Network Security: WLAN Security

Mohit Sethi Ericsson, Finland Aalto University, Finland

WLAN Security - Outline

- Part 1:
 - WLAN Standards and Components
 - Joining Open WLAN
 - WPA2-PSK and four-way handshake
- Part 2:
 - WPA 3: Opportunistic Wireless Encryption (Enhanced Open)
 - WPA 3: Password Authenticated Key Exchange (PAKE : Dragonfly)
- Part 3:
 - Enterprise security EAP

- Open networks used in cafes and airports
 - Better user experience than asking for passphrase
- WPA3 Enhanced Open provides Opportunistic Wireless Encryption (OWE) for open networks – RFC 8110
- Station and AP perform Diffie-Hellman (DH) exchange during association
- A PMK is derived from DH shared secret
- PMK is used in 4 way handshake as before

- OWE is encryption NOT authentication
 - Susceptible to active MiTM attack
 - Does NOT prevent evil twin APs

- Both ECC and FFC based Diffie-Hellman supported
- OWE is encryption NOT authentication
 - Susceptible to active MiTM attack
 - Does NOT prevent evil twin Aps
- No prior contact between Station and AP for PMK
- Better than open authentication:
 - Passive attacker now needs to be active
 - Attacker cannot inject packets without active MiTM first
 - Forward secrecy when private keys are deleted
- Can do client authentication later with captive portal

WPA2 – Personal: Weakness

WPA2 – Personal: Weakness

WPA2 – Personal: Weakness

WPA3 PAKE : Dragonfly

- WPA3 uses Password Authenticated Key Exchange (PAKE) for preventing password guessing
 - WPA3 uses a variant of Dragonfly RFC 7664 as PAKE
 - Original protocol called Simultaneous Authentication of Equals (SAE) defined in 802.11s in 2016
 - Standard for security in mesh networks
- Offline attacker cannot perform password guessing
- A live attacker physically present in the network can keep guessing but devices can setup protection against such repeated guessing - denial of service (DoS)

PAKE example

PAKE example

Dragonfly

Dragonfly

WPA3 PAKE : Dragonfly

- Dragonfly supports ECC and FFC group
- If not carefully implemented, side channel attacks are very possible
- Designed as a balanced PAKE both sides know passphrase in plain
- Fresh PMK negotiated each time. This PMK is used in 4 way handshake as before.
- PMK cannot be recovered even if passphrase is revealed later => forward secrecy after deleting u and v.

Example of PWE selection

WPA3 PAKE : Dragonfly

- Lot of controversy in IETF/IRTF when publishing
 - > Trevor Perrin (well-known and respected cryptographer):
 - > Questioned CFRG process:

https://mailarchive.ietf.org/arch/msg/cfrg/0mnqMOmLy2N2H2K_F93MdUN_G28

> Provided a critical review of Dragonfly:

https://mailarchive.ietf.org/arch/msg/cfrg/YE4eKgOE9LTGbYd_hzN-nGDN-No

> Asked for removal of CFRG chair:

https://mailarchive.ietf.org/arch/msg/cfrg/scLoq7DvtXzo9Jl9AG9fQOcSGsM

> Many new attacks in published in April 2019

> <u>https://papers.mathyvanhoef.com/dragonblood.pdf</u>

Next Video

- Part 3:
 - Enterprise security EAP