
Network Security:
Diffie-Hellman

Tuomas Aura, Aalto University

CS-E4300 Network security

2

Outline

1. Discrete logarithm problem

2. Diffie-Hellman key exchange

3. Impersonation and MitM

4. Authenticated DH

5. Misbinding

6. A more realistic protocol

7. Perfect forward secrecy (PFS)

Diffie-Hellman overlaps with

Information Security and any

basic cryptography course. It is

covered in detail here to ensure

that all students have sufficient

understanding of DH and the

impersonation attack.

Modulo arithmetic

▪ Exponentiation in multiplicative group Zp
*:

– Choose a large prime number p (e.g. 2048 bits long)

– Zp
* is the group of integers 1..p-1;

group operation is multiplication modulo p

– Exponentiation xk means multiplying x with itself k times modulo p

– g is a generator if gk for k=0,1,2,3,… produces all the values 1..p-1

▪ For Diffie-Hellman, choose parameters p and g
– Many critical details; see crypto literature!

▪ Exponentiation is commutative: (gx)y = (gy)x

i.e. (gx mod p)y mod p = (gy mod p)x mod p

3

Please refer to

cryptography

literature for the

details

Elliptic curve (EC)

▪ Points on an elliptic curve form an additive group

– Commonly used curves: Curve25519, Curve448

– See cryptography literature for details

▪ Point multiplication n · P means adding P to itself n times

– n is an integer, P is a point on the elliptic curve

▪ Point G is a generator point if k · P for k=0,1,2,3,… produces all
the values of the group or a large subgroup

▪ Point multiplication is commutative: n · m · P = m · n · P

4

Please refer to

cryptography

literature for the

details

Discrete logarithm problem

▪ Discrete logarithm problem in Zp*: given gk mod p, solve k

– Believed to be a hard problem for large primes p and random k

– Typical p 1024..8096 bits; k 256 bits

▪ Discrete logarithm problem in EC: given n · P , solve n

– Believed to be a hard problem

– Typical point lengths are 160..571 bits, depending on the curve;
multiplier n 256 bits

– Why EC? Shorter key lengths and lower computation
cost for the same level of security

5

Unauthenticated Diffie-Hellman in Zp
*

▪ A and B have previously agreed on g and p
▪ All operations are in Zp

* i.e. modulo p

A chooses a random x and computes key share gx.
B chooses a random y and computes key share gy.
1. A → B: A, gx

2. B → A: B, gy

A calculates shared secret K = (gy)x

B calculates shared secret K = (gx)y

▪ It works because exponentiation is commutative
▪ Sniffer learns gx and gy ; cannot compute x, y, or gxy

6

Elliptic Curve Diffie-Hellman (ECDH)

▪ A and B have previously agreed on a curve and G

A chooses a random dA and computes key share QA = dA · G
B chooses a random dB and computes key share QB = dB · G
1. A → B: A, QA

2. B → A: B, QB

A computes the shared secret SK = dA · QB = dA · dB · G
B computes the shared secret SK = dB · QA = dB · dA · G

▪ It works because point multiplication is commutative
▪ Sniffer learns QA and QB ; cannot compute dA, dB, or SK

7

For protocol

designers, DH

and ECDH are

interchangeable

algorithms

Diffie-Hellman assumption

▪ Diffie-Hellman assumption in Zp*:

given gx and gy, hard to solve K = gxy

▪ Diffie-Hellman assumption in EC:

given dA · G and dB · G, hard to solve K = dA · dB · G

▪ Believed to be as hard as the discrete logarithm problem

– Ability to compute discrete logarithms also breaks the
DH assumption

– Quantum computers could compute discrete logarithms

8

9

Domain parameters
▪ Domain parameters in Diffie-Hellman:

– In Zp*, A and B must agree on the prime p and generator g
– In ECDH, A and B must agree the curve and generator point G

