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Contents
• General overview of non-centrosymmetric materials

– Piezo-, pyro- and ferroelectrics are limited to 
crystals with certain symmetry properties

• Piezoelectric materials

– Electric polarization from mechanical force

– Mechanical deformation due to electric field

• Pyroelectric materials

– Electric polarization from fluctuating temperature 

– Temperature change due to electric current 
(electrocaloric effect)

– Pyroelectric effect is not related to thermoelectric
Seebeck and Peltier effects!

• Ferroelectric materials

– Subgroup of pyroelectric materials: reversible 
electric polarization (dipole moment)
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Literature on non-centrosymmetric
materials
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Let’s start with a brief review of crystal systems and crystal 

classes, because crystal symmetry is very important for 

understanding non-centrosymmetric functional materials



Crystal systems

4Ref: West p. 3-4

a, b, c, α, β, γ = Lattice parameters



Crystal classes
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Ref: Inorganic Structural Chemistry (2nd ed.), Ulrich Müller, 2006, Wiley p. 24 and Wikipedia

• The seven crystal systems consist of 32 crystal classes corresponding to the 32 
crystallographic point groups

Crystal system Crystal classes (point groups) in 
Hermann-Mauguin notation

Crystal classes (point groups) in 
Schönflies notation

Triclinic 1, 1 C1, Ci

Monoclinic 2, m, 2/m C2, Cs, C2h

Orthorhombic 222, mm2, mmm D2, C2v, D2h

Tetragonal 4,4, 4/m, 422, 4mm,42m, 4/mmm C4, S4, C4h, D4, C4v, D2d, D4h

Trigonal 3, 3, 32, 3m, 3m C3, S6 (C3i), D3, C3v, D3d

Hexagonal 6, 6, 6/m, 622, 6mm, 6m2, 6/mmm C6, C3h, C6h, D6, C6v, D3h, D6h

Cubic 23, 43m, m3, 432, m3m T, Td, Th, O, Oh

https://en.wikipedia.org/wiki/Crystal_system


Centrosymmetric and non-
centrosymmetric materials

6

Cu2O (space group Pn-3m)
Centrosymmetric oxide with
inversion center

ZnO (space group P63mc)
Non-centrosymmetric oxide with 
no inversion center

Figures: AJK

• Centrosymmetric crystal classes possess an inversion center: for every point (x, y, z) 
in the unit cell there is an indistinguishable point (-x, -y, -z)

• Non-centrosymmetric crystal classes do not possess an inversion center

• Piezo-, pyro-, and ferroelectricity only possible for non-centrosymmetric materials

O

ZnO

Cu



Polar and non-polar materials
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α-SiO2, α-quartz (space group P3221)
Non-centrosymmetric oxide with
no polar axis (c has perpendicular C2 axis)

ZnO (space group P63mc)
Non-centrosymmetric oxide with 
a polar axis (c-axis)

Figures: AJK

• Non-centrosymmetric materials can be polar or non-polar 

– A polar crystal has more than one point that every symmetry operation leaves unmoved

– For example, a ”polar axis”, with no mirror plane or twofold axis perpendicular to it

– Physical property (e.g. dipole moment) can differ at the two ends of the axis

• Pyro- and ferroelectricity is only possible for polar materials

– Polar materials show spontaneous polarization Ps

c-axis
Ps ≠ 0

c-axis
Ps = 0

Si

O

O

Zn



Classification of crystal classes
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Crystal system Centrosymmetric 
crystal classes (11)

Non-centrosymmetric crystal classes (21)
Polar (10) Non-polar (11)

Triclinic 1 1 –

Monoclinic 2/m 2, m –

Orthorhombic mmm mm2 222

Tetragonal 4/m, 4/mmm 4, 4mm 4, 422, 42m

Trigonal 3, 3m 3, 3m 32

Hexagonal 6/m, 6/mmm 6, 6mm 6, 622, 6m2

Cubic m3, m3m – 23, 43m, 432, 

Refs: Chem. Mater. 1998, 10, 2753 
and Wikipedia

Figures: AJK

Cu2O (Pn-3m) ZnO (P63mc) α-SiO2 (P3221)

https://en.wikipedia.org/wiki/Crystal_system


Non-centrosymmetric crystal 
classes and functionality
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Halasyamani et al. Chem. Soc. Rev. 2006, 35, 710.

