# PHYS-C0252 - Quantum Mechanics 

## Exercise set 2

## Due date : November 6, 2020 before 10.00

1. Let $\hat{A}$ be an arbitrary linear operator acting on $\mathcal{H}$. Let $a \in \mathbb{C}$ and $|\phi\rangle,|\psi\rangle \in \mathcal{H}$. Using the definition of the Hermitian conjugate, $(|\psi\rangle, \hat{A}|\phi\rangle)=\left(\hat{A}^{\dagger}|\psi\rangle,|\phi\rangle\right)$ denoted by the dagger, and the properties of the inner product $(\cdot, \cdot): \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$, prove the following identities:
i. $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$
ii. $(a \hat{A})^{\dagger}=a^{*} \hat{A}^{\dagger}$
iii. $(|\psi\rangle\langle\phi|)^{\dagger}=|\phi\rangle\langle\psi|$
iv. $\left(\hat{A}^{\dagger}\right)^{\dagger}=\hat{A}$
2. Show that the following one-dimensional operators are Hermitian
i. Position operator $\hat{x}$. Hint: You may use the complete eigenbasis $\{|x\rangle\}_{x}$ of $\hat{x}$. That is $\hat{x}|x\rangle=x|x\rangle$.
ii. Momentum operator $\hat{p}_{x}=-i \hbar \frac{\partial}{\partial \hat{x}}$. Hint: Use the position representation of an arbitrary quantum state $|\psi\rangle \in \mathcal{H}$, i.e., $\langle x \mid \psi\rangle=\psi(x)$, and the position presentation of the identity operator.
iii. Kinetic energy $\hat{T}=\hat{p}_{x}^{2} / 2 m$.
3. A quantum system described by the Hamiltonian $\hat{H}$ is initially in the state $|\psi\rangle=$ $N\left[\sqrt{2}\left|\phi_{1}\right\rangle+\sqrt{3}\left|\phi_{2}\right\rangle+\left|\phi_{3}\right\rangle+\left|\phi_{4}\right\rangle\right]$, where $\left|\phi_{n}\right\rangle$ are the eigenstates of energy such that $\hat{H}\left|\phi_{n}\right\rangle=n E_{0}\left|\phi_{n}\right\rangle$.
(a) Normalize $|\psi\rangle$ to find a suitable scalar $N$.
(b) Let the energy of $|\psi\rangle$ be measured. Give all possible measurement results and their corresponding probabilities. Assume that the measurement is ideal, i.e., no measurement errors occur.
(c) Consider an operator $\hat{X}$, the action of which on $\left|\phi_{n}\right\rangle(n=1,2,3,4)$ is defined by $\hat{X}\left|\phi_{n}\right\rangle=(n+2) x_{0}\left|\phi_{n}\right\rangle$, where $x_{0}$ is a real-valued scalar. Suppose that a measurement of the energy of the above-defined $|\psi\rangle$ yields $4 E_{0}$. Assume that immediately afterwards, we ideally measure the physical quantity corresponding to $\hat{X}$. What is the value for the quantity obtained in the latter measurement?
4. Consider a system described by the Hamiltonian $\hat{H}=\epsilon(-\mathrm{i}|0\rangle\langle 1|+\mathrm{i}|1\rangle\langle 0|)$, where $\{|0\rangle,|1\rangle\}$ form an orthonormal basis of the considered Hilbert space and $\epsilon$ is a realvalued constant with the dimension of energy.
(a) Find the eigenenergies, $E_{1}$ and $E_{2}$, of $\hat{H}$.
(b) If the system is initially (at $t=0$ ) in the state $|\psi(0)\rangle=|0\rangle$, find the probability for a measurement of energy at $t=0$ to yield: (i) $E_{1}$ and (ii) $E_{2}$.
(c) Find the expectation value of the energy $\langle H\rangle$ at time $t=0$.
(d) Find $\sqrt{\left\langle H^{2}\right\rangle-\langle H\rangle^{2}}$ at time $t=0$.
(e) Find the state $|\psi(t)\rangle$. Hint: you need to solve the Schrödinger equation.
