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What is high-throughput bioinformatics?

I It is an interdisciplinary field that develops and applies methods for storing, retrieving,
organizing and analyzing high-throughput biological data

I High-throughput technologies can be thought of as massively parallel automated methods
to carry out a large number of individual experiments/biochemical tests simultaneously

I An example: a microarray or a sequencing machine can
I Measure expression of tens of thousands of genes at once
I Quantify genetic variants at millions of positions throughout a genome
→ Data are produced at a massive scale

I Suitable bioinformatics and statistical methods are needed to analyze and exploit these
data

I Goals: too many to list here. . .
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Data growth in genomics and bioinformatics

I Fast evolution in these fields – recent data explosion

I Consider for example:
I When was the first genome sequence published?
I When was the first version of the human reference genome sequence available?
I How many human genomes have been sequenced by today?
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History of genomics
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inborn errors 
of metabolism

Alfred Henry
Sturtevant 
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the first linear 
map of genes

Oswald Avery, Colin MacLeod
and Maclyn McCarty 
demonstrate that DNA

is the
hereditary material

James Watson and 
Francis Crick
describe the 
double-helical

structure of DNA

Marshall Nirenberg, 
Har Gobind Khorana and 
Robert Holley determine 

the genetic code

Stanley Cohen and 
Herbert Boyer

develop
recombinant

DNA technology

Frederick Sanger, 
Allan Maxam

 and Walter Gilbert
develop DNA-sequencing

 methods

First human disease gene — for 
Huntington’s disease — is mapped 

with DNA markers

First public 
discussion 

of sequencing 
the human 

genome
The polymerase 

chain reaction (PCR) is invented

Muscular-dystrophy 
gene identified 

by positional cloning

First automated 
DNA-sequencing instrument

developed

International Nucleotide 
Sequence Database 
Consortium formed

First-generation
human genetic
map developed

Development 
of yeast artificial 

chromosome (YAC)
cloning

US National Research 
Council issues report on 

Mapping and Sequencing the
Human Genome

Human Genome 
Organization (HUGO) formed

Cystic-fibrosis 
gene identified by 
 positional cloning

Sequence-tagged 
sites (STS) mapping
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GenBank 
database 

established

The Belmont Report 
on the use of

human subjects 
in research is issued
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The Human Genome Project 
(HGP) launched in 
the United States

Ethical, legal and social 
implications (ELSI) programmes 

founded at the US National 
Institutes of Health (NIH) 

and Department of Energy (DOE)

First gene for
breast cancer

(BRCA1) mapped

Second-generation
human genetic map developed

First US genome
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Rapid-data-release 
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by the NIH and DOE

New five-year plan 
for the HGP in the 

United States published

The HGP’s human genetic
mapping goal achieved

Yeast (Saccharomyces cerevisiae) 
genome sequenced

First archaeal 
genome sequenced

First human gene map established

Pilot projects for
human genome

sequencing begin 
in the United States

  Bermuda principles for 
rapid and open data release established

The HGP’s mouse genetic 
mapping goal achieved

Escherichia coli 
genome sequenced

Genoscope (French 
National Genome

Sequencing Center) founded
near Paris

Roundworm (Caenorhabditis elegans) 
genome sequenced

RIKEN Genomic Sciences 
Center established in Japan

New five-year plan for the 
HGP in the United States published

Single-nucleotide polymorphism 
(SNP) initiative begins

Chinese National Human Genome Centers 
 established in Beijing and Shanghai

Incorporation of 30,000
genes into human genome map 

Full-scale human genome 
sequencing begins

 Sequence of first human
chromosome

(chromosome 22) 
  completed

Executive order bans genetic 
discrimination in US federal workplace

US President Bill Clinton and 
UK Prime Minister Tony Blair 

support free access to 
genome information

Fruitfly (Drosophila melanogaster) 
genome sequenced

Draft version of 
human genome 

sequence completed

Draft version of human 
genome sequence published 

10,000 full-length 
human cDNAs sequenced

Draft version of mouse genome
sequence completed and published
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rat genome sequence completed
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Finished 
version of 

