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Linear regression1

I Recall the multiple linear regression model

yi = β0 +

p∑
k=1

βkxik + εi = xTi β + εi ,

where
I yi denotes the measured response for the ith sample/data point
I β = (β0, β1, . . . , βp)T denotes the regression coefficients
I xi = (1, xi1, . . . , xip)T denotes the predictors for the ith sample/data point, and
I εi denotes the Gaussian observation error for the ith measurement, εi ∼ N (0, σ2)

I Assuming n measurements y = (y1, . . . , yn)T and X = (x1, . . . , xn)T , this can be written as

y = Xβ + ε,

where X contains xi s as rows, ε = (ε1, . . . , εn)T and ε ∼ N (0, σ2In)

1See e.g. (Agresti, 2015) or (Murphy, 2012) or any book on (generalized) linear models
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Linear regression

I Parameters of the linear regression model are θ = (β, σ2)

I Equivalently, we can write the linear regression model with Gaussian noise as

p(y | X , θ) = L(θ | y,X )

= N (y | µ,Σ)

= N (y | Xβ, σ2In)

=
n∏

i=1

N (yi | xTi β, σ2)

=
n∏

i=1

N (yi | E[yi ], σ
2),

where µi = E[yi ] = xTi β denotes the expectation of random variable yi and σ2 specifies
uncertainty around the expected value
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Parameter estimation for linear model with Gaussian noise

I A common way to estimate parameters is to maximise the likelihood of the observed data
w.r.t. model parameters, i.e., the maximum likelihood estimate (MLE)

θ̂ = arg max
θ

p(y | X , θ)

I In this case it is useful to study the logarithm of the likelihood

`(θ) = log p(y | X , θ) = log
n∏

i=1

p(yi |xi , θ) =
n∑

i=1

log p(yi |xi , θ)

=
n∑

i=1

log

[(
1

2πσ2

) 1
2

exp

(
− 1

2σ2
(yi − xTi β)2

)]

= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − xTi β)2

I Instead of maximizing `(θ) one can minimize −`(θ)
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Parameter estimation for linear model with Gaussian noise

I Minimum or maximum values of a (log) likelihood function w.r.t. parameters are obtained
at parameter values where the gradient of the function, i.e. partial derivatives, are zero

I For some models, the minimum / maximum can be obtained in a closed form

I The linear regression model with additive Gaussian noise is one such model:

β̂ = (XTX )−1XTy

σ̂2 =
1

n
(y − ŷ)T (y − ŷ)

=
1

n
(y − X β̂)T (y − X β̂),

assuming X has full rank and the inverse (XTX )−1 exists
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Nonlinearity in the linear regression model

I To model non-linear function we can replace x with some non-linear function φ(x)
I So-called basis function expansion
I Model is still linear in parameters, thus called as linear regression

I For example, polynomial basis functions

φ(x) = (1, x , x2, . . . , xd)T

I The above theory works for general basis functions as well
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An illustration of the linear regression model with Gaussian noise

I Examples of linear and non-linear regression model fitting
I φ(x) = (1, x1, x2)
I φ(x) = (1, x1, x2, x

2
1 , x
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Figure: Figures from (Murphy, 2012)
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Comparing two nested linear regression models

I Often one is interested in
I Evaluating the model accuracy, or
I Testing the significance of covariates/predictors of the model, either simultaneously or

individually

I A natural measure of how well a model fits the data y is the so-called residual sum of
squares

RSS = (y − ŷ)T (y − ŷ)

= (y − X β̂)T (y − X β̂)

=
n∑

i=1

(yi − xTi β)2

I RSS quantifies the amount of signal in y that a linear model cannot explain
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Comparing two nested linear regression models

I Assume two nested multiple linear regression models
I Model 1: yi = β0 +

∑p1
k=1 βkxik + εi

I Model 2: yi = β0 +
∑p1

k=1 βkxik +
∑p1+p2

k=p1+1 βkxik + εi

I We can define a test statistic that compares the RSS values between two models as

F =

(
RSS1−RSS2

df1

)
(

RSS2

df2

) ,

where df1 = (1 + p1 + p2)− (1 + p1) = p2 and df2 = n − 1− p1 − p2

I Under the null assumption that the p2 additional covariates included in model 2 do not
provide significantly better fit (i.e., H0 : βp1+1 = . . . = βp1+p2 = 0), the F test statistic has
F distribution, with (df1, df2) degrees of freedom

