LECTURE 3: Li-ion (& proton) conductors

Functional Inorganic Materials Fall 2020

Tuesdays: 10.15 - 12.00 Thursdays: 10.15 - 12.00 Remote Zoom lectures

#	Date	Who	Торіс
1	Tue 27.10.	Maarit	Introduction + Superconductivity: High- T_c superconducting Cu oxides
2	Thu 29.10.	Maarit	Ionic conductivity (Oxygen): SOFC & Oxygen storage
3	Tue 03.11.	Maarit	Ionic conductivity (Lithium & Proton): Li-ion battery
4	Thu 05.11.	Maarit	Hybrid materials
5	Tue 10.11.	Antti	Thermal conductivity
6	Thu 12.11.	Antti	Thermoelectricity
7	Tue 17.11.	Antti	Ferro-, pyro-, and piezoelectricity
8	Thu 19.11.	Antti	Magnetic and multiferroic oxides
9	Tue 24.11.	Mady	Metal-based energy-saving applications
10	Thu 26.11.	Mady	Metal-based energy-efficient windows and solar absorbers
11	Tue 01.12.	Mady	Metal oxides for energy-saving applications: Past and new trends
12	Thu 03.12.	Mady	Materials design and new perspectives

#	DATE	TOPIC & KEYWORDS
1	27.10.	(High-T _c) Superconductivity New-material design, Multi-layered crystal structure, Mixed-valency, Oxygen nonstoichiometry
2	29.11.	Ionic conductivity: Oxygen Oxygen vacancies, Redox-active cations, Mixed valency, Cation substitutions (isovalent/aliovalent), Crystal symmetry, Oxygen storage, SOFC
3	03.11.	Ionic conductivity: Hydrogen & Lithium Water absorption & Oxide/hydroxide, Li-ion battery, Solid-state electrolytes
4	05.11.	Hybrid materials Inorganic-organic materials, MOF, ALD/MLD, Layer-engineering

LECTURE EXERCISE 3

- 1. Which useful function could be anticipated for an oxygen-deficient oxide material that can absorb water? Explain !
- 2. Explain why a layered crystal structure is useful for Li-ion battery electrode materials.
- 3. What happens to (a) structure, (b) electrical conductivity, and (c)) Li-ion conductivity of Li_3PO_4 when nitrogen is introduced into it to form LiPON $(Li_xPO_vN_z)$? Why these are important changes?

NOTE: There will be an additional question in the Exercise 4 which is partly related to the topics covered in Lecture 3.

IONIC CONDUCTIVITY

<u>Other terminologies</u>: Fast ion conductor, Superionic conductor, Solid electrolyte, Solid state ionics

- Highly mobile ions move/hop through an otherwise rigid crystal structure
- Fast ion conductors are intermediate between regular crystalline solids with immobile ions & liquid electrolytes (without a regular structure) with fully mobile ions
- Measurement of ionic conductivity: electrochemical impedance spectroscopy (EIS)

APPLICATIONS:

batteries, fuel cells, supercapacitors, chemical sensors, separation membranes, ...

EFFECTIVE IONIC RADII					
O ²⁻	140 pm				
OH-	137 pm				
Li ⁺	60 pm				
H+	very small				

mobile vacancy

mobile interstitial

PROTON CONDUCTORS

- **PROTON CONDUCTOR:** (solid) electrolyte in which movable hydrogen ions are the primary charge carriers
- APPLICATIONS:
 - hydrogen separation
 - sensors
 - fuel cells: PEM, SOFC (intermediate temperature range of 200-500 °C)

Η

- MATERIALS:
 - water/ice
 - polymers (e.g. nafion)
 - oxidic materials (oxides, phosphates, sulphates, etc.)
- **PROTON-CONDUCTING OXIDES:**
 - Historically important perovskites (1980, Iwahara et al.): LaYO₃, SrZrO₃
 - Present perovskite prototypes: SrCeO₃, BaCeO₃
- NEW OXIDE CANDIDATES:
 - Ruddlesden-Popper phases
 - Pyrochlores R₂(Zr,Y)₂O₇, R₂(Ti,In,Mg)₂O₇

$Ba_2In_2O_5$ (BalnO_{2.5})

