Functional Inorganic Materials Lecture 7: Piezo-, pyro-, and ferroelectrics

Fall 2020

Antti Karttunen (antti.karttunen@aalto.fi) Department of Chemistry and Materials Science

Lecture Assignment 7 is a MyCourses Quiz

Contents

- General overview of **non-centrosymmetric materials**
 - Piezo-, pyro- and ferroelectrics are limited to crystals with certain symmetry properties
- Piezoelectric materials
 - Electric polarization from mechanical force
 - Mechanical deformation due to electric field
- Pyroelectric materials
 - Electric polarization from fluctuating temperature
 - Temperature change due to electric current (*electrocaloric effect*)
 - Pyroelectric effect is **not** related to thermoelectric Seebeck and Peltier effects!
- Ferroelectric materials
 - Subgroup of pyroelectric materials: reversible electric polarization (dipole moment)

Literature on non-centrosymmetric materials

Chem. Mater. 1998, 10, 2753-2769

Noncentrosymmetric Oxides

P. Shiv Halasyamani[†] and Kenneth R. Poeppelmeier*

TUTORIAL REVIEW

www.rsc.org/csr | Chemical Society Reviews

Bulk characterization methods for non-centrosymmetric materials: secondharmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity

Kang Min Ok, Eun Ok Chi and P. Shiv Halasyamani*

Received 17th January 2006 First published as an Advance Article on the web 28th April 2006 DOI: 10.1039/b511119f

> Let's start with a brief review of crystal systems and crystal classes, because crystal symmetry is very important for understanding non-centrosymmetric functional materials

Crystal systems

Crystal classes

• The seven crystal systems consist of 32 crystal classes corresponding to the 32 crystallographic point groups

Crystal system	Crystal classes (point groups) in Hermann-Mauguin notation	Crystal classes (point groups) in Schönflies notation
Triclinic	1, 1	<i>C</i> ₁ , <i>C</i> _{<i>i</i>}
Monoclinic	2, m, 2/m	C_{2}, C_{s}, C_{2h}
Orthorhombic	222, mm2, mmm	$D_2, C_{2v,} D_{2h}$
Tetragonal	4, 4 , 4/m, 422, 4mm, 4 2m, 4/mmm	$C_4, S_4, C_{4h}, D_4, C_{4v}, D_{2d}, D_{4h}$
Trigonal	3, 3 , 32, 3 <i>m</i> , 3 <i>m</i>	$C_{3}, S_{6}(C_{3i}), D_{3}, C_{3v}, D_{3d}$
Hexagonal	6, 6 , 6/m, 622, 6mm, 6 m2, 6/mmm	$C_6, C_{3h}, C_{6h}, D_6, C_{6v}, D_{3h}, D_{6h}$
Cubic	23, 4 3m, m 3 , 432, m 3 m	T, T _d , T _h , O, O _h

Ref: Inorganic Structural Chemistry (2nd ed.), Ulrich Müller, 2006, Wiley p. 24 and Wikipedia

Centrosymmetric and noncentrosymmetric materials

- Centrosymmetric crystal classes possess an *inversion center*: for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z)
- Non-centrosymmetric crystal classes *do not possess an inversion center*
- Piezo-, pyro-, and ferroelectricity only possible for *non-centrosymmetric materials*

Cu₂O (space group *Pn*-3*m*) **Centrosymmetric** oxide with **inversion center**

ZnO (space group P6₃mc) Non-centrosymmetric oxide with no inversion center

Polar and non-polar materials

- Non-centrosymmetric materials can be *polar* or *non-polar*
 - A polar crystal has more than one point that every symmetry operation leaves unmoved
 - For example, a "**polar axis**", with no mirror plane or twofold axis perpendicular to it
 - Physical property (e.g. *dipole moment*) can differ at the two ends of the axis
- Pyro- and ferroelectricity is only possible for *polar materials*
 - Polar materials show *spontaneous polarization* P_s

 α -SiO₂, α -quartz (space group P3₂21) Non-centrosymmetric oxide with **no polar axis** (*c* has perpendicular C₂ axis)

ZnO (space group $P6_3mc$) Non-centrosymmetric oxide with a **polar axis** (*c*-axis)

