
Network Security:
TLS 1.3 handshake

Tuomas Aura, Aalto University

CS-E4300 Network security



2

Outline

▪ TLS 1.3 full handshake: 1-RTT

▪ Security properties, identity protection

Please refer to the 
Information Security 
course for an 
introduction to TLS



Client Server

ClientHello

+ key_share*

+ signature_algorithms*

+ supported_groups*

+ server_name*

+ certificate_authorities* -------------> ServerHello

<-------------

+ key_share*

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[ApplicationData*]

{Certificate*}

{CertificateVerify*}

{Finished} ------------->

[Application data] <------------> [Application data]

3

TLS 1.3 full handshake 

2. DHE or ECDHE 
key exchange

3. Server 
authentication

4. Client
authentication 
(typically omitted)

5. Key 
confirmation

1. Parameter 
negotiation

6. Protected session data



TLS 1.3 full handshake
1. C → S: NC , supported_versions, supported_groups, signature_algorithms, 

cipher_suites, server_name, certificate_authorities, gx

2. S → C: NS , version, cipher_suite, gy

EncryptedExtensions

CertS , SignS(TH)
HMACKfks(TH)

3. C → S: CertC , SignC(TH)
HMACKfkc(TH)

NC , NS = client and server random
CertC , CertS = certificate chain
TH = transcript hash i.e. hash of all previous messagas
Exchange keys Kchts, Kshts, Kfkc, Kfks session keys Kcats, Ksats derived from gxy and TH

4

encrypted with Kshts

encrypted with Kchts



TLS 1.3 algorithms

▪ Small number of modern cipher suites

▪ AEAD ciphers: encryption and authentication always together

▪ Perfect forward secrecy required

– Only ephemeral key exchanges: DHE or ECDHE

– Old RSA handshake is not supported

5



Client Server

ClientHello

+ key_share*

+ signature_algorithms*

+ supported_groups*

+ server_name*

+ certificate_authorities* -------------> ServerHello

<-------------

+ key_share*

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[ApplicationData*]

{Certificate*}

{CertificateVerify*}

{Finished} ------------->

[Application data] <------------> [Application data]

6

1-RTT handshake
Client does not know which 

groups the server supports but 
makes a guess



1-RTT handshake

▪ TLS 1.3 handshake causes only one round-trip delay

– Client can send HTTP request (application data) right after client Finished

– TLS 1.2 and most other key-exchange protocols require two RTT

– Important for page load times in web browsing

▪ However, TCP + TLS 1.3 together cause 2-RTT latency

– QUIC avoids this because it runs over UDP

▪ Sometimes TLS 1.3 hanshake takes two RTT:

– If server does not support the group of key_share in ClientHello, server 
sends HelloRetryRequest to ask for a different curve 

– DTLS server under DoS attack can send a Cookie in HelloRetryRequest

7



8

Key derivation
Inputs to key derivation:

1. PSK (external PSK or resumption PSK)
2. DHE/ECDHE secret

3. Transcript of handshake messages, up to the point where the key is derived

Keys:
▪ client_early_traffic_secret→ used to derive AEAD keys for early data in 0-RTT (…)

▪ client/server_handshake_traffic_secret→ used to derive AEAD keys for handshake 
messages {…} and Finished HMAC keys

▪ client/server_application_traffic_secret_N→ used to derive AEAD encryption keys for 
post-handshake application data and messages […]

▪ resumption_master_secret and ticket_nonce→ derive resumption PSK 
▪ exporter_master_secret→ used to create keys for the application layer

one or both, as available



9

Post-handshake client authentication

▪ Server can request client authentication any time, either during
or after the TLS handshake

▪ Post-handshake client authentication allows time for user 
action, such as inserting a smartcard

– Application can give user more access rights after the authentication



References

▪ TLS 1.3, RFC 8446

▪ The New Illustrated TLS Connection, https://tls13.ulfheim.net/

10

https://tools.ietf.org/html/rfc8446
https://tls13.ulfheim.net/


Exercises
▪ Use a network sniffer (e.g. Netmon, Ethereal) to look at TLS handshakes. Can you spot a full 

handshake and session resumption? Can you see the plaintext SNI? 
▪ Compare TLS 1.3 and TLS 1.2 handshakes in network trace: Can you see the difference is round-trips, 

identity protection? 
▪ How would you modify the TLS 1.3 handshake to improve identity protection? Learn about PEAP. 

How does PEAP protect the client identity?
▪ Consider removing message fields from the handshake. How does each message field contribute to 

security?
▪ Why have the supported and mandatory-to-implement cipher suites in TLS changed over time?
▪ Why did most web servers for a long time prefer the RSA handshake? 
▪ One reason why the RSA handshake it is no longer supported in TLS 1.3 is that it does not provide 

PFS. Is it possible to implement PFS without Diffie-Hellman?
▪ Finds applications that could benefit significantly from the 0-RTT handshake. Is there any cost to 

deploying it?
▪ What problems arise if you want to set up multiple secure (HTTPS) web sites behind a NAT or on 

virtual servers that share one IP address? How to TLS 1.3 and TLS 1.2 solve this issue? 
▪ If an online service (e.g. webmail) uses TLS with server-only authentication to protect passwords, is 

the system vulnerable to offline password cracking?

11


