
1/ 39

CS-E5875 High-Throughput Bioinformatics
Genotype calling and de novo assembly

Harri Lähdesmäki
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Human genome

I DNA is a double-stranded molecule with each
strand being a linear sequence of nucleotides

I A nucleotide consists of a phosphate group,
sugar, and nucleoside

I A nucleoside is a nitrogenous base connected
to a deoxyribose sugar

I There are four different nucleotides
(depending on the nucleoside): adenine (A),
cytosine (C), guanine (G), thymine (T)

I The nucleotides have a specific base pairing in
double-stranded DNA:

I Adenine pairs w/ thymine
I Cytosine pairs w/ guanine

I Total length: about 3 billion nucleotides
Figure from Wikipedia
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Types of human genome variationHuman Genome Variation 

SNP TGCTGAGA 
TGCCGAGA Novel Sequence TGCTCGGAGA 

TGC - - - GAGA 

Inversion Mobile Element or 
Pseudogene Insertion 

Translocation Tandem Duplication 

Microdeletion TGC - - AGA 
TGCCGAGA Transposition 

Large Deletion Novel Sequence 
at Breakpoint 

TGC 

Figure from https://web.stanford.edu/class/cs262/presentations/lecture4.pdf

https://web.stanford.edu/class/cs262/presentations/lecture4.pdf
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Single-nucleotide polymorphism

I Consider a specific nucleotide (chromosome and genomic coordinate) in human genome

I Most individuals have the same nucleotide at that position

I However, some individuals can have a different nucleotide at that position

I This nucleotide difference is called a genetic variant

I Different nucleotides at that variant position are called alleles

I There exist biallelic and multiallelic variants
I Biallelic: a position in a genome can contain two different nucleotides
I Multiallelic: a position in a genome can contain more than two different nucleotides
I Much of the literature/published GWAS results focus on biallelic variants

I Minor allele is defined to be the allele that occurs with a lower frequency

I Variants with a minor allele frequency (MAF) of at least 5% are typically called common
single-nucleotide polymorphisms (SNPs)

I Variants with MAF between 0.5% and 5% are called as low-frequency variants
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Single-nucleotide polymorphism

I An illustration of a SNP
18/09/16 10:25

Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/2/2e/Dna-SNP.svg
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Figures from https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
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Types of single-nucleotide polymorphism

I Non-coding: SNP is located in a region of a genome that does not code for a protein
I Coding: SNP is located in a region of a genome that codes for a protein
I Synonymous: SNP does not change the amino acid sequence that is produced
I Nonsynonymous: SNP changes the amino acid sequence that is produced
I Missense: SNP causes a substitution of a different amino acid in the final amino acid

sequence
I Nonsense: SNP causes a premature stop codon / truncated protein amino acid sequence /

non-functional protein

Figures from https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
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Genotype

I The genotype of a diploid individual at a single genomic variant position is the
combination of the two alleles in the two chromosome copies

I Denote the two alleles of a biallelic variant by A and B

I Note that both A and B can take values in {A,C,G,T}
I The possible genotypes for the variant are then A/A, A/B and B/B
I A/A: no mutation
I A/B: heterozygous mutation
I B/B: homozygous mutation

I For example: if the possible alleles of a biallelic SNP are A = G and B = T, then the
possible genotypes are

I A/A: G/G
I A/B: G/T
I B/B: T/T

I SNPs are the primary source of genetic differences between individuals
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Genotype calling

I Assume we have measured short DNA sequencing reads from a large number of cells for
several individuals

I Having aligned the short sequencing reads of all individuals to a reference genome
I SNP calling identifies variable sites (using reads from all individuals)
I Genotype calling determines the genotype for each individual separately at each site (using

reads from a single individual separately)
I Genotype calling is typically only done for positions in which a SNP variant has already been

called

AGTTTGACTCCAAACTGTAACGTAAGCTTAGCTACTACT 
    TGACTCCAAACTGTAATGTA  
      ACTCCAAACTCTAATGTAAG  
      ACTCCAAACTGTAAGGTAAG  
         CCAATCTCTAATGTAAGCTT  
         CCAAACTGTAATGTAAGCTT  
            AACTCTAATGTGAGCTTAGC  
             ACTGTAATGTAAGCGTAGCT  
              CTCTAATGTAAGCATAGCTA  
              CTCTAATGTAAGCTTAGCTA  
                GTAATGTGAGCTTAGCTACT 
----------------C---T--A---------------  
----------------G---T--A---------------  
 

-------------?---------G---?-----------

Reference 
 
 
 
 
 
Aligned reads 
 
 
 

Genotype 

Somatic mut.

