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Warm fluids are lighter than cold fluids → ability to 
rise against gravity.



  

In 2018, we switched off the fan in the class room demo system. 
We could consider that natural convection (or radiation) is the 

remaining cooling mechanism. Consequence: the heat exchanger 
became extremely hot! From energy
conservation, it is easy to calculate 

dT/dt = q/mc
p
 → e.g. 0.25K/s !



  

Recommended reading: Ch 9 “Free Convection” selective
parts from “Principles of Heat and Mass Transfer”, 
Incropera

Remember: These slides may contain typos or other 
mistakes so please be cautious when reading. 

Remember: Fluid and solid properties depend in reality 
on thermodynamic conditions so please use always 
values taken from a proper source (e.g. Incropera 
Appendix contains some reasonable values)



  

In heat transfer course, we have “4 friends” 
who typically help us to approach and solve any

problem 

1) Energy conservation (“J/s” thinking) 

2) Fourier’s law

3) Newton’s cooling law 

4) Bonus “helpers”: 

4.1) heat eqn, conv.-diff. eqn (relatives of friend #1)

4.2) Navier-Stokes eqn (momentum conservation)

4.3) non-dimensional numbers (follow from the other 
friends) 



  

Recap on CD-equation i.e. thermal energy 
conservation under convection/diffusion   
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On week 4 we discussed that Fourier’s law is 
essentially connected to the diffusion terms

ρ cp
∂T
∂ t

=k
∂

2 T
∂ x2

Consider 1d conduction in a rod heated from both ends

Considering evolution of mean temperature T
m
 we integrated 1d heat eqn over rod

volume V=AL  noting that the differential volume element dV = Adx

x

ρ cp AL
1
L

∂
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L
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Now, the RHS can be integrated directly which gives:

c p m
dT m( t)

∂ t
=A [qL−q0]

- Rate of change of total thermal 
energy = heat rate in – heat rate out
- “Friend #1” (J/s) observed
- “Friend #2” (Fourier) observed

Fourier: q=k
∂T
∂ x

q
Lq

0

Heated endCooled end



  

What remains unanswered is the convection
terms – do they really represent energy 

conservation ?

ρ cp
∂T
∂ t

+ρc p
∂uT
∂ x

+ρc p
∂ vT
∂ y

+ρc p
∂w T
∂ z

=0

Consider for a moment pure convection in a channel (v=w=0)

Considering evolution of temperature T(x,y,t) we integrate 
over a small volume ΔV = ΔxΔyΔz

x

ρ cp
∂
∂ t∫ΔV

T (x , t)dV =ρc p [∫ΔV
u

∂T
∂ x

dV ]

We see that for mean temperature T
m 

of a volume ΔV with mass m 

c p m
dT m

dt
=c pρ[um, out T m, out−um, in T m ,in ] Δ y Δ z

Conclusions:
- Rate of change of total thermal 
energy = heat rate in – heat rate out
- “Friend #1” (J/s) observed
- Indeed, energy transported by convection and diffusion

q=c p ρU A ΔT

Recall week 1

ΔV x: J/s by 
convection +
diffusion

y: J/s by 
diffusion
only (for 
laminar
flow)

+[Q x , out−Q x ,in+Q y , out−Q y ,in ]

+Diffusion terms from previous slide



  

Lecture 5.1 Theory: Natural convection (free 
convection) 

ILO 5: Student can choose Nusselt number correlation 
equations for different situations including natural convection.



  

Topics covered

• Governing equations in natural convection 

• Non-dimensional numbers

• Stable vs unstable configurations

• Boundary layers in natural convection

• Velocity order of magnitude in 

natural convection   

gravity



  

Two sides of natural convection

Advantages:

• Cooling: if NC provides enough cooling then no extra fans needed

• Heating: air may circulate naturally in pipelines; often pumping is still needed

• Heating: heated room air can become distributed by slow currents

Disadvantages: 

• Cooling: NC is a slow cooling mechanism (e.g. thick thermal boundary layers, 

low Nusselt numbers)

• Ventilation: NC can lead to unsteady behavior of air if large human crowds 

provide extensive heat (e.g. 1000*100W = 100kW) → must be accounted for in 

ventilation design

• Energy production: “It is always there” → Always somehow present as ~L3 

dependent parameter → system size L dependent, sensitive phenomenon     



  

Why a drink can cools ? Faster cooling 
horizontally or vertically ? What difference 
would it make ? 

q=hA s(T s−T∞ )

Physical mechanism behind h ?

