ELEC-E8116 Model-based control systems / exercises with solutions

1. Let the weight of the sensitivity function be given as

$$
\frac{1}{W_{s}}=A \frac{\frac{s}{A \omega_{0}}+1}{\frac{s}{B \omega_{0}}+1}, \quad 0<A \ll 1, B \gg 1
$$

Sketch a schema for the magnitude plot of the frequency response and investigate its characteristics. What is the slope in the increasing part of the curve? What is the magnitude at frequency ω_{0} ?

Generate a second order model, where the slope is twice as large as in the previous case. Investigate again the characteristics. What is the magnitude at frequency ω_{0} ?

Solution:

$\frac{1}{W_{s}(j \omega)}=A \frac{\frac{j \omega}{A \omega_{0}}+1}{\frac{j \omega}{B \omega_{0}}+1}=A \frac{\frac{1}{A \omega_{0}}+\frac{1}{j \omega}}{\frac{1}{B \omega_{0}}+\frac{1}{j \omega}} \quad$ Clearly $\frac{1}{W_{s}(j 0)}=A, \quad \frac{1}{W_{s}(j \infty)}=B$
For $\omega \rightarrow \omega_{0}\left|\frac{1}{W_{s}(j \omega)}\right|=A \sqrt{\frac{1+\left(\frac{\omega}{A \omega_{0}}\right)^{2}}{1+\left(\frac{\omega}{B \omega_{0}}\right)^{2}}}=\underbrace{A \sqrt{\frac{1+\left(\frac{1}{A}\right)^{2}}{1+\left(\frac{1}{B}\right)^{2}}}}_{\omega=\omega_{0}}=\sqrt{\frac{1+A^{2}}{1+\frac{1}{B^{2}}}} \approx 1$,
because B is "large" and A is "small".

The Bode diagram (amplitude) is shown below:

Note that for the absolute value of the term $1+j \omega T$ in the frequency response it holds

$$
\sqrt{1+(\omega T)^{2}} \underset{\omega=1 / T}{\overline{2}} \sqrt{2} \approx 3 \mathrm{~dB} \text { which can be approximated as } 0 \mathrm{~dB} \text {. For }
$$

higher frequencies

$$
\sqrt{1+(\omega T)^{2}} \approx \sqrt{(\omega T)^{2}}=\omega T \Rightarrow 20 \lg (\omega T)=20 \lg (\omega)+20 \lg (T)
$$

increases $20 \mathrm{~dB} /$ decade (slope $=1$) from zero decibels at $\omega=1 / T$.

Note that in the lecture slides an example of Mixed Sensitivity Design was shown with the desired sensitivity weight

$$
\frac{1}{W_{s}(s)}=\frac{s+\omega_{B}^{*} A}{\frac{s}{M}+\omega_{B}^{*}} \text {. This is the same parameterization as in the problem, }
$$

by $M=B, \omega_{B}^{*}=\omega_{0}$.

The second order model is

$$
\frac{1}{W_{s}}=A \frac{\left(\frac{j \omega}{A^{1 / 2} \omega_{0}}+1\right)^{2}}{\left(\frac{j \omega}{B^{1 / 2} \omega_{0}}+1\right)^{2}}
$$

Similar calculus as above shows that the amplitude curve is as in the above figure but with the angular frequencies $\left(A^{1 / 2} \omega_{0}, \omega_{0}, B^{1 / 2} \omega_{0}\right)$ instead of $\left(A \omega_{0}, \omega_{0}, B \omega_{0}\right)$. The curve increases $40 \mathrm{~dB} /$ decade, slope is 2 . Note that this is again the same as

$$
\frac{1}{W_{s}(s)}=\frac{\left(s+\omega_{B}^{*} A^{1 / 2}\right)^{2}}{\left(\frac{s}{M^{1 / 2}}+\omega_{B}^{*}\right)^{2}} .
$$

2. Consider the angular frequencies $\omega_{B}, \omega_{c}, \omega_{В \tau}$ which are used to define the bandwidth of a controlled system. State the definitions. Prove that when the phase margin is less than 90 degrees ($P M<\pi / 2$) it holds $\omega_{B}<\omega_{c}<\omega_{B T}$. Interpretations?

