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Gene transcription

» A process of making an RNA copy of a gene sequence in DNA
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Figure from https://geneed.nlm.nih.gov/topic_subtopic.php?tid=16&sid=22


https://geneed.nlm.nih.gov/topic_subtopic.php?tid=15&sid=22

Alternative splicing

» A process of making alternative mRNA molecules from the same precursor RNA
(pre-mRNA)

» In humans, ~95% of multi-exonic genes are alternatively spliced
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Figure from https://en.wikipedia.org/wiki/Alternative_splicing


https://en.wikipedia.org/wiki/Alternative_splicing

Alternative splicing mechanisms

> Alternative splicing happens co-transcriptionally and is largely regulated by splicing factors
(proteins) that bind RNA motifs (short stretches of RNA) located in the pre-mRNA
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Figure from (Chen & Manley, 2009)



Different types of alternative splicing

» Basic modes of alternative splicing
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Figure from (Cartegni et al., 2002)



RNA-seq

» High-throughput sequencing of RNA provides a comprehensive picture of the transcriptome

» Types of RNA molecules in a cell

ribosomal RNA rRNA ~85-90%
transfer RNA tRNA ~10%
mRNA messenger RNA ~1-5%

micro RNA and other miRNA, piRNA, etc. rest



RNA-seq: basic experimental protocol

1. RNA population is converted to a library
of cDNA fragments with adaptors
attached to one or both ends

2. High-throughput sequencing for the
cDNA fragment library (single-end or
paired-end), read length ~30-400 bp

3. Computational and statistical analysis:
alignment against reference genome or
transcriptome, transcriptome
reconstruction, expression quantification,
etc.
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Figure from (Wang et al., 2009)



What can we do with RNA-seq data?

» Transcript assembly
» Construct full-length transcript sequences from the RNA-seq data (either with or without the
knowledge of the reference genome)
> Identify transcript variants
» Transcript quantification
> Given transcript sequence annotations (reference), estimate
> Gene expression or
> Abundances of all different transcripts (alternative transcript isoforms for a gene)
» Differential expression
» Statistical inference for differential gene expression or alternative splicing
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RNA-seq read alignment

> If full-length transcript annotations are known, then reads can be aligned exactly as
aligning against a reference genome
> Use transcripts in place of reference genome
» If transcript annotations are not known, still similar approaches as for aligning DNA
sequence reads will work with some modifications

» Transcriptomic reads can span exon junctions
» Transcriptomic reads can contain poly(A) ends (from post-transcriptional RNA processing)
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Figure from (Trapnell & Salzberg, 2009)



TopHat pipeline

» We will look at TopHat, a commonly used
tool for RNA-seq alignment

> All reads are mapped to the reference genome
using Bowtie

> These are sequencing reads that
originate from individual exons, i.e., do
not span exon-exon boundaries

» Reads that do not map to the genome are set

aside as “initially unmapped reads” (IUM
reads)

> These are sequencing reads that
potentially originate from a part of a
transcript that connects two (or more)
exons, i.e., span exon-exon boundaries
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Figure from (Trapnell et al., 2009)



TopHat pipeline

» Consensus assembly of initially mapped reads
with Maq assembler

> Similarly as in de novo assembly, partly
overlapping short sequencing reads define
the assembly

> Note that in this case the overlaps
between short reads have been found by
aligning against the known reference

> For low-quality or low-coverage positions,
use reference genome to call the base

» Consensus exons are likely missing some
amount of sequence at ends

— TopHat considers flanking sequences

from reference genome (default=45bp)

» Merge neighboring exons with very short gap
to a single exon
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Figure from (Trapnell et al., 2009)



TopHat pipeline

» To map reads to splice junctions:
> Enumerate all canonical donor and acceptor splicing sites between consecutive exons
> Consider all possible pairings between donor-acceptor sites (allowed intron length is an

adjustable parameter)
> For each candidate splice junction, find initially unmapped reads that span them:

seed-and-extend approach
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Figure from (Trapnell et al., 2009)



TopHat pipeline

» Seed-and-extend:

> Pre-compute an index of reads: a lookup table based on partly overlapping 2k-mer keys in
the middle of their high-quality region (default k = 5)

» For candidate splice junction, concatenate the k bases downstream of the acceptor to the k
bases upstream

> Query this 2k-mer against the read index (exact seed match, no mismatch allowed)

> Align remaining part of read left and right of the exact match (allowing fixed number of
mismatches)
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Figure from (Trapnell et al., 2009)
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Transcriptome assembly

» TopHat pipeline can identify exons and exon-exon junctions, but does not output the
full-length transcripts

» Goal: define precise map of all transcript variants / isoforms that are expressed in a
particular sample
> Challenges
> For short reads, hard to determine from which isoform they were produced, because isoforms
contain the same exons and exon-exon pairs
> Gene expression spans several orders of magnitude, with some genes represented by only few
reads
> Reads can originate from mature mRNA or from incompletely spliced precursor RNA
» Two main classes of methods

