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Diffie-Hellman overlaps with 

Information Security and any 

basic cryptography course. It is 

covered in detail here to ensure 

that all students have sufficient 

understanding of DH and the 

impersonation attack.



Modulo arithmetic

▪ Exponentiation in multiplicative group Zp
*:

– Choose a large prime number p (e.g. 2048 bits long) 

– Zp
* is the group of integers 1..p-1; 

group operation is multiplication modulo p

– Exponentiation xk means multiplying x with itself k times modulo p

– g is a generator if gk for k=0,1,2,3,… produces all the values 1..p-1

▪ For Diffie-Hellman, choose parameters p and g
– Many critical details; see crypto literature!

▪ Exponentiation is commutative: (gx)y = (gy)x

i.e. (gx mod p)y mod p = (gy mod p)x mod p
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details



Elliptic curve (EC) 

▪ Points on an elliptic curve form an additive group 

– Commonly used curves: Curve25519, Curve448 

– See cryptography literature for details

▪ Point multiplication n · P means adding P to itself n times

– n is an integer, P is a point on the elliptic curve

▪ Point G is a generator point if k · P for k=0,1,2,3,… produces all 
the values of the group or a large subgroup

▪ Point multiplication is commutative:  n · m · P  =  m · n · P
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Discrete logarithm problem

▪ Discrete logarithm problem in Zp*: given gk mod p, solve k

– Believed to be a hard problem for large primes p and random k

– Typical p 1024..8096 bits; k 256 bits

▪ Discrete logarithm problem in EC: given n · P , solve n

– Believed to be a hard problem 

– Typical point lengths are 160..571 bits, depending on the curve; 
multiplier n 256 bits

– Why EC? Shorter key lengths and lower computation 
cost for the same level of security
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Unauthenticated Diffie-Hellman in Zp
*

▪ A and B have previously agreed on g and p
▪ All operations are in Zp

* i.e. modulo p

A chooses a random x and computes key share gx. 
B chooses a random y and computes key share gy.
1.  A → B:  A, gx

2.  B → A:  B, gy

A calculates shared secret  K = (gy)x

B calculates shared secret  K = (gx)y

▪ It works because exponentiation is commutative
▪ Sniffer learns gx and gy ; cannot compute x, y, or gxy
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Elliptic Curve Diffie-Hellman (ECDH)

▪ A and B have previously agreed on a curve and G

A chooses a random dA and computes key share QA =  dA · G
B chooses a random dB and computes key share QB =  dB · G
1.  A → B:  A, QA

2.  B → A:  B, QB

A computes the shared secret  SK = dA · QB =  dA · dB · G
B computes the shared secret  SK = dB · QA =  dB · dA · G

▪ It works because point multiplication is commutative
▪ Sniffer learns QA and QB ; cannot compute dA, dB, or SK
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For protocol 

designers, DH 

and ECDH are 

interchangeable 

algorithms



Diffie-Hellman assumption

▪ Diffie-Hellman assumption in Zp*: 

given gx and gy, hard to solve K = gxy

▪ Diffie-Hellman assumption in EC:  

given dA · G and dB · G, hard to solve K = dA · dB · G

▪ Believed to be as hard as the discrete logarithm problem

– Ability to compute discrete logarithms also breaks the 
DH assumption

– Quantum computers could compute discrete logarithms
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Domain parameters
▪ Domain parameters in Diffie-Hellman:

– In Zp*, A and B must agree on the prime p and generator g
– In ECDH, A and B must agree the curve and generator point G

▪ How to agree on the domain parameters?
– Method 1: standardized parameters for each protocol or application
– Method 2: one party chooses and signs the parameters
– Method 3: negotiation where one party offers parameters, and the other 

party chooses from them

▪ Protocol standards usually allow many key lengths or 
ECDH curves, and the key-exchange starts with 
parameter negotiation



Sniffing

▪ Unauthenticated Diffie-Hellman is secure against passive
attackers
– Not possible to discover the shared secret KAB by sniffing 

the key shares

A, gx
A B

B, gy

KAB= (gy)x = gxy KAB= (gx)y = gxy

y := randx := rand



Impersonation attack

▪ Unauthenticated Diffie-Hellman is vulnerable to an active
attacks such as impersonation:

– Shared secret key was created, but with whom?