Likely germline 
variants

Likely somatic 
mutations
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Genotype calling

I Challenges in SNP and genotype calling
I A mismatch in an aligned read can be due to

I A true SNP
I An error while generating the sequencing library
I Base calling error
I Misalignment
I Mistakes done earlier while building the reference sequence

I Many NGS studies rely on low-coverage sequencing (<5x per site per individual, on average)
I A high probability that only one of the two chromosomes of a diploid individual has been

sampled at a specified site

I A probabilistic framework: so-called “genotype likelihoods” which incorporate errors that
may have been introduced in base calling, alignment and assembly are coupled with prior
information, such as allele frequencies and patterns of linkage disequilibrium (LD)
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GATK: a simple Bayesian genotyper

I Genotyping with GATK tool (McKenna et al, 2010)

I GATK computes the posterior probability of each genotype, given the pileup of aligned
reads that cover a given locus and expected heterozygosity of the sample

I Define:
I G is the genotype
I D represents the data (pileup of the aligned reads at a given position)
I P(G) is a prior probability of seeing this genotype (in a given population)

I The basic model is then (recall the Bayes’ theorem)

P(G |D) =
P(D|G )P(G )

P(D)
∝ P(D|G )P(G ),
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GATK: a simple Bayesian genotyper
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----------------C---T--A---------------  
----------------G---T--A---------------  
 

-------------?---------G---?-----------

Reference 
 
 
 
 
 
Aligned reads 
 
 
 

Genotype 

Somatic mut.

Likely germline 
variants

Likely somatic 
mutations

I The likelihood can be written as a product over the independent aligned reads

P(D|G ) =
∏

bi∈pileup

P(bi |G ),

where bi (i = 1, . . . , d) represents the base in the ith read covering the locus
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GATK: a simple Bayesian genotyper
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Genotype 

Somatic mut.

Likely germline 
variants

Likely somatic 
mutations

I For each position, decompose the genotype into its two alleles as G = (A1,A2)

I The probability of a base given the genotype is defined as

P(bi |G ) = P(bi |(A1,A2)) =
1

2
P(bi |A1) +

1

2
P(bi |A2),

(because bi can come from either of the chromosome copies with equal probability)
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GATK: a simple Bayesian genotyper
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variants

Likely somatic 
mutations

I Finally, the probability of seeing a base given an allele is

P(bi |A) =

{
ei
3 , if bi 6= A
1− ei , else

,

where ei = 10−
qi
10 is the reversed phred scaled quality score at the base in the ith read
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GATK: a simple Bayesian genotyper
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I The maximum a posteriori (MAP) estimate of the genotype is then

Ĝ = arg max
G

P(G |D)
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GATK: a simple Bayesian genotyper

I Consider a simplified example where the reference base at a given locus is A and the
alternative is T and we have a single read with base b aligned to that position

I Assume that the possible genotypes are AA, AT and TT

I Applying the Bayes formula we get

P(AA|b) =
P(b|AA)P(AA)

P(b|AA)P(AA) + P(b|AT )P(AT ) + P(b|TT )P(TT )

=

(
1
2P(b|A) + 1

2P(b|A)
)
P(AA)

P(b|AA)P(AA) + P(b|AT )P(AT ) + P(b|TT )P(TT )
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Germline vs. somatic mutations (quotes from Wikipedia)

I “A germline mutation is any detectable and heritable variation in the lineage of germ cells
(cells that will develop into sex cells - namely sperm and ovum).”