» Genome-independent (de Brujin graph, see previous lecture)
» Genome-guided (after read alignment)



Paired-end sequencing reads

» Paired-end sequencing technology quantifies the nucleotide content of genomic DNA or
cDNA (for RNA) fragments from both ends of the fragments

Paired-End Reads Alignment to the Reference Sequence
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Paired-end sequencing enables both ends of the DNA fragment to be sequenced. Because the distance
between each paired read is known, alignment algorithms can use this information to map the reads over
repstitive regions more precisely. This results in much better alignment of the reads, especially across
difficult-to-sequence, repetitive regions of the genome

Figure from https://emea.illumina.com/science/technology/next-g: ion- ing/plan-experiments/paired-end ingle-read.html|




Transcriptome reconstruction with Cufflinks

> Genome-guided: takes TopHat spliced alignments as input

» With paired-end RNA-seq data, Bowtie and TopHat produce alignments where paired
reads of the same fragment are treated together as single alignment
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Figure from (Trapnell et al., 2010)



Transcriptome reconstruction with Cufflinks

> Connect fragments in an overlap graph » If two reads originate from different isoforms they
» Each fragment (read pair) corresponds are likely incompatible
to a node
» Directed edge from node x to node y if b Assembly
. Mutually
» The alignment for x starts at a incompatible
lower coordinate than y fragments

> The alignments overlap in the
genome, and

> The fragments were “compatible”
(every implied intron in one
fragment matched an identical
implied intron in the other
fragment), i.e., the fragments x and Overlap graph
y can come from the same Figure from (Trapnell et al., 2010)
transcript isoform




Transcriptome reconstruction with Cufflinks

» Construct from the overlap graph
minimal set of transcript isoforms that
can explain all the fragments

» Minimum path cover problem

» Dilworth’s theorem: maximum number
of mutually incompatible fragments
equals minimum number of paths

Minimum path cover

covering the whole graph (=minimum *
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Figure from (Trapnell et al., 2010)
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Simplified gene expression counting schemes

» Expression of a gene: sum of the expression of all its transcript variants / isoforms
» Computing isoform abundances can be computationally challenging

» Simplified counting schemes without computing isoform abundances

> Exon union method: count sequencing reads mapped to any of the exons
» Exon intersection method: count reads mapped to constitutive exons
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Figure from (Garber et al., 2011)



Simplified gene expression counting schemes

» Disadvantages of the simplified models
> The union model tends to underestimate expression for alternatively spliced genes
> Because it overestimates the length of isoforms: we will see the reason for this later
> The intersection can reduce statistical power for differential expression analysis
> Because a fraction of mapped sequencing reads are ignored

10¢ | « Exon union model i
Transcript model

Estimated FPKM

Isoform 1
— —
Isoform 2 = =

— 102 102 10° 10" 10° 10° 10*
True FPKM

Exon intersection method
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Gene expression quantification

» Basic idea: read count corresponds to the expression level
» Basic assumption

1
6; = P(“randomly sample a sequencing read from gene" i) =

— pili,
ZM

where

> u; is the expression level (abundance) of gene i

> (i is the length of gene  (e.g. the total length of constitutive exons for the intersection
method)

» Normalizing constant is Z =, uif;



Gene expression quantification

> Use the frequency estimator to estimate the probability that a read originates from a given
gene |

where

> k; is the number of sequencing reads mapping to gene i
> N is the total number of mapped reads

» Convert the estimates into expression values by normalizing by the gene length

> Recall from the previous slide that 6; oc u;¢;, which we can solve for p;
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RPKM: reads per kilobases per million reads

>

The number of read that map to a specific gene k; depends on the total number of
mapped reads N

» The number of read that map to a specific gene k; depends on the length of the gene ¢;

» By normalizing with these two terms, N and ¢;, we obtain a common unit to quantify gene

expression
> Across different experiments that may have a different N
> Across genes that may have a different ¢;

RPKM: reads per kilobases per million reads
ki
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RPKM is for single-end reads

FPMK is essentially the same as RPKM but defined for paired-end reads such that each
read-pair is counted only once



Gene expression quantification

» Consider the 4 four transcripts with different lengths and expression levels illustrated below
(left)

» On the right panel: the read counts normalized by the transcript length using the FPKM
(or RPKM) metric

» Transcripts 2 and 4 have comparable read-counts, transcript 2 has a significantly higher
normalized expression level

> After normalization, transcripts 3 and 4 have similar expression values
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Figure from (Garber et al., 2011)

» When the same gene is compared between conditions, the read counts (normalized by
sequencing depth, but not by transcript length) are often just fine



Gene expression quantification

» The above formulation assumes that all reads can be assigned uniquely to a single gene
» That is generally not true for transcripts (sometimes not even for genes)

> Different transcript isoforms can share a large fraction of their exons

> Genes belonging to the same gene families have similar genome/RNA sequence

» Different genes can be located in the same genomic region but on opposite DNA strands
(strand specific RNA-seq resolves this issue)
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