
Monte Carlo method in particle transport simulations
Lecture 4 – Transport simulation

Jaakko Leppänen

Department of Applied Physics
Aalto University, School of Science
Jaakko.Leppanen@aalto.fi

Nov. 3, 2020

Lecture 4: Transport simulation
Nov. 3, 2020

2/34

Topics of this lecture
Lecture topics:

I Sampling the path length
I Tracking algorithms:

1. Surface-tracking

2. Delta-tracking

I Simulating the particle population:

1. External source simulation

2. k-eigenvalue criticality source simulation

I Result estimators

4th programming exercise

Lecture 4: Transport simulation
Nov. 3, 2020

3/34

Simulated random walk
The simulated random walk proceeds from one interaction to the next, following a very simple
procedure:

1) Sample path length (distance to next collision)

2) Transport particle to the collision point

3) Sample interaction

If the sampled interaction is scattering, the procedure restarts from beginning by sampling the
distance to the next collision. The direction and energy are changed in the scattering event.

If the sampled interaction fission, a number of new neutrons are produced with energy and direc-
tion sampled from the associated distributions.

The fact that the particle may cross the boundary between two material regions means that the
interaction probability changes along the sampled path, i.e. the sample is not valid beyond the
material boundary. There are two options:

1) Stop the track at the boundary crossing and sample a new path length according to the
new interaction probability (surface-tracking)

2) Account for the changing probability by rejection sampling applied to each tentative
collision site (delta-tracking)

Both options are introduced in the following, after deriving the equation for the sampled path
length.

Lecture 4: Transport simulation
Nov. 3, 2020

4/34

Simulated random walk: sampling the path length
By definition, the interaction probability per traveled path length is given by the macroscopic total
cross section (denoted here as Σ). If it is assumed that the particle travels through an infinite
homogeneous medium characterized by constant total cross section, the probability that the next
collision will occur within distance dl from the current position is:

dP = Σdl (1)

Let P0(l) be the probability that the particle has reached position l without any interaction. When
the particle moves forward by distance dl from l, the reduction in P0(l) is equal to the conditional
probability that the particle will interact within the interval:

dP0 = −P0(l)dP = −P0(l)Σdl (2)

The solution of this differential equation yields for the non-interaction probability :

P0(l) = e
−lΣ (3)

Using this result, the conditional probability that the particle first moves distance l without interac-
tions and then has its first interaction within the next dl is given by:

P0(l)dP = P0(l)Σdl = Σe
−lΣ

dl (4)

Lecture 4: Transport simulation
Nov. 3, 2020

5/34

Simulated random walk: sampling the path length
In other words, Eq. (4) gives the probability density function (PDF) of the distance to the next
collision:

f(l) = Σe
−lΣ (5)

The probability distribution is exponential and the distance to the next collision site can be sampled
using the inversion method (see Lecture 1).

The cumulative distribution function (CDF) is given by integration:

F (l) =

∫ l

0

Σe
−l′Σ

dl
′

= 1− e−lΣ (6)

The inverse of the CDF in (6) is

F
−1

(ξ) = −
1

Σ
log(1− ξ) (7)

Since ξ is a uniformly distributed random number on the unit interval, so is 1−ξ, and the collision
distance can be sampled from:

l = −
1

Σ
log ξ (8)

It is important to note that the prerequisite of using (8) for sampling the distance to the next
collision site is that the material is infinite and homogeneous. If this is not the case, the second
equality in (6) does not hold, and path lengths sampled from (8) are not statistically valid.

Lecture 4: Transport simulation
Nov. 3, 2020

6/34

Simulated random walk: sampling the path length
The most common case when the previous condition is violated is when the particle crosses a
boundary between two material regions.1 In such case, the PDF of free path length is a piece-
wise continuous function, which can be written in two parts, taking into account the conditional
probability that the particle reaches the boundary crossing at δ:

f(l) =

Σ1e
−Σ1l when l ≤ δ

e
−Σ1δΣ2e

−Σ2(l−δ) when l > δ
(9)

This approach becomes somewhat impractical in the general case, when the particle crosses not
one but several material boundaries and passes through multiple regions with different interaction
probabilities.

