Linear Quadratic (LQ) optimal control

"Principle of optimality" or Dynamic Programming (Bellman 1957) is one way to approach the problem. Variational calculus is another one.

Books:

- Kirk (1998), "Optimal Control Theory"
- Lewis and Syrmos (1995), "Optimal Control"
- Bryson and Ho (1975), "Applied Optimal Control: Optimization, Estimation, and Control"
- Athans and Falb (1966), "Optimal Control: An Introduction To The Theory And Its Applications "

The Maximum (Minimum) Principle

- Pontryagin + co-workers, 1962
- Classical "Calculus of Variations"
- Calculus of variations in optimal control problems
- A special case of the maximum principle
- Maximum principle (nonlinear system, restrictions in state and input variables, possibly nonlinear cost minimum time problems, minimum fuel problems etc.)
- Mathematically involved

Note: Min J = -Max (-J) always
A?

Optimization from control viewpoint

```
                                    Static
                                    Optimization
Lagrange muttipliers Numerical methods
Dynamic
    Programming
    Weights
            #
Pontryagin's maximum
principle
Hamiltonian
Bang-Bang control
        quation
```

Linear Quadratic (LQ)-optimal control

```
Linear matrix
inequalities (LMI)
```

```
A?
Malto University 
\ychool of Elec c
```


Concepts

$\dot{x}(t)=f(x(t), u(t), t), \quad x\left(t_{0}\right)=x_{0}$	Process
$\min J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t) d t$	Criterion to be minimized

- States and co-states (adjoint states)
- Hamiltonian function
- State equations for states and co-states
-Conditions for the Hamiltonian
-Boundary conditions
-Two-point boundary value problems

Aalto University
School of Electrical
School of Ele
Engineering

Principle of Optimality

(Bellman 1957)
"An optimal policy has the property that no matter what the previous decision (i.e. controls) have been, the remaining decisions must constitute an optimal policy with regard to the state resulting from those previous decisions."

By applying this principle the number of candidates for the optimal solution can be reduced.

Calculations "backwards in time".

```
A? {
```


Discrete-time optimization problem

$$
\begin{array}{cl}
x_{k+1}=f^{k}\left(x_{k}, u_{k}\right) & \text { Process } \\
J_{i}\left(x_{i}\right)=\phi\left(N, x_{N}\right)+\sum_{k=i}^{N-1} L^{k}\left(x_{k}, u_{k}\right) & \begin{array}{l}
\text { Criterion to be } \\
\text { minimized }
\end{array}
\end{array}
$$

Use the principle of optimality. Let the optimal control be calculated from time $\mathrm{k}+1$ to N for all states
x at time $\mathrm{k}+1$ and consider what happens

Ex. Routing problem

Aatto University
School of Electrica
Aato University
School of Elec
Engineering
eng

Find u_{k} such that the expression is minimized; optimal cost at time k.
S. Ahool of Electrical

School of Elec
Engineering

Solution of the discrete-time LQ-problem by using dynamic programming
 $$
\begin{aligned} & x_{k+1}=A x_{k}+B u_{k} \quad \text { Process } \\ & J=\frac{1}{2} x_{N}^{T} S_{N} x_{N}+\frac{1}{2} \sum_{k=i}^{N-1}\left(x_{k}^{T} Q x_{k}+u_{k}^{T} R u_{k}\right) \quad \text { Criterion } \\ & \left(S_{N} \geq 0, \quad Q \geq 0, \quad R>0\right) \quad \text { symmetric } \\ & \quad x_{i} \text { given } \quad x_{N} \text { free } \quad \text { Find } u_{k}^{*} \quad \text { in inteval }[i, N] \quad \text { minimizing the criterion } \end{aligned}
$$

