. 

Table 8.1 from Incropera, de Witt (Principles of Heat and Mass Transfer)

In HW3 we want to 
check if 
we can get the value
Nu = 7.54 from 
numerical simulation.



  

Classroom demo heat exchanger (2018)

Heating power 
P = 24 W 
in the base
Assume uniform
heating

12 fins
Assume 2W heat 
escapes from
each

Fan

Temperature 
probe B

Temperature 
probe A

B

A

Acknowledgements:
K.Saari and M.Ahlgren

Temperature & 
velocity probe C
(between fins&fan)

Temperature & 
velocity probe D
(after fins)

C

D



  

Estimate order of magnitude of air heating 
power (W) based on experimentally measured 

flow velocity and temperature. Do you get 2W ?

Data for air 

P = 24 W 12 fins → 2W/fin gap C
p 
=C

p,air
 = 1.007 kJ/kgK

ΔT
CD

 ≈ 5 K k = k
air 

= 0.026 W/mK
U

C
 ≈ U

D
 ≈1.2 m/s ρ ≈ 1 kg/m3 A = 0.1m ∙ 0.003m

Use the formula:

P = C
p,air 

ρUA(T
out 

-T
in
) 

Power = Energy rate out  - Energy rate in

Info: The fin gap distance
is 3mm 

“J/s thinking”



  

Air temperature distribution in a plate fin heat exchanger (cross section)

Figure: courtesy of 
P.Peltonen

U∞

T ∞

Some concepts: 
1) Thermal boundary layer
2) Free boundary layer 
(external flow)
3) Confined boundary layer
(internal flow)
4) Local vs global heat 
transfer coefficient 

Focus on single gap



  

Excluding radiation … 

Heat transfer (J/s) follows from 

1) fluid mechanical behavior of velocity 
described by N.S. equation

2) convective and diffusive transport of temperature
described by convection-diffusion equation 

Relevance to the course

HW1-HW2 (typically conduction, convection via h if present)
HW3-HW5 (convection and diffusion simultaneously)
  



  

Governing equation 1: Convection-diffusion 
equation for temperature

∂T
∂ t

+u
∂T
∂ x

+v
∂T
∂ y

=α
∂

2 T

∂ x2 +α
∂

2 T

∂ y2

In heat transfer, the general transport equation for temperature 
is the convection-diffusion equation which indicates that convective
(laminar or turbulent) and diffusive processes dictate outcome of
heat transfer problems.   

T changes 
in given position
in time due to
convection and
diffusion

T is transported
by velocity
field (convection)

T is transported 
by thermal diffusion
(diffusion/conduction)

T=T(x,y) in steady state 2d laminar channel flow



  

Example: CFD solution of instantaneous 
temperature distribution of unsteady, turbulent 
fluid flow going from left to right over a heated 

object – in CFD NS and CD eqn are both solved

Some concepts: 
1) Thermal boundary layer
2) Flow separation
3) Local vs global heat transfer 
coefficient 
4) Flow recirculation

Figure: V.Vuorinen (2017)



  

Governing equation 2: Navier-Stokes 
equation for velocity

In heat transfer, the transport equation for velocity is the 
Navier-Stokes equation which is just the convection-diffusion 
equation for velocity components with pressure gradient. The equation 
indicates that velocity “self-convects” itself non-linearly and diffuses 
by molecular viscosity.

u,v changes 
in given position
in time due to
convection and diffusion 
and pressure gradient

u,v are transported
by velocity
field (convection)

u,v are transported 
by viscous, molecular 
diffusion (viscosity)

∂u
∂ t

+u
∂ u
∂ x

+v
∂ u
∂ y

=
−1
ρ

∂ p
∂ x

+νk
∂

2u
∂ x2 +νk

∂
2u

∂ y 2

∂ v
∂ t

+u
∂ v
∂ x

+v
∂ v
∂ y

=
−1
ρ

∂ p
∂ y

+νk
∂

2 v
∂ x2 +νk

∂
2 v

∂ y2

pressure 
gradient

∂u
∂ x

+
∂ v
∂ y

=0

Continuity equation
(conservation of mass)

Navier-Stokes equation (conservation of momentum)

Kinematic viscosity: νk=ν=μ/ρ , [ ν ]=m2
/ s



  