A better option is to take advantage of the fact that the interaction probability within the next dl
is independent of the distance l traveled so far. This essentially means that any point within the
particle’s path can be considered a starting point of a new sample.

1The condition is also violated when the material is inhomogeneous or the microscopic cross sections are not
constant. This is the case, for example, when a neutron travels through boiling coolant or a fuel pin with a steep
temperature gradient. There are techniques to account for the continuous changes in material properties, but the
conventional approach is to discretize the distribution into homogeneous sub-regions.

Lecture 4: Transport simulation
Nov. 3, 2020

7/34

Simulated random walk: surface-tracking algorithm
If it is known that the particle makes it to the next material boundary and interacts somewhere
beyond the other side, the point of crossing can be taken as the starting point of a new path.
This is the general idea in the surface-tracking algorithm, in which the track is stopped at each
boundary crossing, and a new path sampled using the cross section of the next material.

The algorithm requires calculating the distance to the nearest boundary surface. The only way
to accomplish this is to loop over all candidate surfaces and pick the shortest value. The routine
also needs to perform the cell test to obtain the material located on the other side of the boundary
crossing.2

Surface tracking is considered the standard tracking algorithm and it is used by virtually every
Monte Carlo particle transport code. The method has a few drawbacks related to its efficiency in
complex geometries:

I Determining the distance to the nearest boundary can become computationally expensive
if the cells are comprised of a large number of surfaces

I The fact that the particle has to be stopped at each boundary crossing becomes a
computational bottleneck when the mean-free-path is long compared to the dimensions

2The routine can be optimized to some extent by testing only cells that share the same boundary surface.

Lecture 4: Transport simulation
Nov. 3, 2020

8/34

Simulated random walk: surface-tracking algorithm

Algorithm 1 Surface-tracking algorithm

1: for j ← 1 to∞ do . Loop until collision
2: Get cross section Σj at current position rj . Call cell search routine
3: Get distance δ from rj to nearest boundary in Ω̂ . Call surface distance routine
4: l← − log(ξ)/Σj . Sample distance to collision
5: if l < δ then . Check distance
6: rj+1 ← rj + lΩ̂ . Move particle to collision site
7: Break loop . Proceed to collision routine
8: else
9: rj+1 ← rj + (δ + ε)Ω̂ . Move particle over boundary crossing3

10: end if
11: end for

3A small extrapolation distance ε is added to the surface distance to avoid problems with limited floating point
precision and to ensure that the cell search routine puts the particle on the correct side of the surface.

Lecture 4: Transport simulation
Nov. 3, 2020

9/34

Simulated random walk: delta-tracking algorithm
An alternative to surface-tracking is the Woodcock delta-tracking algorithm, which is based on
the rejection sampling of particle path lengths. The procedure relies on the concept of a virtual
collision, which is a fictive interaction that preserves the energy and direction of the particle.

Since virtual collisions do not change the random walk in any way, the material total cross section
Σ can be adjusted with an arbitrary virtual collision cross section Σ0:

Σ
′
(r, E) = Σ(r, E) + Σ0(r, E) (10)

without changing the outcome of the simulation. It is then possible to adjust the cross sections of
all material regions in the system such that:

Σ
′
1(E) = Σ

′
2(E) = Σ

′
3(E) · · · = Σm(E) (11)

where Σm is called the majorant cross section.

In practice, it is not necessary to define the virtual collision cross sections at all if the majorant is
simply taken as the maximum of all material totals at each energy point:

Σm(E) = max
[
Σ(r, E)

]
(12)

Unlike the physical total cross section, which depends on the material located at the particle
position, the majorant cross section is completely independent of the spatial coordinates.

Lecture 4: Transport simulation
Nov. 3, 2020

10/34

Simulated random walk: delta-tracking algorithm
The point of having a macroscopic cross section that is uniform throughout the geometry is that
when used for sampling path lengths:

l = − log(ξ)/Σm (13)

the values are statistically valid regardless of the number of material boundaries crossed.

At the end point of the sampled path the tracking routine performs rejection sampling. The prob-
ability to accept the collision is given by ratio of the physical total cross section to the majorant:

P =
Σ(r, E)

Σm(E)
(14)

If the collision is rejected, a new path length is sampled from (13) and the particle is moved to the
next collision site candidate.

