

# Network Security: Diffie-Hellman

Tuomas Aura, Aalto University CS-E4300 Network security

#### Outline

- 1. Discrete logarithm problem
- 2. Diffie-Hellman key exchange
- 3. Impersonation and MitM
- 4. Authenticated DH
- 5. Misbinding
- 6. A more realistic protocol
- 7. Perfect forward secrecy (PFS)

Diffie-Hellman overlaps with Information Security and any basic cryptography course. It is covered in detail here to ensure that all students have sufficient understanding of DH and the impersonation attack.

#### Modulo arithmetic

Please refer to cryptography literature for the details

- **Exponentiation** in multiplicative group  $Z_p^*$ :
  - Choose a large prime number p (e.g. 2048 bits long)
  - Z<sub>p</sub>\* is the group of integers 1..p-1;
     group operation is multiplication modulo p
  - Exponentiation x<sup>k</sup> means multiplying x with itself k times modulo p
  - -g is a generator if  $g^k$  for k=0,1,2,3,... produces all the values 1..p-1
- For Diffie-Hellman, choose parameters p and g
  - Many critical details; see crypto literature!
- Exponentiation is commutative:  $(g^x)^y = (g^y)^x$ i.e.  $(g^x \mod p)^y \mod p = (g^y \mod p)^x \mod p$

# Elliptic curve (EC)

Please refer to cryptography literature for the details

- Points on an elliptic curve form an additive group
  - Commonly used curves: Curve25519, Curve448
  - See cryptography literature for details
- Point multiplication n · P means adding P to itself n times
  - n is an integer, P is a point on the elliptic curve
- Point G is a generator point if  $k \cdot P$  for k=0,1,2,3,... produces all the values of the group or a large subgroup
- Point multiplication is commutative:  $n \cdot m \cdot P = m \cdot n \cdot P$

### Discrete logarithm problem

- Discrete logarithm problem in Z<sub>p</sub>\*: given g<sup>k</sup> mod p, solve k
  - Believed to be a hard problem for large primes p and random k
  - Typical p 1024..8096 bits; k 256 bits
- Discrete logarithm problem in EC: given n · P , solve n
  - Believed to be a hard problem
  - Typical point lengths are 160..571 bits, depending on the curve;
     multiplier n 256 bits
  - Why EC? Shorter key lengths and lower computation cost for the same level of security

# Unauthenticated Diffie-Hellman in Z<sub>p</sub>\*

- A and B have previously agreed on g and p
- All operations are in  $Z_p^*$  i.e. modulo p

```
A chooses a random x and computes key share g^x.
B chooses a random y and computes key share g^y.
1. A \rightarrow B: A, g^x
2. B \rightarrow A: B, g^y
A calculates shared secret K = (g^y)^x
B calculates shared secret K = (g^x)^y
```

- It works because exponentiation is commutative
- Sniffer learns  $g^x$  and  $g^y$ ; cannot compute x, y, or  $g^{xy}$

# Elliptic Curve Diffie-Hellman (ECDH)

A and B have previously agreed on a curve and G

A chooses a random  $d_A$  and computes key share  $Q_A = d_A \cdot G$ B chooses a random  $d_B$  and computes key share  $Q_B = d_B \cdot G$ 

- 1.  $A \rightarrow B$ : A,  $Q_A$
- 2.  $B \rightarrow A$ : B,  $Q_B$

A computes the shared secret  $SK = d_A \cdot Q_B = d_A \cdot d_B \cdot G$ 

B computes the shared secret  $SK = d_B \cdot Q_A = d_B \cdot d_A \cdot G$ 

For protocol designers, DH and ECDH are interchangeable algorithms

- It works because point multiplication is commutative
- Sniffer learns  $Q_A$  and  $Q_B$ ; cannot compute  $d_A$ ,  $d_B$ , or SK

