Aalto university

Björn Ivarsson

Exercise sheet 6

Complex Analysis, MS-C1300.
Hand in exercise 1 and 2 for grading. Deadline Wednesday 11.11 at 23:59. The exercises should be uploaded to the correct folder on MyCourses as one pdf-file with name and student number in the file name. Submission via MyCourses is the only accepted way. Done during class Thursday 12.11 or Friday 13.11.
(1) Let $\gamma(t)=t e^{i t}$ for $0 \leq t \leq \pi$ and calculate:
(a)

$$
\begin{equation*}
\int_{\gamma} \bar{z} d z \tag{2p}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{\gamma}|z||d z| \tag{2p}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\int_{\gamma} z d z \tag{2p}
\end{equation*}
$$

(2) Let $\beta(t)=e^{t+i t}$, for $0 \leq t \leq 2 \pi$ and $\alpha(t)=(1-t) e^{2 \pi}+t$ for $0 \leq t \leq 1$. Let $\gamma=\beta+\alpha$. Evaluate

$$
\begin{equation*}
\int_{\gamma} \frac{1}{z} d z \tag{6p}
\end{equation*}
$$

(3) Let a and b be real numbers satisfying $a<b$, and let $I(c)$ be defined far any real number c by

$$
I(c)=\int_{\gamma_{a, b}(c)} e^{-z^{2}} d z
$$

where $\gamma_{a, b}(c)$ is the straight line with initial point $c+i a$ and terminal point $c+i b$. Show that $\lim _{c \rightarrow \infty}|I(c)|=0$ and $\lim _{c \rightarrow-\infty}|I(c)|=$ 0
(4) Evaluate the integrals (where $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$):
(a)

$$
\int_{\gamma} \frac{1}{(z-2)^{2}} d z
$$

(b)

$$
\int_{\gamma} \frac{1}{z^{2}-4} d z
$$

(c)

$$
\int_{\gamma}\left(z+\frac{1}{z}\right)^{n} d z
$$

where $n=1,2,3, \ldots$.