Since the majorant cross section is always larger than or equal to the total cross section, the path
lengths sampled in delta-tracking are, on the average, shorter than those sampled with surface-
tracking. The average physical distance between two collisions is preserved, as some paths are
extended over multiple virtual collisions.

Lecture 4: Transport simulation
Nov. 3, 2020

11/34

Simulated random walk: delta-tracking algorithm

Algorithm 2 Delta-tracking algorithm

1: Get majorant cross section Σm

2: for j ← 1 to∞ do . Loop until collision
3: l← − log(ξ)/Σm . Sample distance to collision
4: rj+1 ← rj + lΩ̂ . Move particle to tentative collision site
5: Get cross section Σj+1 at current position rj+1 . Call cell search routine
6: if ξ < Σj+1/Σm then . Rejection sampling
7: Break loop . Proceed to collision routine
8: else
9: Virtual collision . Collision point rejected

10: end if
11: end for

Lecture 4: Transport simulation
Nov. 3, 2020

12/34

Simulated random walk: delta-tracking algorithm
The advantage of delta-tracking over the surface-tracking algorithm is that there is no need to
calculate the surface distances or stop the particle at the material boundaries. This becomes sig-
nificant for computational performance in geometries where the mean-free-path is long compared
to dimensions.4

Delta-tracking also has its drawbacks. Since the majorant cross section reflects the largest in-
teraction probability within the system, the efficiency of the rejection sampling loop may become
poor in the presence of localized heavy absorbers (control rods, burnable absorber pins, etc.) that
dominate the majorant cross section, but occupy a relatively small volume in the geometry.

Another drawback is that delta-tracking rules out the use of the track-length estimate (TLE) of
particle flux, discussed later on, and reaction rate estimates need to be calculated using the
potentially less efficient collision estimator (CFE).

4Since the majorant cross section used for sampling the path lengths does not depend on the spatial coordinates
and the material total is needed only at discrete locations, variations of delta-tracking can be used for modeling
inhomogeneous material compositions.

Lecture 4: Transport simulation
Nov. 3, 2020

13/34

Simulated random walk: delta-tracking algorithm

Majorant

Fuel

Fuel + Gd

Coolant

Moderator

Cladding

10−11 10−9 10−7 10−5 10−3

10−1

10−1

100

101

101

102

103
M
ac
ro
sc
o
p
ic
cr
o
ss

se
ct
io
n
(1
/c
m
)

Neutron energy (MeV)

Fuel

Coolant

Moderator

10−11 10−9 10−7 10−5 10−3 10−1 101
0

20

40

60

80

100

Neutron energy (MeV)

R
ej
ec
ti
o
n
p
ro
b
ab
il
it
y
(%

)

Figure 1: Left: Majorant and macroscopic neutron cross sections in a system with localized heavy
absorber (Gd-fuel pins in BWR assembly). The majorant is dominated by the high capture cross sections
of 155Gd and 157Gd, even though the burnable absorber pins occupy a relatively small volume of the
geometry. Right: Rejection probability in coolant and moderator where neutrons spend most of their
lifetime. The efficiency of the rejection sampling scheme becomes poor especially at low energy.

Lecture 4: Transport simulation
Nov. 3, 2020

14/34

Simulating the particle population
The simulated random walk of a single particle history does not yet provide any useful results
describing the behavior of the population. Instead, the transport simulation is repeated for a large
number of histories, typically in the order of millions or even billions.

There are different ways in which the simulation can be carried out, corresponding to the different
formulations of the transport equation, for example:

1) External source simulation

2) k-eigenvalue criticality source simulation (neutrons only)

3) α-eigenvalue criticality source simulation (neutrons only)

The first two are the most common simulation modes. α-eigenvalue simulations can be useful in
some applications when studying the time-behavior of sub- or super-critical systems.

It is assumed that the simulated population size is divided into a number of equal size batches.
The statistical estimators (mean + standard deviation) are collected by averaging over the batch-
wise results.

Lecture 4: Transport simulation
Nov. 3, 2020

15/34

Simulating the particle population: external source simulation
The most straightforward way to run the transport simulation is the external source mode, in
which each particle history is started from a user-specified source distribution. The random walk
is carried out from beginning to end, and fission divides the history into multiple branches.