# Diffie-Hellman assumption

- Diffie-Hellman assumption in  $Z_p^*$ : given  $g^x$  and  $g^y$ , hard to solve  $K = g^{xy}$
- Diffie-Hellman assumption in EC: given  $d_A \cdot G$  and  $d_B \cdot G$ , hard to solve  $K = d_A \cdot d_B \cdot G$
- Believed to be as hard as the discrete logarithm problem
  - Ability to compute discrete logarithms also breaks the DH assumption
  - Quantum computers could compute discrete logarithms

#### Domain parameters

- Domain parameters in Diffie-Hellman:
  - In Z<sub>p</sub>\*, A and B must agree on the prime p and generator g
  - In ECDH, A and B must agree the curve and generator point G
- How to agree on the domain parameters?
  - Method 1: standardized parameters for each protocol or application
  - Method 2: one party chooses and signs the parameters
  - Method 3: negotiation where one party offers parameters, and the other party chooses from them
- Protocol standards usually allow many key lengths or ECDH curves, and the key-exchange starts with parameter negotiation

# Sniffing



- Unauthenticated Diffie-Hellman is secure against passive attackers
  - Not possible to discover the shared secret  $K_{AB}$  by sniffing the key shares

# Impersonation attack



- Unauthenticated Diffie-Hellman is vulnerable to an active attacks such as impersonation:
  - Shared secret key was created, but with whom?

# Man in the Middle (MitM)



- Attacker pretends to be A to B, and B to A
- Attacker creates shared session keys with both A and B
- Later, attacker can forward data between the two "secure" sessions

```
1. A \rightarrow B: A, g^x, S_A(g^x), Cert_A

2. B \rightarrow A: B, g^y, S_B(g^y), Cert_B

SK = h(g^{xy})
```

Note: This is still an impractical toy protocol. Please read further

- $S_A(g^x) = A's signature$
- Cert<sub>A</sub> = standard (X.509) public-key certificate or certificate chain
  - Subject name in the certificate must be A
  - B verifies the signature with A's public key from the certificate
- $h(g^{xy})$  = key material for deriving all necessary session keys
- Authentication prevents impersonation and MitM attacks

# Authenticated DH with key confirmation

Three messages needed for authentication and key confirmation

```
1. A \rightarrow B: A, B, N_A, g^X

2. B \rightarrow A: A, B, N_B, g^Y, S_B ("Msg1", N_A, N_B, g^X, g^Y), Cert<sub>B</sub>,

3. A \rightarrow B: A, B, S_A ("Msg2", N_A, N_B, g^X, g^Y), Cert<sub>A</sub>
SK = h(N_A, N_B, g^{XY})
Still not a good protocol! Please read further
```

- Signatures on fresh data authenticate the endpoints
- Key confirmation: signatures prove that each endpoint knows all the parameters needed to compute the session key
  - Endpoints must trust each other about knowing the exponent

### Misbinding attack

 Misbinding of the initiator: B thinks it is connected to E. In fact, A and B are connected



- E is a dishonest insider (E can legitimately connect to B)
- Misbinding of the responder is similarly possible

# Solutions to misbinding: check peer identifier

ISO 9798-3



#### **SIGMA**

(easier security proofs, and slightly better protection in case of an incompetent CA)





**Detecting misbinding** of initiator in ISO 9798-3



**Detecting misbinding** of initiator in SIGMA

# A MORE REALISTIC AUTHENTICATED DIFFIE-HELLMAN PROTOCOL

Signed Diffie-Hellman with nonces and key confirmation:

```
1. A \rightarrow B: A, B, N_A, g, p, g^x, S_A("Msg1", A, B, N_A, g, p, g^x), Cert_A

2. B \rightarrow A: A, B, N_B, g^y, S_B("Msg2", A, B, N_B, g^y), Cert_B,

MAC<sub>SK</sub>(A, B, "Responder done.")

3. A \rightarrow B: A, B, MAC<sub>SK</sub>(A, B, "Initiator done.")

SK = h(N_A, N_B, g^{xy})
```

- Prevents impersonation, MitM and misbinding attacks
- Why so complicated?

