Network Security: TLS 1.3 security properties Tuomas Aura, Aalto University CS-E4300 Network security ## TLS 1.3 full handshake 1. $C \rightarrow S$: N_c, supported_versions, supported_groups, signature_algorithms, cipher suites, server name, certificate authorities, gx 2. $S \rightarrow C$: N_s, version, cipher_suite, g^y EncryptedExtensions 7 Cert_s, Sign_s(TH) encrypted with K_{shts} $HMAC_{Kfks}(TH)$ 3. $C \rightarrow S$: Cert_c, Sign_c(TH) HMAC_{Kfkc}(TH) encrypted with K_{chts} Which security properties? - Secret, fresh session key - Mutual or one-way authentication - Entity authentication, key confirmation - Perfect forward secrecy (PFS) - Contributory key exchange - Downgrading protection - Identity protection - Non-repudiation - Plausible deniability - DoS resistance Cert_c, Cert_s = certificate chain TH = transcript hash i.e. hash of all previous messagas Exchange keys K_{chts}, K_{shts}, K_{fkc}, K_{fks} session keys K_{cats}, K_{sats} derived from g^{xy} and TH ## Identity protection? - Client sends server name indication (SNI) and CAs in plaintext - SNI needed to have multiple server names at one IP address - Server certificates are encrypted against passive sniffing - However, anyone can get them from server by connecting to it and sending the right SNI - Client certificates (if used) are encrypted - Protected also against server impersonation Summary: server identity leaked, client identity well protected