This simulation mode corresponds to solving the time-dependent transport equation:

1

v

∂

∂t
ψ(r, Ω̂, E, t) + Ω̂ · ∇ψ(r, Ω̂, E, t) + Σ(r, E)ψ(r, Ω̂, E, t) = Q+ S + F (15)

where Q is the external source, S is the scattering source and F is the fission source. External
source transport simulation is basically always time-dependent, but if the source term is constant,
the results can be integrated and averaged over time.

In its standard form neutron external source simulations are limited to non-multiplying and sub-
critical systems, where the fission chains are finite in length. Applications include:

I Radiation shielding and dosimetry calculations

I Engineering applications (neutron diagnostics, oil well logging)

I Fusion neutronics

I Sub-critical accelerator-driven systems (ADS)

All transport simulations for photons, electrons, etc. are based on similar methods.

Lecture 4: Transport simulation
Nov. 3, 2020

16/34

Simulating the particle population: external source simulation

Algorithm 3 External source simulation

1: for m← 1 to M do . Loop over batches
2: for n← 1 to N do . Loop over particles per batch
3: Sample r, E, Ω̂ and t for source particle n . Call source routine
4: Move particle n to temporary bank
5: while more particles in bank do
6: Retrieve particle from bank (obtain r, E, Ω̂ and t)
7: while particle is alive do
8: Move particle to next collision site r′ . Call surface- or delta-tracking routine
9: Sample reaction:

10: if Capture (or particle escapes the geometry) then
11: Terminate history
12: else if Scattering then
13: Sample new E and Ω̂
14: else if Fission then
15: Store ν new source particles in bank and terminate history
16: end if
17: end while
18: end while
19: end for
20: Handle batch-wise statistics
21: end for

Lecture 4: Transport simulation
Nov. 3, 2020

17/34

Simulating the particle population: criticality source simulation
Simulation of a self-sustaining chain reaction is carried out using criticality source methods. The
simulation is run in generations, or cycles, and the fission neutron distribution in the previous cycle
forms the source distribution for the next cycle. The most common method is the k-eigenvalue
simulation, which corresponds to solving the k-eigenvalue form of the transport equation:

Ω̂ · ∇ψ(r, Ω̂, E) + Σ(r, E)ψ(r, Ω̂, E) = S +
1

k
F (16)

where k is the criticality eigenvalue, i.e. the neutron multiplication factor.

The most obvious difference between external and criticality source simulation is the way the
neutron source is formed. In external source mode all neutrons are started from a user-defined
distribution, while in criticality source mode the distribution is formed by iteration.

The source distribution starts with an initial guess, and it converges towards its final form cycle-
by-cycle.5 Before convergence is reached, the initial guess is reflected in the simulated neutron
histories, and a number of initial cycles have to be skipped before starting the collection of results.

Slow source convergence can be a major problem in large geometries with high dominance ratio.6

There are different ways to test and accelerate convergence, but it is not uncommon that the
inactive cycles take a significant fraction of the overall running time.

5In deterministic transport theory the converged source distribution corresponds to the fundamental mode of the
neutron flux, which begins to dominate after all transient modes have died out.

6The ratio of second to first eigenvalue.

Lecture 4: Transport simulation
Nov. 3, 2020

18/34

Simulating the particle population: criticality source simulation
If the neutron multiplication factor differs from unity, the source population increases or decreases
from cycle to cycle.7 To avoid this, the number of emitted fission neutrons is scaled by the multi-
plication factor from the previous cycle:8

ν
′

= ν/k (17)

Since k is a random variable, so is the population size. The result is that the population oscillates
about the initial size, but remains constant on the average.

In order to keep the results from each cycle consistently normalized, the population is fine-tuned
before starting the next cycle. There are two options:

I In analog Monte Carlo, randomly selected neutrons are either killed (k > 1) or duplicated
(k < 1) until the population matches the fixed size

I In implicit Monte Carlo, all neutrons are kept in the source population, but the total weight
is preserved by renormalization, and individual neutron weight,W is included in the
fission nubar:

ν
′

=W ν/k (18)

7For example, if k = 1.3, source population starting with 1000 neutrons is multiplied to 1300, 1690, 2197, ..., and
after 50 cycles 108 neutrons.