Explanations on mathematical difference 
between convection, diffusion, convection-

diffusion, and Navier-Stokes equations

∂ϕ

∂ t
=α

∂2 ϕ

∂ x2

∂ϕ

∂ t
+u

∂ϕ

∂ x
=0

∂ϕ

∂ t
+u

∂ ϕ

∂ x
=α

∂2 ϕ

∂ x2

1d convection  equation

1d diffusion equation

1d convection-diffusion equation

x

ϕ=ϕ ( x−ut )

Shape → unchanged
Amplitude → unchanged
Position → moves to the direction of velocity

x

time=t

Shape → spreads/diffuses
Amplitude → decreases
Position → center fixed but “spreads” 

x

Shape → spreads/diffuses
Amplitude → decreases
Position → moves to the direction of velocity

In pure convection

In pure diffusion

In convection+diffusion



  

Fluid dynamical and heat transfer conditions

Reynolds number: Re=
U L
ν

Prandtl number: Pr= ν
α=

Viscous diffusion
Thermal diffusion

=
μ/ρ

k /(c pρ)

Nusselt number: Nu=
h L
k

=
Total heat transfer
Conductive heat transfer

Velocity scale Reference length scale

Heat transfer coeff.

Kinematic viscosity

Reference length scale



  

Estimate Reynolds number for a single “channel” 
between two plates

Data for air 

P = 24 W 12 fins → 2W/fin gap C
p 
=C

p,air
 = 1.007 kJ/kgK

ΔT
CD

 ≈ 5 K k = k
air 

= 0.026 W/mK
U

C
 ≈ U

D
 ≈1.2 m/s ρ ≈ 1 kg/m3 A

plates
 = 2 ∙ 0.1m ∙ 0.05m

T
wall

 ≈ 28 C D = 0.003m
ν = 1.6*10-5 m2/s (kinematic viscosity)

Info: The fin gap distance
is 3mm, 2 opposing walls
in a channel, height = 0.1m,
width=0.05m 

Reynolds number

Re = UL/ν = 1.2*0.003/1.6*10-5 =225 << 2000 Flow is laminar
because 
Re << 2000
(rough limit 
for turbulence)



  

Entry region in laminar pipe/channel flow

Temperature profile

Velocity profile

Laminar flow thermal entry length :
(x / D)≈0.05 ReD Pr

Laminar flow viscous entry length:
(x /D)≈0.05 ReD

Figs. from Incropera, de Witt (Principles of Heat and Mass Transfer)



  

Estimate Nusselt number using average 
heat transfer coefficient in the class room demo 

system for a single “channel” between two plates

Data for air 

P = 24 W 12 fins → 2W/fin gap C
p 
=C

p,air
 = 1.007 kJ/kgK

ΔT
CD

 ≈ 5 K k = k
air 

= 0.026 W/mK
U

C
 ≈ U

D
 ≈1.2 m/s ρ ≈ 1 kg/m3 A

plates
 = 2 ∙ 0.1m ∙ 0.05m

T
wall

 ≈ 28 C D = 0.003m

Info: The fin gap distance
is 3mm, 2 opposing walls
in a channel, height = 0.1m,
width=0.05m 

Use formula :
Nu = hD/k 

Use Newton’s law:
P = q = h

ave
A(T

wall 
-T

gas
) 

You see that 
a number of 
assumptions needed!



  

In HW3 we consider a flow system related to 
laminar flow between two parallel plates. 

Assumptions: 1) parabolic velocity profile, 2) 
different wall BC’s for T

Note: In HW2 we consider the same system but with velocity = 0 → pure 2d conduction



  

Summing up some findings from class room
demo problem

Re=
U L
ν ≈225<2300→ flow is laminar

Pr=α
ν ≈0.7→  thermal and viscous boundary layers grow quite similarly

Nuave≈10−14>7.5

Laminar flow thermal entry length :
(x / D)≈8→flow is thermally fully developed in about 2.5cm



  

