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To learn today...

The lecture should give you overview of how FEM is derived
and link the basic differential equations to integral forms and
Finite Element discretisation. You should:

1. Understand the idea behind the strong form, variational form,
weak form of the differential equation we are solving

2. Can give an example of transformation between strong form
and weak form (probably the Poisson equation easiest)

3. Can give an example of transformation between weak form
and variational form

4. Understand why variational form is so useful...

Note: 1-4 will be also touched upon during next lecture.
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In lecture 2 we were deriving FE stiffness

matrix...

tv. Change of elastic energy inside the element and on the
. nodes the same:

dE =0.5 j de"dedV =0.5 j de" DdedV =
V V

| =0.5((Bdd, )" DBdd.dV =0.5[dd;B" DBdd.dV
V Vv

work at nodes:

dL = [dd{ TdS = dd{ AR
S
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In lecture 2 we were deriving FE stiffness
matrix...

We can write in general:

TdS

out

dE—dL=O:O.5_fdsTdch —jdd
V S

Where d are the displacements on the outside of the body
we compute the energy due to stress/strain change and T are
corresponding external tractions. After discretisation that
reduces to forces on the nodes of the discretised domain.
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Variational form

We can write in general — the variation of the functional is
Zero:

TdS

out

dE —dL=0=0.5ds'dodV — [ d
V
In fully variational form, including the body forces the functional is

[Trpe[u;] :%f ; e dV — fi'); 1 {.’V—f L dS.
7 I 5

Functional stationary condition ‘generate’ strong and weak forms
of the differential equations.
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Variational form

In fully variational form, including body forces the functional is

[Trpg[u;] :%f i; el dV — fi');— 1; {.’V—f G dS.
v v 5

Functional stationary condition ‘generate’ strong and weak forms
of the differential equations.

We can generate weak form by finding the variation (similar
to a derivative) of the functional

On the other hand, having the variation, it can be very
difficult to find out the functional (similar to integration)
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Variational form

FDM

FEM

FEM
DISCRETIZATION l SOLUTION

IDEALIZATION

Physical Mathematical Discrete Discrete

system model model i solution

Solution error

Discretization + solution error

Modeling + discretization + solution error

RESULT INTERPRETATION

A
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Forms of equation for discretisation

SF Strong Form. Presented as a system of ordinary or partial
differential equations in space and/or time, complemented by
appropriate boundary conditions. Occasionally this form may be
presented In integral or differential form, or reduce to algebraic
equations

WF Weak Form. Presented as a weighted integral equation that
“relaxes” the strong form Into a domain-averaging statement.

VF Variational Form. Presented as a functional whose
stationary conditions generate the weak and strong forms.
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Equation form: what Is possible

~

Usually impossible Usually impossible
within SVC within SVC

Always possible

Always possible

Always possible

Variational Calculus deals with transformations!!!
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Strong form

1 WL du
The Strain-Displacement Equations €ij = 75 l:'H;',j' + ?:‘J',;':l =3 + .
31‘; 31';'
Constitutive Equations Ojj = E ijkf €kf m V.
Eh:r,-.- ]
| . .
Internal Equilibrium Equations Oij.j + E]f - Ay - + E]f - m V.
~J
THE BOUNDARY CONDITIONS u=u on S,.
Surface Equilibrium Equations oy Ny = ;; on Sy,
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Weak form

A solution which satisfies strong form (that is the differential
equations), will also satisfy weak form. In principle there may be a
solution which satisfies weak form, but not the strong form

Obtaining strong form can be made in many ways:
- test functions
- weighted residual
- Lagrange multipliers

Mathematically we can always move from strong form to weak
and vice versa. Which route is chosen does not matter, though
some may have better physical meaning.
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Weak form to variational form
§5.8.1. Step 1: Choose Master Field(s)

One or more of the unknown internal fields
Uj;, e,-J,-. Ufj.. (533)

are chosen as masters. A master (also called primary, varied or parent) field 1s one that 1s subjected
to the §-variation process of the calculus of variations. Fields that are not masters, 7.e. not subject
to variation, are called slave, secondary or derived. The owner (also called parent or source) of a
slave field 1s the master from which it comes from.