I “Mutations in these cells can be transmitted to offspring if these cells are involved in the
formation of a zygote”

I “Somatic mutations are changes to the genetics of a multicellular organism which are not
passed on to its offspring through the germline.”
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Germline vs. somatic mutations

I Germline mutations that we have considered previously can be heterozygous or
homozygous, i.e., appear with a frequency 50% or 100%

I Somatic mutations can be present with any frequency (across a population of cells)
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Genotype 
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Likely somatic 
mutations
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Somatic mutation detection with Mutect

I Somatic mutation detection with Mutect (Cibulskis et al, 2013)

I Consider detecting a somatic mutation at a given position (chromosome and coordinate)

I Denote the reference allele as r ∈ {A,C,G,T}
I Assume d sequence reads overlap the position and denote

I bi is the base called in the ith read (i ∈ {1, . . . , d})
I ei is the probability of error of the base called in the ith read

ei = 10− qi
10

where qi is the associated Phred quality score
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Somatic mutation detection with Mutect

I To detect a somatic mutation, try to explain the data using two models:

1. Model M0 in which there is no variant at the site and all non-reference bases are explained
by sequencing noise

2. Model Mm
f in which a variant allele m 6= r truly exists at the site with an allele frequency f

and reads are also subject to sequencing noise

I Note that M0 is equivalent to Mm
f with f = 0 and m = r
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Somatic mutation detection with Mutect

I The likelihood of the model Mm
f is given by

L(Mm
f ) = P({bi}|{ei}, r ,m, f ) =

d∏
i=1

P(bi |ei , r ,m, f )

assuming the sequencing errors are independent across reads

I If all substitution errors are equally likely and occur with probability ei/3, then the
likelihood is

P(bi |ei , r ,m, f ) =

 fei/3 + (1− f )(1− ei ) if bi = r
f (1− ei ) + (1− f )ei/3 if bi = m
ei/3 otherwise
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Somatic mutation detection with Mutect

I Somatic mutation detection is performed by computing the likelihood ratio of the two
models, M0 and Mm

f

LODT (m, f ) = log10

L(Mm
f )P(m, f )

L(M0)(1− P(m, f ))

where P(m, f ) is a prior (e.g. expected probability of a mutated nucleotide m and its
frequency for a given cancer type)

I The unknown frequency f and mutated nucleotide m can be estimated using the
maximum likelihood method (or set to plug-in estimates) to obtain f̂ and m̂
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Somatic mutation detection with Mutect

I Somatic mutation is called if the above LOD score exceeds a certain significance level

I Note that the above LOD score corresponds to a likelihood ratio statistic
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Somatic mutation detection with Mutect

I The detected somatic mutations should be further filtered to avoid likely false positives

I Check that the detected variant is not a heterozygous germline SNP, i.e., test

LODN = log10

L(M0)P(m, f )

L(Mm
0.5)P(“germline”)

,

where frequency has been set to f = 0.5 and terms have been reverted to avoid false
positives
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Somatic mutation detection with Mutect

I Filter other technical artifacts not accounted by the model

Figure from (Cibulskis et al, 2013)
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Types of human genome variationHuman Genome Variation 

SNP TGCTGAGA 
TGCCGAGA Novel Sequence TGCTCGGAGA 

TGC - - - GAGA 

Inversion Mobile Element or 
Pseudogene Insertion 

Translocation Tandem Duplication 

Microdeletion TGC - - AGA 
TGCCGAGA Transposition 

Large Deletion Novel Sequence 
at Breakpoint 

TGC 

Figure from https://web.stanford.edu/class/cs262/presentations/lecture4.pdf

https://web.stanford.edu/class/cs262/presentations/lecture4.pdf
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De novo genome assembly

I This section follows (Chaisson, et al, 2015)

I De novo: no reference genome available

I The goal of de novo genome assembly is to determine the sequence of a genome using
only randomly sampled sequence fragments

I Sequence fragments are typically less than one-millionth the size of a mammalian genome

I Most current approaches involve some aspect of a whole-genome shotgun sequencing and
assembly (WGSA) strategy

I Random fragments from a genome are sequenced and computationally stitched together to
generate sequence contigs and scaffolds

I Under ideal conditions (i.e., uniformly high sequence coverage across the whole genome
and a genome devoid of repetitive sequences), an assembly may be determined with the
simple approach of merging reads with maximal overlap
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De novo genome assembly

I In practice such an approach does not work because:
I Sequence coverage is almost never uniform
I Genome contains repetitive sequences of varying length, and
I Genome contains varying copy numbers (duplications)
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Types of genome assembly gaps

Massively parallel 
sequencing
(MPS). A general term for a 
form of DNA sequencing that 
measures trace signals from 
millions to hundreds of millions 
of amplified sequences at 
once, most frequently referring 
to sequencing produced by 
Illumina, Life Technologies and 
Complete Genomics platforms. 
Often referred to as 
next-generation or 
second-generation sequencing 
to distinguish it from long-read 
sequencing approaches (for 
example, single-molecule 
sequencing), which are 
sometimes referred to as 
third-generation sequencing.