 Find u_{k}^{*} in inteval $[i, N]$ minimizing the criterion

 Find u_{k}^{*} in inteval $[i, N]$ minimizing the criterion}\mathbf{A} ?
School of Ele
Engineering
$J_{N}^{*}=\frac{1}{2} x_{N}^{T} S_{N} x_{N}, \quad k=N \quad$ Cost from the end state $J_{N-1}=\frac{1}{2} x_{N-1}^{T} Q x_{N-1}+\frac{1}{2} u_{N-1}^{T} R u_{N-1}+\frac{1}{2} x_{N}^{T} S_{N} x_{N}$

Backwards in time to time instant N -1

$$
J_{N-1}=\frac{1}{2} x_{N-1}^{T} Q x_{N-1}+\frac{1}{2} u_{N-1}^{T} R u_{N-1}+\frac{1}{2}\left(A x_{N-1}+B u_{N-1}\right)^{T} S_{N}\left(A x_{N-1}+B u_{N-1}\right)
$$

$0=\frac{\partial J_{N-1}}{\partial u_{N-1}}=R u_{N-1}+B^{T} S_{N}\left(A x_{N-1}+B u_{N-1}\right) \quad$ Minimize
$u_{N-1}^{*}=-\left(B^{T} S_{N} B+R\right)^{-1} B^{T} S_{N} A x_{N-1}$

A?
School of Ele
Engineering

Backwards to the time instant $\mathrm{k}=\mathrm{N}-2$
$J_{N-2}=\frac{1}{2} x_{N-2}^{T} Q x_{N-2}+\frac{1}{2} u_{N-2}^{T} R u_{N-2}+\frac{1}{2} x_{N-1}^{T} S_{N-1} x_{N-1}$
Now determine u_{N-2}^{*}, but the equations have the same form as above. We obtain the general solution
$K_{k}=\left(B^{T} S_{k+1} B+R\right)^{-1} B^{T} S_{k+1} A$
$u_{k}^{*}=-K_{k} x_{k}$
$S_{k}=\left(A-B K_{k}\right)^{T} S_{k+1}\left(A-B K_{k}\right)+K_{k}^{T} R K_{k}+Q$
$J_{k}^{*}=\frac{1}{2} x_{k}^{T} S_{k} x_{k}$

Continuous-time case: The Hamilton-Jacobi-Bellman equation

$\dot{x}(t)=f(x(t), u(t), t)$	System
$J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(\tau), u(\tau), \tau) d \tau$	Criterion

Consider the problem as a part of the larger problem

$$
J(x(t), t, \underbrace{u(\tau)}_{t \leq \Sigma \leq_{f}})=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t}^{t_{f}} g(x(\tau), u(\tau), \tau) d \tau
$$

Let us try to minimize this for all admissible $x(t)$ and for all $t \leq t_{f}$

$$
\begin{aligned}
& \begin{aligned}
\text { Expand } & J^{*}(x(t+\Delta t), t+\Delta t) \text { as a Taylor series about the point } \\
& (x(t), t) \text { gives }
\end{aligned} \\
& \begin{aligned}
& J^{*}(x(t), t) \approx \underbrace{}_{\substack{\left.u(t) \\
\frac{\min }{x, t s}\right)}}\left\{\int_{t}^{t+\Delta t} g d \tau+J^{*}(x(t), t)+\left[\frac{\partial J^{*}}{\partial t}(x(t), t)\right] \Delta t\right. \\
&\left.+\left[\frac{\partial J^{*}}{\partial x}(x(t), t)\right][x(t+\Delta t)-x(t)]\right\} \\
& \text { and for small } \Delta t
\end{aligned} \\
& \begin{aligned}
J^{*}(x(t), t) & \approx \underbrace{\min }_{u(t)}\left\{g(x(t), u(t), t) \Delta t+J^{*}(x(t), t)\right. \\
& +J_{t}^{*}(x(t), t) \Delta t+J_{x}^{*}(x(t), t)[f(x(t), u(t), t)] \Delta t
\end{aligned}
\end{aligned}
$$

Schnol of flec
Enginoering

The minimum cost function is then

```
\(J^{*}(x(t), t)=\underset{u(\tau)}{\min }\left\{\int_{t}^{t} g(x(\tau), u(\tau), \tau) d \tau+h\left(x\left(t_{f}\right), t_{f}\right)\right\}\)
```