8Given by the ratio of new source neutrons to initial source population.

Lecture 4: Transport simulation
Nov. 3, 2020

19/34

Simulating the particle population: criticality source simulation
The fact that the source size can be adjusted is based on the linearity of the transport problem.
Neutron histories within the cycle are (presumably) independent of each other, and simulating
some partial sample of the population produces, on the average, the same result.

This would be the case if the adjustment was carried out in a completely random manner, but
in fact, this is not what happens in the k-eigenvalue criticality source simulation. Instead, the
adjustment is carried out at the fission event, when:

I All neutrons are located in the fuel

I All neutrons are at high energy

The result is that the contribution of fission source on reaction rates is either over- (k < 1) or
under-estimated (k > 1), which introduces a bias in space and energy.9

Deterministic methods solving the eigenvalue form of the transport equation are subject to the
same biases, as the time-dependence of flux is dropped, and balance between source and loss
rates is obtained by modifying the average number of emitted fission neutrons. There is no easy
way around this problem – the solution is biased whenever the system is away from criticality.10

9There is also a bias in time, which results from the fact that the simulation is run in source cycles, and the
duration of a single history is not limited.

10It should be noted that the root cause of this issue is not in the way the transport problem is solved, but rather in
its formulation: a time-dependent system is forced to steady-state condition by adjusting one of the source terms.

Lecture 4: Transport simulation
Nov. 3, 2020

20/34

Simulating the particle population: criticality source simulation

Algorithm 4 Criticality source simulation

1: Sample r, E and Ω̂ for N source neutrons . Call source routine to obtain initial guess
2: Move neutrons to source bank 1
3: for m← 1 to M do . Loop over cycles
4: while more neutrons in source bank m do
5: Retrieve neutron from bank m (obtain r, E and Ω̂)
6: while neutron is alive do
7: Move neutron to next collision site r′ . Call surface- or delta-tracking routine
8: Sample reaction:
9: if Capture (or neutron escapes the geometry) then

10: Terminate history
11: else if Scattering then
12: Sample new E and Ω̂
13: else if Fission then
14: Store ν new source neutrons in source bank m+ 1 and terminate history
15: end if
16: end while
17: end while
18: Handle batch-wise statistics
19: Re-normalize source bank m+ 1
20: end for

Lecture 4: Transport simulation
Nov. 3, 2020

21/34

Simulating the particle population
Notes to algorithms 3 and 4:

I Escape terminates the history similar to capture, and it is assumed that the boundary
conditions (vacuum, reflective or periodic) are handled by the tracking algorithm

I In criticality source simulation also fission terminates the history

I Non-fission multiplying reactions (e.g. (n,xn) for neutrons and pair production for photons)
were omitted (handled by storing the extra particles in bank)

I External source simulations often include additional cut-offs (e.g. time cut-off in
super-critical multiplying systems or energy-cut off in photon transport simulations)

I Criticality source simulation essentially integrates over all time, since the duration of a
single generation is not fixed in any way.

I Delayed neutrons are usually handled similar to prompt neutrons (with different energy
distribution and emission time).

I Handling of inactive cycles is not included in the description of algorithm 4 (collection of
results is not started right away, but after cycle M0).

Lecture 4: Transport simulation
Nov. 3, 2020

22/34

Collecting the results
The Monte Carlo transport simulation is run to obtain statistical estimates for integrals of the form:

F =

∫
t

∫
V

∫
Ω̂

∫
E

f(r, Ω̂, E)ψ(r, Ω̂, E, t)dV dΩ̂dEdt (19)

where f is a response function that can be evaluated at an arbitrary position of the phase space,
most typically a reaction cross section. These estimates are based on the collection of simu-
lated events (collisions, track-lengths, surface crossings, etc.) that occur during the course of the
simulated random walk.

The estimates can be divided into:

I Analog estimates, based on recorded simulated physical events

I Implicit estimators, based the expected frequency of events

Implicit estimators are derived from analog estimators, with the purpose of obtaining better statis-
tics. Even though the estimators introduced in the following can be used for calculating flux
integrals, it should be noted that flux itself plays no role in Monte Carlo transport simulation.