Newton

RADIATION: NOT CONSIDERED HERE



  

Nusselt number correlation for 
a horizontal cylinder



  

¯NuD=0.60+
0.387 RaD

1/6

[1+(0.559/ Pr )9 /16
]

8/27

Ra=
gβ(T s−T∞) L3

να =
Buoyancy force
Viscousforce

gravity

RaD <1012

What happenswhen RaD →0?

Horizontal cylinder

N̄uD=
h̄ D

k



  
Figure: V.Vuorinen (2016)



  

Nusselt number correlation for 
a vertical plate



  

NC creates flow against gravity → near-wall 
boundary layers → possibility for laminar to 

turbulence transition → critical Rayleigh number

Ra c=109

Critical Rayleigh number

Since Rac∼L3
vertical plane wall 
boundary layers become 
turbulent at a critical length.

N̄uL=0.68+
0.670 RaL

1/4

[1+(0.492/ Pr )9 /16
]

4 /9

Laminar

N̄uL=[0.825+
0.387 RaL

1 /6

[1+(0.492 /Pr )9 /16
]
8 /27 ]

2

All conditions

https://www.youtube.com/watch?v=6ney_Vx00zU

https://www.youtube.com/watch?v=6ney_Vx00zU


  

Which way does a can cool faster in the fridge: 
horizontally or vertically ? 

N̄uD=0.60+
0.387 RaD

1/6

[1+(0.559/ Pr )9 /16
]

8/27

Ra=
gβ(T s−T∞) L3

να =
Buoyancy force
Viscousforce

N̄uL=[0.825+
0.387 RaL

1 /6

[1+(0.492 /Pr )9 /16
]
8 /27

]

2

D

L

D = 0.06m, L = 0.17m 

These two correlations could be used to approach the problem 
(ignoring the end effects). 



  

Step 1: Conduction from
the wall to the fluid
and conduction in the thermal
boundary layer (TBL). 

Step 3: Accelerated flow 
forms viscous and 
thermal boundary layers 
around the can. 

Step 2: Heated fluid
starts rising upwards already
when conducting in the TBL

Step 5: fluid rises 
constantly and the hot air 
is “self-transported”
away from the object in 
a plume which poses 
fluid dynamical structures
(e.g. vortices, turbulence)

Step 4: fluid motion 
becomes 3d and 
turbulence
starts to transport 
heat from the top surface 

Some physical steps how heat transfer away
from a can in natural convection



  

Governing equations

Note: In forced convection the Reynolds number was of very high importance. 
In natural convection the Rayleigh (and/or Grashof) number is typically the key 

driving parameter distinguishing also between laminar and turbulent conditions. 

Note: here we do not discuss the mixed convection case where Re and Ra may 
both be relevant. 



  

Important numbers

Gr=
gβ(T s−T ∞) L3

ν
2 =

Buoyancy force
Viscousforce

β=-
1
ρ (

∂ρ

∂T )
p

Thermal expansion coefficient

L→characteristic length scale of surface /object

β→ thermal expansion coefficient

Ra=
gβ(T s−T∞) L3

να =
Buoyancy force
Viscousforce α=thermal diffusivity ,ν=kinematic viscosity

Grashof number

Rayleigh number (Ra and Gr closely related)



  

Note: Thermal expansion coefficient for ideal gas

β=-
1
ρ (

∂ρ

∂T )
p

=-
1
ρ ( ∂ [p /RT ]

∂T )
p

=
p

ρ R T 2=1/T

p=ρ RT

Note: for other fluids values of the expansion coefficient have been tabulated. 



  

Assumptions in Boussinesq approximation

ρ=ρo−(
∂ρ

∂ T )
p

ΔT

- density is assumed to have a well defined mean part and a fluctuation part

- thermodynamic pressure is assumed to be almost constant 
(often a very good assumption because speed of sound is typically high in 
comparison to other velocities*)

- temperature will then be a function of density 

- when temperature of a point in space increases, the density decreases

- it leads to a buoyancy force promoting motion against gravity (“hot air balloon effect”)

- we can think that pointwise fluctuations of temperature from the mean 
(T’ = T – T

ref
) promote/drive the flow into motion

ρ=ρo−βρo ΔTor
Fluctuation part of density 
contributing to a buoyancy force 
in the Boussinesq approximation

*Note: e.g. in a typical flame pressure is almost constant but density and 
temperature depend very strongly on position (low density in hot parts).  