The “channel” flow velocity field between two fins can be 
analytically solved assuming 1) steady state, 2) fully 

developed laminar flow (Re<2000) with constant pressure 
gradient, 3) flow is only in x-direction

u
∂u
∂ x

+v
∂ u
∂ y

=
−1
ρ

∂ p
∂ x

+ν
∂2u

∂ x2 +ν
∂2u

∂ y 2

∂u
∂ x

+
∂ v
∂ y

=0

const .=
1
ρ

∂ p
∂ x

=ν
∂2u

∂ y 2

u( y)=umax (1−
y2

h2 ) umax=-
dp
dx

h2

2ρν

Wall boundary conditions
Velocity: No-slip wall (u=v=0)
Temperature: 
T=fixed, insulated, or constant flux

Wall

Fluid (gas or liquid)

Wall

2h



  

Energy balance for a fluid element between 
heated parallel plates (relevance: finding mean 

temperature in streamwise direction)

Wall provides a heat flux q [W/m2] to the fluid so that a fluid element thermal
energy increases.

ρ cp U D L z[T m(x+dx )−T m( x)]=2qdx L z

dT m

dx
=

2q
c pρU D

Fluid element energy increase during x… x+dx

J/s

J/s

J/s

J/s

L
z 
= channel depth

out of plane

D = channel
diameter

T
m
 = mean temp.

T = T(x,y)

x x + dx

“J/s”=”J/s” → units match

Mean temperature obeys an ordinary diff. eqn.

Fluid element



  

Energy balance for a fluid element between 
heated parallel plates (relevance: finding mean 

temperature in streamwise direction)

Wall provides a heat flux q [W/m2] to the fluid so that a fluid element thermal
energy increases.

ρ cp U D L z[T m(x+dx )−T m( x)]=2qdx L z

dT m

dx
=

2q
c pρU D

Fluid element energy increase during x… x+dx

J/s

J/s

J/s

J/s

L
z 
= channel depth

out of plane

D = channel
diameter

T
m
 = mean temp.

T = T(x,y)

x x + dx

“J/s”=”J/s” → units match

Mean temperature obeys an ordinary diff. eqn.

Fluid element

q = fixed → integrate
     directly

T
s
 = fixed → need

for Newton’s cooling
law to get q



  

Axial mean temperature in a pipe or channel 

Constant surface heat flux Constant surface temperature

Figs. from Incropera, de Witt (Principles of Heat and Mass Transfer)



  

For constant surface heat flux

→ Linear increase in mean temperature

dT m

dx
=

2 q
c pρU D

=constant

∫x=0

x dT m

dx
dx=∫x=0

x 2 q
c p ρU D

dx

T m(x )=T m
in
+

2q
c p ρU D

x

The main points:

0) We know q
tot 

because q is 
constant. As q is 
const. → T

s 
follows.

1) T
s
-T

m
(x) can be

constant because 
T

s 
=T

s
(x). Follows

from Newton’s 
cooling law + 
assumption that 
q=const.



  

Intro to log-mean temperature concept: For 
constant surface temperature at fully developed 

conditions when h=const.

→ Mean temperature increases according to exp function

dT m

dx
=

2q (x )

c pρU D
=

2 h(T s−T m)

c pρU D

∫T m=T in

T m( x) dT m

T s−T m

=∫x=0

x 2 h
c p ρU D

dx

log
Tm (x)−T s

T in−T s

=
−2 h

c p ρU D
x

Nu=
hD
k fluid

≈7.52

After thermal
entry region

T m( x)−T s

T in−T s

=exp (
−2h

c pρU D
x )

The main points:

0) We do not know q
tot 

because when T
s 
fixed 

then heat flux follows.

1) T
s
-T

m
(x) is not

constant i.e. q=q(x).

2) Thus, one can 
not use the average
of inlet and outlet 
temperature in 
Newton’s law directly
because mean temp.
increases non-linearly.

3) Need for log-mean 
temperature concept.  

q tot=h A ΔT lm

→ Total heat flux can be calculated based on log mean 
temperature

See: Incropera Ch. 8 Eqn. (8.43)



  

Lecture 3.2 Numerical approach: a Matlab 
solver for the 2d convection-diffusion equation to 

describe temperature transport

ILO 3: Student can write the governing equations of fluid/heat 
flow in a channel, estimate the energy balance and estimate 
temperature rise for different heating conditions. The student 
can confirm the channel heat transfer using generated/provided 
simulation data.



  

In this session we will look mostly into local heat 
transfer along a channel wall. Hence, we assume 
that the mean temperature, in a channel with 
heated walls, depends on x-coordinate in 
streamwise direction. 