Lecture 4: Transport simulation
Nov. 3, 2020

23/34

Collecting the results: analog estimates
Analog estimates are the most straightforward way to obtain physical results from the Monte Carlo
transport simulation. Each particle history consists of a number of events containing relevant
information on the transport process, which can be counted as-is:

I Collisions

I Sampled reactions

I Crossed surfaces

The integration domain in (19) is defined by separating the scores into different bins based on
particle position, energy and time.11 For example:

I Fission rate in a specific fuel pin – count the number of simulated fission events in that
fuel pin (integration over specific volume)

I Thermal neutron absorption in coolant – count the number of neutrons absorbed in the
coolant with energy in the thermal region (integration over specific volume and energy)

I Total fission rate as function of time – count the number of fissions, and place the results
in successive bins depending on the time of the event (integration over specific time)

These examples also illustrate the fact the results are always integrated over the variables.

11Similar binning can also be done for the direction of motion, but for most applications this is irrelevant.

Lecture 4: Transport simulation
Nov. 3, 2020

24/34

Collecting the results: collision flux estimator
Implicit estimators are best understood by considering the collision estimate of flux (CFE). When
the particle undergoes a collision at position r and energy E, the probability of sampling reaction
x is the ratio of the reaction cross section to material total:

Px(r, E) =
Σx(r, E)

Σ(r, E)
(20)

The probability is the same whether the reaction was actually sampled or not, so counting Px

as the result estimate means that the overall score reflects the statistically expected number of
reactions x.

Since the total number of collisions is always greater than or equal to the number of sampled
reactions, the implicit estimator gives better statistics. The overall score is given by the sum over
all collisions:

xn =
∑
i

si (21)

where the CFE is written as:

si =
f(r, E)

Σ(r, E)
(22)

and f is the response function and Σ is the cross section that was used for sampling the path
length.12

12In surface-tracking Σ is the material total, in delta-tracking it can be the total or the majorant, depending on
whether all or only physical collisions are accounted for in the CFE.

Lecture 4: Transport simulation
Nov. 3, 2020

25/34

Collecting the results: collision flux estimator
The relation between CFE and total collision rate:

R =

∫
V

∫
Ω̂

∫
E

Σ(r, E)ψ(r, Ω̂, E)dV dΩ̂dE (23)

is easy to see. The response function is the macroscopic total cross section Σ, which means that
si = 1 in (22). The sum in (21) is then reduced to the total number of collisions, as expected.

If the response function is set to 1, the result is the integral flux, and the value scored with the
collision estimator is:

si =
1

Σ(r, E)
(24)

The connection is seen in that 1/Σ gives the mean-free-path and the integral flux is equal to the
sum of total path lengths traveled in the medium.

The response function does not have to be a reaction cross section, and the only limitation is that
the value has to be known at the points of collision. One example is the inverse particle speed:
f = 1/v, in which case the integral is written as:∫

V

∫
Ω̂

∫
E

1

v(E)
ψ(r, Ω̂, E)dV dΩ̂dE =

∫
V

∫
Ω̂

∫
E

n(r, Ω̂, E)dV dΩ̂dE (25)

The value gives the integral over particle density, which can be used to calculate the average
number of particles in a volume.

Lecture 4: Transport simulation
Nov. 3, 2020

26/34

Collecting the results: track-length flux estimator
Another commonly used implicit estimator is the track-length estimate of flux (TLE), which is based
on the collection of particle tracks. The overall score is given by the sum over all tracks:

xn =
∑
i

si (26)

where the TLE is written as:
si = lf(E) (27)

and l is the path length traveled by the particle between collisions and surface crossings. The
relation to flux is seen in that the integral flux is equal to the sum of total path lengths traveled by
the particle in the medium.

The TLE can be used similar to CFE, but there are a few differences:

I Since TLE is scored each time the particle passes through a region, whether it collides or
not, the number of scores is always greater than or equal to that of the CFE

I Since CFE is based on collisions that occur in discrete points in space, it can be used for
calculating reaction rates in inhomogeneous material regions13

13This is seen in the fact that the response function in (22) may depend on the spatial coordinates, while that
in (27) must be constant over path length l.

