ELEC-E8116 Model-based control systems /exercises and solutions 8

1. Consider a simple integrator:

$$
\dot{x}(t)=u(t)
$$

Find an optimal control law that minimises a cost-function

$$
J=\int_{0}^{1}\left(x^{2}(t)+u^{2}(t)\right) d t
$$

Further, consider the case, when the optimization horizon is infinite.

Solution: We can always define

$$
J_{1}=\frac{1}{2} J=\frac{1}{2} \int_{0}^{1}\left(x^{2}(t)+u^{2}(t)\right) d t
$$

without changing the solution (only the cost changes). Of course, the original cost could also be written as

$$
J=\frac{1}{2} \int_{0}^{1}\left(2 x^{2}(t)+2 u^{2}(t)\right) d t
$$

and continue from there. However, the first alternative is now used:
The Riccati equation:

$$
-\dot{\mathbf{S}}(t)=\mathbf{A}^{T} \mathbf{S}(t)+\mathbf{S}(t) \mathbf{A}^{T}-\mathbf{S}(t) \mathbf{B R}^{-1} \mathbf{B}^{T} \mathbf{S}(t)+\mathbf{Q}, \quad \mathbf{S}(1)=0
$$

and the optimal control law is:

$$
\mathbf{u}^{*}(t)=-\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{S}(t) \mathbf{x}^{*}(t)
$$

Now for the given process we have:

$$
A=0 ; B=1 ; R=1 ; Q=1
$$

and

$$
\dot{S}(t)=S^{2}(t)-1
$$

which is a differential equation that should be solved with respect to time, Hence, by separating the variables

$$
\begin{aligned}
& \frac{d S}{d t}=S^{2}-1 \Leftrightarrow \int \frac{1}{S^{2}-1} d S=\int d t \\
& \Rightarrow \int \frac{1}{S^{2}-1} d S=t+C_{1} \\
& \Rightarrow \int \frac{1}{S-1} d S-\int \frac{1}{S+1} d S=2 t+2 C_{1} \\
& \Rightarrow \ln \left(\left|\frac{S-1}{S+1}\right|\right)=2 t+2 C_{1} \\
& \Rightarrow\left|\frac{S-1}{S+1}\right|=\left|e^{2 C_{1}} e^{2 t}\right| \Leftrightarrow \frac{S-1}{S+1}= \pm e^{2 C_{1}} e^{2 t}=C e^{2 t} \\
& \Rightarrow S(t)=\frac{1+C e^{2 t}}{1-C e^{2 t}}
\end{aligned}
$$

Now solve the unknown parameter C by using the fact $S\left(t_{f}\right)=S(1)=0$, giving:

$$
1+C e^{2}=0 \Leftrightarrow C=-e^{-2}
$$

and

$$
S(t)=\frac{1-e^{2(t-1)}}{1+e^{2(t-1)}}
$$

Now the optimal control law is: $u^{*}(t)=-S(t) x(t)$

If the optimization horizon were infinite, the solution of the Riccati equation would be

$$
S(t)=\frac{1-e^{2\left(t-t_{f}\right)}}{1+e^{2\left(t-t_{f}\right)}}=\frac{e^{-2 t}-e^{-2 t_{f}}}{e^{-2 t}+e^{-2 t_{f}}} \rightarrow 1 \text { as } t_{f} \rightarrow \infty \text {. The same constant solution could }
$$

have been obtained directly from $\dot{S}(t)=S^{2}(t)-1$ by setting the derivative zero and taking the positive (positive definite) root of S.
2. Consider the 1 . order process $G(s)=\frac{1}{s-a}$, which has a realization

$$
\begin{aligned}
& \dot{x}(t)=a x(t)+u(t) \\
& y(t)=x(t)
\end{aligned}
$$

so that the state is the measured variable. It is desired to find the control, which minimizes the criterion

$$
J=\frac{1}{2} \int_{0}^{\infty}\left(x^{2}+R u^{2}\right) d t \quad(R>0)
$$

Calculate the control and investigate the properties of the resulting closed-loop system.

Solution:

The algebraic Riccati equation is

$$
a X+X a-X R^{-1} X+1=0 \Rightarrow X^{2}-2 a R X-R=0
$$

The solution must be positive semidefinite $X \geq 0$ so that

$$
X=a R+\sqrt{(a R)^{2}+R}
$$

The optimal control law is thus

$$
u=-K_{r} x \quad \text { in which } \quad K_{r}=X / R=a+\sqrt{a^{2}+1 / R}
$$

The closed-loop system is

$$
\dot{x}=a x+u=-\sqrt{a^{2}+1 / R} x
$$

which has a pole at

$$
s=-\sqrt{a^{2}+1 / R}<0
$$

The root locus of this pole starts from $s=-|a|$ when $R=\infty$ (control has an infinite weight) and moves towards $-\infty$, when R approaches zero. Note that the root locus is exactly the same in the stable $(a<0)$ process case as well as in the unstable ($a>0$) case.