Other assumptions during the session:
1) fin/channel walls at T

top
 = T

bot
 =T

wall
=+30 deg C

2) inflow temperature is T
left

 = +20 deg C
3) velocity field is fully developed and laminar
4) pressure gradient is chosen so that the 
Reynolds number is between 200-250.

 



  

Strong relevance to HW3 - Heat flux balance at the surface: 
Fourier’s law (physics) equals to Newton’s law (engineering)

−k f (∂ T
∂ y )

y=wall

=h(T s−T mean)

Diffusive heat flux (Fourier) immediately at the wall on the fluid side = 
Heat flux from Newton’s law of cooling

h=

−k f (∂T
∂ y )

y=wall

T s−T mean

T 1( y) T 2( y )

Think: 
How can we maximize h ?
How do h and heat flux vary in 
the flow direction ? 

[h]=W /m2 K

Note: 
even in convective
heat transfer 
the heat first diffuses
i.e. conducts near the
wall because 
u,v → 0 next to the 
wall

If temperature gradient in 
wall-normal direction would be 
known at each x location→ 
we could calculate h
(W/m2K) every single surface point 

Figure:
temperature
profiles on 
bottom
wall



  

HW3: Convection-diffusion equation for 
temperature to estimate e.g. local Nu

∂T
∂ t

+u( y )
∂T
∂ x

+v
∂T
∂ y

=α
∂

2T

∂ x2 +α
∂

2 T

∂ y2

The Matlab session will focus on adding the convective terms to the 
2d heat equation solver. Parabolic flow profile is assumed through 
the 2d channel. The session is started by assuming constant wall T. 

T=T(x,y) in steady state 2d channel flow with constant wall temperature BC

Ignore y-velocity

QUESTION 1: assuming constant inflow temperature and constant (hot) wall temperature, 
what will be the temperature level at the outlet ? 
QUESTION 2: using the 2d numerical solution for temperature, estimate local heat transfer
coefficient and Nusselt number as a function of x-coordinate. 



  

HW3: Flow system and BC’s related to laminar 
flow between two parallel plates (class-room 

demo system)

Re=
U L
ν ≈200<2300→  flow is laminar

Pr= ν
α≈0.7→  thermal and viscous boundary layers grow quite similarly



  

STEP 1: download the heat2d code from 
MyCourses and extract – by right clicking mouse - 
to new folder Week3.

STEP 2: let us look into the code structure 
together from the big screen. 

 



  

STEP 3: let us visualize the colorful T(x,y) 
picture together by modifying the 
VisualizeResults.m file

 

figure(1), clf, box
imagesc([min(min(X)) max(max(X))],[min(min(Y)) max(max(Y))], T(iny,inx));

    axis equal
    colormap jet    
    axis tight, drawnow
        ylabel('y [m]')
    xlabel('x [m]'), colorbar, pause(0.1)
    print -dpng Temperature2d



  

Axial mean temperature in a pipe or channel

Constant surface heat flux Constant surface temperature



  

STEP 4: let us next modify file 
visualizeResults.m and plot axial 
temperature along x-axis together. 

figure(4), clf, box
plot(X(1,:),T(Ny/2,inx),'k-','Linewidth',2); 
hold on

 



  

STEP 5: let us next further modify file 
visualizeResults.m and plot the wall heat 
flux along x-axis together.

figure(2), clf, box
dTdywall = (T(1,inx)-T(2,inx))/dy; % top
plot(X(1,:), k*dTdywall)

ylabel('Wall heat flux [W/m^2]')
xlabel('x [m]'), pause(0.1)

print -dpng WallHeatFlux

q=−k f (∂T
∂ y )

y=0



  

STEP 6: let us next futher modify file 
visualizeResults.m and compute the axial 
mean temperature and Nusselt number together. 