▪ How to agree on the domain parameters?
– Method 1: standardized parameters for each protocol or application
– Method 2: one party chooses and signs the parameters
– Method 3: negotiation where one party offers parameters, and the other

party chooses from them

▪ Protocol standards usually allow many key lengths or
ECDH curves, and the key-exchange starts with
parameter negotiation

Sniffing

▪ Unauthenticated Diffie-Hellman is secure against passive
attackers
– Not possible to discover the shared secret KAB by sniffing

the key shares

A, gx
A B

B, gy

KAB= (gy)x = gxy KAB= (gx)y = gxy

y := randx := rand

Impersonation attack

▪ Unauthenticated Diffie-Hellman is vulnerable to an active
attacks such as impersonation:

– Shared secret key was created, but with whom?

A, gx
A E

B, gz

KAB= (gz)x = gzy KAB= (gx)z = gxz

z := randx := rand

A, gx

A B

B, gz

KAB= gzy K’AB= gxu

y := randx := rand A, gu

B, gy

E

u,z := rand

Man in the Middle (MitM)

▪ Attacker pretends to be A to B, and B to A

▪ Attacker creates shared session keys with both A and B

▪ Later, attacker can forward data between the two “secure” sessions

KAB, K’AB

Authenticated DH
1. A → B: A, gx, SA(gx), CertA

2. B → A: B, gy, SB(gy), CertB

SK = h(gxy)

▪ SA(gx) = A’s signature
▪ CertA = standard (X.509) public-key certificate or certificate chain

– Subject name in the certificate must be A
– B verifies the signature with A’s public key from the certificate

▪ h(gxy) = key material for deriving all necessary session keys

▪ Authentication prevents impersonation and MitM attacks

13

Note: This is still

an impractical toy

protocol. Please

read further

Authenticated DH with key confirmation
▪ Three messages needed for authentication and key confirmation

1. A → B: A, B, NA, gx

2. B → A: A, B, NB, gy, SB(“Msg1”, NA, NB, gx , gy), CertB,
3. A → B: A, B, SA(“Msg2”, NA, NB, gx , gy), CertA

SK = h(NA, NB, gxy)

▪ Signatures on fresh data authenticate the endpoints
▪ Key confirmation: signatures prove that each endpoint knows all

the parameters needed to compute the session key
– Endpoints must trust each other about knowing the exponent

14

Still not a good

protocol! Please

read further

▪ Misbinding of the initiator: B thinks it is connected to E. In fact, A
and B are connected

▪ E is a dishonest insider (E can legitimately connect to B)
▪ Misbinding of the responder is similarly possible

A, gx
A E B

E, gx

B, gy, SB(gx,gy)B, gy, SB(gx,gy)

SE(gx,gy)SA(gx,gy)

Misbinding attack

A, gx
A B

B, gy, SB(gx, gy, A)

SA(gx, gy, B)

Solutions to misbinding:
check peer identifier

gx
A B

B, gy, SB(gx, gy), MACK(B)

A, SA(gx, gy), MACK(A)

ISO 9798-3

SIGMA

(easier security proofs, and

slightly better protection in

case of an incompetent CA)

Detecting

misbinding of

initiator in

ISO 9798-3

A, gx
A E B

E, gx

B, gy, SB(gx,gy,E)B, gy, SB(gx,gy,E)

SigE(gx,gy, B)SigA(gx,gy, B)

E≠A

Detecting

misbinding of

initiator in

SIGMA

gx
A E B

gx

B, gy, SB(gx,gy), MACK(B)B,gy, SB(gx,gy), MACK(B)

E, SE(gx,gy), MACK(A)A, SA(gx,gy), MACK(A)
MACK(A)

≠

MACK(E)

A MORE REALISTIC AUTHENTICATED DIFFIE-
HELLMAN PROTOCOL

18

Authenticated DH

▪ Signed Diffie-Hellman with nonces and key confirmation:

1. A → B: A, B, NA, g, p, gx, SA(“Msg1”, A, B, NA, g, p, gx), CertA

2. B → A: A, B, NB, gy, SB(“Msg2”, A, B, NB, gy), CertB,

MACSK(A, B, “Responder done.”)

