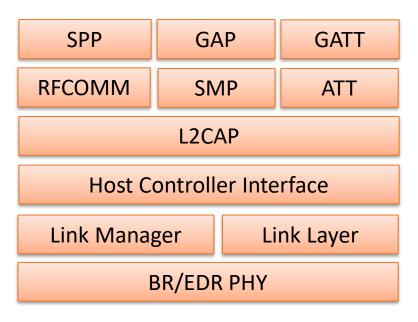
Bluetooth Security

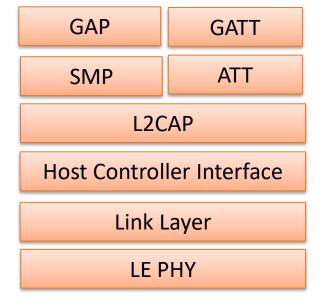
Mohit Sethi Ericsson, Finland Aalto University, Finland

Bluetooth Security - Outline

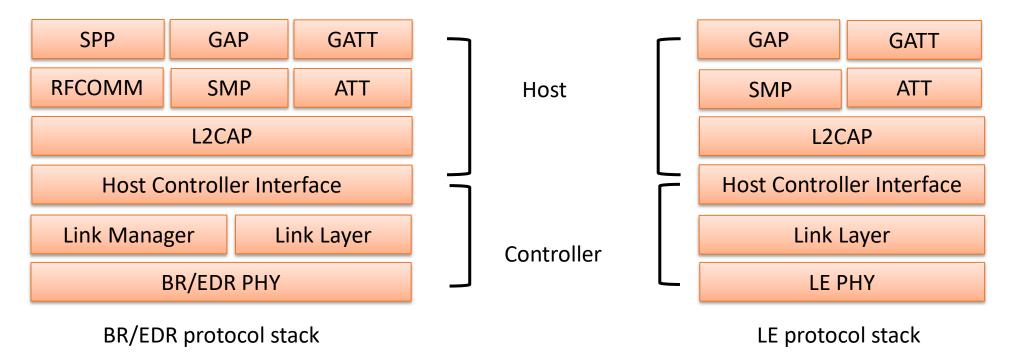
- Part 1:
 - Bluetooth standard evolution
 - Bluetooth stack and protocols
- Part 2:
 - Pairing and Bonding
 - Privacy with Private addresses
- Part 3:
 - Mesh and secure joining

Bluetooth

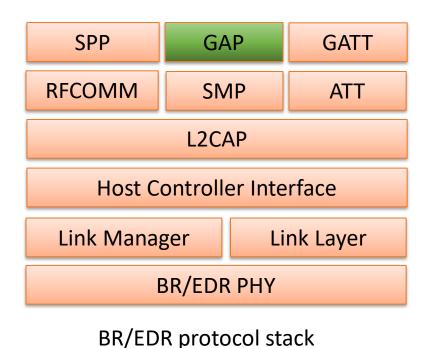

- Developed by Ericsson in 1994
 - Named after Danish king Harald Blåtand Gormsen
- Standard specified by the Bluetooth SIG (Special Interest Group) together with Nokia, IBM, Intel, Toshiba etc.
- Major releases
 - Bluetooth 2.0 2004
 - Bluetooth 4.0 2010
 - Bluetooth 5.0 2016
 - Bluetooth Mesh profile 2017

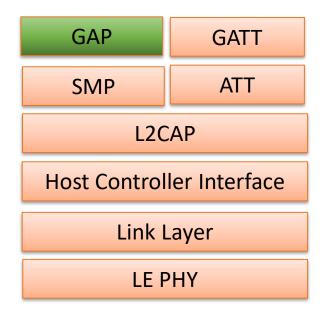

Bluetooth Standard Evolution

- Bluetooth 2.0 and 2.1 :
 - Lower power consumption and faster data transfer (≈ 3Mbit/s)
 - Secure Simple Pairing made pairing simpler and more secure
- Bluetooth 4.0 and 4.2:
 - Bluetooth Low Energy (BLE) aka Bluetooth Smart
 - Health and fitness trackers with longer battery life
 - IPv6 and improved Internet connectivity
 - Beacons and advertisements
 - Privacy enhancements with better protection against device tracking
- Bluetooth 5.0 2016
 - Faster and longer range (≈ 240 meters)
- Bluetooth Mesh profile 2017
 - Mesh networking with 100s of devices
 - Can work with devices that support Bluetooth 4.2 and higher
 - Original Bluetooth from early 2000s defines piconets (1 master + 7 active slave devices). Most deployments were device-to-device!