→ Significance value from hypothesis testing
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Likelihood ratio test

I Let L(θ̂1 | y,X ) and L(θ̂2 | y,X ) denote the maximum likelihoods for the two nested linear
models, respectively

I The likelihood ratio measures how many times less likely the data are under one model
(null hypothesis) than the other model (alternative hypothesis)

Λ(y) =
L(θ̂1 | y,X )

L(θ̂2 | y,X )

I Intuition:
I Values of Λ(y) close to 1 indicate there is no difference between the null and alternative

models
I Small values (close 0) indicate that the alternative model can explain the data much better

I An asymptotic result for nested models: when n→∞, the test statistic −2 log Λ(y) is
chi-squared distributed with degrees of freedom equal to the difference in the number of
free parameters between the two models
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The likelihood ratio test for the linear Gaussian model

I For the two nested linear regression models with Gaussian noise, the likelihood ratio test
can be written as

Λ(y) = −2 log
maxθ1 L(θ1 | y,X )

maxθ2 L(θ2 | y,X )

= −2 log
L(θ̂1 | y,X )

L(θ̂2 | y,X )

= . . . =

(
1 +

RSS1 − RSS2

RSS2

)−n/2

=

(
1 +

p2

n − 1− p1 − p2
F

)−n/2
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Generalized linear models

I Generalized linear models (GLM) are a generalization of linear regression models where the
response/dependent variables can have an error distribution other than the normal
distribution

I In standard GLMs the dependent variable is assumed to have a distribution in the
exponential family, including e.g.

I Normal, exponential, beta, gamma, Poisson, etc. distributions
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Generalized linear models

I Recall that in the case of Gaussian likelihood, E[yi ] = µi = xTi xi
I In GLMs, the mean µi of the distribution of random variable yi is assumed to depend on a

linear model via an invertible link function g

g(µi ) = xTi β

I Thus:
E[yi ] = µi = g−1(xTi β)

I Note that in the case of Gaussian linear model, the link function g(·) is the identify
function

I Variance of a GLM can follow the variance of the exponential family distribution or may be
defined as a function V (·) of the predicted value

Var(yi ) or V (µi , φ) = V (g−1(xTi β), φ)
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Generalized linear models

I Lets illustrate the GLM with the Poisson distribution for the response variables Y
(non-negative count data)

I Poisson rate parameter(s) λ must be positive, so logarithmic link function is appropriate

logλ = Xβ ⇔ λ = exp(Xβ)

I The variance of error distribution is defined by the Poisson distribution, i.e.,
Var(Yi ) = V (λi ) = λi = exp(xiβ)

I Likelihood of observed data y = (y1, . . . , yn)T is then

L(β | y,X ) =
n∏

i=1

Poisson(yi |λi ) =
n∏

i=1

λyii exp(−λi )
yi !

=
n∏

i=1

exp(xiβ)yi exp(− exp(xiβ))

yi !

I GLMs are typically fitted using maximum likelihood (or Bayesian) approach

I Note that for GLMs no closed form solutions exist but numerical methods must be used
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Hypothesis testing with GLMs

I For GLMs the null hypothesis is often stated by restricting the parameter vector

H0 : β ∈ Θ0 ⊂ Rp+1

I Consequently, the alternative hypothesis is defined via the complement of Θ0, i.e.,
ΘC

0 = Rp+1 \Θ0

H1 : β′ ∈ ΘC
0

I For example, if one is interested in testing a single predictor xi , then
I H0 : βi = 0 or equivalently β ∈ Rp

I H1 : βi 6= 0 or equivalently β′ ∈ Rp+1

I An asymptotic result for nested models: when n→∞, the test statistic −2 log Λ(y) is
chi-squared distributed with degrees of freedom equal to the difference in dimensionality of
Θ0 and ΘC

0
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Differential gene expression analysis

I Consider our hypothetical differential expression analysis using t-tests from lecture #1

I Two aspects
I Expression difference: how large is the average expression difference between two groups?
I Statistical significance: how sure are we that there is a true difference?

