Aalto-yliopisto
Teknillinen korkeakoulu

EXERCISE 4

ELEC-E8409 HIGH VOLTAGE ENGINEERING

arslan.bashir@aalto.fi

Question 1

- Disruption of capacitive current occurs when an idle (no-load) cable or a storage capacitor is disconnected. Derive the maximum recovery voltage between the switch terminals.

Some general thoughts from model solutions:

Capacitive load: input voltage is -90° out of phase with load current (current leading voltage).

$$
\begin{gathered}
\frac{U}{2}=Z I \\
\sqrt{2} U \sin (\underbrace{\left.\omega t+\frac{\pi}{2}\right)}=\left(\frac{1}{\omega C}-\omega L\right) i_{c} \\
\omega t-\varphi=\omega t-\left(-\frac{\pi}{2}\right)
\end{gathered}
$$

$$
i_{c}=\frac{\sqrt{2} U}{\frac{1}{\omega C}-\omega L} \sin \left(\omega t+\frac{\pi}{2}\right)
$$

A more power system engineer way:

$$
\begin{aligned}
& \bar{U}=\bar{Z} \bar{I} \\
& \bar{U}=\left(j \omega L+\frac{1}{j \omega C}\right) \bar{I}=\left(j \omega L-j \frac{1}{\omega C}\right) \bar{I}=j\left(\omega L-\frac{1}{\omega C}\right) \overline{\bar{l}} \\
& j \bar{U}=j \times j \times\left(\omega L-\frac{1}{\omega C}\right) \bar{I}=\left(\frac{1}{\omega C}-\omega L\right) \bar{I} \\
& \rightarrow \bar{I}=\frac{j \bar{U}}{\left(\frac{1}{\omega C}-\omega L\right)} \xrightarrow{\text { time domanin }} i_{c}=\frac{\sqrt{2} U}{\left(\frac{1}{\omega C}-\omega L\right)} \sin \binom{\omega t+\frac{\pi}{2}}{\times j=++90^{\circ}}
\end{aligned}
$$

Voltage over capacitance C

$$
u_{c}=\frac{\frac{1}{\omega C}}{\frac{1}{\omega C}-\omega L} \sqrt{2} U \sin \omega t=\frac{\sqrt{2} U}{1-\omega^{2} L C} \sin \omega t
$$

Maximum when $\sin \omega t=1$

$$
u_{c(\max)}=\frac{\sqrt{2} U}{1-\omega^{2} L C}
$$

A 57 Aalto-yliopisto

Teknillinen korkeakoulu

Recovery voltage

Voltage between terminals $u_{A B}=u_{c(\max)}-u$

$$
u_{A B}=\frac{\sqrt{2} U}{1-\omega^{2} L C}-\sqrt{2} U \sin \omega t
$$

Maximum when $\sin \omega t=-1 \quad u_{A B(\text { max })}=\frac{\sqrt{2} U}{1-\omega^{2} L C}+\sqrt{2} U=\frac{2-\omega^{2} L C}{1-\omega^{2} L C} \sqrt{2} U$

$$
\begin{gathered}
\text { In practice, } \frac{1}{\omega C} \gg \omega L \Rightarrow \begin{array}{l}
1>\omega^{2} L C^{1} \\
u_{A B \text { (max })}=\frac{2-\omega^{2} L C}{1-\omega^{2} L C} \sqrt{2} U \approx 2 \sqrt{2} U
\end{array}
\end{gathered}
$$

Question 2

- An overhead line has characteristic impedance of 450Ω. A 200 kV rectangular impulse 10 km in length propagates along the line. What is the energy of the impulse? How much of the energy is in the magnetic field and how much is in the electric field?

$$
\text { Impulse duration } t=l / v \quad \text { (where } v=c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \text {) }
$$

Impulse energy $W=\int_{0}^{t} P d t$

$=P \cdot t=\frac{u^{2}}{Z} \cdot t=\frac{u^{2}}{Z} \cdot \frac{l}{v}=\frac{\left(200 \cdot 10^{3}\right)^{2}}{450} \cdot \frac{10 \cdot 10^{3}}{3 \cdot 10^{8}}=2962.96 \mathrm{Ws} \underset{\widetilde{2} 3.0 \mathrm{~kJ}}{-}$

Energy W = 3 kJ

How much of the energy is in the magnetic field and how much is in the electric field?

$$
\begin{gathered}
\begin{array}{l}
\gamma=\text { capacitance per unit length } \\
\lambda=\text { inductance per unit length } \\
L=\text { inductance for length of cable }(\lambda l)
\end{array} \\
Z_{w}=\sqrt{\frac{l}{c}} \sqrt{\text { Inductance }} \begin{array}{l}
\text { /capacitance }
\end{array} \\
\left.\hline \sqrt{\frac{\lambda}{\gamma}} \cdot l\right) \cdot \sqrt{\lambda \gamma}=i^{2} \cdot \lambda l=\frac{1}{\sqrt{L C}}
\end{gathered}
$$