Chiral

Possess dipole moment 

along ”polar axis”

Ferroelectrics 

are a subgroup 

of pyroelectrics 

(dipole moment 

can be reversed 

by external field)

”Frequency doubling”

Not discussed here, 

very relevant for 

biological molecules



Piezo- and pyroelectric coefficients
Direct piezoelectric effect

P = dσ, where

• σ = applied tensile stress (N m−2)

• d = piezoelectric modulus (C N−1)

• P = resulting polarization (C m−2)

Converse piezoelectric effect

ε = dE, where

• E = applied electric field (N C −1)

• d = piezoelectric modulus (C N−1)

• ε = resulting strain in the crystal

(Primary) pyroelectric effect

ΔPs = pΔT, where

• ΔT = temperature change (K)

• p = pyroelectric coefficient (C m−2K−1)

• ΔPs = change of spontaneous
polarization (C m−2)

Electrocaloric effect (not discussed here)
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Often piezo- and pyroelectricity are discussed using just scalar 

coefficients d and p. 

In reality they are tensors dijk and pi and can be specified more 

accurately with the help of crystal symmetry.



Piezoelectricity in ZnO
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Let’s use ZnO as an example. 

ZnO (P63mc) has three symmetry-
allowed distortions that lead to a 
piezoelectric response

Figure: AJK

c

ab

1. Stress along c, 
polarization along c

2. Stress in ab-plane,
Polarization along c

3. Shear in ab-plane
(next slide)

Bowen et al. Energy Environ. Sci. 2014, 7, 25.

O

Zn



Piezoresponse to shear in ZnO
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M. Catti et al. J. Phys. Chem. Solids 2003, 64 2183.

Stress along c (”33”) Shear in ab plane (”15”)

P
P

The number of symmetry-allowed distortions depends on the crystal 

class. Listings of these are available in textbooks (next slide).



Tensors (and matrices) for 
equilibrium properties

• Physical properties of crystals can be
formulated systematically in tensor notation

• Piezoelectricity, pyroelectricity, elastic 
properties, etc. 

• J. F. Nye: Equilibrium property matrices for all 
crystal classes (Appendix E)

13



Quantifying the functionalities with 
physical property tensors (Nye)
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Physical property tensors (Nye)
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Polar (e.g. ZnO, P63mc) Non-polar (e.g. P-6m2)

No pyroelectricity



ZnO piezoelectricity tensor
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ZnO (space group P63mc)

Three independent non-
zero components in the 
piezoelectric tensor

What do they actually 
mean:

Figure: AJK

c

ab

”33” component:
Stress along c (3),
polarization along c (3)

”31” component:
Stress along a (1) 
polarization along c (3)

Bowen et al. Energy Environ. Sci. 2014, 7, 25.

31

O

Zn

”15” component:
Shear in ab-plane (5), 
polarization along a (1)

33 15



Piezo- and pyroelectricity are
equilibrium properties

• Equilibrium properties may be described by reference to thermodynamic equilibrium 
states and thermodynamically reversible changes

– Example: isothermal expansion of ideal gas confined by external pressure

• The thermal, electrical, and mechanical properties of a crystal are all related

– They may be measured when the crystal is in equilibrium with its surroundings

• Compare the equilibrium properties with transport properties, which are concerned 
with transport processes and thermodynamically irreversible phenomena

– Example of an irreversible phenomenon: release gas into vacuum

– Example properties: thermal and electrical conductivity and thermoelectricity

– A temperature difference in different parts of a solid leads to a heat flow as the 
system tries to reach equilibrium