Signed Diffie-Hellman with nonces and key confirmation:

```
1. A \rightarrow B: A, B, N_A, g, p, g^x, S_A("Msg1", A, B, N_A, g, p, g^x), Cert_A

2. B \rightarrow A: A, B, N_B, g^y, S_B("Msg2", A, B, N_B, g^y), Cert_B,

MAC_{SK}(A, B, "Responder done.")

3. A \rightarrow B: A, B, MAC_{SK}(A, B, "Initiator done.")

SK = h(N_A, N_B, g^{xy})
```

Signed Diffie-Hellman with nonces and key confirmation:

```
1. A \rightarrow B: A, B, N_A, g, p, g^x, S_A ("Msg1", A, B, N_A, g, p, g^x), Cert_A

2. B \rightarrow A: A, B, N_B, g^y, S_B ("Msg2", A, B, N_B, g^y), Cert_B, MAC_{SK}(A, B, "Responder done.")

3. <math>A \rightarrow B: A, B, MAC_{SK}(A, B, "Initiator done.")

SK = <math>h(N_A, N_B, g^{xy})
```

Signed Diffie-Hellman with nonces and key confirmation:

```
1. A \rightarrow B: A, B, N_A, g, p, g^x, S_A("Msg1", A, B, N_A, g, p, g^x), Cert_A
2. B \rightarrow A: A, B, N_B, g^y, S_B("Msg2", A, B, N_B, g^y), Cert_B,

MAC_{SK}(A, B, "Responder done.")
3. A \rightarrow B: A, B, MAC_{SK}(A, B, "Initiator done.")

SK = <math>h(N_A, N_B, g^{xy})
```

Signed Diffie-Hellman with nonces and key confirmation:

```
1. A \rightarrow B: A, B, N_A, g, p, g^x, S_A ("Msg1", A, B, N_A, g, p, g^x), Cert_A

2. B \rightarrow A: A, B, N_B, g^y, S_B ("Msg2", A, B, N_B, g^y), Cert_B,

MAC_{SK}(A, B, "Responder done.")

3. A \rightarrow B: A, B, MAC_{SK}(A, B, "Initiator done.")

SK = h(N_A, N_B, g^{xy})
```

Signed Diffie-Hellman with nonces and key confirmation:

```
1. A \rightarrow B: A, B, N_A, g, p, g^x, S_A("Msg1", A, B, N_A, g, p, g^x), Cert_A
2. B \rightarrow A: A, B, N_B, g^y, S_B("Msg2", A, B, N_B, g^y), Cert_B,

MAC<sub>SK</sub>(A, B, "Responder done.")
3. A \rightarrow B: A, B, MAC<sub>SK</sub>(A, B, "Initiator done.")

SK = h(N_A, N_B, g^{xy})
```

# Ephemeral Diffie-Hellman (DHE)

- Perfect forward secrecy (PFS): session keys and data from past sessions are safe even if the long-term secrets, such as private keys, are later compromised
  - Even participants themselves cannot recover old session keys
- Ephemeral DH (DHE): new random DH exponents for every key exchange, forget the exponent values afterwards → PFS
  - Similarly, ephemeral ECDH (ECDHE)
  - Cost-security trade-off: replace DH exponents periodically, e.g. once in a day or an hour, and use nonces for freshness:  $SK = h(N_A, N_B, g^{xy})$

#### Diffie-Hellman and nonces

Are the nonces needed in Diffie-Hellman?

```
1. A \rightarrow B: A, B, N_A, g, p, g^x, S_A ("Msg1", A, B, N_A, g, p, g^x), Cert_A

2. B \rightarrow A: A, B, N_B, g^y, S_B ("Msg2", A, B, N_B, g^y), Cert_B,

MAC_{SK}(A, B, "Responder done.")

3. A \rightarrow B: A, B, MAC_{SK}(A, B, "Initiator done.")

SK = h(N_A, N_B, g^{xy})
```

- Old DH implementations reuse exponents
   → Saving on computation. Lack of PFS. Nonces needed for freshness
- After Snowden, PFS has become mandatory → Ephemeral DH. Nonces optional
- Prudent protocol design still separates the two concerns: nonces for freshness of authentication and session key, DH for secrecy and new exponents for PSF