If only one master field 1s chosen, the resulting variational principle (obtained after going through
Steps 2, 3 and 4) 1s called single-field, and multifield otherwise.

A known or data field (for example: body forces or surface tractions in elastostatics) cannot be a
master field because it 1s not subject to variation, and is not a secondary field because 1t does not
derive from others. Hence we see that fields can only be of three types: master, slave, or data.
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§5.8.2. Step 2: Choose Weak Connections

Given a master field, consider the equations that link it to other known and unknown fields. These
are called the connections of that field. Classify these connections into two types:

Strong connection. The connecting relation 1s enforced point by point n its original form. For
example 1f the connection 1s a PDE or an algebraic equation we use it as such. Also called a priori
enforcement. When applied to a boundary condition, a strong connection 1s also referred to as an
essential constraint or essential B.C.

Wealk connection. The connection relationship is enforced only in an average or mean sense through
the use of a weight or test function, or of a distributed Lagrange multiplier. Also called a-posteriori
enforcement. When applied to a boundary condition, a weak connection is also referred to as a
natural constraint or natural B.C.

A general rule to keep in mind 1s that a slave field must be reachable from its owner through strong
connections.

If there 1s more than one master field (i.e. we are constructing a multifield principle), the foregoing
definitions must be applied to each master field in turn. In other words, we must consider the
connections that “emanate” from each of the master fields. The end result 1s that the same field may
appear more than once. For example in elasticity the strain field e may appear up to three times:
(1) as a master field, (2) as a slave field derived from displacements, and (3) as a slave field derived
from stresses. These complications cannot occur with single-field principles.
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Weak form to variational form

§5.8.3. Step 3: Construct a First Variation

Once all choices of Steps 1 and 2 have been made, the remaining manipulations are technical 1n
nature, and essentially consist of applying the tools and techniques of vector, tensor and variational
calculus: Lagrange multipliers, integration by parts, homogenization of variations, surface integral
splitting, and so on. Since the number of operational combinations is huge, the techniques are best

illustrated through specific examples.

The end result of these gyrations should be a variational statement

STT = 0, (5.34)

where the symbol § here embodies variations with respect to all master fields.
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Weak form to variational form

§5.8.3. Step 3: Construct a First Variation

Once all choices of Steps 1 and 2 have been made, the remaining manipulations are technical in
nature, and essentially consist of applying the tools and techniques of vector, tensor and variational
calculus: Lagrange multipliers, integration by parts, homogenization of variations, surface integral
splitting, and so on. Since the number of operational combinations 1s huge, the techniques are best

illustrated through specific examples.

The end result of these gyrations should be a variational statement

oIl =0, (5.34)

where the symbol § here embodies variations with respect to all master fields.
§5.8.4. Step 4: Functionalize

With luck, the variational statement (5.34) will be recognized as the exact variation of a functional
[T, whence the variational statement becomes a true variational principle. If so, IT represents the
Variational Form we were looking for, and the search 1s successful.

We now illustrate the foregoing steps with the detailed derivation of the most important single-field

VF 1n elastostatics: the principle of Total Potential Energy or TPE.
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Weak form to variational form

Here, we will use Lagrange multipliers to get the variational form...
and we will guess them... to avoid mathematical troubles. We will
also assume that we are discretising displacement field. So we use
equations without displacements!

E}U' )
oij.j + bi = 24ph;=0 in V.
:‘31‘“;-

f (04 s +Di) A dV = 0.
,

A piecewise differentiable Lagrange multiplier vector field
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Weak form

I
Apply the divergence theorem to the first term

f UJA;GTV_—fUE;.;‘I.;J(?TV—F[U;}F”}LFGTS,
V V 5

For a symmefric stress tensor o/, = o; this formula may be transformed® to

i J
1
L :u.'j'j" ﬂTV__ﬁ 3{;2(2‘-:“.?"_}'-;})({174—[? Hj;'l.;ffs.