I The latter is a statistical question: hypothesis testing

I On the next slides we motivate the use of a negative binomial distribution by the following
reasoning: multinomial → binomial → Poisson → negative binomial
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Multinomial distribution

I Sequence count data is discrete-valued, so it obviously has a non-Gaussian distribution

→ t-test based methods are not appropriate, or at least not optimal

I For a single sample, we can assume that read counts for genes (or transcripts) have a
multinomial (sampling) distribution
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Multinomial distribution

I Consider the following
I A dice that has N different outcomes

I The number of genes e.g. in the human genome is ≈ 20, 000
I When a dice is rolled once, one of the outcomes will be chosen randomly with probability pi ,

where
∑N

i=1 pi = 1
I “One roll” corresponds to picking a single RNA fragment from a very large pool of fragments

for sequencing
I Assume an experiment where dice is rolled N times (i.i.d.)

I A sequencing run can produce e.g. 10M-1B sequencing reads

I Denote the number of times each outcome is observed by x = (x1, . . . , xN), where
x1 + . . .+ xN = n (the number of reads mapped to each gene)

I Denote p = (p1, . . . , pN)
I The unknown abundances/proportions of different genes

I The probability mass function of the random variable X = (X1, . . . ,XN) that has the
multinomial distribution

Multinomial(x; n,p) = P(X1 = x1, . . . ,XN = xN)

=

{
N!

x1!...xN !p
x1
1 px2

2 · · · p
xN
N , if x1 + . . .+ xN = n

0, otherwise
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Multinomial distribution

I Can be considered as sampling noise (or “technical” noise)

I The use of multinomial is somewhat challenging because we would need to model all genes
at the same time
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Binomial distribution

I Each of the components of a multinomial distribution separately (e.g. a gene) has a
binomial distribution

I For example, the probability that we obtain a sequencing read from gene i is p = pi , and the
probability that we obtain a sequencing read from any other gene is 1− p =

∑
j 6=i pj

I Consider a binary-valued random variable that takes value 1 with probability p

I Take n independent random realizations of the binary-valued random variable

I Let X denote the number of success in n realizations

I The probability of getting exactly k successes in n trials is given by probability mass
function of the binomial distribution

B(k; n, p) = P(X = k) =

(
n

k

)
pk(1− p)n−k
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Binomial distribution

0 5 10 15 20
k

0

0.05

0.1

0.15

0.2

0.25

P(
x=
k)

n=20, p=1/6



24/ 47

Poisson distribution

I Consider a discrete random variable X that can have values 0, 1, 2, . . .

I The discrete random variable X has a Poisson distribution with rate parameter λ if

Poisson(k;λ) = P(X = k) =
λk exp(−λ)

k!

I For larger number of trials n (i.e., the number of sequencing reads in an experiment) with
a small probability p, binomial can be approximated by Poisson distribution

0 5 10 15 20
k

0

0.05
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0.25
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lambda = 20/6
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k
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P(
x=

k)

n=20, p=1/6; lambda = 20/6

Binomial pdf
Poisson pdf
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Negative binomial distribution

I Read counts across biological replicates is observed to have a larger variance than what
Poisson model suggests

I So-called overdispersed noise
I Biological variability/noise

I Negative binomial has been found to provide a good fit to sequencing count data

I The negative binomial distribution is a discrete probability distribution of the number of
successes (denoted X ) in a sequence of i.i.d. Bernoulli trials (with probability p) before a
specified (non-random) number of failures (denoted r) occurs

I Random variable X has the negative binomial distribution with probability mass function

NB(k; r , p) = P(X = k) =

(
r + k − 1

k

)
pk(1− p)r

I The negative binomial distribution has several alternative formulations: see e.g.
https://en.wikipedia.org/wiki/Negative_binomial_distribution

I Be careful, especially when using in different programming languages!

https://en.wikipedia.org/wiki/Negative_binomial_distribution
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Negative binomial distribution
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I Negative binomial distribution occurs in many contexts
I Negative binomial distribution can be derived as a continuous mixture of Poisson

distributions where the mixing distribution is a gamma distribution

NB(k; r , p) =

∫ ∞
0

Poisson(k;λ)Gamma

(
λ; r ,

1− p

p

)
dλ
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Compound distributions

I Assume a random variable X with a distribution F (and density pf ) with parameters θ

I Assume that the parameters θ of F have a mixing distribution G (density pg )