By dividing the optimization interval to two parts we obtain

Use the principle of optimality to get

```
J*(x(t),t)={ \underset{v(f)}{\operatorname{min}}{\mp@subsup{\int}{t}{t+\Deltat}gd\tau+\mp@subsup{J}{}{*}(x(t+\Deltat),t+\Deltat)}
    \frac{z(f)}{8(x)y}
```

A?
School of Ele
Engineoring

Minimization (terms that do not depend on u)

$$
\begin{aligned}
0 \approx J_{t}^{*}(x(t), t) \Delta t & +\underbrace{\min }_{u x(t)}\{g(x(t), u(t), t) \Delta t \\
& \left.+J_{x}^{*}(x(t), t)[f(x(t), u(t), t)] \Delta t\right\}
\end{aligned}
$$

Dividing by Δt and letting $\Delta t \rightarrow 0$ gives
$0=J_{t}^{*}(x(t), t)+\underbrace{\min }_{u(t)}\left\{g(x(t), u(t), t)+J_{x}^{*}(x(t), t)[f(x(t), u(t), t)]\right\}$
Setting $t=t_{f}$ the boundary condition is found
$J^{*}\left(x\left(t_{f}\right), t_{f}\right)=h\left(x\left(t_{f}\right), t_{f}\right)$

Aalto University
School of Electrical
School of Elec
Engineering

> Define the Hamiltonian as
> $H\left(x(t), u(t), J_{x}^{*}, t\right)=g(x(t), u(t), t)+J_{x}^{*}(x(t), t)[f(x(t), u(t), t)]$ \quad and
> $H\left(x(t), u^{*}\left(x(t), J_{x}^{*}, t\right), J_{x}^{*}, t\right)=\underbrace{\min }_{u(t)} H\left(x(t), u(t), J_{x}^{*}, t\right)$
since the minimizing control depends on x, J_{x}^{*} and t.
The $\mathrm{H}-\mathrm{J}-\mathrm{B}$ equation can be written in the form
$0=J_{t}^{*}(x(t), t)+H\left(x(t), u^{*}\left(x(t), J_{x}^{*}, t\right), J_{x}^{*}, t\right)$

Example: $\quad \dot{x}(t)=x(t)+u(t)$

$$
\operatorname{Min} J=\frac{1}{4} x^{2}(T)+\int_{0}^{T} \frac{1}{4} u^{2}(t) d t \quad(T \text { fixed })
$$

$H\left(x, u, J_{x}^{*}, t\right)=\frac{1}{4} u^{2}+J_{x}^{*}(x+u)$
Necessary condition for optimality $\quad \frac{\partial H}{\partial u}=\frac{1}{2} u+J_{x}^{*}=0$
Note: $\quad \frac{\partial^{2} H}{\partial u^{2}}=\frac{1}{2}>0 \quad$ implying this is a minimum (because of linear system with quadratic criterion)

A?
 Aalto University School of Electrical

Aatto Universit
School of lle
Engineering

Next, guess a solution form (for LQ problems this may work)

$$
J^{*}(x(t), t)=\frac{1}{2} K(t) x^{2}(t) \Rightarrow J_{x}^{*}(x(t), t)=K(t) x(t)
$$

This is the Riccati transformation

$$
u^{*}(t)=-2 K(t) x(t)
$$

Setting $K(T)=1 / 2$ fulfils the boundary condition.
Now $J_{t}^{*}(x(t), t)=\frac{1}{2} \dot{K}(t) x^{2}(t) \quad$ and the H-J-B gives
$0=\frac{1}{2} \dot{K}(t) x^{2}(t)-K^{2}(t) x^{2}(t)+K(t) x^{2}(t)$
A?
School of Ele
Engineering

