

Network Security: RSA handshake (TLS 1.2 and earlier)

Tuomas Aura, Aalto University CS-E4300 Network security

Public-key encryption of session key

- Public-key encryption of the session key:
 - 1. A \rightarrow B: A, B, PK_A
 - 2. B \rightarrow A: A, B, E_A(SK)
 - $PK_A = A's$ public key
 - SK = session key
 - $E_A(...)$ = encryption with A's public key

Note: The protocol is not secure like this. Please read further.

Impersonation and MitM attacks

 Unauthenticated key exchange with public-key encryption suffers from the same impersonation and man-in-the-middle attacks as DH

A has a shared secret, but with whom?

Impersonation and MitM attacks

Impersonating A is similarly possible because B does not know whether the public key really belongs to A:

B has a shared secret, but with whom?

Authenticated key exchange

Authenticated key exchange with public-key encryption:

```
1. A \rightarrow B: A, B, N<sub>A</sub>, Cert<sub>A</sub>

2. B \rightarrow A: A, B, N<sub>B</sub>, E<sub>A</sub>(KM), S<sub>B</sub>("Msg2", A, B, N<sub>B</sub>, E<sub>A</sub>(KM)), Cert<sub>B</sub>,

MAC<sub>sk</sub>(A, B, "Responder done.")

3. A \rightarrow B: A, B, MAC<sub>sk</sub>(A, B, "Initiator done.")

SK = h(N<sub>A</sub>, N<sub>B</sub>, KM)

Why nonces and not SK = KM?
```

KM = random key material (random bits) generated by B $Cert_A, E_A(...) = A's$ certificate and public-key encryption to A $Cert_B, S_B(...) = B's$ certificate and signature $MAC_{SK}(...) = MAC$ with the session key

TLS_RSA handshake

6. Protected session data

TLS_RSA handshake

- 1. $C \rightarrow S$: Versions, N_C, SessionId, CipherSuites
- 2. $S \rightarrow C$: Version, N_S, SessionId, CipherSuite Cert_S [Root CAs]
- 3. $C \rightarrow S$: [Cert_c] $E_{s}(pre_master_secret),$ [Sign_c(all previous messages including)] ChangeCipherSpec MAC_{SK} ("client finished", all previous messages)
- 4. S \rightarrow C: ChangeCipherSpec MAC_{SK}("server finished", all previous messages)

E_s = RSA encryption (PKCS #1 v1.5) with S's public key from Cert_s pre_master_secret = random byte string chosen by C master_secret = h(pre_master_secret, "master secret", N_c, N_s)

TLS_RSA handshake

1. C \rightarrow S:	Versions, N _c , SessionId, CipherSuites	
$2 S \rightarrow C$	Version No SessionId CipherSuite	Which security properties?
2.0 7 0.	Cert _e [Root CAs]	 Mutual or one-way authentication
		• Entity authentication, key confirmation
3. C \rightarrow S:	[Cert _C]	 Perfect forward secrecy (PFS)
	E _s (pre master secret),	Contributory key exchange
	[Sign _c (all previous messages including)]	Downgrading protection
	Change Cinher Spec	Identity protection
	ChangeCipherspec	Non-repudiation
	MAC _{sk} ("client finished", all previous message	Plausible deniability
4. S \rightarrow C:	ChangeCipherSpec	DoS resistance
1.0 / 0.	enangeeipheropee	
	MAC _{SK} ("server finished", all previous messages)	

 $E_s = RSA encryption (PKCS #1 v1.5) with S's public key from Cert_s$ $pre_master_secret = random byte string chosen by C$ $master_secret = h(pre_master_secret, "master secret", N_c, N_s)$