human 
genome 
sequence

 completed

 The HGP ends with 
all goals achieved

US Equal Employment 
Opportunity Commission 

issues policy
  on genetic discrimination 

in the workplace

The HGP’s human physical
mapping goal achieved

 First bacterial genome
(Haemophilus influenzae) sequenced

The DOE forms the 
Joint Genome Institute

 US National Center 
for Human Genome Research becomes 
the National Human Genome Research

Institute (NHGRI)

To  be 
continued...

 The Sanger Centre founded 
near Cambridge, UK, 

(later renamed the Wellcome
Trust Sanger Institute)

Mustard cress 
(Arabidopsis thaliana)
genome sequenced
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Bioinformatics: historical perspective

I 1956: The first protein sequenced / analysed

I 1965: The first atlas of protein sequences (printed book)

I 1970s: Term “bioinformatics” first used

I 1980s: Development of sequence alignment techniques

I 1980-90: Predicting RNA and protein structures

I 1990s: Prediction of genes

I 1990-2000s: Studies of complete genomes

I 2000+: Complete genomes, functional genomics, personalized medicine
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Data growth: sequencing costs

http://learn.genetics.utah.edu/content/precision/time/

http://learn.genetics.utah.edu/content/precision/time/
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Data growth: sequencing costs
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https://en.wikipedia.org/wiki/Whole_genome_sequencing

https://en.wikipedia.org/wiki/Whole_genome_sequencing
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Data growth: no. of sequenced eukaryotic species

of contigs, N50 values, GC-content, and genome size.
The plot of the genome sizes of completed genome
assemblies against their GC-content shows taxa specific
distributions (Figure 7A). Chordates have the largest
genomes (and also a wide distribution of genome sizes,
Figure 7B) but a narrow distribution of their GC-con-
tents between 37-47%. Apicomplexa have the broadest
distribution with GC-contents ranging from 20-55%,
while Chlorophyta have the highest GC-contents
(52-67%).

diArk in comparison to other databases
Important parameters describing diArk’s content in com-
parison to that of GOLD, NHGRI, NCBI Genome, and
ISC are listed in Table 1. Because diArk, NHGRI, and ISC
exclusively contain eukaryotes only those data were com-
pared. Most obviously, the total number of species differs
by up to a factor of ten. At diArk, information about 806

species is available (numbers have been obtained on
March 10, 2011) while GOLD provides data for 2153
eukaryotes with 1876 species unique. NHGRI lists 187
(total 248), NCBI Genome 986 (total 1090), and ISC 287
(total 360) unique species, respectively. In total, GOLD
and NCBI Genome list more species than diArk, but this
is mainly due to the different philosophies. GOLD and
NCBI Genome include species for which genome projects
are planned or which are in very early stages (“DNA
received” or “sequencing in progress”) of the project while
diArk only lists projects for which genome assemblies or
considerable amounts of cDNA/EST data are available. In
addition, GOLD, NHGRI, NCBI Genome, and ISC list the
same species multiple times if for example different
sequencing centres sequence different genome libraries
(e.g. three entries are available for sequencing Bos taurus
at GOLD), while diArk combines these data. Different
strains of a species (e.g. Saccharomyces cerevisiae YS2

Chordata (109)
Arthropoda (84)
Nematoda (51)
Mollusca (7)
Apicomplexa (38)
Basidiomycota (52)
Ascomycota (251)
Microsporidia (9)
Streptophyta (75)
Chlorophyta (18)
Amoebozoa (16)
Euglenozoa (19)
Stramenopiles (15)
Rest (76)