That must be satisfied for all $x(t)$
$\frac{1}{2} \dot{K}(t)-K^{2}(t)+K(t)=0 \Rightarrow K(t)=\frac{e^{T-t}}{e^{T-t}+e^{-(T-t)}}$
$\Rightarrow u^{*}(t)=-2 J_{x}^{*}(x(t), t)=-2 K(t) x(t)$

The solution is in the form of a state feedback control law.
$\Delta ? \begin{aligned} & \text { Aalto University } \\ & \text { shool of Electrica }\end{aligned}$
School of Elec
Engineering

Note that since $\frac{\partial^{2} H}{\partial u^{2}}=R(t)$ is positive definite and H is a quadratic form in u, the optimum is global.
$u^{*}(t)=-R^{-1}(t) B^{T}(t) J_{x}^{* T}(x(t), t)$
$\Rightarrow H\left(x(t), u^{*}(t), J_{x}^{*}, t\right)=\frac{1}{2} x^{T} Q x+\frac{1}{2} J_{x}^{*} B R^{-1} B^{T} J_{x}^{* T}$

$$
+J_{x}^{*} A x-J_{x}^{*} B R^{-1} B^{T} J_{x}^{T}
$$

$$
=\frac{1}{2} x^{T} Q x-\frac{1}{2} J_{x}^{*} B R^{-1} B^{T} J_{x}^{*}+J_{x}^{*} A x
$$

H-J-B: $\quad 0=J_{t}^{*}+\frac{1}{2} x^{T} Q x-\frac{1}{2} J_{x}^{*} B R^{-1} B^{T} J_{x}^{* T}+J_{x}^{*} A x$
Boundary condition $\quad J^{*}\left(x\left(t_{f}\right), t_{f}\right)=\frac{1}{2} x^{T}\left(t_{f}\right) H x\left(t_{f}\right)$

Linear Regulator Problems

$\dot{x}(t)=A(t) x(t)+B(t) u(t)$
LQ problem, Q positive semidefinite, R positive definite
$J=\frac{1}{2} x^{T}\left(t_{f}\right) H x\left(t_{f}\right)+\int_{t_{0}}^{t_{t}} \frac{1}{2}\left[x^{T}(t) Q(t) x(t)+u^{T}(t) R(t) u(t)\right] d t$
Form the Hamiltonian
$H\left(x(t), u(t), J_{x}^{*}, t\right)=\frac{1}{2} x^{T}(t) Q(t) x(t)+\frac{1}{2} u^{T}(t) R(t) u(t)+J_{x}^{*}(x(t), t)$

$$
\cdot[A(t) x(t)+B(t) u(t)]
$$

and the necessary condition for optimality

$$
\frac{\partial H}{\partial u}\left(x(t), u(t), J_{x}^{*}, t\right)=u^{T}(t) R(t)+J_{x}^{*}(x(t), t) B(t)=0
$$

Guess a solution of the form

$J^{*}(x(t), t)=\frac{1}{2} x^{T}(t) K(t) x(t) \quad \begin{aligned} & K \text { symmetric, positive definitive } \\ & \text { matrix }\end{aligned}$
and substitute into $\mathrm{H}-\mathrm{J}-\mathrm{B}$
$0=\frac{1}{2} x^{T} \dot{K} x+\frac{1}{2} x^{T} Q x-\frac{1}{2} x^{T} K B R^{-1} B^{T} K x+x^{T} K A x$
$\begin{array}{ll}x^{T} K A x=x^{T}\left(K A+(K A)^{T}-(K A)^{T}\right) x=x^{T}\left(K A+A^{T} K\right) x-x^{T} K A x & \\ \Rightarrow x^{T} K A x=\frac{1}{2}\left(x^{T} K A x\right)+\frac{1}{2}\left(x^{T} A^{T} K x\right) & \text { so that }\end{array}$
$0=\frac{1}{2} x^{T} \dot{K} x+\frac{1}{2} x^{T} Q x-\frac{1}{2} x^{T} K B R^{-1} B^{T} K x+\frac{1}{2} x^{T} K A x+\frac{1}{2} x^{T} A^{T} K x$

A? $\begin{gathered}\text { Aatlo Univesity } \\ \text { Sntho } \\ \text { Endine flectrica }\end{gathered}$ | School of tlee |
| :---: |
| Engineering |

This equation must hold for all $x(t)$, so that

$0=\dot{K}(t)+Q(t)-K(t) B(t) R^{-1}(t) B^{T}(t) K(t)+K(t) A(t)+A^{T}(t) K(t)$
It can be proven that the condition of optimality (in H-J-B) is not only necessary, but also sufficient.