I Distribution F is compounded by G

p(x) =

∫
pf (x |θ)pg (θ)dθ

I Recall the definition of the joint and marginal distributions

p(x , y) = p(x |y)p(y) and p(x) =

∫
p(x , y)dy =

∫
p(x |y)p(y)dy
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Compound distributions

I Typical usage:
I Overdispersion modeling

I Need to model a greater amount of variability than what would be expected by a given baseline
model

I Bayesian inference
I Predictive distribution of future data p(y∗|θ) given the posterior distribution of model

parameters θ conditioned on observed data y , p(y∗|y) =
∫
p(y∗|θ)p(θ|y)dθ

I Commonly used compound distributions in bioinformatics
I Gamma-Poisson, i.e., negative binomial
I Beta-binomial
I Dirichlet-multinomial
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Gamma-Poisson compound distributions

11/11/2018, 21.57Negative binomial distribution - Wikipedia

Page 5 of 10https://en.wikipedia.org/wiki/Negative_binomial_distribution

Consider a sequence of negative binomial random variables where the stopping parameter r goes to infinity, whereas the probability of success in each trial, p,
goes to zero in such a way as to keep the mean of the distribution constant. Denoting this mean λ, the parameter p will be p = r/(λ + r)

Under this parametrization the probability mass function will be

Now if we consider the limit as r → ∞, the second factor will converge to one, and the third to the exponent function:

which is the mass function of a Poisson-distributed random variable with expected value λ.

In other words, the alternatively parameterized negative binomial distribution converges to the Poisson distribution and r controls the deviation from the Poisson.
This makes the negative binomial distribution suitable as a robust alternative to the Poisson, which approaches the Poisson for large r, but which has larger
variance than the Poisson for small r.

The negative binomial distribution also arises as a continuous mixture of Poisson distributions (i.e. a compound probability distribution) where the mixing
distribution of the Poisson rate is a gamma distribution. That is, we can view the negative binomial as a Poisson(λ) distribution, where λ is itself a random
variable, distributed as a gamma distribution with shape = r and scale θ = p/(1 − p) or correspondingly rate β = (1 − p)/p.

To display the intuition behind this statement, consider two independent Poisson processes, “Success” and “Failure”, with intensities p and 1 − p. Together, the
Success and Failure processes are equivalent to a single Poisson process of intensity 1, where an occurrence of the process is a success if a corresponding
independent coin toss comes up heads with probability p; otherwise, it is a failure. If r is a counting number, the coin tosses show that the count of successes
before the rth failure follows a negative binomial distribution with parameters r and p. The count is also, however, the count of the Success Poisson process at the
random time T of the rth occurrence in the Failure Poisson process. The Success count follows a Poisson distribution with mean pT, where T is the waiting time
for r occurrences in a Poisson process of intensity 1 − p, i.e., T is gamma-distributed with shape parameter r and intensity 1 − p. Thus, the negative binomial
distribution is equivalent to a Poisson distribution with mean pT, where the random variate T is gamma-distributed with shape parameter r and intensity 1 − p.
The preceding paragraph follows, because λ = pT is gamma-distributed with shape parameter r and intensity (1 − p)/p.

The following formal derivation (which does not depend on r being a counting number) confirms the intuition.

Because of this, the negative binomial distribution is also known as the gamma–Poisson (mixture) distribution.

Note: The negative binomial distribution was originally derived as a limiting case of the gamma-Poisson distribution.[22]

Gamma–Poisson mixture

Copy-pasted from wikipedia: https://en.wikipedia.org/wiki/Negative_binomial_distribution

https://en.wikipedia.org/wiki/Negative_binomial_distribution
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Negative binomial distribution

I The mean and variance of negative binomial distribution are

E[X ] = µ =
pr

1− p
and V[X ] = σ2 =

pr

(1− p)2

I For our application it is useful to reparameterized NB using the mean and variance

NB(µ, σ2)
.

= NB(r , p),

where

r =
µ2

σ2 − µ
and p =

σ2 − µ
σ2

I Further, we will consider a parameterization

NB(µ, φ)
.

