

Network Security: Security and the network protocol stack

Tuomas Aura, Aalto University CS-E4300 Network security

Protocol Stack and Security

Which layer in the protocol stack should implement security mechanisms, esp. encryption and authentication?

Which layer security?

- Reasons to implement cryptographic security in lower layers:
 - Security provided by physical, link or network layer is a service to the higher layers
 - Lower-layer security protects all higher-layer data: all connections,
 both payload and signaling or metadata
 - Security in lower layers is transparent to higher layers. No changes to applications needed
 - Lower-layer security protects the lower layer, too

Which layer security?

- Reason to implement security in higher layers:
 - Security implemented in the application or middleware will fit exactly to the application requirements
 - Authentication of lower-layer identifiers may not be meaningful to higher layers
 - Application developers can deploy security mechanism faster

IP layer

- Hourglass-shaped TCP/IP protocol stack → any service should be in the IP layer:
 - Implement only once (or twice for IPv4+IPv6)
 - Works over any data link layer
 - Works for any application

Protocol Stack and Security

- Security solutions exist for every protocol layer
- Layers have different security and performance trade-offs, trust relations and endpoint identifiers

End-to-end security

- Security should be implemented between the endpoints of communication.
 - All intermediaries are part of the untrusted network
- End-to-end security only depends on the end nodes
 - Hop-by-hop (link-layer) security assumes trusted and secure intermediate nodes
- End-to-end mechanism are independent of the link technology
 - Link-layer security is different for each link type
- Confidentiality and authentication are usually user or application requirements
 - Network or link layer does not know application-level requirements
- Link and network layer infrastructure and signalling need protection, too

Host as endpoint

- Traditionally, host i.e. computer is the security endpoint
 - OS is trusted to isolate apps running as processes and their connections from other processes
 - OS must be trusted because it has access to software memory and controls execution
- Increased communication inside the host:
 - Inter-process communication, VMs, containers, microservices, APIs
 - More nuanced trust models: web apps, mobile and cloud computing
 - Trusted execution environments isolate software form the host