To introduce co-states, take $p^{T}(t)=J_{x}^{*}(x(t), t)$
with the boundary condition
$K\left(t_{f}\right)=H$
This is of course the well-known Riccati equation with a boundary condition.

The optimal control becomes
$u^{*}(t)=-R^{-1}(t) B^{T}(t) K(t) x(t)$

A? $\begin{aligned} & \text { Aalto University } \\ & \text { Snocol of Electical } \\ & \text { Engineoring }\end{aligned}$
Aalto University
school of Electrica
Schoon of llee
Engineering

Results when control is unbounded and all signals differentiable

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t), t), \quad x\left(t_{0}\right)=x_{0} \\
& J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{t}} g(x(t), u(t), t) d t
\end{aligned}
$$

Take co-states (adjoint states) $p_{j}(t)$ and define the Hamiltonian

$$
\left\{\begin{array}{l}
\dot{p}^{T}(t)=-\frac{\partial H}{\partial x}\left(x^{*}, u^{*}, p^{*}, t\right) \\
\frac{\partial H}{\partial u}\left(x^{*}, u^{*}, p^{*}, t\right)=0 \\
\dot{x}^{*}=f\left(x^{*}, u^{*}, p^{*}, t\right)=\left(\frac{\partial H}{\partial p}\right)^{T}
\end{array}\right.
$$

Boundary conditions:

1. $x\left(t_{0}\right)=x_{0}$
2. Free final state $p\left(t_{f}\right)=0$

Fixed final state $x\left(t_{f}\right)=x_{f}$
Final state has the cost $h\left(x\left(t_{f}\right), t_{f}\right): p\left(t_{f}\right)=\frac{\partial h}{\partial x}\left(t_{f}\right)$

School of tio
Enginoering

Summary:

Discrete-time case (this is relatively easy to derive starting from the Principle of Optimality (Dynamic Programming). See Lecture 8 of the course ELEC-E8101 Digital and Optimal Control).

$$
\begin{aligned}
& x_{k+1}=A_{k} x_{k}+B_{k} u_{k}, \quad k>i \\
& J_{i}=\frac{1}{2} x_{N}^{T} S_{N} x_{N}+\frac{1}{2} \sum_{k=i}^{N-1}\left(x_{k}^{T} Q_{k} x_{k}+u_{k}^{T} R_{k} u_{k}\right) \\
& S_{N} \geq 0, \quad Q_{k} \geq 0, \quad R_{k}>0
\end{aligned}
$$

Solution :

$$
\begin{aligned}
S_{k} & =\left(A-B K_{k}\right)^{T} S_{k+1}\left(A-B K_{k}\right)+K_{k}^{T} R K_{k}+Q \\
K_{k} & =\left(B_{k}^{T} S_{k+1} B_{k}+R_{k}\right)^{-1} B_{k}^{T} S_{k+1} A_{k}, \quad k<N \\
u_{k} & =-K_{k} x_{k}, \quad k<N \\
J_{t}^{*} & =\frac{1}{2} x_{i}^{T} S_{t} x_{t}
\end{aligned}
$$

The Riccati equation can also be written in the form $S_{k}=A_{k}^{T}\left[S_{k+1}-S_{k+1} B_{k}\left(B_{k}^{T} S_{k+1} B_{k}+R_{k}\right)^{-1} B_{k}^{T} S_{k+1}\right] A_{k}+Q_{k}, k<N, S_{N}$ given

