

Network Security: Threats and Goals

Tuomas Aura, Aalto University CS-E4300 Network security

Outline

- 1. Network security
- 2. Attacker model
- 3. Threats
- 4. Sniffing and spoofing

What is network security

- Network security protects against intentional bad things done to communication
 - Protect both messages (data in transit) and the communication infrastructure

Communication is everywhere

- Telecommunications, computer networks, wireless networks, personal-area networks, IoT devices
- Application-level protocols, overlays, P2P, content distribution and protection, payment, etc.
- Inter-process communication, APIs and message busses
- Human protocols ("ceremonies"), physical security tokens, letters, paper certificates

Traditional network-security threat model (Dolev-Yao model)

- End are nodes trusted, the network is unreliable
- End nodes send messages to the network and receive messages from it
- Network will deliver some messages but can read, delete, modify and replay them

Basic network security threats

- Traditional major threats:
 - Sniffing = attacker listens to network traffic
 - Spoofing = attacker sends unauthentic messages
 - Data modification, man in the middle
 - = attacker intercepts and modifies data
 - Denial of service
- Corresponding security requirements:
 - Data confidentiality
 - Data-origin authentication and data integrity
 - Availability

Sniffing

- Sniffing = eavesdropping = spying = snooping = unauthorized listening = monitoring
- Where might sniffers be?
 - Wireless access links, fake access points
 - Ethernet socket or compromised host for wired LAN
 - Firewalls, proxies, routers
 - Internet routing can be manipulated

Spoofing

- Spoofing = sending unauthentic/false/counterfeit messages = using false sender address or identifier = impersonation
- Examples:
 - Email spoofing: false From field
 - IP spoofing: false source IP address
 - DNS spoofing: false DNS responses
 - Mobile-IP BU spoofing: false location information
 - False telephone caller id or SMS sender number

Example: IP spoofing

- Attacker sends IP packets with false source IP address
 - Anyone can write software to do this with raw sockets
 - Attacker may be anywhere on the Internet
- Spoofing a connection between A and B is more difficult:
 - Attacker must sniff replies from B in order to continue the conversation \rightarrow Attacker must be on the route between A and B

IP routing and spoofing

9

TCP handshake and spoofing

TCP sequence numbers are initialized to random values.

To inject a spoofed packet into an existing connection, the attacker must know the sequence numbers.

Man in the middle (MitM)

In the man-in-the-middle attack, the attacker is between the honest endpoints

- Attacker can intercept and modify data → sniffing + spoofing
- On the Internet, a MitM attacker could
 - be at the local network of one of the end points
 - be at a link or router on the route between them, or
 - change the routing to redirect the packets via its own location

Authentication and integrity

- Peer-entity authentication = verify the presence and identity of a person, device, or service at the time; e.g. car key
- Data origin authentication = verify the source of a message
- Data integrity = verify that the data was received in the original form, without malicious modifications
- In practice, data origin authentication and integrity check always go together
- Authentication (usually) requires an entity name or identifier

Other network threats

- Sniffing, spoofing, MitM and DoS are not the only issues.
- Other threats:
 - Integrity of signaling and communications metadata
 - Spam and other unwanted traffic
 - Traffic analysis and location tracking
 - Lack of privacy (unwanted monitoring of behavior)
 - Tunneling attacks for spoofing location
 - Software security flaws
 - Unauthorized resource use (vs. access control)
 - Billing too much or avoiding payment
 - Liability for malicious use
- Not captured well by the traditional network-security model