17J. F. Nye, Physical Properties of Crystals, Oxford University Press 1957, 1985



Equilibrium
properties of 

crystals:
The Big Picture

18J. F. Nye, Physical Properties of Crystals, Oxford University Press 1957, 1985



Piezoelectricity: applications (1) 
• Piezoelectricity was discovered in 1880 by

Jacques and Pierre Curie (direct effect)

• Converse piezoelectric effect predicted
mathematically by Gabriel Lippmann (1881) 
and immediately confirmed by Curies

• It only took until 1917 when piezoelectrics
were already used in warfare

• Ultrasonic submarine detector created by
Paul Langevin and coworkers

– Ultrasound-generating transducer made 
out of quartz crystals (transducer = 
converts one form of energy to another)

– Hydrophone to detect the returned echo

• The success of piezoelectric sonar resulted in 
huge boom for discovering new materials

• Discovery of ferroelectric piezoelectrics such
as BaTiO3 during WW2 -> radios

19

Piezoelectric transducer
Figure: Honda

Refs: J. Micromech. Microeng. 2000, 10, 136, Wikipedia

https://en.wikipedia.org/wiki/Piezoelectricity


Piezoelectricity: applications (2) 

• Generation of high voltages

• Spark-ignition (gas stoves, cigarette lighters)

– Piezoelectric voltages can be thousands
of volts

• Generation of electronic frequencies (e.g. for 
radio equipment )

• Microbalances

• Vibration sensors

• Actuators (precise positioning, piezomotors)

– Scanning probe microscopies like AFM 
and STM

– Atomic level accuracy of positioning with
piezoelectric crystals

20

Figure: AJK

Figure: www

Piezoelectric lighter

Spark gap

Refs: J. Micromech. Microeng. 2000, 10, 136, Wikipedia

http://www.cheaphumidors.com/blog/wp-content/uploads/2011/10/How-a-Piezo-Electric-Ignitor-Work.jpg
https://en.wikipedia.org/wiki/Piezoelectricity


Property data for piezoelectrics
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GaN ZnO SiO2 BaTiO3 PZT-5H 
(”soft”)

PMN-PT LiNbO3 PVDF

Structure Wurzite Wurzite α-quartz Perovsk. Perovsk. Perovsk. LiNbO3 Polymer

Piezoelectric X X X X X X X X

Pyroelectric X X - X X X X X

Ferroelectric - - - X X X X X

d33 (pC N-1) 3.7 12.4 -2.3 (d11) 149 593 2820 6 -33

d31 (pC N-1) -1.9 -5.0 -58 -274 -1330 -1.0 21

d15 (pC N-1) 3.1 -8.3 0.67 (d14) 242 741 146 69 -27

Pb[ZrxTi1-x]O3

(1-x)Pb[MgyNb1-y]O3 – xPbTiO3

Polyvinylidene 

fluoride



Important crystal structures for 
piezoelectrics
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Quartz
α-SiO2 (P3221)

Wurtzite
ZnO (P63mc)

Perovskite
CaTiO3 (Pm-3m)

The ideal cubic 

structure is 

centrosymmetric and 

not piezoelectric, see 

the next slide

Si

O

O

Zn
Ca

Ti

O

Figures: AJK



BaTiO3 phases (perovskite structure)
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Nayak et al. RSC Adv. 2014, 4, 1212.

Non-centrosymmetric,

piezoelectric effect

Centrosymmetric,

no piezoelectric

effect

R3mAmm2P4mmPm-3m



Nanostructured piezoelectrics

24

ZnO nanostructures synthesized under controlled conditions by thermal evaporation of 

solid powders (Wang, Materials Today, 2004, 7, 26).