A

B

C

D

Figure 4 Eukaryotes sequenced worldwide. A) The pie chart shows the sequenced species sorted by taxa for which genome assemblies have
been released. B) The graph shows the increase of total sequenced eukaryotes, genome data as well as EST data, in dependence of the year.
Note that the lower numbers in the figures compared to the numbers given in the text are due to the fact that dates, at which genomes had
been made available, are not known for every genome assembly. C) The graph shows the sequenced eukaryotes separated according to
complete and incomplete (low-coverage genomes) genome assemblies. In addition, publications of genome assemblies are plotted. D) The
diagram shows the number of publications of genome assemblies separated to four major publishing groups, the Nature Journals, the PLoS
Journals, Science, and the Proceedings of the National Academy of Science (PNAS).

Hammesfahr et al. BMC Research Notes 2011, 4:338
http://www.biomedcentral.com/1756-0500/4/338

Page 7 of 12

Figure from BMC Res Notes 4:338, 2011

I According to a Sanger Institute blog1: “There are fewer than 3,500 eukaryotic species with
sequenced genomes. This represents less than 0.2 per cent of known eukaryotes.”

1https://sangerinstitute.blog/2018/11/01/sequencing-all-life-on-earth-facts-and-figures/

https://sangerinstitute.blog/2018/11/01/sequencing-all-life-on-earth-facts-and-figures/
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Beyond genome analysis

I After having sequenced the genome (e.g. human reference genome):
I Characterize genetic variation between individuals
I Identify the location of genes
I Analyze gene functions, interactions, and regulation
I Quantify and analyze epigenomics
I Characterize dynamic properties of genome and functional genomics
I Analyze genetics, functional genomics, epigenomics in the context of biomedicine
I . . .
I Translate this data / knowledge for health and disease
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Data growth: functional genomics assays in ArrayExpress

I ArrayExpress: a repository of functional genomics experiments, containing gene expression
data from microarray and high-throughput sequencing experimentsAmount of data in ArrayExpress

29.1.2009: 220134, 22.1.2010: 276179, 17.1.2011: 463165

Tuesday, January 18, 2011

More info: Nucl. Acids Res. 39 (suppl 1): D1002-4, 2011
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Statistical hypothesis testing

I Hypothesis testing is a main inferential statistics concept that we will use throughout this
course

I We will briefly review the basics of hypothesis testing
I For this part, we follow closely parts of Jeremy Orloff’s and Jonathan Bloom’s excellent

lecture notes material “Null Hypothesis Significance Testing” (Orloff and Bloom, 2014)
I You may also refer to several / any statistics book

I Conceptually speaking, the so-called Newman-Pearson hypothesis testing framework asks
if the observed data is outside the region where we expect the data to be

I If it is, then we have evidence to reject our initial conservative expectation / hypothesis
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Null hypothesis testing

I Key concepts:
I H0: the null hypothesis. This specifies the default assumptions for the model that generates

the data
I HA: the alternative hypothesis (also denoted as H1). We are interested in testing the null

hypothesis; if null is rejected we accept the alternative hypothesis as the best explanation for
the data

I T : the test statistic, computed from the observed data
I Null distribution: the probability density of the test statistic, assuming the null hypothesis

holds true

I Typically the null hypothesis is chosen to be a simple or conservative hypothesis, which we
reject if we have sufficient amount of evidence to reject H0
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Example: coin flipping

I We flip a coin N times to test whether the coin is fair or unfair

I The rational is to check whether our coin results in unexpectedly few or many heads/tails

I Let θ denote the probability that the coin flipping results in a head (or tail), then:
I Null hypothesis: H0 =“the coin is fair”, i.e. θ = 0.5
I Alternative hypothesis: HA =“coin is not fair”, i.e. θ 6= 0.5
I Test statistic: T = number of heads in N flips
I Null distribution: assuming the null hypothesis holds, the number of heads follows binomial

distribution
T ∼ binomial(N, 0.5)
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Example: coin flipping

I The probabilities of obtaining any number of heads (between 0 and 20) from 20 coin
flipping experiments are shown below (here X is used to denote the test statistic):