= NB(µ, σ2),

where φ defines the variance as σ2 = µ+ φµ2
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Differential gene expression analysis

I We will look at edgeR (McCarthy et al., 2012), a versatile and efficient modeling method
for sequencing count data

I Assume that the number of aligned reads in sample j that are assigned to gene g can be
modelled by negative binomial distribution

Ngj ∼ NB(sjλgj , φg )

where
I sj is the so-called library size: e.g. the total number of reads from sample j , or some other

normalization quantity
I λgj is the proportion of RNA fragments that originate from gene g in sample j

I Note that
∑

g λgj = 1

I φg is the dispersion for gene g that defines the over-dispersion and thus the variance in the
negative binomial model
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Differential gene expression analysis

I For the above definition of NB distribution the mean and variance for Ngj are

E[Ngj ] = µgj = sjλgj (1)

V[Ngj ] = µgj + φgµ
2
gj = sjλgj + φg s

2
j λ

2
gj (2)

I Recall that for the standard Poisson model E[Ngj ] = µgj and V[Ngj ] = µgj
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Differential gene expression analysis

I Often one is interested in comparing two populations A and B, i.e., H0 : λgA = λgB
I edgeR implements a general linear model (GLM) with NB distribution that allows

comparison of two population means as well as many other more complex experimental
designs

I In GLM the mean µgj = sjλgj of the NB is modeled with a log-linear model

log λgj = xTj βg

logµgj = xTj βg + log sj

logµgj = β0 +

p∑
k=1

xjkβgk + log sj ,

I xj is a vector that contains all p covariates for sample j , and
I βg is a vector that contains the corresponding parameters for gene g

I The mean of the NB distribution is µgj = exp(xTj βg + log sj)

I Recall that variance is defined as µgj + φµ2
gj
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Differential gene expression analysis

I Consider a simple example with 4 samples, 2 from group A and 2 from group B

I The linear model and the design matrix for the null hypothesis model (lets call it M0) that
assumes only one population/condition is (i.e., no difference between A and B)

logµg1

logµg2

logµg3

logµg4

 =


1
1
1
1

( βg )+


log s1

log s2

log s3

log s4

 ,

I The model for the alternative hypothesis with two conditions (M1) can be written e.g.
logµg1

logµg2

logµg3

logµg4

 =


1 0
1 0
0 1
0 1

( βgA
βgB

)
+


log s1

log s2

log s3

log s4

 ,

where samples 1 and 2 are from condition A and samples 3 and 4 are from condition B
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Differential gene expression analysis

I Lets denote the observed read counts for gene g as yg = (ng1, . . . , ng4)T (in the previous
example we have 4 samples)

I In edgeR, statistical hypothesis testing for differential gene expression between conditions
A and B can be implemented e.g. with the likelihood-ratio test

T = −2 ln
`(β̂g , φ̂g |yg ,M0)

`(β̂gA, β̂gB , φ̂g |yg ,M1)

I `(·) is the NB density function
I β̂g denotes the maximum likelihood estimate of βg given yg and M0 (similarly for other

parameters)

I The test statistic T is approximately chi-squared distributed with degrees of freedom equal
to dfM1 − dfM0 , where dfM denotes the number of free parameters of model M

→ p-value
I Remember multiple testing
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Differential gene expression analysis

I In many applications the number of biological replicates is too small to allow accurate
estimation of both λgj and φj

I edgeR tool implements a moderated test where information between genes is shared that
allows more accurate dispersion estimation

I The so-called adjusted profile likelihood (APL) for dispersion φg is

APLg (φg ) = `(φg |yg , β̂g )− 1

2
log det Ig

I φg is free parameter
I β̂g is the ML estimate of βg that depends on φg

I Ig is the Fisher information matrix
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Differential gene expression analysis

I One possible assumption is that all genes have the same dispersion value φg = φ

I A shared dispersion can be estimated by maximizing the sum of the adjusted profile
likelihoods

APLS(φ) =
G∑

g=1

APLg (φ)

I In essence, data across all genes is shared to estimate variance/dispersion

I edgeR tool provides also options for other dispersion estimates
I Trended: group genes into bin that have similar mean read count
I Gene-wise
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Differential gene expression analysis

I An example from edgeR User Guide (Chen et al, 2017)

I Three patient with oral squamous cell carcinomas
I Oral squamous cell carcinomas and matched normal tissue from each patient
I RNA-seq experiments paired experimental design

I Goal: detect genes differentially expressed between tumour and normal tissue

I Samples: 8N, 8T, 33N, 33T, 51N, 51T

I Design matrix X is

4 33T 33 T

5 51N 51 N

6 51T 51 T

> design <- model.matrix(~Patient+Tissue)

> rownames(design) <- colnames(y)

> design

(Intercept) Patient33 Patient51 TissueT

8N 1 0 0 0

8T 1 0 0 1

33N 1 1 0 0

33T 1 1 0 1

51N 1 0 1 0

51T 1 0 1 1

attr(,"assign")

[1] 0 1 1 2

attr(,"contrasts")

attr(,"contrasts")$Patient

[1] "contr.treatment"

attr(,"contrasts")$Tissue

[1] "contr.treatment"

This sort of additive model is appropriate for paired designs, or experiments with batch
e↵ects.