- Oxide ion conductor
- Brownmillerite structure derived from the perovskite structure (oxygen vacancies ordered into layers)
- At 800 °C oxygen vacancies disorder and the oxide ion conductivity jumps from 10⁻³ S/cm to 10⁻¹ S/cm
- ADDITIONAL INTERESTING FEATURE: BaZrO₃-Ba₂In₂O₅ solid solution absorbs water to fill oxygen vacancies and becomes a good proton conductor

WATER/PROTON ABSORPTION OF OXIDES

- Affinity of oxide ion O^{2-} for H⁺ is great \rightarrow in water solutions it immediately captures a proton from the H₂O solvent molecule
- Also in solid state O²⁻ ions tend to combine with protons
- Proton is very small → when it combines with oxygen the resultant OH⁻ group is almost identical in size with an O²⁻ ion → the most visible change is seen in the charge balance
- Many natural oxide minerals contain OH⁻ groups, e.g. pyrochlores
- Many (nonstoichiometric/mixed-valence/highly-oxidized) metal oxides readily absorb water/protons → potential proton conductors

Ruddlesden-Popper $A_{n+1}B_nO_{1+3n}$

- Enough space for interstitial oxygen, water intercalation, etc.

Water-derivatives of Sr_{n+1}Fe_nO_{3n+1}

Lehtimäki, Hirasa, Matvejeff, Yamauchi & Karppinen, J. Solid State Chem. **180**, 3247 (2007).

T. Hosomi, H. Suematsu, H. Fjellvåg, M. Karppinen & H. Yamauchi, J. Mater. Chem. 9, 1141 (1999)

Chemistry Nobel 2019

Stanley Whittingham (UK):

- Exxon: TiS₂ cathode 1976

John Goodenough (US):

- Univ. Oxford: LiCoO₂ cathode 1980

Akira Yoshino (Jpn):

- Asahi Kasei: carbon-based anode 1985

Commercialization: Sony 1991

Stanley Whittingham (born 1941 UK)

- PhD 1968 (Oxford University, Chemistry)
- Postdoc 1968-1972 (Stanford University)
- Exxon 1972-1984: new superconductors \rightarrow TaS₂
 - TiS₂ cathode 1976 (Li anode & LiPF₆ electrolyte)
- Prof. 1988 now (Binghamton University, New York)
- Scopus (337 publ; 21 000 citations)

John B. Goodenough (born 1922 Germany/USA)

- BSc 1943 (Yale University, Mathematics)
- PhD 1952 (University of Chicago, Physics)
- Research team leader 1952-1976 (MIT Lincoln Laboratory)
 - Goodenough–Kanamori rules (magnetism)
 - random access memory (computers)
- Prof/Head 1976-1986 (Univ. Oxford, Inorganic Chemistry)
 - Li_xCoO₂ cathode 1980 (LiMn₂O₄ cathode 1986)
- Prof. 1986 now (University of Texas at Austin)
 - LiFePO₄ 1996
- e.g. Japan Prize 2001, Enrico Fermi Award 2009, National Medal of Science 2011, Draper Prize 2014, Welch Award 2017, Copley Medal 2019
- Scopus (887 publ.; 85 000 citations)

Akira Yoshino (born 1948 Japan)

- MSc 1972 (Kyoto University)
- Asahi Kasei Co. 1972 now:
 - Carbon-based anode 1985 (with LiCoO₂ cathode)
 - Safety tests !
- Commercialization: Sony 1991
- PhD 2005 (Osaka University)
- Prof. 2017 now (Meijo University, Nagoya)
- Scopus (17 publ; 750 citations)

LITHIUM-ION BATTERY

- Secondary (= rechargable) battery:
 - charged/recharged hundreds/thousands times
- Li-ion battery does not involve extensive chemical reactions (which would soon destroy the battery) but is based on movement/intercalation of Li⁺ ions between/within the anode and cathode materials
- Electrode materials (graphite and LiCoO₂) have layered crystal structures capable of accommodating large amounts of Li⁺ ions
- Light-weight, high voltage, large energy density
- No "memory effect", small self discharge
- Cell phones, laptops, wearable electronics, electric cars and other vehicles, energy storage related to solar cells and wind power, etc.