Classification of crystal classes

Crystal system	Centrosymmetric	Non-centrosymmetric crystal classes (21)		
	crystal classes (11)	Polar (10)	Non-polar (11)	
Triclinic	1	1	_	
Monoclinic	2/m	2, m	-	
Orthorhombic	mmm	mm2	222	
Tetragonal	4/ <i>m,</i> 4/ <i>mmm</i>	4, 4 <i>mm</i>	4, 422, 42m	
Trigonal	<u>3</u> , <u>3</u> m	3, 3m	32	
Hexagonal	6/ <i>m,</i> 6/ <i>mmm</i>	6, 6 <i>mm</i>	<u>6, 622, 6m2</u>	
Cubic	$m\overline{3}, m\overline{3}m$	-	23, 4 3 <i>m,</i> 432,	

Refs: *Chem. Mater.* **1998**, *10*, 2753 and <u>Wikipedia</u>

Non-centrosymmetric crystal classes and functionality

Piezoelectric, Second-Harmonic Generation "Frequency doubling"

Piezo- and pyroelectric coefficients

Direct piezoelectric effect

 $P = d\sigma$, where

- σ = applied tensile **stress** (N m⁻²)
- $d = piezoelectric modulus (C N^{-1})$
- P = resulting polarization (C m⁻²)

Converse piezoelectric effect

 $\varepsilon = dE$, where

- $E = applied electric field (N C^{-1})$
- *d* = piezoelectric modulus (C N⁻¹)
- ε = resulting **strain** in the crystal

(Primary) **pyroelectric effect** $\Delta P_s = p \Delta T$, where

- ΔT = temperature **change** (K)
- $p = pyroelectric coefficient (C m^{-2}K^{-1})$
- ΔP_s = change of **spontaneous polarization** (C m⁻²)

Electrocaloric effect (not discussed here)

$$\Delta T = -\frac{1}{\rho} \int_{E_1}^{E_2} \frac{T}{C} \left(\frac{\partial P}{\partial T}\right)_E dE,$$

where *T* is the temperature, *P* is the polarization, ρ is the mass density, and *C* is the heat capacity under constant electric field.

Often piezo- and pyroelectricity are discussed using just scalar coefficients d and p. In reality they are *tensors* d_{ijk} and p_i and can be specified more accurately with the help of crystal symmetry.

Piezoelectricity in ZnO

Piezoresponse to shear in ZnO

M. Catti et al. J. Phys. Chem. Solids 2003, 64 2183.

The number of symmetry-allowed distortions depends on the crystal class. Listings of these are available in textbooks (*next slide*).

Tensors (and matrices) for equilibrium properties

Classes 23 and $\overline{4}3m$

0

 ΔS

E

 ΔT

Physical Properties of Crystals

Their Representation by Tensors and Matrices

J. F. NYE

- Physical properties of crystals can be formulated systematically in *tensor notation*
- Piezoelectricity, pyroelectricity, elastic properties, *etc*.
- J. F. Nye: Equilibrium property matrices for all crystal classes (Appendix E)

301

Quantifying the functionalities with physical property tensors (Nye)

MATRICES FOR EQUILIBRIUM PROPERTIES IN THE 32 CRYSTAL CLASSES

- $\mathbf{s} = \mathbf{elastic}$ compliances
- $\mathbf{d} = \text{piezoelectric moduli}$
- α = thermal expansion coefficients
- $\kappa = \text{permittivities}$
- $\mathbf{p} = \mathbf{pyroelectric \ coefficients}$
- C = heat capacity
- T = absolute temperature

Physical property tensors (Nye)

Matrices for equilibrium properties in the 32 crystal classes

KEY TO NOTATION

- zero component non-zero component ---• equal components
- •—•• components numerically equal, but opposite in sign
 - a component equal to twice the heavy dot component to which it is joined
 - a component equal to minus 2 times the heavy dot component to which it is joined

× $2(s_{11}-s_{13})$

E

 ΔT

ZnO piezoelectricity tensor

ZnO (space group P6₃mc)

Three independent nonzero components in the piezoelectric tensor

What do they actually mean:

Class 6mm

Piezo- and pyroelectricity are equilibrium properties

- Equilibrium properties may be described by reference to *thermodynamic equilibrium* states and *thermodynamically* <u>reversible</u> changes
 - Example: isothermal expansion of ideal gas confined by external pressure
- The thermal, electrical, and mechanical properties of a crystal are all related
 - They may be measured when the crystal is in equilibrium with its surroundings
- Compare the equilibrium properties with *transport properties*, which are concerned with *transport processes* and *thermodynamically* <u>irreversible</u> phenomena
 - Example of an irreversible phenomenon: release gas into vacuum
 - Example properties: thermal and electrical conductivity and thermoelectricity
 - A temperature difference in different parts of a solid leads to a heat flow as the system tries to reach equilibrium