0 5 10 15 20
the number of heads (X)

0

0.05

0.1

0.15

0.2

p(
X|
3
)

I So, is it “too unlikely” to observe e.g. as many as 15 heads? What about observing as few
as 5 heads?
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p-value

I For a given realization T = t, the p-value is the probability of seeing data / test statistic
at least as extreme as t

p = P(test statistic at least as extreme as t)

I “At least as extreme as” depends on the hypothesis test / test statistic / experimental
design

I Standard hypothesis tests are either one-sided or two-sided, i.e.,
I One-sided: the test statistic can have significantly low values or high values (but not both)

I One-sided test has directionality

I Two-sided: the test statistic can have both significantly low values and high values
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Example: coin flipping cont’d

I The coin flipping test is two-sided, because the number of heads can be either low or high

I The probability of obtaining T smaller than 6 or larger than 14 is p ≤ 0.05

I p-value of smaller than 0.05 is a commonly used threshold
I The extreme values (red) form the rejection region
I The typical values (blue) form the“acceptance” region
I In the “acceptance” region we do not have enough evidence to reject H0

0 5 10 15 20
the number of heads (X)

0

0.05

0.1

0.15

0.2

p(
X|
3
)
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Types of null hypothesis

I Simple hypothesis: a null hypothesis that specifies the population distribution exactly
I E.g. data / test statistic is sampled from a given normal distribution with known mean and

variance

I Composite hypothesis: a null hypothesis that does not specify the population distribution
completely

I E.g. data / test statistic is sampled from a given normal distribution with known mean but
unknown variance

I Exact / point hypothesis: a null hypothesis that specifies an exact parameter value, e.g.,
mean = 0

I Inexact hypothesis: a null hypothesis that specifies a range of parameter values, e.g.,
mean ≤ 0

I Our coin flipping example has a null hypothesis that is simple and exact
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t-test

I In many applications data is assumed to be normally distributed

I Two-sample t-test can be applied to test the means of two samples which are assumed to
be drawn from two normal distributions (with the same variance here)

x1, . . . , xn ∼ N(µ1, σ
2)

y1, . . . , ym ∼ N(µ2, σ
2)

I Unknowns: µ1, µ2, and σ2

I The null hypothesis H0: µ1 = µ2

I The alternative hypothesis HA: µ1 6= µ2
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t-test

I The test statistic T (T is the random variable, t is a particular realization of T )

t =
x − y

s
,

where x = 1
n

∑n
i=1 xi , y = 1

m

∑m
i=1 yi and s2 is the pooled variance

s2 =
(n − 1)s2x + (m − 1)s2y

n + m − 2

(
1

n
+

1

m

)
and s2x =

1

n − 1

n∑
i=1

(xi − x)2

I The null distribution: p(T |H0) can be shown to be the t-distribution with n + m − 2
degrees of freedom
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t-test

I t-distribution for different degrees of freedom

-4 -2 0 2 4
x

0

0.1

0.2

0.3

0.4

p(
x)

t-distribution

8 = 4
8 = 8
8 = 98
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t-test

I One-sided p-value (right side): p = P(T > t|H0)

I One-sided p-value (left side): p = P(T < t|H0)

I Two-sided p-value: p = P(|T | > |t|)
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t-test

I An example: let us assume that we are interested in quantifying whether a gene of interest
is differentially expressed between two groups A and B (say, between healthy and diseased
individuals)

I Measured gene expression values are

Group A : 32, 25, 36, 27, 28

Group B : 29, 48, 39, 37, 39
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t-test

I We can explore the data & question by drawing estimated normal densities for both groups

10 20 30 40 50 60
Gene expression

0

0.02

0.04

0.06

0.08

0.1

0.12

Group A
Group B
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t-test

I For quantitative inference, we can use the t-test

I The value of the t-statistic for our data is −2.4388

I In general, we may not know whether our gene can be up- or down-regulated and we need
to apply two-sided test and obtain a p-value of 0.0406

I If we know that the expression value in group B can only be lower, we can apply one-sided
test and obtain a p-value of 0.0203
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Types of error

I Two types of errors can be made in a hypothesis testing
I Type I error: null hypothesis H0 is true but we reject that in favour of H1. This incorrect

decision results in a false positive.
I Type II error: null hypothesis H0 is not true but we do not reject H0. This incorrect decision

results in a false negative.