4.1.7 Estimating the dispersion

We estimate the NB dispersion for the dataset.

> y <- estimateDisp(y, design, robust=TRUE)

> y$common.dispersion

[1] 0.159

The square root of the common dispersion gives the coe�cient of variation of biological
variation. Here the common dispersion is found to be 0.159, so the coe�cient of biological
variation is around 0.4.

The dispersion estimates can be viewed in a BCV plot:

> plotBCV(y)

48

Figure from (Chen et al, 2017)
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Differential gene expression analysis

I Variance dependence on the mean (biological coefficient of variation equals the square
root of the dispersion)

4.1.8 Di↵erential expression

Now proceed to determine di↵erentially expressed genes. Fit genewise glms:

> fit <- glmFit(y, design)

Conduct likelihood ratio tests for tumour vs normal tissue di↵erences and show the top
genes:

> lrt <- glmLRT(fit)

> topTags(lrt)

Coefficient: TissueT

RefSeqID Symbol NbrOfExons logFC logCPM LR PValue FDR

5737 NM_001039585 PTGFR 4 -5.18 4.74 98.7 2.99e-23 3.15e-19

5744 NM_002820 PTHLH 4 3.97 6.21 92.1 8.06e-22 4.24e-18

3479 NM_001111283 IGF1 5 -3.99 5.71 86.5 1.37e-20 4.80e-17

1288 NM_033641 COL4A6 45 3.66 5.72 77.5 1.32e-18 3.47e-15

10351 NM_007168 ABCA8 38 -3.98 4.94 75.9 2.99e-18 6.29e-15

5837 NM_005609 PYGM 20 -5.48 5.99 75.4 3.81e-18 6.68e-15

487 NM_004320 ATP2A1 23 -4.62 5.96 74.8 5.14e-18 7.72e-15

27179 NM_014440 IL36A 4 -6.17 5.40 72.2 1.99e-17 2.61e-14

196374 NM_173352 KRT78 9 -4.25 7.61 70.8 4.03e-17 4.71e-14

83699 NM_031469 SH3BGRL2 4 -3.93 5.53 67.8 1.82e-16 1.92e-13

Note that glmLRT has conducted a test for the last coe�cient in the linear model, which we
can see is the tumor vs normal tissue e↵ect:

> colnames(design)

49

Figure from (Chen et al, 2017)
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Differential gene expression analysis

I 1269 genes differentially expressed with FDR 5%

I Additionally, require at least 2-fold change (blue horizontal lines below)

I MA plot: a scatter plot where a dot corresponds to a gene g , x-axis shows mean gene
expression 1

2 logXgAXgB and y -axis shows difference log
XgA

XgB

The blue lines indicate 2-fold changes.

4.1.9 Gene ontology analysis

We perform a gene ontology analysis focusing on the ontology of biological process (BP).
The genes up-regulated in the tumors tend to be associated with cell di↵erentiation, cell
migration and tissue morphogenesis:

> go <- goana(lrt)

> topGO(go, ont="BP", sort="Up", n=30)

Term Ont N Up Down P.Up P.Down

GO:0040011 locomotion BP 964 71 139 1.44e-11 3.01e-09

GO:0007155 cell adhesion BP 822 63 137 5.07e-11 9.85e-14

GO:0022610 biological adhesion BP 827 63 138 6.56e-11 7.13e-14

GO:0030198 extracellular matrix organization BP 219 29 44 7.92e-11 2.14e-07

GO:0043062 extracellular structure organization BP 219 29 44 7.92e-11 2.14e-07

GO:0009888 tissue development BP 1126 75 170 4.13e-10 5.96e-13

GO:0006928 movement of cell or subcellular component BP 1120 74 166 8.11e-10 5.91e-12