Piezoelectricity: prospective
applications

• Nanostructured piezoelectrics are being
investigated for several applications

– Piezotronics (piezo-electronics, e.g. 
piezopotential-based transistors)

– Energy harvesting (convert mechanical
energy to electricity)

25



Energy harvesting

26Free book: Z. L. Wang, Nanogenerators for Self-powered Devices and Systems, 2011 (Link)

https://smartech.gatech.edu/handle/1853/39262


Pyroelectricity
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ZnO (space group P63mc)

One non-zero component 
in the pyroelectric tensor:

Spontaneous polarization 
along c-axis (Ps,3) changes 
when T changes 

AJK

c

ab

Ps,3

Pyroelectricy actually comprises of several effects: primary, secondary, and tertiary.

The secondary effect is actually piezoelectric effect arising from thermal expansion

The tertiary effect is also piezoelectric effect, arising from uneven heating 
(temperature gradients -> non-uniform thermal stress / strain).

The converse effect of pyroelectricity is called the electrocaloric effect.



Pyroelectricity: applications
• In principle the effect was already

discussed by the ancient Greeks

• Theophrastus noted in 314 BC that 
lyngourion (perhaps mineral tourmaline) 
could attract sawdust or bits of straw

• Re-discovered in 1707 by Johann Georg 
Schmidt

• Name coined by Sir David Brewster in 
1824

• Studies of pyroelectricity led to the
discovery of piezoelectricity

• Sensor applications (already existing since
1970s)

– Heat-sensing

– Infra-red detection

– Thermal imaging

– Fire alarms

28

Figure: AJK

Figure: www

http://images.machinedesign.com/images/archive/72829sensorsens_00000051108.jpg


Property data for pyroelectrics
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GaN ZnO BaTiO3 PZT-5H 
(”soft”)

PMN-
0.25PT

LiNbO3 PVDF

Structure Wurzite Wurzite Perovsk. Perovsk. Perovsk. LiNbO3 Polymer

Piezoelectric X X X X X X X

Pyroelectric X X X X X X X

Ferroelectric - - X X X X X

p3 (μC m-2 K-1) -4.8 -9.4 -200 -380 -746 -83 -27

Primary / secondary pyroelectricity for ZnO: -6.9 / -2.5 μC m-2 K-1

Primary / secondary pyroelectricity for BaTiO3: -260 / +60 μC m-2 K-1



Thermoelectrics vs. pyroelectrics

Thermoelectric generator

• Constant temperature difference
required for optimal operation
(temperature gradient)

Pyroelectric generator

• Fluctuating heat input required for 
optimal operation

30

Figures: AJK



Pyroelectricity: 
Prospective
applications

• Energy harvesting (convert heat
fluctuations into electricity)

– Pyroelectric generators have been
suggested to have higher Carnot 
efficiency in comparison to 
thermoelectrics

– Sebald et al. Smart Mater. Struct.
2009, 18, 125006

• Cooling applications via the
electrocaloric effect (poorly
understood, much research required)

31



Ferroelectricity

32Halasyamani et al. Chem. Soc. Rev. 2006, 35, 710.

Figure: AJK

Ideal perovskite structure 
(ABO3, e.g. BaTiO3)

Non-cubic perovskites can
possess switchable
polarization P

Spontaneous polarization Ps is 
related to the displacement 
of the B atom (Ti)

A

O

B



BaTiO3 phases

33

Nayak et al. RSC Adv. 2014, 4, 1212.
Paraelectric

Ferroelectric

Vanderbilt et al. Phys. Rev. Lett. 1994, 73, 1861.

Spontaneous 

polarization 

Ps (μC cm-2):

R3mAmm2P4mmPm-3m



Ferroelectric pyroelectrics

34Bowen et al. Energy Environ. Sci. 2014, 7, 3836.

Tc = Curie 

temperature



Ferroelectricity: Applications

• Obviously, all piezoelectric and pyroelectric applications discussed above

• In addition, some new applications arise from the switchable polarization

– Ferroelectric random-access-memory (not that competitive with DRAM)

– Capacitors with tunable capacitance

– Ferroelectric field-effect transistors (rather hypothetical at the moment)

35