Lecture 4: Transport simulation
Nov. 3, 2020

27/34

Collecting the results: track-length flux estimator
Most Monte Carlo codes rely on the use of track-length estimators, because of their superior
performance. The differences are emphasized in a few specific cases:

I Calculation of flux integrals in optically thin regions (high probability to pass through, low
probability to collide)

I Calculation of reaction rates with high threshold energy (fission neutrons exiting the fuel
pin always contribute to TLE but only rarely to CFE)

I Calculation of reaction rates in low density or void regions (few or zero collisions for CFE,
although the problem can be overcome by scoring also virtual collisions)

I Calculation of reaction rates in regions located far or isolated from the active source
(already poor statistics)

The main reason to use the collision flux estimator is that the transport routine is based on delta-
tracking, which does not account for surface crossings needed for TLE.

Practical experience with the Serpent code14 has shown that there is no major difference between
the two estimators in reactor physics applications, in which reaction rates are most typically scored
in regions of high collision rate near the active source.

14See - http://montecarlo.vtt.fi

http://montecarlo.vtt.fi

Lecture 4: Transport simulation
Nov. 3, 2020

28/34

Collecting the results: tallies
There are different ways of combining the scores into statistical result estimates, or tallies. Per-
haps the most intuitive way is to use batch statistics, meaning that the simulation of particle
histories is divided in multiple equal parts. In criticality source simulation the natural division is to
use one batch per source cycle.

The idea is that all collisions or track lengths of all simulated histories within a single batch are
collected into a single batch-wise estimate:

xn =
∑
i

si (28)

When these estimates are averaged over all batches, the sequence of values can be used to
calculate the statistical mean:

x =
1

N

N∑
n=1

xn (29)

and the associated standard deviation:

σ(x) =

√√√√ 1

N(N − 1)

[N∑
n=1

x2
n −

1

N

(N∑
n=1

xn

)2]
(30)

which form the final result printed in the output.

Lecture 4: Transport simulation
Nov. 3, 2020

29/34

Collecting the results: normalization of results
Since the number of scores (collisions, track-lengths, sampled reactions, etc.) in the batch-wise
estimate (28) depends on the number of simulated histories per batch, the absolute value of the
result has no practical significance unless it is normalized to some physical variable.

Normalization can be accomplished, e.g. by fixing the value of one tally and calculating other
reaction rates relative to it. If, for example, the fission and absorption rate estimates for batch n
are xn and yn, respectively, and it is decided that the physical fission rate in the system is Rf ,
then the normalized capture rate can be obtained from:

Rf

xn
=
Rγ

yn
⇐⇒ Rγ =

Rf

xn
yn (31)

Ratio Rf/xn acts as the normalization coefficient for batch n, fixing the values of similarly nor-
malized estimates to a user-specified reaction rate.

Some result estimates are calculated as ratios of two Monte Carlo integrals, in which case the
normalization cancels out. This is the case, for example, for the implicit estimate of keff , defined
formally as:

keff =
F

T − S + L
(32)

where F is the fission source rate, T is the total reaction rate S is the scattering source rate and
L is the leakage rate, each calculated as Monte Carlo integrals.15

15The leakage rate can be calculated by an analog estimator counting the number of neutrons that escape the
geometry.

Lecture 4: Transport simulation
Nov. 3, 2020

30/34

Collecting the results: statistics
The standard deviation of tallies depends on:

1) The number of simulated histories per batch, which affects the variation of values
x1, x2, . . . xN

2) The total number of simulated batches, which determines the number of terms N

There is no absolute truth to which is better, a large number of small batches or small number of
large batches, but any extremes should be avoided.

Based on the central limit theorem it is assumed that the sequence of batch-wise estimates follows
the normal distribution, but this assumption breaks down in the case of under-sampling, i.e. when
the number of histories per patch is too low.

Another problem is related to the independence of batch-wise estimates. In criticality source
simulation, the source distributions are formed from the fission distributions of the previous cycle,
which means that the cycles are, in fact, correlated. This leads to incorrect estimates of standard
deviation and violates the conditions of the central limit theorem.