A?
School of Ele
Engineering

Riccati equation

$$
-\dot{S}(t)=A^{T} S+S A-S B R^{-1} B^{T} S+Q, \quad t \leq t_{f},
$$

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad t \geq t_{0} \\
& J\left(t_{0}\right)=\frac{1}{2} x^{T}\left(t_{f}\right) S\left(t_{f}\right) x\left(t_{f}\right)+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(x^{T} Q x+u^{T} R u\right) d t \\
& \\
& S\left(t_{f}\right) \geq 0, \quad Q \geq 0, \quad R>0
\end{aligned}
$$

boundary condition $S\left(t_{f}\right)$

$$
\begin{aligned}
& K=R^{-1} B^{T} S \\
& u=-K x \\
& J^{*}\left(t_{0}\right)=\frac{1}{2} x^{T}\left(t_{0}\right) S\left(t_{0}\right) x\left(t_{0}\right)
\end{aligned}
$$

Note. The matrices can also be time-varying,
$A=A(t)$ etc. like previously in the discrete case.

A? $\begin{gathered}\text { Aatto University } \\ \text { school of lectric }\end{gathered}$
School of Elee
Engineering

But what about the servo problem. How to get rid of the steady-state error?

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

The optimal control, when reference r is connected

$$
u=-L x+r
$$

leads to the closed-loop system

$$
\dot{x}=(A-B L) x+B r
$$

A? $\begin{aligned} & \text { Aatto University } \\ & \text { Echool of Electric }\end{aligned}$
School of Elec
Engineering

How to add Integration?

Take a new state variable
x_{n+1}
such that
$\dot{x}_{n+1}=r-y=r-C x$
An augmented state-space realization is obtained
$\left.\begin{array}{c}-\dot{x} \\ -\dot{x}_{n+1}\end{array}\right]=\left[\begin{array}{cc}A & 0 \\ -C & 0\end{array}\right]\left[\begin{array}{l}x \\ x_{n+1}\end{array}\right]+\left[\begin{array}{l}B \\ 0\end{array}\right] u+\left[\begin{array}{l}0 \\ 1\end{array}\right] r$

The corresponding transfer function is

$$
Y(s)=C\left[(s I-(A-B L))^{-1}\right] B R(s)
$$

but the static gain

$$
-C(A-B L)^{-1} B
$$

is not necessarily one. If the reference is a known constant, a suitable (static) precompensator can be used, which makes the gain from r to z one.

But what if r varies? Solution: add integration to the system (controller), which removes the error.

A? $\begin{aligned} & \text { Aalto U iviversity } \\ & \text { school of Electric } \\ & \text { Engion }\end{aligned}$
School of Elec
Engineering
${ }^{34}$

Apply the state feeback to this

$$
u=-\left[\begin{array}{ll}
L & l_{n+1}
\end{array}\right]\left[\begin{array}{l}
x \\
x_{n+1}
\end{array}\right]+r \quad l_{n+1} \quad \text { is scalar }
$$

The closed loop system is then

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{x}_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
A-B L & -B l_{n+1} \\
-C & 0
\end{array}\right]\left[\begin{array}{l}
x \\
x_{n+1}
\end{array}\right]+\left[\begin{array}{l}
B \\
1
\end{array}\right] r
$$

When the state moves to a constant value, the component \dot{x}_{n+1} moves to the origin; then the output follows the reference. Note that this is a suboptimal solution.

$\mathrm{Q}=\left[\begin{array}{lll}1 & 0 ; 0 & 1\end{array}\right] ;$

$\mathrm{R}=1$;
[L,S,E]=lqr(A,B,Q,R);
$\mathrm{L}=0.2361 \quad 0.5723$
$\mathrm{S}=1.5158 \quad 0.2361$
$0.2361 \quad 0.5723$
$\mathrm{E}=-0.7862+1.2720$
-0.7862-1.2720i

Adding an integrator

A? School of Ele
Engineoring
${ }^{42}$
AT Engineoring