3. A → B: A, B, MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

▪ Prevents impersonation, MitM and misbinding attacks

▪ Why so complicated?

19

Authenticated DH

▪ Signed Diffie-Hellman with nonces and key confirmation:

1. A → B: A, B, NA, g, p, gx, SA(“Msg1”, A, B, NA, g, p, gx), CertA

2. B → A: A, B, NB, gy, SB(“Msg2”, A, B, NB, gy), CertB,

MACSK(A, B, “Responder done.”)

3. A → B: A, B, MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

▪ Signatures and certificates for authentication, nonces for
freshness, MAC for key confirmation

20

Authenticated DH

▪ Signed Diffie-Hellman with nonces and key confirmation:

1. A → B: A, B, NA, g, p, gx, SA(“Msg1”, A, B, NA, g, p, gx), CertA

2. B → A: A, B, NB, gy, SB(“Msg2”, A, B, NB, gy), CertB,

MACSK(A, B, “Responder done.”)

3. A → B: A, B, MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

▪ Signatures and certificates for authentication, nonces for
freshness, MAC for key confirmation

21

Authenticated DH

▪ Signed Diffie-Hellman with nonces and key confirmation:

1. A → B: A, B, NA, g, p, gx, SA(“Msg1”, A, B, NA, g, p, gx), CertA

2. B → A: A, B, NB, gy, SB(“Msg2”, A, B, NB, gy), CertB,

MACSK(A, B, “Responder done.”)

3. A → B: A, B, MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

▪ Signatures and certificates for authentication, nonces for
freshness, MAC for key confirmation

22

Authenticated DH

▪ Signed Diffie-Hellman with nonces and key confirmation:

1. A → B: A, B, NA, g, p, gx, SA(“Msg1”, A, B, NA, g, p, gx), CertA

2. B → A: A, B, NB, gy, SB(“Msg2”, A, B, NB, gy), CertB,

MACSK(A, B, “Responder done.”)

3. A → B: A, B, MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

▪ Signatures and certificates for authentication, nonces for
freshness, MAC for key confirmation

23

Authenticated DH

▪ Signed Diffie-Hellman with nonces and key confirmation:

1. A → B: A, B, NA, g, p, gx, SA(“Msg1”, A, B, NA, g, p, gx), CertA

2. B → A: A, B, NB, gy, SB(“Msg2”, A, B, NB, gy), CertB,

MACSK(A, B, “Responder done.”)

3. A → B: A, B, MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

▪ Signatures and certificates for authentication, nonces for
freshness, MAC for key confirmation

24

Ephemeral Diffie-Hellman (DHE)

▪ Perfect forward secrecy (PFS): session keys and data from past
sessions are safe even if the long-term secrets, such as private
keys, are later compromised
– Even participants themselves cannot recover old session keys

▪ Ephemeral DH (DHE): new random DH exponents for every key
exchange, forget the exponent values afterwards → PFS
– Similarly, ephemeral ECDH (ECDHE)

– Cost-security trade-off: replace DH exponents periodically,
e.g. once in a day or an hour, and use nonces for
freshness: SK = h(NA, NB, gxy)

25

!

Diffie-Hellman and nonces
▪ Are the nonces needed in Diffie-Hellman?

1. A → B: A, B, NA, g, p, gx, SA(“Msg1”, A, B, NA, g, p, gx), CertA

2. B → A: A, B, NB, gy, SB(“Msg2”, A, B, NB, gy), CertB,
MACSK(A, B, “Responder done.”)

3. A → B: A, B, MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

▪ Old DH implementations reuse exponents
→ Saving on computation. Lack of PFS. Nonces needed for freshness

▪ After Snowden, PFS has become mandatory → Ephemeral DH. Nonces optional
▪ Prudent protocol design still separates the two concerns: nonces for freshness of

authentication and session key, DH for secrecy and new exponents for PSF

26