 % Mean temperature in x-direction
% a vector of length Nx-2
% The sum function sums over columns
% of matrix and dy cancels out from 
% the integral

Tm = sum(T(iny,inx).*U)./sum(U);  

% Local Nusselt number along the channel
% a vector of length Nx-2

Nu = 2*dTdywall*Ly./(Ttop-Tm); % a vector of length Nx-2

% note 1) ./(Ttop-Tm) because pointwise 
% division of two vectors, 2) k cancels out

T m(x)=
∫0

Ly

T (x , y)U ( y )dy

∫0

Ly

U ( y )dy

See Incropera Ch. 8.2

Nu(x)=
h(x )Ly

k fluid

See Incropera Table 8.1



  

Nusselt numbers for different channel types 
with different boundary conditions

Table 8.1 from Incropera, de Witt (Principles of Heat and Mass Transfer)

We want to check if 
we can get the value
Nu = 7.54 from 
numerical simulation.



  

For constant wall temperature BC some 
example results using code heat2d.m



  

For constant wall temperature BC some 
example results using code heat2d.m



  

Discretization of a 2d domain in the case of 2d 
channel flow

T i , j
n T i+1, j

nT i−1, j
n

T i , j+1
n

T i , j−1
n

Δ y

Δ x

x=0

y=0

y=L
y

Inlet ghost
cells.

Outflow ghost 
cells

T ghost
n

Cell center

x=L
x

Wall ghost cells

Wall ghost cells

The corner
points are a bit
redundant

Flow direction



  

2d Convection-Diffusion Heat Equation and Numerical 
Solution (extension of Week 2): Again, finite difference 

formulas are used to estimate partial derivatives

(∂T
∂ t )

i , j

n

≈
T i , j

n+1−T i , j
n

Δ t

(∂
2T

∂ x2 )
i , j

n

≈
T i+1 , j

n −2T i , j
n +T i−1 , j

n

Δ x2

∂T
∂ t

+u
∂T
∂ x

=α
∂2 T

∂ x2 +α
∂2T

∂ y 2

(∂T
∂ x )

i , j

n

≈
T i+1 , j

n −T i−1 , j
n

2Δ x



  

The numerical scheme to update temperature
at points (i,j) is a straightforward extension from 

Week 2 

T i , j
n+1

=T i , j
n

−Δ t ui , j

T i+1 , j
n

−T i−1 , j
n

2 Δ x
+αΔ t

T i+1 , j
n

−2T i , j
n

+T i−1 , j
n

Δ x2 +α Δ t
T i , j+1

n
−2T i , j

n
+T i , j−1

n

Δ y2

T i , j
n+1

=T i , j
n

+ΔT i , j
n

=ΔT i , j
n

CFL=
αΔ t

Δ x2 ≪0.5

For code stability the timestep must be small enough:

Co=
Δ t u
Δ x

≪1

Courant-Friedrichs-Lewy number indicating that diffusion should not transport temperature over longer than cell distance during timestep

Courant number indicating that convection should not transport the temperature over longer distances than cell size during timestep



  

Code for a 2d convection-diffusion equation solver 
code heat2d.m will be delivered online via MyCourses. 
Essential modifications to Week 2 simulation code below:

% initialize temperature
T = 293*ones(Ny,Nx);
CFLmax = 0.1; 
Pr = 0.707;        % Prandtl number of air
nu = (1.589e-5);   % nu = kinematic viscosity of air [nu] = m^2/s
alpha = nu/Pr;     % alpha = thermal conductivity of air [alpha] = [nu]
rho = 1.1614; cp = 1.007*1000; 
k   = alpha*rho*cp;    % thermal conductivity of air [k] = W/(mK)

% pressure gradient (if convection is used)
dpdx = ...; 

% velocity is assumed to point to x-direction only i.e. V=0
U = (dpdx/(2*nu))*( (Ly/2)^2 - (Y-Ly/2).^2); 

dTdx = ( T(iny,east)-T(iny,west))/(2*dx); 
dTdy = ( T(north,inx)-T(south,inx))/(2*dy); % not needed if V=0->V*dTdy =0

d2Tdx2 = ( T(iny,east)-2*T(iny,inx)+T(iny,west))/(dx^2);
d2Tdy2 = ( T(north,inx)-2*T(iny,inx)+T(south,inx))/(dy^2);

% evaluate temperature increment dT assuming V.*dTdy = 0
dT = dt*( -U.*dTdx + alpha*d2Tdx2 + alpha*d2Tdy2);

heat2d.m

computedT.m



  

Assessment: Take 5 min time to answer the questions in 
the online query form. 

Thank you for your attention!
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