A; Pilecewise differentiable Lagrange multiplier vector field
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Weak form

... and we will guess them... what are those Lagrange multipliers ??7?

j;ﬁ;j_j}l.jffrf:—ﬁrﬂ;}%(}L;_j—|—;‘l.j_j]ffV—|—[;U$-Hjljff5.

A; Pilecewise differentiable Lagrange multiplier vector field
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Weak form

. yep, they look like displacements...

1
L UJ'JI' dV = — >/];r :{;l(l:j +-]'-;;)ffrf+j; L‘rj-l;rfS.

i i H i
f ”Jé‘n;dP"_—f O SefjdV—Ff{rfjﬂjﬂnde,
v v S
fF::rfj Seﬁ}dV—fFﬁfﬂr;;dV—LU{}&}J Su; dS = 0.

A piecewise differentiable Lagrange multiplier vector field
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Variational form

u i ) ) . ¥
f o;; 6e;; dV — f b; Su; dV — fﬂfj njdu;dS = 0.
V V 5
0
.[Gf}ﬁjﬁmﬂ’szfG;”.fﬁ”fderf oy 8ify S = fﬁfj'”i‘h"fd“s"
5 5 Sy 5

L{Uﬁ-n; —14)8u;dS =0, whence -[S oy 8u;dS = /3 f; 8u; dS.

EHTPE:fG;} EE;}dV—[EJfﬁII;dV—[ t Su; dS = 0.
v v s,

I'ITPE[H;]:%L{rfi}e;}dV—Lb;de—fs L dS.

Department of Civil Engineering

Aalto University
A Finite Element Method in Geoengineering. W. Sotowski

School of Engineering
22



Poisson equation




Poisson equation...

u — not displacements ! can be almost any variable...
V- (pVu) = s, Generalised Poisson eq.

Constant p: p‘ff’ju — 3. Poisson equation

No source term:  V2y — 0. Laplace equation

It describes:
* heat transfer (u=T)
« steady potential flow (e.g. water flow)
* electrostatics
e magnetostatics

Solutions of Laplace equation are harmonic functions...
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Poisson equation...

d Au
—_ —_— = 5.

dxy pﬂ:cl/;

V- (Pv“) = 5, a [ au\ ad Au )
P + e— | =495,

3_‘.\:1 \, &xU 3_1:'1 B'Ig/j

? du +a r“au‘w+a Au
31:1 paxl 313 Kp&xw 3_1’3 JD&I;),J =

Constant p:

a2u a2u N alu *u N a2u N 2 u
— =3, = 5, - — | ==.
pﬂxlz ' P ' P dxy HI:_:': Bxf
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Steady state linear heat conduction

Isotropic body of volume V, Temperature: primal variable
(like displacements in elasticity)

Thermal equilibrium T=T(x;)=const.

1 af,ﬂ'ﬁﬂfl
s
g — VT. 23 dT/odx3

q1 £1
Fourier law of heat conduction q=-—kg=—kVT. [jj =—f{§;]-
p becomes thermal conductivity coefficient k

e

g

We have thermal gradient:

s — source — becomes heat production h = h (x;)

Department of Civil Engineering

Aalto University
School of Engineering Finite Element Method in Geoengineering. W. Sotowski
26



Steady state linear heat conduction

dg1 | dq2 | dqo
- " + + + l'irf — D.
Balance equation: divg +/ = 0. dx1 9%y 93
s — source — becomes heat production h = h (x;)

1 9T /9y
;] = [argau]
3 aT /013

g1 £1
Fourier law of heat conduction q=-—kg=—kVT. [33} =—f{§;]-
p becomes thermal conductivity coefficient k

Thermal equilibrium T=T(x;)=const.

g g

g

We have thermal gradient: g= VT, [
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Steady state linear heat conduction