Structural variation
Large insertion, deletion or 
inversion differences between 
homologous chromosomes,  
or translocation differences 
involving non-homologous 
chromosomes. Operationally 
defined as events >50 bp in 
size to distinguish from smaller 
insertion and deletion events.

Coverage bias
Regions with an excess or 
deficiency in the number of 
sequence reads originating as 
a result of platform differences 
in sequence chemistry, 
amplification or cloning.

Phase
The assignment of genetic 
variants or alleles to one of two 
homologous chromosomes.

De novo assembly
The action of constructing the 
sequence of a genome from 
overlapping DNA sequences 
without guidance from a 
reference genome.

Haplotypes
Sets of genetic variants or 
alleles found on the same 
chromosome that are inherited 
together until disrupted by 
recombination.

Whole-genome shotgun 
sequencing and assembly
(WGSA). The reconstruction  
of a genome from reads 
redundantly sampled at 
random, often with the aid  
of paired-end sequencing.

Contigs
Continuous (or ‘contiguous’) 
sequences produced in a 
de novo assembly, free of  
any gaps.

organizations. Sequence coverage is almost never uni-
form, and repetitive sequences of varying length, copy 
number and sequence complicate this process. This 
makes the correct merging of sequence reads a nearly 
impossible task in specific regions of the genome (FIG. 1). 
The key aspects for de novo assembly and repeat reso-
lution are read length, overlap mapping quality and 
assembly algorithm.

Early genome assembly strategies. Prior to 2007, the 
sequence and assembly of mammalian genomes was an 
expensive and time-consuming operation. Although a few  
groups initially advocated WGSA for mammalian-
genome assembly12, the most-widely used mamma-
lian genomes, human and mouse, were not assembled  
using this approach. Instead, these assemblies are rela-
tively unique among mammalian genomes in that they 
were assembled almost entirely using clone-by-clone-
based sequencing13. Each genome was divided into 
roughly 200-kb-long overlapping fragments that were 
cloned into bacterial artificial chromosomes (BACs) and 
individually assembled. This offered the advantage that 
BAC sequences that are repetitive within the context 
of the entire genome are locally unique, thus making 

gap-free assembly more tractable. As a result, these 
genomes have become the benchmark for compari-
son (FIG. 2a). When the result of a de novo assembly is 
a sequence per chromosome without gaps and with 
99.99% base-pair accuracy, the assembly is considered 
complete; otherwise, it is considered a draft. In practice, 
completeness is considered for only euchromatic por-
tions of the genome, and even the most-recent build of 
the human genome (GRCh38) contains gaps.

De novo genome assembly algorithms. Since 2013, the 
process of de novo assembly of mammalian genomes 
has shifted from purely WGSA using MPS to assembly 
with longer sequence reads generated either syntheti-
cally or by single-molecule sequencing (SMS). Algorithms 
for de novo assembly have evolved in concert with 
these technology improvements. The main algorithmic  
approaches to de novo assembly — overlap-layout- 
consensus (OLC), de Bruijn and, more recently, the 
string graph14 — are each based on a separate theoretical 
graph framework15. Below, we describe some of the sali-
ent features of de novo assembly algorithms and outline 
specifically their treatment of repeats in the assembly  
process (FIG. 3).

Nature Reviews | Genetics

Sequence coverage gaps Segmental duplication-associated gaps

Satellite-associated gaps

c d

a b

Muted gaps

Figure 1 | Types of genome assembly gaps. Abstracted images of genome assemblies are illustrated. The genome 

architecture being resolved is shown at the top of each figure part as thick bars. Repetitive sequences are shown in red. 