Figure from (Wikipedia)
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Power of a test

I Significance level of a test (often called α) is defined to be the probability that we
incorrectly reject H0

Significance level = P(reject H0|H0) = P(type I error)

I Power of a test is defined to be the probability that we correctly reject H0

Power = P(reject H0|HA)

= 1− P(do not reject H0|HA)

= 1− P(type II error)
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Power of a test

I Figure from (Orloff and Bloom, 2014) below illustrates the concept of power
I Shaded area below f (x |H0) represents the significance
I Shaded area below f (x |HA) represents the power: the probability that the test statistic is in

the rejection region of H0 when HA is true
I Note that the hypothesis testing works without knowing / caring about f (x |HA)



31/ 49

Hypothesis test design

I Choose the null hypothesis H0

I Decide if your alternative hypothesis is one-sided or two-sided

I Choose a test statistic

I Choose a significance level

I Determine the power (for different values of the alternative hypothesis)
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Multiple testing

I Multiple testing problem occurs when a statistical analysis and decision making involves
multiple simultaneous statistical hypothesis tests

I The p-values (i.e., confidence levels) described above are valid for a single test

I Consider the previous example of comparing gene expression (for gene x1) between Groups
A and B

I If 5% confidence level is used for a single test, then there is only 0.05 probability that null
hypothesis is rejected incorrectly

I If the test is applied to 100 genes (xi , i ∈ {1, . . . 100}) for which the null hypothesis holds
(i.e., they are not differentially expressed), then the expected number of genes for which the
null hypothesis is rejected incorrectly is 5

→ Hypothesis testing will lead to many false positives if the p-values are not corrected for
multiple testing

I Multiple testing is a real issue in many (all?) bioinformatics applications

I Differential gene expression analysis
I Detecting disease associated genomic variant
I Detection of protein binding sites along whole genome from ChIP-seq
I . . .
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Multiple testing problem2

I Lets assume we have m independent hypothesis H
(1)
0 , . . . ,H

(m)
0 and the null hypothesis

holds for every one of them (that’s a boring assumption to start with, but lets continue
with that assumption anyways)

I If we make m independent tests anyway with significance level α, then each of the m tests
will be significant with probability α

I Now the number of false positives X will have a distribution

X ∼ Binomial(m, α)

(recall the coin flipping, now with a biased coin)

I The expectation of a binomial distribution is E (X ) = mα

I Once again, if we want to carry out a test e.g. for all approx. 20000 human genes, then
the expected number of false positives (assuming null hypothesis holds for all) is
20000 · 0.05 = 1000

2From here onwards, parts of the slides follow Sections 7.2.2–7.2.4 from (Wilkinson, 2017). You can also
check Section 18.7 from (Hastie et al., 2017)
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Family-wise error rate

I Type I error
I Null hypothesis H0 is true but it is rejected in favour of H1

I Assume m independent tests for which the null hypothesis is true, then the probability
that any of the hypothesis will be rejected with significance level α is

α = 1− (1− α)m

i.e., the probability of making one or more type I errors
I This is also called the family-wise error rate (FWER)

0 20 40 60 80 100
The number of tests

0

0.2

0.4

0.6

0.8

1

FW
ER
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Bonferroni correction

I Let H
(1)
0 , . . . ,H

(m)
0 be a collection of hypotheses and p1, . . . , pm the corresponding p-values

