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What is high-throughput bioinformatics?

>

It is an interdisciplinary field that develops and applies methods for storing, retrieving,
organizing and analyzing high-throughput biological data
High-throughput technologies can be thought of as massively parallel automated methods
to carry out a large number of individual experiments/biochemical tests simultaneously
An example: a microarray or a sequencing machine can

> Measure expression of tens of thousands of genes at once

> Quantify genetic variants at millions of positions throughout a genome

— Data are produced at a massive scale
Suitable bioinformatics and statistical methods are needed to analyze and exploit these
data

Goals: too many to list here. ..



Data growth in genomics and bioinformatics

» Fast evolution in these fields — recent data explosion
» Consider for example:

> When was the first genome sequence published?
> When was the first version of the human reference genome sequence available?
» How many human genomes have been sequenced by today?



History of genomics
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http://www.nature.com/nature/journal/v422/n6934/pdf/timeline_01626.pdf
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Bioinformatics: historical perspective

>
>
>
| 4
4
>
>
>

1956: The first protein sequenced / analysed

1965: The first atlas of protein sequences (printed book)

1970s: Term “bioinformatics” first used

1980s: Development of sequence alignment techniques

1980-90: Predicting RNA and protein structures

1990s: Prediction of genes

1990-2000s: Studies of complete genomes

2000+: Complete genomes, functional genomics, personalized medicine



Data growth: sequencing costs

DNA sequencing cost per genome
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Data growth: sequencing costs

Cost to sequence a human genome (USD)
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Data growth: no. of sequenced eukaryotic species
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Figure from BMC Res Notes 4:338, 2011

» According to a Sanger Institute blog!: “There are fewer than 3,500 eukaryotic species with
sequenced genomes. This represents less than 0.2 per cent of known eukaryotes.”
Ihttps://sangerinstitute.blog/2018/11/01/sequencing-all-life-on-earth-facts-and-figures/
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Beyond genome analysis

> After having sequenced the genome (e.g. human reference genome):

>

YyY VY VY VY VvYY

Characterize genetic variation between individuals

Identify the location of genes

Analyze gene functions, interactions, and regulation

Quantify and analyze epigenomics

Characterize dynamic properties of genome and functional genomics

Analyze genetics, functional genomics, epigenomics in the context of biomedicine

Translate this data / knowledge for health and disease



Data growth: functional genomics assays in ArrayExpress

» ArrayExpress: a repository of functional genomics experiments, containing gene expression
data from microarray and high-throughput sequencing experiments

Data in ArrayExpress
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Statistical hypothesis testing

» Hypothesis testing is a main inferential statistics concept that we will use throughout this
course
> We will briefly review the basics of hypothesis testing
» For this part, we follow closely parts of Jeremy Orloff’s and Jonathan Bloom's excellent
lecture notes material “Null Hypothesis Significance Testing” (Orloff and Bloom, 2014)
> You may also refer to several / any statistics book
» Conceptually speaking, the so-called Newman-Pearson hypothesis testing framework asks
if the observed data is outside the region where we expect the data to be
> If it is, then we have evidence to reject our initial conservative expectation / hypothesis



Null hypothesis testing

> Key concepts:
> Hpy: the null hypothesis. This specifies the default assumptions for the model that generates
the data

> Ha: the alternative hypothesis (also denoted as H:). We are interested in testing the null

hypothesis; if null is rejected we accept the alternative hypothesis as the best explanation for
the data

> T: the test statistic, computed from the observed data

> Null distribution: the probability density of the test statistic, assuming the null hypothesis
holds true

» Typically the null hypothesis is chosen to be a simple or conservative hypothesis, which we
reject if we have sufficient amount of evidence to reject Hy



Example: coin flipping

» We flip a coin N times to test whether the coin is fair or unfair
> The rational is to check whether our coin results in unexpectedly few or many heads/tails

> Let 6 denote the probability that the coin flipping results in a head (or tail), then:

Null hypothesis: Hy = “the coin is fair", i.e. 6 = 0.5

Alternative hypothesis: Ha = “coin is not fair”, i.e. 8 # 0.5

Test statistic: T = number of heads in N flips

Null distribution: assuming the null hypothesis holds, the number of heads follows binomial
distribution

v

vvyy

T ~ binomial(N,0.5)



Example: coin flipping

» The probabilities of obtaining any number of heads (between 0 and 20) from 20 coin
flipping experiments are shown below (here X is used to denote the test statistic):
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> So, is it “too unlikely” to observe e.g. as many as 15 heads? What about observing as few

as 5 heads?