Read overlaps are illustrated below the genome as thin bars (middle of each figure part), with regions overlapping 

repeats filled as red. The resulting assembly contigs are shown below (bottom of each figure part). Gaps are shown as 

vertical bars separating contigs to indicate unresolved sequences. a | The absence or reduction in sequence reads due 

to potential amplification or sequencing biases creates ‘dropouts’, where the assembled sequence is incomplete.  

b | Large segmental duplications of high sequence identity (orange and green) make read overlaps ambiguous, leading 

to multiple gaps flanking segmental duplications. The effect becomes exacerbated if the duplications are structurally 

polymorphic in a diploid genome. Long-range sequence information is required to resolve the complete sequence.  

c | Satellite-associated gaps are a special case leading to read ‘pileups’ due to higher-order tandem arrays of repetitive 

sequence, and they cannot be resolved using paired-end sequence information. These occur primarily in centromeric, 

acrocentric and telomeric areas of genomes. d | Muted gaps arise when the assembly is contracted relative to the true 
genome when overlaps are consistent with a smaller representation of the genome. These are often associated with 

repetitive sequences that cannot be easily amplified and/or are incompatible with cloning and propagation (that is, 

when they are toxic to Escherichia coli), such as simple tandem repeats.

REV IEWS

628 | NOVEMBER 2015 | VOLUME 16 www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

Figure from (Chaisson, et al, 2015)
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Early de novo assembly methods

I The most-widely used mammalian genomes, human and mouse, were not assembled using
WGSA

I Instead, human and mouse assemblies are relatively unique among mammalian genomes in
that they were assembled almost entirely using clone-by-clone-based sequencing

I Each genome/chromosome was divided into roughly 200-kb-long overlapping fragments that
were cloned into bacterial artificial chromosomes (BACs) and individually assembled

I These longer 200kb fragments were then connected

I When the result of a de novo assembly is a sequence per chromosome without gaps and
with 99.99% base-pair accuracy, the assembly is considered complete; otherwise, it is
considered a draft.

I Even a recent build of the human genome (GRCh38) contains gaps
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State-of-the-art assembly strategies

I Since 2013, de novo assembly of mammalian genomes has shifted from purely WGSA
using HTS data to assembly with longer sequence reads generated either synthetically or
by single-molecule sequencing (SMS) (e.g. PacBio, Nanopore)

I The main algorithmic approaches to de novo assembly are
I Overlap-layout-consensus (OLC)
I de Bruijn
I (The string graph)
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Overlap-layout-consensus (OLC)

I Contigs: Continuous (or ‘contiguous’) sequences produced in a de novo assembly, free of
any gaps

I Basic steps of OLC algorithms:
I Overlaps between all read pairs are first detected
I Contigs are formed by iteratively merging overlapping reads until a read heuristically

determined to be at the boundary of a repeat is reached



35/ 39

Overlap-layout-consensus (OLC)

Nature Reviews | Genetics

TCG CGA GAT ATC TCT

TCGATCT…

a  OLC

b  de Bruijn

c  String graph

Figure 3 | Genome assembly algorithms. A genome schematic is shown at the top with four unique regions (blue, 
violet, green and yellow) and two copies of a repeated region (red). Three different strategies for genome assembly are 
outlined below this schematic. a | Overlap-layout-consensus (OLC). All pairwise alignments (arrows) between reads 
(solid bars) are detected. Reads are merged into contigs (below the vertical arrow) until a read at a repeat boundary 
(split colour bar) is detected, leading to a repeat that is unresolved and collapsed into a single copy. b | de Bruijn 
assembly. Reads are decomposed into overlapping k-mers. An example of the decomposition for k = 3 nucleotides is 
shown, although in practice k ranges between 31 and 200 nucleotides. Identical k-mers are merged and connected by 
an edge when appearing adjacently in reads. Contigs are formed by merging chains of k-mers until repeat boundaries 
are reached. If a k-mer appears in multiple positions (red segment) in the genome, it will fragment assemblies and 
additional graph operations must be applied to resolve such small repeats. The k-mer approach is ideal for short-read 
data generated by massively parallel sequencing (MPS). c | String graph. Alignments that may be transitively inferred 
from all pairwise alignments are removed (grey arrows). A graph is created with a vertex for the endpoint of every read. 
Edges are created both for each unaligned interval of a read and for each remaining pairwise overlap. Vertices connect 
edges that correspond to the reads that overlap. When there is allelic variation, alternative paths in the graph are 
formed. Not shown, but common to all three algorithms, is the use of read pairs to produce the final assembly product.