GO:0016477 cell migration BP 786 58 121 1.49e-09 7.04e-10

GO:0048870 cell motility BP 840 60 124 2.59e-09 5.99e-09

GO:0051674 localization of cell BP 840 60 124 2.59e-09 5.99e-09

GO:0030154 cell differentiation BP 2148 113 274 9.28e-09 1.16e-11

GO:0048869 cellular developmental process BP 2285 118 284 1.08e-08 8.64e-11

GO:0048699 generation of neurons BP 788 56 87 1.17e-08 2.07e-02

GO:0022008 neurogenesis BP 851 58 95 2.79e-08 1.21e-02

GO:0030155 regulation of cell adhesion BP 427 36 59 1.10e-07 4.51e-04

GO:0043588 skin development BP 206 23 28 1.95e-07 1.64e-02

GO:0009653 anatomical structure morphogenesis BP 1504 83 210 2.78e-07 1.79e-12

51

Figure from (Chen et al, 2017)
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I Differential gene expression analysis
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Transcript-level expression quantification

I Let us assume that each gene i is associated with Ji transcripts indexed by j , then

θij = P(sample a read from transcript j associated with gene i)

=
1

Z
µij`ij ,

where
I µij is the expression level of transcript j associated with gene j
I `ij is the length of transcript j of gene i
I Normalizing constant is Z =

∑
ij µij`ij

I The true expression level of gene i is

µi =

Ji∑
j=1

µij
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Transcript-level expression quantification

I Lets denote the aligned RNA-seq reads as R1,R2, . . . ,RN

I Let us also make an unrealistic assumption that all reads are assigned uniquely to one of
the transcripts

I Then the frequency estimator gives us

θ̂ij =
kij
N
,

where kij is the number of reads assigned uniquely to µij

I Correspondingly, we can convert the estimates into expression values by normalizing by the
transcript length

µ̂ij ∝
∑
j

θ̂ij
`ij

=
∑
j

kij
`ijN
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Transcript-level expression quantification

I Recall the union method for estimating the gene expression level

ki =
∑
j

kij

and the frequency estimator

θ̂i =
ki
`i
,

where `i is the length of the gene i

I Union method tends to underestimate the gene expression level because

θ̂i =

∑
j kij

`i
=

ki1
`i

+ · · ·+ kiJi
`i

≤ ki1
`i1

+ · · ·+ kiJi
`iJi

,

where `i ≥ `ij
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Transcript-level expression quantification

I Consider a simple case of skipped exon
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information about the splicing of the alternative exon, as higher 
expression of the exclusion isoform will generally increase the 
density of reads in the flanking exons relative to the alternative 
exon, and lower expression of the exclusion isoform will decrease 
this ratio of densities. MISO captures this, as well as the infor-
mation in the lengths of library inserts in paired-end data, by 
recasting the analysis of isoforms as a Bayesian inference problem. 
Our approach is related to the alternative-splicing quantification 
method12, which does not use paired-end information.

MISO samples reads uniformly from the chosen isoform, then 
recovers the underlying abundances of isoforms (  and 1 −  in the 
case of a single alternative exon) using the short read data (Fig. 1a 
and Supplementary Fig. 3). As a result of mRNA fragmentation 
in library preparation, mRNA abundance and length contribute 
roughly linearly to read sampling in RNA-seq. This effect is treated 
by rescaling the abundances  and 1 −  of the two isoforms by 
the number of possible reads that could be generated from each 
isoform, respectively. In the model, reads from a gene locus are 
produced by a generative process in which an isoform is first chosen 
according to its rescaled abundance, and a sequence read is then 
sampled uniformly from possible read positions along the mRNA 
(Online Methods). For the exon-centric analyses involving a single 
alternative exon we derived an analytic solution to the inference 
problem, whereas for isoform-centric analyses and estimation using 
CIs we developed an efficient inference technique based on Monte 
Carlo sampling (Online Methods). Our new estimator, ˆ

MISO, 
uses all of the read positions used in ˆSJ, plus reads aligning to the 
adjacent exons (Fig. 1b,c) and information about the library insert 
length distribution in paired-end RNA-seq. Both ˆSJ and ˆ

MISO 
are unbiased estimators of .

