ELEC-E8116 Model-based control systems /exercises 8

1. Consider a simple integrator:

$$
\dot{x}(t)=u(t)
$$

Find an optimal control law that minimises a cost-function

$$
J=\int_{0}^{1}\left(x^{2}(t)+u^{2}(t)\right) d t
$$

Further, consider the case, when the optimization horizon is infinite.
2. Consider the 1 . order process $G(s)=\frac{1}{s-a}$, which has a realization

$$
\begin{aligned}
& \dot{x}(t)=a x(t)+u(t) \\
& y(t)=x(t)
\end{aligned}
$$

so that the state is the measured variable. It is desired to find the control, which minimizes the criterion

$$
J=\frac{1}{2} \int_{0}^{\infty}\left(x^{2}+R u^{2}\right) d t \quad(R>0)
$$

Calculate the control and investigate the properties of the resulting closed-loop system.
3. Consider a SISO-system. The maximum values of the sensitivity and complementary functions are denoted M_{S} and M_{T}, respectively. Let the gain and phase margins of a closed-loop system be GM (gain margin) and PM (phase margin). Prove that

$$
\begin{array}{ll}
G M \geq \frac{M_{S}}{M_{S}-1} & P M \geq 2 \arcsin \left(\frac{1}{2 M_{S}}\right) \geq \frac{1}{M_{S}}[\mathrm{rad}] \\
G M \geq 1+\frac{1}{M_{T}} & P M \geq 2 \arcsin \left(\frac{1}{2 M_{T}}\right) \geq \frac{1}{M_{T}}[\mathrm{rad}]
\end{array}
$$