Solution: Definitions:
ω_{B} : where S crosses $1 / \sqrt{2} \approx-3 \mathrm{~dB}$ from below.
ω_{c} : where L crosses $1=0 \mathrm{~dB}$ (gain crossover (angular) frequency)
$\omega_{\text {BT }}$: where T crosses $1 / \sqrt{2} \approx-3 \mathrm{~dB}$ from above.
At the gain crossover frequency it holds

$$
\left|L\left(j \omega_{c}\right)\right|=1 \Rightarrow\left|T\left(j \omega_{c}\right)\right|=\left|\frac{L\left(j \omega_{c}\right)}{1+L\left(j \omega_{c}\right)}\right|=\frac{\left|L\left(j \omega_{c}\right)\right|}{\left|1+L\left(j \omega_{c}\right)\right|}=\frac{1}{\left|1+L\left(j \omega_{c}\right)\right|}=\left|\frac{1}{1+L\left(j \omega_{c}\right)}\right|=\mid S\left(j \omega_{c} \mid\right.
$$

(Note that $L\left(j \omega_{c}\right)$ is a complex number and so $\left|1+L\left(j \omega_{c}\right)\right| \neq 1+\left|L\left(j \omega_{c}\right)\right|$. $|1+x+j y|=\sqrt{(1+x)^{2}+y^{2}} \neq 1+\sqrt{x^{2}+y^{2}}$, except in some rare exceptional cases (when?)).

The figure shows the Nyquist diagram of L where the phase margin $P M=90$ degrees. In the gain crossover frequency then
$\mid S\left(j \omega_{c}|=| T\left(j \omega_{c} \mid=1 / \sqrt{2} \approx-3 \mathrm{~dB}\right.\right.$ (The distance from the point ($-1,0$) is inversely proportional to the absolute value of S. See lecture slides, Chapter $3)$.

So, at ω_{c} all the bandwidths would coincide.
But when $P M<90$ degrees $\mid S\left(j \omega_{c}|=| T\left(j \omega_{c} \mid>1 / \sqrt{2}\right.\right.$, which implies directly that
S approaches from below $\Rightarrow \omega_{B}<\omega_{C}$
T approaches from above $\Rightarrow \omega_{B T}>\omega_{c}$.

We can conclude that roughly all the frequencies described can be used to discuss bandwidth, describing the behaviour of the closed-loop system.
3. In solving the discrete-time LQ problem an essential step is to find a "first control step" by minimizing the cont

$$
J_{N-1}=\frac{1}{2} x_{N-1}^{T} Q x_{N-1}+\frac{1}{2} u_{N-1}^{T} R u_{N-1}+\frac{1}{2}\left(A x_{N-1}+B u_{N-1}\right)^{T} S_{N}\left(A x_{N-1}+B u_{N-1}\right)
$$

Do it.

Solution:

Note: Q, R, S are symmetric $Q=Q^{T}$ etc.

$$
\begin{aligned}
& \frac{\partial}{\partial x}(A x)=A, \quad \frac{\partial}{\partial x}\left(x^{T} A x\right)=x^{T}\left(A+A^{T}\right) \underset{\text { Asymmeeric }}{=} 2 x^{T} A \\
& J_{N-1}=\frac{1}{2} x_{N-1}^{T} Q x_{N-1}+\frac{1}{2} u_{N-1}^{T} R u_{N-1}+\frac{1}{2}\left(A x_{N-1}+B u_{N-1}\right)^{T} S_{N}\left(A x_{N-1}+B u_{N-1}\right) \\
& J=\frac{1}{2} x^{T} Q x+\frac{1}{2} u^{T} R u+\frac{1}{2} x^{T} A^{T} S A x+\frac{1}{2} x^{T} A^{T} S B u+\underbrace{\frac{1}{2} u^{T} B^{T} S A x}_{\text {scalar, can be transposed }}+\frac{1}{2} \underbrace{u^{T} B^{T} S B u}_{\text {symmetric }}
\end{aligned}
$$

To solve the extreme value the derivative with respect to u must be zero.

$$
\begin{aligned}
\frac{\partial J}{\partial u} & =u^{T} R+\frac{1}{2} x^{T} A^{T} S B+\frac{1}{2} x^{T} A^{T} S B+u^{T} B^{T} S B \\
& =u^{T} R+x^{T} A^{T} S B+u^{T} B^{T} S B=0
\end{aligned}
$$

Taking the transpose does not change the equation

$$
\begin{aligned}
& R u+B^{T} S A x+B^{T} S B u=0 \\
& \Rightarrow\left(R+B^{T} S B\right) u=-B^{T} S A x \\
& \Rightarrow u^{*}=-\left(R+B^{T} S B\right)^{-1} B^{T} S A x
\end{aligned}
$$