In practice, the correlations are not very strong, but problems may occur in large geometries, in
which the statistical errors of tallies scored in the peripheral region are easily under-estimated.16

16There are studies showing that the inter-batch correlations in criticality source simulations can be reduced by
including multiple source cycles within a single batch, which leads to better estimates of statistical error.

Lecture 4: Transport simulation
Nov. 3, 2020

31/34

4th programming exercise
The main goal in the 4th programming exercise is to combine the geometry routine developed in
exercise 2 into the physics routine in exercise 3 in order to perform the transport simulation in a
heterogeneous geometry. The tasks are relatively simple, and more realistic cases are included
in the last round of exercises.

Mandatory tasks:

I Implement either the surface- or the delta-tracking algorithm to perform the particle
transport simulation, and the functions to collect statistical estimates using the collision or
track-length estimate of neutron flux.

I Implement the external source simulation algorithm.
I Demonstrate the particle transport simulation in a hollow cylinder partially filled with

water:
I Hollow cylindrical steel container with inner diameter of 40 cm, inner height 70 cm, wall

thickness 0.5 cm, water surface at 35 cm from the bottom, upper part filled with air.17

I Point-wise isotropic mono-energetic 1 MeV neutron source located at cylinder center-line,
10 cm from the bottom, emitting 106 neutrons per second.

I Calculate total leak rate and analog and implicit estimators (CFE or TLE) of total collision
and total absorption rate in water, air and container

17Steel is approximated by 100% 56Fe and air with 100% 14N. Cross sections are provided at
http://virtual.vtt.fi/virtual/montecarlo/misc/PHYS-E0565/

http://virtual.vtt.fi/virtual/montecarlo/misc/PHYS-E0565/

Lecture 4: Transport simulation
Nov. 3, 2020

32/34

4th programming exercise
Bonus tasks:

1. Implement both the surface- and the delta-tracking algorithm to perform the particle
transport simulation, and the functions to collect statistical estimates using the collision
and track-length estimate of neutron flux. Repeat the previous tasks with different options
and compare results and FOM’s. (+2 points)

2. Calculate the total collision rate distribution in the previous case on a 3D Cartesian mesh.
Visualize the results. (+1 point)

3. Implement the criticality source simulation algorithm and estimate the critical surface level
in the previous cylinder geometry, with water replaced with 50/50 molar mixture of water
and 20% enriched uranium. Calculate keff for 25/75 and 75/25 solutions with the same
surface level. (+3 points)

4. Calculate the average neutron density in the critical 50/50 molar mixture for 1 W power
level, assuming that fission produces 200 MeV of energy. Compare the result to the total
atomic density of the medium. (+1 point)

Lecture 4: Transport simulation
Nov. 3, 2020

33/34

4th programming exercise

Table 1: Material compositions (atomic densities in 1024/cm3).

Material Composition Density
Water 1H 6.68723E-02

16O 3.34362E-02
Steel 56Fe 8.39767E-02
Air 14N 5.16062E-05
50/50 uranium-water solution 1H 3.34362E-02

16O 1.67181E-02
235U 4.81866E-03
238U 1.92746E-02

Lecture 4: Transport simulation
Nov. 3, 2020

34/34

4th programming exercise
Milestones:

I Combination of geometry (Ex 2) and physics routines (Ex 3) into a routine capable of
transporting particles through heterogeneous geometries.

I Implementation of result estimators capable of extracting physical reaction rates from the
Monte Carlo simulation.

Notes and tips:

I The surface-tracking algorithm requires the capability to calculate distance to the nearest
boundary surface within the line-of sight. Transporting particles through the geometry with
surface-tracking is very similar to the calculation of cell volumes by drawing the lines in
one of the exercises in round 2.

I When the particle is moved over a boundary surface, it is important to add a small
extrapolation distance to the path length or otherwise the routine will fail because of
limited numerical precision.

I The delta-tracking algorithm can be implemented without calculating the surface
distances.

I The TLE requires using surface-tracking.
I The CFE can be applied to physical or all (physical + virtual) collisions, but the the cross

section used in the estimator must be chosen correspondingly (total or majorant).
I Applying the CFE to calculate flux in void requires scoring virtual collisions. This also

improves the statistics in low-density regions (e.g. air).