J. F. Nye, Physical Properties of Crystals, Oxford University Press 1957, 1985

Piezoelectricity: applications (1)

- Piezoelectricity was discovered in 1880 by Jacques and Pierre Curie (direct effect)
- Converse piezoelectric effect predicted mathematically by Gabriel Lippmann (1881) and immediately confirmed by Curies
- It only took until 1917 when piezoelectrics were already used in warfare
- Ultrasonic submarine detector created by Paul Langevin and coworkers
 - Ultrasound-generating transducer made out of quartz crystals (transducer = converts one form of energy to another)
 - Hydrophone to detect the returned echo
- The success of piezoelectric sonar resulted in huge boom for discovering new materials
- Discovery of ferroelectric piezoelectrics such as BaTiO₃ during WW2 -> radios

Piezoelectric transducer

Piezoelectricity: applications (2)

- Generation of high voltages
- Spark-ignition (gas stoves, cigarette lighters)
 - Piezoelectric voltages can be thousands of volts
- Generation of electronic frequencies (*e.g.* for radio equipment)
- Microbalances
- Vibration sensors
- Actuators (precise positioning, piezomotors)
 - Scanning probe microscopies like AFM and STM
 - Atomic level accuracy of positioning with piezoelectric crystals

Property data for piezoelectrics

REVIEW

View Article Online View Journal | View Issue

Piezoelectric and ferroelectric materials and structures for energy harvesting applications

Cite this: Energy Environ. Sci., 2014, 7, 25

C. R. Bowen,*^a H. A. Kim,^a P. M. Weaver^b and S. Dunn^c

Polyvinylidene

	GaN	ZnO	SiO ₂	BaTiO ₃	PZT-5H ("soft")	PMN-PT	LiNbO ₃	PVDF
Structure	Wurzite	Wurzite	lpha-quartz	Perovsk.	Perovsk.	Perovsk.	LiNbO ₃	Polymer
Piezoelectric	Х	Х	Х	Х	Х	Х	Х	Х
Pyroelectric	Х	Х	-	Х	Х	Х	Х	Х
Ferroelectric	-	-	-	Х	Х	Х	Х	Х
<i>d</i> ₃₃ (pC N ⁻¹)	3.7	12.4	-2.3 (d ₁₁)	149	593	2820	6	-33
<i>d</i> ₃₁ (pC N ⁻¹)	-1.9	-5.0		-58	-274	-1330	-1.0	21
<i>d</i> ₁₅ (pC N ⁻¹)	3.1	-8.3	0.67 (d ₁₄)	242	741	146	69	-27

 $Pb[Zr_{x}Ti_{1-x}]O_{3}$

 $(1-x)Pb[Mg_yNb_{1-y}]O_3 - xPbTiO_3$

Important crystal structures for piezoelectrics

Quartz α -SiO₂ (P3₂21) Wurtzite ZnO (*P*6₃*mc*)

Perovskite CaTiO₃ (*Pm*-3*m*)

The ideal cubic structure is centrosymmetric and not piezoelectric, see the next slide

BaTiO₃ phases (perovskite structure)

 $5^{\circ}C < T < 120^{\circ}C$

Nanostructured piezoelectrics

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

Zhong Lin Wang^{1,2,3*} and Jinhui Song¹ SCIENCE VOL 312 14 APRIL 2006

ZnO nanostructures synthesized under controlled conditions by thermal evaporation of solid powders (Wang, *Materials Today*, **2004**, *7*, 26).

Piezoelectricity: prospective applications

- Nanostructured piezoelectrics are being ٠ investigated for several applications
 - Piezotronics (piezo-electronics, e.g. piezopotential-based transistors)
 - Energy harvesting (convert mechanical energy to electricity)

Wind

Sound waves

stress polarizes the piezoelectric material, generating a voltage

Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor

Sangmin Lee, Sung-Hwan Bae, Long Lin, Ya Yang, Chan Park, Sang-Woo Kim, Adv. Funct. Mater. 2012, DOI: 10.1002/adfm.201202867 Seung Nam Cha, Hyunjin Kim, Young Jun Park, and Zhong Lin Wang*

Energy harvesting

Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems

Zhong Lin Wang* and Wenzhuo Wu Angew. Chem. Int. Ed. 2012, 51, 11700-11721

Figure 1. Power requirements for different applications: In the future there will be a great demand for mobile/implantable electronics with extremely low power consumption.