p-value

» For a given realization T = t, the p-value is the probability of seeing data / test statistic
at least as extreme as t

p = P(test statistic at least as extreme as t)

> “At least as extreme as” depends on the hypothesis test / test statistic / experimental

design
» Standard hypothesis tests are either one-sided or two-sided, i.e.,
> One-sided: the test statistic can have significantly low values or high values (but not both)
> One-sided test has directionality
> Two-sided: the test statistic can have both significantly low values and high values



Example: coin flipping cont'd

» The coin flipping test is two-sided, because the number of heads can be either low or high
» The probability of obtaining T smaller than 6 or larger than 14 is p < 0.05

p-value of smaller than 0.05 is a commonly used threshold

>
> The extreme values (red) form the rejection region
> The typical values (blue) form the “acceptance” region
> In the "acceptance” region we do not have enough evidence to reject Hp
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Types

of null hypothesis

Simple hypothesis: a null hypothesis that specifies the population distribution exactly
» E.g. data / test statistic is sampled from a given normal distribution with known mean and
variance
Composite hypothesis: a null hypothesis that does not specify the population distribution
completely
> E.g. data / test statistic is sampled from a given normal distribution with known mean but
unknown variance
Exact / point hypothesis: a null hypothesis that specifies an exact parameter value, e.g.,
mean =0
Inexact hypothesis: a null hypothesis that specifies a range of parameter values, e.g.,
mean < 0

Our coin flipping example has a null hypothesis that is simple and exact



t-test

v

In many applications data is assumed to be normally distributed

v

Two-sample t-test can be applied to test the means of two samples which are assumed to
be drawn from two normal distributions (with the same variance here)

Xiy.osXn ~  N(u1,0?)
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Unknowns: p1, po, and o2

v

The null hypothesis Hy: 1 = o

v

The alternative hypothesis Ha: 11 # o



t-test

> The test statistic T (T is the random variable, t is a particular realization of T)
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» The null distribution: p(T|Hp) can be shown to be the t-distribution with n+ m — 2
degrees of freedom



t-test

» t-distribution for different degrees of freedom

0.4

03/}
Xo2l
o

0.1+

t-distribution

/- '\\

NN

© 0 A
¢




t-test

> One-sided p-value (right side): p = P(T > t|Hp)
» One-sided p-value (left side): p= P(T < t|HO)
> Two-sided p-value: p = P(|T| > |t])



t-test

> An example: let us assume that we are interested in quantifying whether a gene of interest

is differentially expressed between two groups A and B (say, between healthy and diseased
individuals)

> Measured gene expression values are

Group A : 32,25, 36,27,28
Group B : 29, 48,39, 37,39



t-test

» We can explore the data & question by drawing estimated normal densities for both groups
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t-test

v

For quantitative inference, we can use the t-test
The value of the t-statistic for our data is —2.4388

v

v

In general, we may not know whether our gene can be up- or down-regulated and we need
to apply two-sided test and obtain a p-value of 0.0406

v

If we know that the expression value in group B can only be lower, we can apply one-sided
test and obtain a p-value of 0.0203
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Types of error

» Two types of errors can be made in a hypothesis testing

> Type | error: null hypothesis Hp is true but we reject that in favour of H;. This incorrect
decision results in a false positive.

> Type Il error: null hypothesis Hp is not true but we do not reject Hy. This incorrect decision
results in a false negative.

Null hypothesis (Hp) is
Table of error types
Valid/True Invalid/False

Type | error Correct inference
Reject

(False Positive) | (True Positive)
Judgment of Null Hypothesis (Hp)

Correct inference Type Il error
Accept

(True Negative) | (False Negative)

Type-1 = True Hg but reject it (False Positive)

Type-2 = False Hy but accept it (False Negative)

Figure from (Wikipedia)



Power of a test

» Significance level of a test (often called «) is defined to be the probability that we
incorrectly reject Hy

Significance level = P(reject Ho|Hy) = P(type | error)
» Power of a test is defined to be the probability that we correctly reject Hy

Power = P(reject Ho|Ha)
= 1 — P(do not reject Hy|Ha)
= 1— P(type Il error)



Power of a test

> Figure from (Orloff and Bloom, 2014) below illustrates the concept of power
> Shaded area below f(x|Hp) represents the significance
> Shaded area below f(x|Ha) represents the power: the probability that the test statistic is in

the rejection region of Hy when Hj is true
> Note that the hypothesis testing works without knowing / caring about f(x|Ha)
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Hypothesis test design

Choose the null hypothesis Hy
Decide if your alternative hypothesis is one-sided or two-sided