PRESENT MATERIAL VARIETY

- **Cathode:**
- LiCoO₂, Li(Co_{1/3}Mn_{1/3}Ni_{1/3})O₂, LiMn₂O₄, LiFePO₄
- Anode: Graphite, Li₄Ti₅O₁₂
- **Electrolyte:** LiPF₆ (in ethylene carbonate)
- Binder: PVDF (polyvinyl difluoride) + NMP (N-methylpyrrolidone)

Capacity of a battery needed for an electric car is 10 000 times larger than that of a mobile phone

Nikkei Electronics Asia

Helsingin Sanomat 23.10.2018

AKKUALA SAA UUTTA PUHTIA

Saksalainen yhtiö Basf rakentaa Suomeen akkukemikaalitehtaan

Design principles for solid-state lithium superionic conductors *Nature Materials* 14, 1026 (2015).

wet-cell

Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li⁺ conductivity in the solid state comparable to existing liquid electrolytes (> 1 x 10⁻³ S cm⁻¹) is particularly challenging.

liquid

In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the **desirable structural attributes of good Li-ion conductors:** We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent **tetrahedral sites is most desirable for achieving high ionic conductivity**, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors.

SOLID ELECTROLYTE: ionically highly conducting but electronically insulating !

USE of SOLID ELECTROLYTE

PROS

- Simpler cell structure, no need for expensive separator
- Possibility to use Li metal anode
- High decomposition voltage

 → Possibility to use >5 V cathodes → Higher energy density
- Non-flammable → Safety
- Wider operation temperature range
- No risk for electrolyte leakage
- Simpler manufacturing process → Lower cost
- Components can be manufactured in air

CONS

- Higher density
- Interface between the solid electrolyte-electrode

(a)

Liquid electrolytes

Carbonate: EC, DEC, PC, DMC Ether: DOL, DME Fluorinated carbonate: F-EC, F-EPE

Ceramic electrolytes

LiPON Li₃N Perovskite: Li_{0.34}La_{0.51}TiO_{2.94} LISICON: Li_{3.5}Si_{0.5}P_{0.5}O₄ Argyrodite: Li₉PS₅Cl Garnet: Li₇La₃Zr₂O₁₂ NASICON: Na_{3.3}Zr_{1.7}La_{9.3}Si₂PO₁₂ Sulfide: Li₂S-P₂S₅, Li₁₀GeP₂S₁₂ Alumina: Na- β "-alumina

Solid polymer electrolytes (SPEs)

PEO-based SPEs Single ion conducting SPEs

Hybridicomposite electrolytes

Gel polymer electrolytes High-salt electrolytes IL-nanoparticle hybrid electrolytes SPEs with inorganic fillers Polymer-nanoparticle hybrid electrolytes Polymer-ceramic composite electrolytes

Bulk-type battery

ALD OF LIPON

- LiPON: Lithium phosphorous oxynitride Li_xPO_{3-y}N_z
- Amorhous intermediate between crystalline $LiPO_3 \rightarrow Li_2PO_2N$
- (Most) promising solid-state electrolyte for thin-film Li-ion microbattery
- Ionic conductivity greatly enhanced by N doping (up to 10⁻⁶ S cm⁻¹)

	RBS-NRA	RT ionic cond.
290 °C	Li _{0.90} PO _{3-v} N _{0.55}	0.9 x 10 ⁻⁷ S cm ⁻¹
330 °C	Li _{0.94} PO _{3-y} N _{0.60}	6.6 x 10 ⁻⁷ S cm ⁻¹

M. Nisula, Y. Shindo, H. Koga & M. Karppinen, *Chem. Mater.* **27**, 6987 (2015).

Atomic Layer Deposition (ALD)

- Advanced gas-phase thin-film tec
- Self-limiting surface reactions
- Pin-hole free
- Large-area homogeneous
- Conformal

Electroluminescent display

MOSFET transistor

Some historical steps of ALD Technology

ADVANTAGES of ALD

- Relatively inexpensive method
- Excellent repeatability
- Dense and pinhole-free films
- Accurate and simple thickness control
- Large area uniformity
- Easy doping
- Excellent conformality

- Gentle deposition process
- Organic/polymer films
- Inorganic/organic hybrid materials