Boundary conditions: prescribed temperature 7 and
prescribed flux g,

Sy: T = ]‘ Heat source production in ¥':
I specified per unit of volume
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Steady state linear heat conduction

Summary of equations over volume:

; dg1  dga I
divg + 7 = 0. 1 1 +h =0,
q‘ a.‘l’l 3."{2 3.‘!’3

g ol /dx
g=VT. [g;]{arxaxi]

£3 a1 /0x3

q1 g1
q=—kg=—kVT, [Gz}=ff|igzi|-
q3 g3
And boundary conditions:

I =T on St,

q'n=gqg, =g, on Sy.
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Generally: steady state Poisson eguation

|C onstitutive coefticient p|

‘/IL. S:I ; ‘C?J'! —q
1 2 Volume V
S, u = Source 5
Vii=g in V, =1 on S5,

Pg =q in V, q.n = gn = g, on Sy.
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Steady state Poisson equation

Weighted residual: we take u as primary variable. Multiply
the other equations by weighted residual and integrate
over domain. Note it is zero after integration:

V.-q=s in V. RBE:f(?-q—.ﬂwEchV:D.
r
q11 — l;_lrﬁ — ij_;rﬁ, RFpc :f (qﬂ_'-i_l"] wFEC{‘FS: 0.
5":"

Does not get us far...

trying to find a black cat in a dark cellar at midnight
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Steady state Poisson equation

Well, we just introduce into equations what we know:

g =Vu, q' =pg'=pVu.

RpE :f{?-q“—.s-]wEE{fV:f{V -pViu —s)wgpdV
v V

Rrpe = f
)

q

(" n—§)wgz dS = f (pVu) -m—qg)wgge- dSs.
S

Here we have weak form: same gradient of u unknown in
both equations... useful — we can do something if we

choose weights...
But we can do better!
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Steady state Poisson equation

Replace weights by variations of the primary variable —
any functions which are allowed...

51'[3ng [—‘ff' - pVu+5)du dv,

I:.r

51’[;3,::[ (p?u-u—@)ﬁndﬁ‘.
S,

Also, let’s change residuals — which are zero, to variations of the
functional we are trying to find...
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Steady state Poisson equation

; SHBEZ-[ —V - pVu+s)éu dV,
Divergence theorem: ” ( )

—fV*{pV'u) ﬁudV:fqu-éiVnn’V—f pVu-nduds.
Vv v 5

Leading to:
51’]35:[ (pVu -8 Vi + s 5u) dV—f pViu-nduds.
v S,

Adding:

8I1 = 8l gg + 811 Fac 2[

(pVu -8 Vu + 5 5u) dV—[ G&udsS
v

Sq
:5/ %p?rw?nd?’—l—ﬁfsud?—ﬁf quds.
v v 5

g

variation symbol § can be then pulled in front of the integrals:
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Steady state Poisson equation

Functional:

Mpe[u] =

[

j p?:r-?r;dV—l—f&ndV—j quds
v v Sq

lf[q”)fg”dV—l—fﬂrdV—f quds
I” V 35

g

3 2 3 2 a 2
f,o [(i) + (i) —|—(i) ] dV+f.5'r;dV—f quds.
4 dxy dx2 dx3 v S,

The variational principle 1s

Il
I

[

dITmpg = 0.

(pVu -8 Vu+ 5 bu) rﬂ?’—f GoudS

81 = 6Tl gg + 811 Fae :f
3

V

:Ef%vaI*V?th—l—ﬂfSHdV—ﬁf quds.
v v 5

)

Aalto University Department of Civil Engineering
A School of Engineering Finite Element Method in Geoengineering. W. Sotowski

35



Steady state Poisson equation

Why variation of functional being zero is so great?

We always can do the same what we did before: discretise
the field with shape functions, get element matrices

linking external and internal integrals and get the solution.
It Is that simple...

The variational principle 1s

dITmpg = 0.
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Thank you