>

>

» Choose a test statistic

» Choose a significance level
>

Determine the power (for different values of the alternative hypothesis)
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Multiple testing

» Multiple testing problem occurs when a statistical analysis and decision making involves
multiple simultaneous statistical hypothesis tests

» The p-values (i.e., confidence levels) described above are valid for a single test

» Consider the previous example of comparing gene expression (for gene x;) between Groups
A and B
> If 5% confidence level is used for a single test, then there is only 0.05 probability that null
hypothesis is rejected incorrectly
> If the test is applied to 100 genes (x;,i € {1,...100}) for which the null hypothesis holds
(i.e., they are not differentially expressed), then the expected number of genes for which the
null hypothesis is rejected incorrectly is 5



Multiple testing

» Multiple testing problem occurs when a statistical analysis and decision making involves
multiple simultaneous statistical hypothesis tests
» The p-values (i.e., confidence levels) described above are valid for a single test
» Consider the previous example of comparing gene expression (for gene x;) between Groups
A and B
> If 5% confidence level is used for a single test, then there is only 0.05 probability that null
hypothesis is rejected incorrectly
> If the test is applied to 100 genes (x;,i € {1,...100}) for which the null hypothesis holds
(i.e., they are not differentially expressed), then the expected number of genes for which the
null hypothesis is rejected incorrectly is 5
— Hypothesis testing will lead to many false positives if the p-values are not corrected for
multiple testing

» Multiple testing is a real issue in many (all?) bioinformatics applications

Differential gene expression analysis
Detecting disease associated genomic variant
Detection of protein binding sites along whole genome from ChlP-seq

vy vy vy



Multiple testing problem?

>

Lets assume we have m independent hypothesis Hél), cee Hém) and the null hypothesis
holds for every one of them (that's a boring assumption to start with, but lets continue
with that assumption anyways)

If we make m independent tests anyway with significance level a, then each of the m tests
will be significant with probability «

Now the number of false positives X will have a distribution
X ~ Binomial(m, «)

(recall the coin flipping, now with a biased coin)
The expectation of a binomial distribution is £(X) = ma

Once again, if we want to carry out a test e.g. for all approx. 20000 human genes, then
the expected number of false positives (assuming null hypothesis holds for all) is
20000 - 0.05 = 1000

2From here onwards, parts of the slides follow Sections 7.2.2-7.2.4 from (Wilkinson, 2017). You can also
check Section 18.7 from (Hastie et al., 2017)



Family-wise error rate

» Type | error
> Null hypothesis Hp is true but it is rejected in favour of H;
» Assume m independent tests for which the null hypothesis is true, then the probability
that any of the hypothesis will be rejected with significance level « is

a=1-(1-a)"
i.e., the probability of making one or more type | errors

» This is also called the family-wise error rate (FWER)
1
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Bonferroni correction

> Let H(()l), ceey Hém) be a collection of hypotheses and p1, ..., pn the corresponding p-values
> Let Iy C{1,..., m} be the subset of the my = |lh| < m (unknown) true null hypotheses
» Bonferroni correction is defined as follows:

> Given the original significance level o and the number of statistical tests m, then Bonferroni
correction will reject only those null hypothesis i for which p; < a/m
» Equivalently, the multiple testing corrected p-value for the ith test is then min{mp;, 1}



Bonferroni correction

> Let H(()l), ceey Hém) be a collection of hypotheses and p1, ..., pn the corresponding p-values
> Let Iy C{1,..., m} be the subset of the my = |lh| < m (unknown) true null hypotheses
» Bonferroni correction is defined as follows:
> Given the original significance level o and the number of statistical tests m, then Bonferroni
correction will reject only those null hypothesis i for which p; < a/m
» Equivalently, the multiple testing corrected p-value for the ith test is then min{mp;, 1}
» For the Bonferroni correction FWER < a because
« « «
FWER = P < %)< P(-<f):mf<:a
(Un<t)<xrloeg)-ms s
i€l i€l
» The Bonferroni correction is conservative



False discovery rate

> False discovery rate (FDR) is the proportion of false positives among all positives

#false positives

FDR =
#false positives + #true positives

» Formally FDR is defined as the expectation of the above quantity

» FDR of 0.05 means that 5% of the rejected null hypothesis are false

» However, on the other hand, FDR of 0.05 suggests that 95% of the rejected hypothesis are
still true findings