I Let I0 ⊆ {1, . . . ,m} be the subset of the m0 = |I0| ≤ m (unknown) true null hypotheses

I Bonferroni correction is defined as follows:

I Given the original significance level α and the number of statistical tests m, then Bonferroni
correction will reject only those null hypothesis i for which pi ≤ α/m

I Equivalently, the multiple testing corrected p-value for the i th test is then min{mpi , 1}

I For the Bonferroni correction FWER ≤ α because

FWER = P

(⋃
i∈I0

pi ≤
α

m

)
≤
∑
i∈I0

P
(
pi ≤

α

m

)
= m0

α

m
≤= α

I The Bonferroni correction is conservative
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False discovery rate

I False discovery rate (FDR) is the proportion of false positives among all positives

FDR =
#false positives

#false positives + #true positives

I Formally FDR is defined as the expectation of the above quantity

I FDR of 0.05 means that 5% of the rejected null hypothesis are false

I However, on the other hand, FDR of 0.05 suggests that 95% of the rejected hypothesis are
still true findings

I A small fraction of false positives are often accepted as long as majority of the results are
true
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False discovery rate

I Lets again assume that we have m tests with p-values p1, . . . , pm
I We can order the p-values in increasing order p(1) ≤ p(2) ≤ . . . ≤ p(m)

I The choice of significance level is equivalent to deciding how many of the smallest
p-values to consider significant

I Lets denote that number (a positive integer) by `

I Because a significance level α corresponds to a particular cutoff `, we denote that by `(α),
giving a list of significant p-values, p(1), p(2), . . . , p(`(α))

I A small α results in a short list (small `)
I A larger α results in a longer list (larger `)
I `(α) is monotonically increasing in α
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False discovery rate

I Lets assume that the number of true positives (for which the null hypothesis does not
hold) is small compared to the number of tests m

I Thus, similarly as above, the number of false positives is still approximatively distributed
as X ∼ Binomial(m, α)

I Thus, the FDR is (assuming `(α) ≥ X )

FDR ≈ X

`(α)
and E (FDR) ≈ E (X )

`(α)
=

mα

`(α)

I Generally we want to limit the fraction of false positive findings (i.e., FDR) by a value q,
thus

mα

`(α)
≤ q ⇔ α ≤ q`(α)

m

I One needs to choose a small enough α so that the above inequality holds
I This is little tricky because `(α) depends on α too
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False discovery rate

I To solve the inequality on the previous page, assume we have inverted the function
`(·) : [0, 1]→ {1, . . . ,m} as α(·) : {1, . . . ,m} → [0, 1]

I We can write

α(`) ≤ q`

m

I Then notice that the p-value threshold that gives a list of length ` is p(`), thus we have

p(`) ≤
q`

m

I Now we just need to run through all possible values of `, from 1 to m, in order to find the
largest value of ` that satisfies the inequality and to find p(`)
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Benjamini-Hochberg correction

I The Benjamini-Hochberg (BH) step-up procedure is commonly used in bio applications

I Let q be given and p(1), p(2), . . . , p(m) be the ordered (from smallest to largest) list of the
m p-values, then the BH procedure works as follows

1. Find the largest k such that p(k) ≤ k
m
q

2. Then reject all H(i) for i = 1, . . . , k

I For BH, the probability of expected proportion of false positives ≤ q

I The FDR value qk for each test k can be obtained from mapping

min
{m
k
p(k), 1

}
(and by guaranteeing that FDR values do not decrease as k increases)
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False discovery rate

I An example: Following the above example with one gene, let us now assume that we
measure the expression of 100 genes for two groups, A and B. We have five replicate
measurements (of 100 genes) from both groups.

