

Network Security: IKEv2 discussion

Tuomas Aura

CS-E4300 Network security
Aalto University

Internet Key Exchange (IKEv2)

```
1. I \rightarrow R: SPI_{ir}, SPI_{rr}, SA_{i1}, g^{x}, N_{i}

2. R \rightarrow I: SPI_{ir}, SPI_{rr}, SA_{r1}, g^{y}, N_{rr}, CERTREQ_{r}

3. I \rightarrow R: SPI_{ir}, SPI_{rr}, E_{SK}(ID_{ir}, CERT_{ir}, CERTREQ_{ir}, ID_{rr}, Sign_{ir} (Message1, N_{rr}, MAC_{SK}(ID_{ir})), SA_{i2}, TS_{ir}, TS_{rr}, MAC_{SK}(...))

4. R \rightarrow I: SPI_{ir}, SPI_{rr}, E_{SK}(ID_{rr}, CERT_{rr}, Sign_{R}, ((Message2, N_{ir}, MAC_{SK}(ID_{r})), SA_{r2}, TS_{ir}, TS_{rr}, MAC_{SK}(...))
```

 SPI_x = values that identity the protocol run and the SA_{x1} = offered and chosen algorithms, DH and ECD $SK = h(Ni, Nr, g^{xy})$ — actually, 7 different keys are d ID_x , $CERT_x$, $CERTREQ_x$ = identity, certificate, accepte SA_{x2} , TS_x = parameters for the first IPsec SA (algorit E_{SK} (..., MAC_{SK} (...)) = HMAC and encryption, or authorized

Which security properties?

- Secret, fresh session key
- Mutual or one-way authentication
- Entity authentication, key confirmation
- Perfect forward secrecy (PFS)
- Contributory key exchange
- Downgrading protection
- Identity protection
- Non-repudiation
- Plausible deniability
- DoS resistance

Privacy properties

Identity protection

- All identifiers and certificates are encrypted with the DH secret
- Initiator reveals its identity first → vulnerable to active attacks
- Responder authenticates initiator before revealing its identity → Responder identity protected also against impersonation attacks.
- Why protect the responder better? Because the attacker can initiate IKEv2 key exchange with any target IP address. The target then becomes the responder
- Special case: In mutual authentication with EAP, identity protection against active attackers depends on the EAP method

Plausible deniability

Neither endpoint signs anything that would bind it to the other endpoint's identity

IKEv2 with a cookie exchange

- Responder may send a cookie (a random number) to the initiator
- Goal: verify initiator IP address; prevent DoS attacks from a spoofed IP address

```
1. I \rightarrow R: HDR(A,0), SAi1, KEi, Ni

2. R \rightarrow I: HDR(A,0), N(COOKIE) // R stores no state

3. I \rightarrow R: HDR(A,0), N(COOKIE), SAi1, KEi, Ni

4. R \rightarrow I: HDR(A,B), SAr1, KEr, Nr, [CERTREQ] // R creates a state

5. I \rightarrow R: HDR(A,B), SK{ IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, SAi2, TSi, TSr }

6. R \rightarrow I: HDR(A,B), E_{SK} (IDr, [CERT,] AUTH, SAr2, TSi, TSr)
```

How to bake a good cookie? Example:

```
COOKIE = h(K_{R-periodic}, ipaddr_{I}, ipaddr_{R})
```

where K_{R-periodic} is a periodically changing secret key know only by the responder R

Negotiated parameters

- NAT traversal:
 - NAT detection IKE_SA_INIT exchange
 - If necessary, encapsulate IKEv2 and IPsec in UDP (port 4500)
- Parameters for the key exchange:
 - Protocol version and authentication method (signatures, PSK or EAP)
 - A, B = each endpoint chooses a locally unique SPI for the IKE SA
 - SAi1, SAr1 = cryptographic algorithms for the key exchange and IKE SA (responder chooses from initiator's offer)
 - CERTREQ = sender's supported trust anchors (CAs)
 - IDr = responder identity which the initiator wants to authenticate
- Parameters for the IPsec SA pair:
 - SAi2, SAr2 = cryptographic algorithms for protecting session data SA (responder chooses from initiator's offer)
 - TSi, TSr = traffic selectors i.e. which packets to protected (responder can choose a subset of the offer)

Many options add complexity and reduce inter-operability

IKE versions

- IKE(v1) [RFC 2407, 2408, 2409]
 - Framework for authenticated key-exchange protocols, typically DH
 - Multiple authentication methods: certificates, pre-shared key, Kerberos
 - Two phases: Main Mode (MM) or Aggressive Mode creates an ISAKMP SA (i.e. IKE SA) and Quick Mode (QM) creates IPsec SAs
 - Interoperability issues, complex to implement and test, incomplete spec
 - Remains widely deployed, but no reason to use for anything new
- IKEv2 [RFC 7296]
 - Redesign of IKE: fewer modes and messages, simpler to implement
 - Interoperability still requires careful configuration of the endpoints