Note that the inverse exists, because S is positive semidefinite and R is positive definite. Also, the Hessian
$\frac{\partial^{2} J}{\partial u^{2}}=\frac{\partial}{\partial u}\left(u^{T} R+u^{T} B^{T} S B\right)^{T}=\frac{\partial}{\partial u}\left(R u+B^{T} S B u\right)=R+B^{T} S B>0 \quad$ (pos. def.)
shows that the extreme value is a minimum.
4. The discrete time LQ problem and its solution can be given as

$$
\begin{aligned}
& x_{k+1}=A_{k} x_{k}+B_{k} u_{k}, \quad k>i \\
& J_{i}=\frac{1}{2} x_{N}^{T} S_{N} x_{N}+\frac{1}{2} \sum_{k=i}^{N-1}\left(x_{k}^{T} Q_{k} x_{k}+u_{k}^{T} R_{k} u_{k}\right) \\
& S_{N} \geq 0, \quad Q_{k} \geq 0, \quad R_{k}>0
\end{aligned}
$$

(final state free)

$$
\begin{aligned}
& S_{k}=\left(A_{k}-B_{k} K_{k}\right)^{T} S_{k+1}\left(A_{k}-B_{k} K_{k}\right)+K_{k}^{T} R_{k} K_{k}+Q_{k} \\
& K_{k}=\left(B_{k}^{T} S_{k+1} B_{k}+R_{k}\right)^{-1} B_{k}^{T} S_{k+1} A_{k}, \quad k<N \\
& u_{k}^{*}=-K_{k} x_{k}, \quad k<N \\
& J_{i}^{*}=\frac{1}{2} x_{i}^{T} S_{i} x_{i}
\end{aligned}
$$

Show that the Riccati equation can also be written in the form

$$
S_{k}=A_{k}^{T}\left[S_{k+1}-S_{k+1} B_{k}\left(B_{k}^{T} S_{k+1} B_{k}+R_{k}\right)^{-1} B_{k}^{T} S_{k+1}\right] A_{k}+Q_{k}, k<N, S_{N} \text { given }
$$

(The "Joseph-stabilized form " of the Riccati equation)
Solution: Start from the equations

$$
\begin{align*}
& S_{k}=\left(A_{k}-B_{k} K_{k}\right)^{T} S_{k+1}\left(A_{k}-B_{k} K_{k}\right)+K_{k}^{T} R_{k} K_{k}+Q_{k} \tag{1}\\
& K_{k}=\left(B_{k}^{T} S_{k+1} B_{k}+R_{k}\right)^{-1} B_{k}^{T} S_{k+1} A_{k}
\end{align*}
$$

and try to reach

$$
\begin{equation*}
S_{k}=A_{k}^{T}\left|S_{k+1}-S_{k+1} B_{k}\left(B_{k}^{T} S_{k+1} B_{k}+R_{k}\right)^{-1} B_{k}^{T} S_{k+1}\right| A_{k}+Q_{k} \tag{2}
\end{equation*}
$$

First note in equation (1) that when Q and R have been chosen to be symmetric and S_{N} is symmetric, then S_{i} is symmetric for all i (verification by taking the transpose of S_{k} in equation (1); remember the calculation rules of transposition).

Start from (1) and use the short notation $S_{k+1}=S, K_{k}=K$ etc.

$$
\begin{aligned}
& A^{T} S A-A^{T} S B K-K^{T} B^{T} S A+K^{T} B^{T} S B K+K^{T} R K+Q \\
&= A^{T} S A-A^{T} S B K-K^{T} B^{T} S A+K^{T}\left[B^{T} S B+R\right] K+Q \\
&= A^{T} S A-A^{T} S B\left(B^{T} S B+R\right)^{-1} B^{T} S A-A^{T} S B\left(B^{T} S B+R\right)^{-1} B^{T} S A \\
&+A^{T} S B\left(B^{T} S B+R\right)^{-1} \underbrace{\left(B^{T} S B+R\right)\left(B^{T} S B+R\right)^{-1} B^{T} S A+Q}_{I} \\
&= A^{T}\left\{S-S B\left(B^{T} S B+R\right)^{-1} B^{T} S-S B\left(B^{T} S B+R\right)^{-1} B^{T} S+S B\left(B^{T} S B+R\right)^{-1} B^{T} S\right\} A+Q \\
&= A^{T}\left\{S-S B\left(B^{T} S B+R\right)^{-1} B^{T} S\right\} A+Q
\end{aligned}
$$

which is the same as (2).
Note that especially in the calculation of the transpose of K the fact that Q, R and S are symmetric, has been utilized.