It is easily seen that for a small R the gain crossover frequency of the open loop transfer function

$$
L=G K_{r}=K_{r} /(s-a)
$$

is approximately

$$
\omega_{c} \approx \sqrt{1 / R}
$$

and the gain drops 20 dB / decade in high frequencies, which is a general property of $L Q$ controllers. Moreover, the Nyquist curve does not in any frequency go inside the unit circle with the center at $(-1,0)$. This means that

$$
|S(i \omega)|=1 /|1+L(i \omega)| \leq 1
$$

for all frequencies. (Explanation: setting $L=x+i y$ gives

$$
|S|=\frac{1}{|1+x+i y|}=\frac{1}{\sqrt{(1+x)^{2}+y^{2}}}
$$

so that $|S|=1$ in the circumference of the unit circle centered at ($-1,0$). Inside the circle $|S|>1$ and outside $|S|<1$.)

This property is clear for the stable process $(a<0)$, because $K_{r}>0$ and the phase of $L(i \omega)$ changes from zero degrees (at the angular frequency 0) to -90 degrees (at the infinite angular frequency). It is remarkable that the property holds also in the case of unstable processes ($a>0$), even though the phase of $L(i \omega)$ varies between $-180^{\circ},-90^{\circ}$
3. Consider a SISO-system. The maximum values of the sensitivity and complementary functions are denoted M_{S} and M_{T}, respectively. Let the gain and phase margins of a closed-loop system be GM (gain margin) and $P M$ (phase margin). Prove that

$$
\begin{array}{ll}
G M \geq \frac{M_{S}}{M_{S}-1} & P M \geq 2 \arcsin \left(\frac{1}{2 M_{S}}\right) \geq \frac{1}{M_{S}}[\mathrm{rad}] \\
G M \geq 1+\frac{1}{M_{T}} & P M \geq 2 \arcsin \left(\frac{1}{2 M_{T}}\right) \geq \frac{1}{M_{T}}[\mathrm{rad}]
\end{array}
$$

Solution:

Start from the figure below, where the Nyquist diagram of the loop transfer function (L) has been presented.

Denote the phase crossover frequency by ω_{180} (then the phase of L is -180 degrees). By the definition of the gain margin

$$
G M=\frac{1}{\left|L\left(i \omega_{180}\right)\right|} \Rightarrow L\left(i \omega_{180}\right)=\frac{-1}{G M}
$$

We obtain

$$
\begin{aligned}
& T\left(i \omega_{180}\right)=\frac{L\left(i \omega_{180}\right)}{1+L\left(i \omega_{180}\right)}=\frac{-1}{G M-1} \\
& S\left(i \omega_{180}\right)=\frac{1}{1+L\left(i \omega_{180}\right)}=\frac{1}{1-\frac{1}{G M}}
\end{aligned}
$$

Now use the abbreviations $M_{T}=\max _{\omega}|T(i \omega)|, \quad M_{S}=\max _{\omega}|S(i \omega)|$
and it follows that

$$
M_{T} \geq \frac{1}{|G M-1|} ; \quad M_{S} \geq \frac{1}{\left|1-\frac{1}{G M}\right|}
$$

and the gain margin inequalities given in the problem follow easily. Let us calculate the first as an example.

$$
M_{T} \geq \frac{1}{|G M-1|} \Rightarrow|G M-1| \geq \frac{1}{M_{T}} \Rightarrow G M-1 \geq \frac{1}{M_{T}} \Rightarrow G M \geq 1+\frac{1}{M_{T}}
$$

The inequality related to M_{S} is derived correspondingly.
Considering the phase margin note that

$$
\left|S\left(i \omega_{c}\right)\right|=\frac{1}{\left|1+L\left(i \omega_{c}\right)\right|}=\frac{1}{\left|-1-L\left(i \omega_{c}\right)\right|}
$$

in which ω_{c} is the gain crossover frequency (the gain of L is one in this frequency). From the figure it can be seen that

$$
\left|S\left(i \omega_{c}\right)\right|=\left|T\left(i \omega_{c}\right)\right|=\frac{1}{2 \sin (P M / 2)}
$$

and the inequalities related to phase margin follow directly. (In the last form the following fact, obtained for example by the Taylor approximation, is used: when x is positive, $\arcsin (x)>x$.)

The results show for example that if $M_{T}=2$, then $G M \geq 1.5, P M \geq 29^{\circ}$.

Sometimes the maximum values (∞ - norms) M_{S} and M_{T} are used as alternatives to gain and phase margins. For example, demanding that $M_{S}<2$, the often used "rules of thumb" $G M>2, P M>30^{\circ}$ follow.

