PHYS-C0252 - Quantum Mechanics

Exercise set 1

Due date : October 30, 2020 before 10.00

- 1. Consider states $|\psi\rangle = 3i|\phi_1\rangle 7i|\phi_2\rangle$ and $|\chi\rangle = -|\phi_1\rangle + 2i|\phi_2\rangle$, where $|\phi_1\rangle$ and $|\phi_2\rangle$ are orthonormal states, i.e. $\langle \phi_k | \phi_m \rangle = \delta_{km}$, where $\delta_{km} = 1$ for k = m and $\delta_{km} = 0$ for $k \neq m$.
 - (a) Express $|\psi\rangle + |\chi\rangle$ and $\langle\psi| + \langle\chi|$ in their simplest form using $|\phi_1\rangle$ and $|\phi_2\rangle$.
 - (b) Calculate the inner products $\langle \psi | \chi \rangle$ and $\langle \chi | \psi \rangle$. Are they equal?
 - (c) Show that $|\psi\rangle$ and $|\chi\rangle$ satisfy the Cauchy–Schwarz inequality.
 - (d) Show that $|\psi\rangle$ and $|\chi\rangle$ satisfy the triangle inequality.
- 2. (a) Prove the Cauchy–Schwarz inequality |⟨ψ|φ⟩| ≤ ||ψ|| ||φ||. Here we use the shorthand notation ||ψ|| (= |||ψ⟩||) for the norm of |ψ⟩ as on lectures. Hint: Start from 0 ≤ |||ψ⟩ + λ|φ⟩ || and choose the scalar λ in a clever way.
 (b) Prove the triangle inequality |||ψ⟩ + |φ⟩|| ≤ ||ψ|| + ||φ||. Hint: Calculate |||ψ⟩ + |φ⟩ ||² and use (a).

(c) Demonstrate the necessary and sufficient conditions for these inequalities to become equalities.

- 3. (a) Consider the so-called Pauli operators $\hat{\sigma}_x = |0\rangle\langle 1| + |1\rangle\langle 0|$, $\hat{\sigma}_y = i|0\rangle\langle 1| i|1\rangle\langle 0|$ and $\hat{\sigma}_z = |0\rangle\langle 0| - |1\rangle\langle 1|$, where $\{|0\rangle, |1\rangle\}$ form an orthonormal basis of the considered Hilbert space.
 - i. Show that each Pauli operator is Hermitian.
 - ii. Give the eigenvalues and the corresponding eigenstates of each Pauli operator.
 - iii. For each Pauli operator, show that the eigenstates are orthogonal.

(b) Show that if the inverse of a linear operator $\hat{A} : \mathcal{H} \to \mathcal{H}$ exists, the eigenvalues of the inverse \hat{A}^{-1} are just the inverses of those of \hat{A} . The inverse is defined by $\hat{A}\hat{A}^{-1} = \hat{A}^{-1}\hat{A} = \hat{I}$, where \hat{I} is the identity operator.

4. (a) Show that for a Hermitian linear bounded operator $\hat{H} : \mathcal{H} \to \mathcal{H}$, all of its eigenvalues are real and the eigenvectors corresponding to different eigenvalues are orthogonal.

(b) Show that the eigenvalues of an anti-Hermitian linear bounded operator \hat{A} : $\mathcal{H} \to \mathcal{H}$ are either purely imaginary or equal to zero. Note that for anti-Hermition operators \hat{A} , we have $\hat{A}^{\dagger} = -\hat{A}$.

(c) Consider any linear bounded operator $\hat{B} : \mathcal{H} \to \mathcal{H}$

- i. Show that $\hat{B} \hat{B}^{\dagger}$ is anti-Hermitian and $\hat{B} + \hat{B}^{\dagger}$ is Hermitian.
- ii. Show that \hat{B} can be expressed as a linear combination of a Hermitian and anti-Hermitian operator.