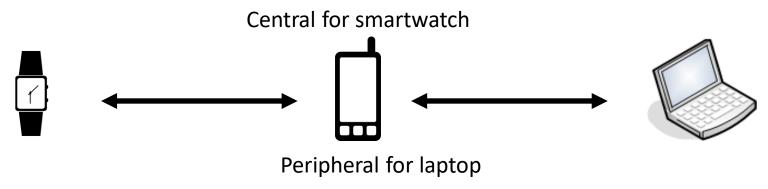

- Basic Rate (BR) : includes optional enhanced data rate (EDR) and Alternate Media Access Control (AMP) extensions
- Low Energy (LE): low power, low cost, low data rates

- Basic Rate (BR) : includes optional enhanced data rate (EDR) and Alternate Media Access Control (AMP) extensions
- Low Energy (LE): low power, low cost, low data rates





- Basic Rate (BR) : includes optional enhanced data rate (EDR) and Alternate Media Access Control (AMP) extensions
- Low Energy (LE): low power, low cost, low data rates


- Basic Rate (BR) : includes optional enhanced data rate (EDR) and Alternate Media Access Control (AMP) extensions
- Low Energy (LE): low power, low cost, low data rates

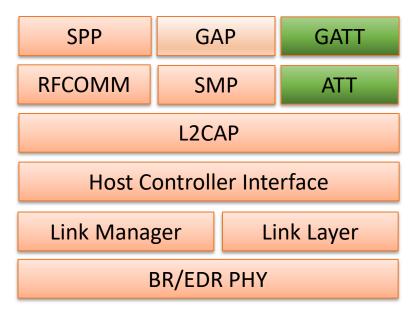
Bluetooth – GAP

- Generic Access Profile:
 - Base profile implemented by all Bluetooth devices
 - Defines device discovery, connection establishment, association models, security
- Roles:
 - Single role in BR/EDR all devices can initiate or accept connections
 - Four roles in LE :
 - Broadcaster: Broadcast device advertises but does not accept connections
 - Observer: Observer listens to advertisements but does not initiate connection
 - Peripheral: Device advertises and accepts a single connection
 - Central: Initiator for all connections and can open multiple connections
 - Simultaneous multiple roles

Bluetooth – GAP

- GAP defines various modes a device can be in:
 - Discoverability modes
 - Non-discoverable/Discoverable/Limited discoverable/General discoverable
 - Connectability modes
 - Non-connectable
 - Bonding modes
 - Non-bondable/Bondable
 - Synchronizable modes
 - Non-synchronizable/Synchronizable
 - Periodic Advertising mode

Bluetooth – Advertising

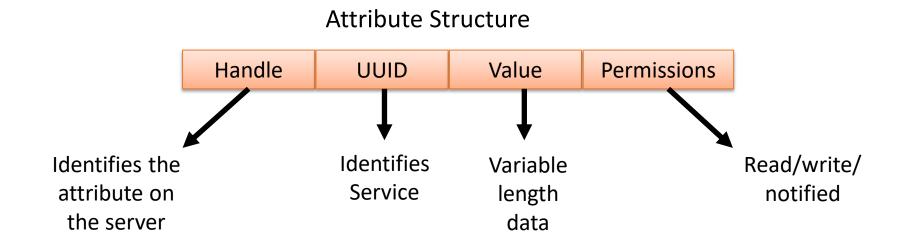

- Advertisements sent by broadcaster or peripheral
- 3 primary channels for advertisements chosen to avoid overlap with WiFi
- Advertisements can be: directed/undirected/connectable/nonconnectable/scannable/non-scanable
- 31 bytes of data that includes:
 - Device name
 - Service UUID (Universally Unique Identifier)
- 2 popular standards that build on Bluetooth Advertising
 - Apple iBeacon
 - Google Eddystone
- Used for indoor positioning, asset tracking etc.

Bluetooth – Connections

- Advertisements are unidirectional
- Connections enable bidirectional data transfer
- Several phases before connection establishment:
 - Inquiry and name discovery
 - Link establishment
- In LE: Peripheral -> Slave and Central -> Master
- In BR/EDR: initiating device is master and responding device is slave
 - Role switching is possible: initiating device wants to joining an existing piconet
- Connection request -> data exchange -> connection established
- If no existing link key for authentication and encryption, then pairing is necessary.

Bluetooth – GATT

- Generic Attribute (GATT) Profile
 - How is data formatted and exchanged between a client and server
 - Builds on ATT (Attribute Protocol)



GAPGATTSMPATTL2CAPHost Controller InterfaceLink LayerLE PHY

LE protocol stack

Bluetooth – GATT

- Attribute (ATT) protocol:
 - Defines how a server exposes data and clients read/query/commands
 - Data is structured as attributes
 - Client/server role independent of master/slave
 - Devices can be in both client and server role

Bluetooth – GATT

- A service is composed of attributes
 - Characteristic attributes: contain a value that can be read by the client.
 - Can include optional descriptor attributes that help define value it holds (format/unit)
- A profile is composed of services and defines client/server behavior
- Generic Attribute (GATT) profile:
 - defines how to use ATT for discovery, reading, writing, and obtaining indications
 - reference framework for other GATT-based profiles: SIG defined or custom

Next Video

- Part 2:
 - Pairing and Bonding
 - Privacy with Private addresses