

GEO – E1050 Finite Element Method in Geoengineering

Lecture 11-12. Other numerical methods

To learn today & next time...

The lectures should give you overview of other numerical methods

- 1. Discrete element method (DEM, also distinct element method)
 - assumptions
 - solutions
 - problmes & accuracy
- 2. Smoothed particle hydrodynamics (SPH)
- 3. Material Point Method (MPM)
- 4. Particle Finite Element Method in Geoengineering (PFEM)

5. XFEM – eXtended Finite Element Method in Geoengineering (XFEM)

- 6. ALE , CLE Coupled Lagrangian Eurlerian FEM
- 7. Meshfree methods

A

Methods on continuous – discontinuous scale

CLE, ALE Coupled Lagrangian – FEM Eurlerian FEM		E, ALE upled grangian – rlerian FEM	MPM	Smoothed Particle Hydrodynamics (SPH)		Discrete element method (DEM)
Continue	ous	Classical Meshfree methods	PFEM	XFEM	Disco	ontinuous
	Based on continuum mechanics			Not based on continuum mechanics		

with thanks to K. Agathos (Aristotle U. of Thessaloniki) and E. Chatzi, (IBK, D-BAUG, ETH Zurich)

XFEM – eXtended Finite Element Method

Aim: to introduce discontinuities into continuous FEM

- Strong discontinuity: crack jump in displacements
- Weak discontinuity jump in strains

Used to determine displacement, strain and stress fields in structures with cracks and small holes. Allows for discontinuous displacements and strain fields

XFEM – eXtended Finite Element Method

Aim: to introduce discontinuities into continuous FEM

XFEM – eXtended Finite Element Method

To model the crack, we need nodes placed across the crack and on the crack tips

© Agathos and Chatzi

When we have a crack, we have jump in displacements. However, we want to describe it with a continuous mesh, i.e. without physically modelling crack width.

For that, we enrich the element nodes with jump function for displacements. At one side of the node, it has a different value than at the other side of the node.

Technically we use Heaviside function H(x) for that...

In other words, we want to represent the situation in Mesh 1 (physical crack), with Mesh 2

The displacements at any point (and in particular in nodes 9 and 10) are:

Defining \mathbf{a} =0,5 (\mathbf{d}_9 + \mathbf{d}_{10}) and \mathbf{b} =0,5 (\mathbf{d}_9 - \mathbf{d}_{10}) we get

Jump enrichment in action $\ensuremath{\textcircled{\sc 0}}$

© Agathos and Chatzi

jump enrichment

School of Engineering

XFEM – abilities

The method – with extensions – can deal with crack propagation, crack branching and intersecting etc. Also can be used with plasticity and in dynamic problems

13

XFEM – abilities

https://youtu.be/eKhrRpwxOq0

Thank you

Aalto University School of Engineering