» A small fraction of false positives are often accepted as long as majority of the results are

true



False discovery rate

> Lets again assume that we have m tests with p-values p1, ..., pm
» We can order the p-values in increasing order p1) < p2) < ... < p(m)
» The choice of significance level is equivalent to deciding how many of the smallest
p-values to consider significant
> Lets denote that number (a positive integer) by ¢
» Because a significance level « corresponds to a particular cutoff £, we denote that by £(«),

giving a list of significant p-values, p(1), p(2), - - -, P¢(a))
> A small « results in a short list (small £)
> A larger « results in a longer list (larger £)
> /() is monotonically increasing in «



False discovery rate

> Lets assume that the number of true positives (for which the null hypothesis does not
hold) is small compared to the number of tests m
» Thus, similarly as above, the number of false positives is still approximatively distributed
as X ~ Binomial(m, )
» Thus, the FDR is (assuming ¢(a) > X)
E(X) ma

~ X ~ EX) _ ma
FDR ~ 7o and E(FDR) fa) = 1)



False discovery rate

> Lets assume that the number of true positives (for which the null hypothesis does not
hold) is small compared to the number of tests m

» Thus, similarly as above, the number of false positives is still approximatively distributed
as X ~ Binomial(m, )

» Thus, the FDR is (assuming ¢(a) > X)

X E(X) ma
FDR~ — and E(FDR)~ —/—%X = —
i " FPR~ Ty T i
> Generally we want to limit the fraction of false positive findings (i.e., FDR) by a value g,
thus '
me oy a9 (@)
) m

» One needs to choose a small enough « so that the above inequality holds
> This is little tricky because ¢(a) depends on « too



False discovery rate

» To solve the inequality on the previous page, assume we have inverted the function
0(-):10,1] = {1,...,m} as a(:) : {1,...,m} = [0,1]
» We can write
a(f) < at

m
» Then notice that the p-value threshold that gives a list of length £ is p(y), thus we have
ql

< 1=
PO <

» Now we just need to run through all possible values of ¢, from 1 to m, in order to find the
largest value of ¢ that satisfies the inequality and to find p)



Benjamini-Hochberg correction

» The Benjamini-Hochberg (BH) step-up procedure is commonly used in bio applications

> Let g be given and p(1), p(2), - - -, P(m) be the ordered (from smallest to largest) list of the
m p-values, then the BH procedure works as follows

1. Find the largest k such that py) < £q
2. Then reject all Hy fori=1,...,k

» For BH, the probability of expected proportion of false positives < g
» The FDR value gk for each test k can be obtained from mapping

min {%p(k), 1}

(and by guaranteeing that FDR values do not decrease as k increases)



False discovery rate

» An example: Following the above example with one gene, let us now assume that we
measure the expression of 100 genes for two groups, A and B. We have five replicate
measurements (of 100 genes) from both groups.

> For each gene, expression values are normally distributed with means pa and pg and
standard deviations g4 = 0p.



False discovery rate

> If ua = pg =0 (and 04 = o = 1), the null hypothesis holds for all genes and in ideal
case we should not detect any differentially expressed genes. However, the obtained
p-values look as follows (histogram on right).

08 gene #1 histogram for 100 genes
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> We detect 5 genes with a p-value smaller than 0.05 (the magical threshold used in most of
the fields of science)
> Recall the definition of the significance level



False discovery rate

> If we correct the p-values for multiple testing using the Benjamini-Hochberg methods
described above, we detect no genes that are statistically significantly differentially
expressed.

histogram for 100 genes
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False discovery rate

> Let us then see how FDR correction works if we have 10 truely differentially expressed
genes and 90 non-differentially expressed genes with 14 = 0 and pug = 2 for the
differentially expressed genes.

ene #1 histogram for 100 genes
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» We would now detect 14 genes with a p-value smaller than 0.05



False discovery rate

> If we correct the p-values for multiple testing using the Benjamini-Hochberg methods
described above, we detect 5 genes that are statistically significantly differentially
expressed.

histogram for 100 genes
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False discovery rate

>

Consider an example from (Wilkinson, 2017): use t-test to identify genes differentially
expressed in melanoma compared to healthy skin cells

6830 genes, i.e., m = 6830
If we assumed that the null hypothesis holds for all genes, then the expected number of
false positives would be 6830 - 0.5 = 341.5

Using the nominal (non-corrected) p-values results in 1377 significantly differentially
expressed genes, indicating that the data may contain a considerable number of truly
differential genes

The use of Bonferroni correction would give us only six genes that meet the stringent
criterion of p < 0.05/6830 ~ 0.0000073

BH correction method would give us 186 differentially expressed genes with a FDR
threshold of 0.05



False discovery rate

> The figures below show

>

vvYyy

Ordered p-values (red)

The 0.05 uncorrected p-value cutoff (green)
The Bonferroni-corrected threshold (cyan)

The FDR threshold (dark blue)
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