I For each gene, expression values are normally distributed with means µA and µB and
standard deviations σA = σB .
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False discovery rate

I If µA = µB = 0 (and σA = σB = 1), the null hypothesis holds for all genes and in ideal
case we should not detect any differentially expressed genes. However, the obtained
p-values look as follows (histogram on right).
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histogram for 100 genes

I We detect 5 genes with a p-value smaller than 0.05 (the magical threshold used in most of
the fields of science)

I Recall the definition of the significance level
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False discovery rate

I If we correct the p-values for multiple testing using the Benjamini-Hochberg methods
described above, we detect no genes that are statistically significantly differentially
expressed.
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False discovery rate

I Let us then see how FDR correction works if we have 10 truely differentially expressed
genes and 90 non-differentially expressed genes with µA = 0 and µB = 2 for the
differentially expressed genes.
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I We would now detect 14 genes with a p-value smaller than 0.05
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False discovery rate

I If we correct the p-values for multiple testing using the Benjamini-Hochberg methods
described above, we detect 5 genes that are statistically significantly differentially
expressed.
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False discovery rate

I Consider an example from (Wilkinson, 2017): use t-test to identify genes differentially
expressed in melanoma compared to healthy skin cells

I 6830 genes, i.e., m = 6830

I If we assumed that the null hypothesis holds for all genes, then the expected number of
false positives would be 6830 · 0.5 = 341.5

I Using the nominal (non-corrected) p-values results in 1377 significantly differentially
expressed genes, indicating that the data may contain a considerable number of truly
differential genes

I The use of Bonferroni correction would give us only six genes that meet the stringent
criterion of p ≤ 0.05/6830 ≈ 0.0000073

I BH correction method would give us 186 differentially expressed genes with a FDR
threshold of 0.05
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False discovery rate

I The figures below show
I Ordered p-values (red)
I The 0.05 uncorrected p-value cutoff (green)
I The Bonferroni-corrected threshold (cyan)
I The FDR threshold (dark blue)
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Figure 7.3: Ordered p-values for the nci microarray data.

plot(1:500,pval.sort[1:500],type="l",col=2)
abline(0.05/6830,0,col=5)
abline(0,0.05/6830,col=4)

We still can’t see exactly where the p-values cross the Bonferroni threshold, but we
know see that the p-values cross the FDR threshold at around 180 (in fact, it first exceeds
at 187), and so we will choose to look at the smallest 186 p-values (corresponding to a
significance threshold of around 0.0014), if we are only prepared to tolerate a FDR of 5%.

An alternative way to view the solution to the problem, which is also informative, is to
rewrite the inequality as

p(l)m

l
< ↵0.

Then defining
f(l) =

p(l)m

l
,

we want to find the largest l such that

f(l) < ↵0.

So if we plot f(l) against l, we look for the (last) crossing of the ↵0 threshold, from below.
Consequently, we can think informally of f(l) as representing the expected FDR associated
with the lth ordered p-value. This is closely related to (but not quite the same as) the
concept of a q-value, which is also a kind of FDR-corrected p-value. Further examination
of such concepts is beyond the scope of this course.

Example: microarray data

We can plot f(l) for 500 most significant microarray genes using the following commands,
leading to the plot shown in Figure 7.5.
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Figure 7.4: First 500 ordered p-values for the nci microarray data.

fdr=6830*pval.sort/1:6830
plot(1:500,fdr[1:500],type="l",col=2)
abline(0.05,0,col=3)

Notice that this function is not monotonic in l, and this why it is not quite right to interpret
f(l) as an FDR-corrected p-value, but it is close enough for our purposes.

Before leaving this example, it is worth emphasising that when working with FDR,
people often work with thresholds above the 0.05 often used in classical statistical testing.
A threshold of 0.1 is very often used (tolerating 1 in 10 false positives), and thresholds of
0.15 are also used sometimes. We can see from Figure 7.5 that if we were to increase
our FDR threshold to 0.1, we would get a list containing around 400 genes, and most
scientists would consider that to be a more appropriate compromise.

See section 18.7 (p.683) of [ESL] for further details of multiple testing problems.

Figures from (Wilkinson, YEAR)
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