  

Governing equations (here 2d) in natural 
convection in the Boussinesq approximation
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Buoyancy
force: tries
to promote
motion 
into
opposite
direction
from 
gravity

Navier-Stokes (momentum) 

Convection-diffusion for temperature (energy equation)



  

Example 9.2: Glass window of a fireplace – 
relevance HW5

T ∞=23C

L=0.71m. W=1.02m 

Estimate: 
- convection heat rate

Fire

T s=232C

Ra=
gβ(T s−T∞) L3

να =1.813⋅109
>Rac

N̄uL=[0.825+
0.387 RaL

1 /6

[1+(0.492 /Pr )9 /16
]
8 /27

]

2

=147

h̄=
N̄uL k

L
=7.0 W / m2 K

q=h̄ A s(T s−T ∞)=1060 W

qrad=ϵ A s σ(T s
4
−T ∞

4
)=2355 W

Note 1:

Note 2: What would be T on the 
Opposite side of glass ?



  

Flow in confinements



  

Unstable vs stable configurations

gravity

hot

hot

cold

cold



  

Case: Enclosed, tight water-filled kettle on the 
stove

Case: enclosed “kettle”
on the stove with 
space-dependent 
heating at the walls 
(linearly decreasing 
towards the top). 

Question 1: Does the 
schematic on 
stable vs unstable 
configuration explain
what happens here?

Question 2: Does  
a steady state solution
exist when time→ infinity?




  

Case: Enclosed furnace with space-dependent 
wall heating

Recall some previous slides: 
Stable vs unstable 
configuration

Case: enclosed “furnace”
with space-dependent 
heating at the walls 
(cold at top and bottom
parts, hot in the center). 

Question: Does the 
schematic picture from 
the previous slide 
(stable vs unstable 
configuration) 
explain what happens?




  

Enclosed cavities, heating from below

Ra<Rac=1708

N̄uL=
h̄ L
k

=1

Case 2: Thermally unstable but 
regular cell patterns

1708<RaL<5⋅104

Case 3: Flow is turbulent

3⋅105
<RaL<7⋅109

https://www.youtube.com/watch?v=OM0l2YPVMf8
https://www.youtube.com/watch?v=jFI5KaAqfXI

https://www.youtube.com/watch?v=gSTNxS96fRg&t=56s

https://www.youtube.com/watch?v=OM0l2YPVMf8
https://www.youtube.com/watch?v=jFI5KaAqfXI
https://www.youtube.com/watch?v=gSTNxS96fRg&t=56s


  

Lecture 5.2 Numerical approach from 2018: 
HW4/heating problem changed to a cooling 

problem



  

STEP 1: download the heat2dfins code from 
MyCourses and extract – by right clicking mouse - 
to new folder Week5.

STEP 2: make sure you study the fin array now + 
choose the VisualizeResultsFull in 
heat2dfins for loop.

 

%load VeldataSingle.mat  % single fin
% or instead
load Veldata.mat       % pin fin array  



  

In HW2, we study a cooling problem

Temperature in physical coordinates

Temperature matrix

q (J/s)

q =E
out

 – E
in 

q=hn A fin (T s−T n)=c p ρU A in(T n+1−T n)



  

Note on pin fin row Nusselt numbers and 
comparison to Hilpert equation for cylindrical fins

Nu ave=Nu=
h D
k

=C ReD
m Pr1/3

C=0.683 and m =0.466

Nuave=4.65−7.2,depending on the reference velocity

Cylinder correlations (not valid for squares)
would indicate that:

→ right order of magnitude, note the role of reference velocity
in Re definition. 



  

STEP 3: set a warm inflow temperature (e.g. T
left 

= 
350K) and, for the parameter T

hot
, assume a rather 

cold temperature (e.g. 283 K).  

STEP 4: play around with the code and try to find 
how cold must the fins be to reach e.g. 278K 
target temperature.    

 



  

STEP 5: reverse-engineer (without CD-equation 
solver) how cold the fins should be 
using the equation below making some 
assumption about h (e.g. constant) and by trying 
different values of T

s
. The task can be solved by

Writing 0d code or by using log-mean temperature 
difference concept.

Hint: you can iterate equation below in a for loop (see HW1) 7 times to get the 
final temperature after the heat exchanger: T

n+1 
 = T

n
 + …

Alternatively, it is possible to solve by just pen and paper by 7 iterations. 

 

q=hn A fin (T s−T n)=c p ρU A in(T n+1−T n)
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