Short tandem repeats
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repeats
(VNTR). Any tandem array of 
repeated sequence motifs that 
are highly variable in different 
individuals of a population. 
Historically, these were 
originally used in reference to 
tandem repeats that varied on 
the scale of thousands of base 
pairs over the length of the 
array.

Centromeric
Referring to the primary 
cytogenetic constriction on 
metaphase chromosomes 
where the kinetochore forms 
and spindle fibre attaches 
during cell division. In humans 
the centromere is made up 
primarily of repetitions of 
higher-order alpha-satellite 
DNA.

Heterochromatic DNA
Portions of chromosomes that 
stain densely, are typically 
gene poor and are rich in 
satellite sequences.

Acrocentric
Relating to a type of 
chromosome in which the 
centromere maps very close  
to the short arm. Acrocentric 
chromosomes in humans are 
enriched in beta-satellite and 
ribosomal DNA sequences, 
which are repeated as 
hundreds of copies.

Secondary constrictions
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to metaphase chromosome 
constrictions outside the 
centromere, typically rich in 
satellites and used to help 
identify chromosomes.

Satellite DNA
Highly repetitive DNA 
composed of thousands to 
tens of thousands of tandem 
repeats, usually between 
100–300 bp in length, and 
frequently associated with 
heterochromatin.

Muted gaps
Regions that have been 
incorrectly closed in a genome 
assembly despite additional 
sequences being present at 
these sites in the source 
genome.
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I Some repeats can be resolved

I Imprecise read overlaps are allowed to account for sequencing errors
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de Bruin algorithms

I Basic steps of de Bruin algorithms:
I Start by replacing each read with the set of all-overlapping sequences of a shorter, fixed

length (k typically between 31 and 200)
I Contigs are formed by merging k-mers appearing adjacently in reads stopping at k-mers

from repeat boundaries

I Requires highly accurate reads

I Initially discards some of the ability for reads to resolve repeats longer than k bases
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de Bruin algorithms
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Figure 3 | Genome assembly algorithms. A genome schematic is shown at the top with four unique regions (blue, 
violet, green and yellow) and two copies of a repeated region (red). Three different strategies for genome assembly are 
outlined below this schematic. a | Overlap-layout-consensus (OLC). All pairwise alignments (arrows) between reads 
(solid bars) are detected. Reads are merged into contigs (below the vertical arrow) until a read at a repeat boundary 
(split colour bar) is detected, leading to a repeat that is unresolved and collapsed into a single copy. b | de Bruijn 
assembly. Reads are decomposed into overlapping k-mers. An example of the decomposition for k = 3 nucleotides is 
shown, although in practice k ranges between 31 and 200 nucleotides. Identical k-mers are merged and connected by 
an edge when appearing adjacently in reads. Contigs are formed by merging chains of k-mers until repeat boundaries 
are reached. If a k-mer appears in multiple positions (red segment) in the genome, it will fragment assemblies and 
additional graph operations must be applied to resolve such small repeats. The k-mer approach is ideal for short-read 
data generated by massively parallel sequencing (MPS). c | String graph. Alignments that may be transitively inferred 
from all pairwise alignments are removed (grey arrows). A graph is created with a vertex for the endpoint of every read. 
Edges are created both for each unaligned interval of a read and for each remaining pairwise overlap. Vertices connect 
edges that correspond to the reads that overlap. When there is allelic variation, alternative paths in the graph are 
formed. Not shown, but common to all three algorithms, is the use of read pairs to produce the final assembly product.
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Genome annotation de novo

I Full genome assembly methods can be developed further

I Things to do next:

I Gene finding:
I Ab initio prediction methods: based on statistical signals within the DNA

I E.g.: hidden Markov model-based prediction of genes: Genscan, Augustus, HMMgene

I Align known genes of model species against the new genome
I If RNA-seq available from the same species, align RNA-seq data to the newly discovered

genome

I Gene annotation:
I Function of the genes that can be aligned to new genome give some hint about the newly

sequenced organism
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