A, gx
A E

B, gz

KAB= (gz)x = gzy KAB= (gx)z = gxz

z := randx := rand



A, gx

A B

B, gz

KAB= gzy K’AB= gxu

y := randx := rand A, gu

B, gy

E

u,z := rand

Man in the Middle (MitM)

▪ Attacker pretends to be A to B, and B to A

▪ Attacker creates shared session keys with both A and B

▪ Later, attacker can forward data between the two “secure” sessions

KAB, K’AB



Authenticated DH
1. A → B:  A, gx, SA(gx), CertA

2. B → A:  B, gy, SB(gy), CertB

SK = h(gxy)

▪ SA(gx) = A’s signature
▪ CertA = standard (X.509) public-key certificate or certificate chain

– Subject name in the certificate must be A
– B verifies the signature with A’s public key from the certificate

▪ h(gxy) = key material for deriving all necessary session keys

▪ Authentication prevents impersonation and MitM attacks
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Note: This is still 

an impractical toy 

protocol. Please 

read  further



Authenticated DH with key confirmation
▪ Three messages needed for authentication and key confirmation

1. A → B:  A, B, NA, gx

2. B → A:  A, B, NB, gy,  SB(“Msg1”, NA, NB, gx , gy), CertB, 
3. A → B:  A, B,  SA(“Msg2”, NA, NB, gx , gy), CertA

SK = h(NA, NB, gxy)

▪ Signatures on fresh data authenticate the endpoints
▪ Key confirmation: signatures prove that each endpoint knows all 

the parameters needed to compute the session key 
– Endpoints must trust each other about knowing the exponent
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▪ Misbinding of the initiator: B thinks it is connected to E. In fact, A 
and B are connected

▪ E is a dishonest insider (E can legitimately connect to B)
▪ Misbinding of the responder is similarly possible

A, gx
A E B

E, gx

B, gy, SB(gx,gy)B, gy, SB(gx,gy)

SE(gx,gy)SA(gx,gy)

Misbinding attack



A, gx
A B

B, gy, SB(gx, gy, A)

SA(gx, gy, B)

Solutions to misbinding: 
check peer identifier

gx
A B

B, gy, SB(gx, gy), MACK(B)

A, SA(gx, gy), MACK(A)

ISO 9798-3

SIGMA

(easier security proofs, and 

slightly better protection in 

case of an incompetent CA)



Detecting 

misbinding of 

initiator in

ISO 9798-3

A, gx
A E B

E, gx

B, gy, SB(gx,gy,E)B, gy, SB(gx,gy,E)

SigE(gx,gy, B)SigA(gx,gy, B)

E≠A

Detecting 

misbinding of 

initiator in

SIGMA

gx
A E B

gx

B, gy, SB(gx,gy), MACK(B)B,gy, SB(gx,gy), MACK(B)

E, SE(gx,gy), MACK(A)A, SA(gx,gy), MACK(A)
MACK(A) 

≠

MACK(E)



A MORE REALISTIC AUTHENTICATED DIFFIE-
HELLMAN PROTOCOL
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Authenticated DH

▪ Signed Diffie-Hellman with nonces and key confirmation:

1. A → B:  A, B,  NA, g, p, gx,  SA(“Msg1”, A, B, NA, g, p, gx),  CertA

2. B → A:  A, B,  NB, gy,  SB(“Msg2”, A, B, NB, gy),  CertB,

MACSK(A, B, “Responder done.”)

3. A → B:  A, B,  MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

▪ Prevents impersonation, MitM and misbinding attacks

▪ Why so complicated?
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freshness, MAC for key confirmation
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Ephemeral Diffie-Hellman (DHE)

▪ Perfect forward secrecy (PFS): session keys and data from past 
sessions are safe even if the long-term secrets, such as private 
keys, are later compromised
– Even participants themselves cannot recover old session keys

▪ Ephemeral DH (DHE): new random DH exponents for every key 
exchange, forget the exponent values afterwards → PFS
– Similarly, ephemeral ECDH (ECDHE)

– Cost-security trade-off: replace DH exponents periodically, 
e.g. once in a day or an hour, and use nonces for 
freshness: SK = h(NA, NB, gxy)
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Diffie-Hellman and nonces
▪ Are the nonces needed in Diffie-Hellman?

1. A → B:  A, B,  NA, g, p, gx,  SA(“Msg1”, A, B, NA, g, p, gx),  CertA

2. B → A:  A, B,  NB, gy,  SB(“Msg2”, A, B, NB, gy),  CertB,
MACSK(A, B, “Responder done.”)

3. A → B:  A, B,  MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

▪ Old DH implementations reuse exponents 
→ Saving on computation. Lack of PFS. Nonces needed for freshness

▪ After Snowden, PFS has become mandatory → Ephemeral DH. Nonces optional
▪ Prudent protocol design still separates the two concerns: nonces for freshness of 

authentication and session key, DH for secrecy and new exponents for PSF

26