Free book: Z. L. Wang, Nanogenerators for Self-powered Devices and Systems, 2011 (Link)

Pyroelectricity

ZnO (space group P6₃mc)

One non-zero component in the pyroelectric tensor:

Spontaneous polarization along *c*-axis ($P_{s,3}$) changes when *T* changes

Pyroelectricy actually comprises of several effects: primary, secondary, and tertiary.

The secondary effect is actually piezoelectric effect arising from thermal expansion

The **tertiary** effect is also piezoelectric effect, arising from uneven heating (temperature gradients -> non-uniform thermal stress / strain).

The converse effect of pyroelectricity is called the **electrocaloric effect**.

Pyroelectricity: applications

- In principle the effect was already discussed by the ancient Greeks
- Theophrastus noted in 314 BC that *lyngourion* (perhaps mineral *tourmaline*) could attract sawdust or bits of straw
- Re-discovered in 1707 by Johann Georg Schmidt
- Name coined by Sir David Brewster in 1824
- Studies of pyroelectricity led to the discovery of piezoelectricity
- Sensor applications (already existing since 1970s)
 - Heat-sensing
 - Infra-red detection
 - Thermal imaging
 - Fire alarms

Fluctuating heat input ($dT/dt \neq 0$)

The temperature change polarizes the pyroelectric material, generating a voltage

Figure: AJK

Figure: www

Property data for pyroelectrics

REVIEW

View Article Online View Journal | View Issue

Pyroelectric materials and devices for energy harvesting applications

Cite this: *Energy Environ. Sci.*, 2014, 7, 3836

C. R. Bowen,*^a J. Taylor,^b E. LeBoulbar,^{ab} D. Zabek,^a A. Chauhan^c and R. Vaish^c

	GaN	ZnO	BaTiO ₃	PZT-5H ("soft")	PMN- 0.25PT	LiNbO ₃	PVDF
Structure	Wurzite	Wurzite	Perovsk.	Perovsk.	Perovsk.	LiNbO ₃	Polymer
Piezoelectric	Х	Х	Х	Х	Х	Х	Х
Pyroelectric	Х	Х	Х	Х	Х	Х	Х
Ferroelectric	-	-	Х	Х	Х	Х	Х
<i>p</i> ₃ (μC m ⁻² K ⁻¹)	-4.8	-9.4	-200	-380	-746	-83	-27

Primary / secondary pyroelectricity for ZnO: -6.9 / -2.5 μ C m⁻² K⁻¹ Primary / secondary pyroelectricity for BaTiO₃: -260 / +60 μ C m⁻² K⁻¹

Thermoelectrics vs. pyroelectrics

Thermoelectric generator

 Constant temperature difference required for optimal operation (temperature gradient)

Pyroelectric generator

 Fluctuating heat input required for optimal operation

Heat input

Hot side

The charge carrier diffusion generates an electric current

Cold side (heat sink)

Fluctuating heat input ($dT/dt \neq 0$)

The temperature change polarizes the pyroelectric material, generating a voltage

Figures: AJK

Pyroelectricity: Prospective applications

- Energy harvesting (convert heat fluctuations into electricity)
 - Pyroelectric generators have been suggested to have higher Carnot efficiency in comparison to thermoelectrics
 - Sebald *et al. Smart Mater. Struct.* **2009**, *18*, 125006
- Cooling applications via the electrocaloric effect (poorly understood, much research required)

Ferroelectricity

Ideal perovskite structure (ABO₃, e.g. BaTiO₃)

Non-cubic perovskites can possess switchable polarization *P*

Spontaneous polarization P_s is related to the displacement of the **B** atom (Ti)

BaTiO₃ phases

 $5^{\circ}C < T < 120^{\circ}C$

Ferroelectric pyroelectrics Spontaneous polarisation (P_s) dP_s/dT dP_s/dT P_s Temperature $T_c = Curie$ T_c temperature

Fig. 1 Temperature dependence of spontaneous polarisation P_s and pyroelectric coefficient dP_s/dT of a ferroelectric material, adapted from.¹⁴

Ferroelectricity: Applications

- Obviously, all **piezoelectric** and **pyroelectric** applications discussed above
- In addition, some new applications arise from the switchable polarization
 - Ferroelectric random-access-memory (not that competitive with DRAM)
 - Capacitors with tunable capacitance
 - Ferroelectric field-effect transistors (rather hypothetical at the moment)