Inductive Energy: $\quad W_{L}=\frac{1}{2} i^{2} L: \frac{1}{2} W \approx 1.5 \mathrm{~kJ}$
Capacitive Energy: $W_{C}=W-W_{L} \neq \frac{1}{2} W=W_{L} \approx 1.5 \mathrm{~kJ}$

Energy is distributed half into the electric field and half in the magnetic field

$$
d W_{\text {ind }}=P d t=i \cdot u d t=i \cdot \underbrace{L \frac{d i}{d t}} d t=L i d i \xrightarrow{\text { int }} W=\frac{1}{2} L i^{2}
$$

Question 3

- A step wave with amplitude 450 kV propagates along an overhead line to a $110 / 20 \mathrm{kV}$ transformer. The characteristic impedance of the line is 450Ω. The primary winding is protected by a nonlinear resistor type arrester with inception voltage $U_{i}=550 \mathrm{kV}$. How long does it take for the arrester to activate? How large capacitors have to be connected to the secondary winding and ground so that the capacitive overvoltage over the transformer does not exceed 75 kV (secondary test voltage)? The transformer can be described as a capacitive equivalent circuit used for impulse voltage testing.

$$
\begin{gathered}
u_{2}=\frac{\frac{1}{s C}}{\frac{1}{s C}+Z} \cdot \frac{2 u}{s}=\ldots=2 u \\
\text { Laplace transform: } \quad L^{-1}\left\{2 u \frac{\frac{1}{Z C}}{s\left(s+\frac{1}{Z C}\right)}\right\}=2 u\left(1-e^{-t / Z C}\right) \\
u_{2}=2 u\left(1-e^{-t / \tau}\right) \quad \text { where } \quad \tau=Z C
\end{gathered}
$$

Time to activate:

$$
u_{2}=2 u\left(1-e^{-t / \tau}\right) \Rightarrow e^{-t / \tau}=1-\frac{u_{2}}{2 u} \Rightarrow-\frac{t}{\tau}=\ln \left(1-\frac{u_{2}}{2 u}\right)
$$

$$
\left[\begin{array}{l}
u_{i}=u_{2}=550 \mathrm{kV} \\
u=450 \mathrm{kV}
\end{array}\right]
$$

$$
t=-\tau \ln \left(1-\frac{u_{2}}{2 u}\right)=2.69 \cdot 10^{-6} \approx 2.7 \mu \mathrm{~s}
$$

How large capacitors have to be connected to the secondary winding so that the capacitive overvoltage over the transformer does not exceed 75 kV ?

Here $u 1$ is the same as u2 in previous calculations...

Cap. coupl. between $1 . \& 2$.

$$
C_{10} \stackrel{\sim}{\square}=u_{1} \stackrel{C_{12}}{=} C_{20}+C_{x} \downarrow u_{2}=\frac{\frac{1}{s\left(C_{20}+C_{x}\right)}}{\frac{1}{s C_{12}}+\frac{1}{s\left(C_{20}+C_{x}\right)}} \cdot u_{1}
$$

$$
\begin{gathered}
\frac{u_{2}}{u_{1}}=\frac{\frac{1}{s\left(C_{20}+C_{x}\right)}}{\frac{1}{s C_{12}}+\frac{1}{s\left(C_{20}+C_{x}\right)}}\left(\cdot \frac{s\left(C_{20}+C_{x}\right)}{s\left(C_{20}+C_{x}\right)}\right)=\frac{1}{\frac{s\left(C_{20}+C_{x}\right)}{s C_{12}}+1}=\frac{1}{\frac{C_{20}+C_{x}}{C_{12}}+1} \\
=\frac{1}{\frac{C_{20}+C_{x}}{C_{12}}+\frac{C_{12}}{C_{12}}}=\frac{1}{\frac{C_{20}+C_{x}+C_{12}}{C_{12}}}=\frac{C_{12}}{C_{20}+C_{x}+C_{12}}
\end{gathered}
$$

Solve for $C_{x} \ldots \quad C_{x}=\frac{u_{1}}{u_{2}} C_{12}-\left(C_{12}+C_{20}\right)$

$$
\left[\begin{array}{l}
u_{1}=550 \mathrm{kV} \\
u_{2}=75 \mathrm{kV}
\end{array}\right] \quad C_{x}=21.66 \cdot 10^{-9} \mathrm{~F} \approx 22 \mathrm{nF}
$$