An improved measure of exon expression
Simulating read generation from an alternatively spliced gene, we 
observed that the ˆ

MISO estimate had consistently much lower 
variance and error than ˆSJ (Fig. 1d). For reference, the dis-
tribution of read-coverage values at depths typically obtained 
from one lane of sequencing on an Illumina Genome Analyzer 2  
(GA2) and on a HiSeq 2000 are shown, in units of reads per 
kilobase of exon model (RPK). For a gene with median cover-
age in the GA2 data set (~220 RPK), the s.d. of the estimated  
value was reduced more than twofold, from 0.21 for ˆSJ to 0.09 
for ˆ

MISO.  

Validation of MISO estimates
To assess the uncertainty in the splicing estimates for each exon, 
we calculated CIs for  (Online Methods) from moderate-depth 
breast cancer RNA-seq data (Supplementary Table 1; examples 
are shown in Fig. 2a,b). Comparing ˆ

MISO estimates for 52 alter-
native exons to corresponding quantitative reverse-transcription  
PCR (qRT-PCR) values11,13 yielded a Pearson correlation  
r = 0.87 (Fig. 2c and Supplementary Table 2; a bias in the  
RT-PCR data was analyzed in Supplementary Figs. 4–6). 
Restricting the analysis to exons with 95% CI width <0.25 
increased the correlation with qRT-PCR data considerably, to  
r = 0.96 (Fig. 2d). Thus, MISO CIs identify exons whose  
RNA-seq–based -value estimates are more reliable.

Detection of differentially expressed isoforms
Differential splicing of alternative exons entails a difference in 

 values, , and can be evaluated statistically using the Bayes 
factor (BF), which quantifies the odds of differential regulation 
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Figure 1 | More accurate inference of splicing 
levels using MISO. (a) Generative process for 
MISO model. White, alternatively spliced exon; 
gray and black, flanking constitutive exons. 
RNA-seq reads aligning to the alternative exon 
body (white) or to splice junctions involving 
this exon support the inclusive isoform, whereas 
reads joining the two constitutive exons (black-
gray exon junction) support the exclusive 
isoform. Reads aligning to the constitutive 
exons are common to both isoforms.  
(b) The ˆ

SJ estimate uses splice-junction and 
alternative exon–body reads only. (c) The MISO 
estimate, ˆ

MISO (derived here analytically), 
also uses constitutive reads and paired-end 
read information; orange lines connect reads in 
a pair; the insert length distribution is shown 
at right. (d) Comparison of ˆ

SJ and ˆ
MISO 

estimates from simulated data. Reads were 
sampled at varying coverage, measured in RPK, 
from the gene structure shown at top right, 
with underlying true  = 0.5. Mean values from 
3,000 simulations are shown ( s.d.) for each 
coverage value. Percentiles of gene expression 
values are shown for a data set assuming  
25 million mapped paired-end (PE) read pairs 
(25M PE; blue, extrapolating from an Illumina 
GA2 run that yielded 15 million mapped 
read pairs) and for a data set of 78 million 
mapped read pairs from an Illumina HiSeq 
2000 instrument (78M PE; red), both obtained 
from human heart tissue.

Figure from (Katz et al., 2010)

I We can use e.g. the reads in the skipped exon and the inclusion and exclusion reads
together with the frequency estimator to estimate the relative expression of the two
transcripts
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Transcript-level expression quantification

I With paired end reads we can try to use all (non-uniquely) aligned reads assuming we can
estimate insert length variability

©
20

10
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

2 | ADVANCE ONLINE PUBLICATION | NATURE METHODS

ARTICLES

information about the splicing of the alternative exon, as higher 
expression of the exclusion isoform will generally increase the 
density of reads in the flanking exons relative to the alternative 
exon, and lower expression of the exclusion isoform will decrease 
this ratio of densities. MISO captures this, as well as the infor-
mation in the lengths of library inserts in paired-end data, by 
recasting the analysis of isoforms as a Bayesian inference problem. 
Our approach is related to the alternative-splicing quantification 
method12, which does not use paired-end information.

MISO samples reads uniformly from the chosen isoform, then 
recovers the underlying abundances of isoforms (  and 1 −  in the 
case of a single alternative exon) using the short read data (Fig. 1a 
and Supplementary Fig. 3). As a result of mRNA fragmentation 
in library preparation, mRNA abundance and length contribute 
roughly linearly to read sampling in RNA-seq. This effect is treated 
by rescaling the abundances  and 1 −  of the two isoforms by 
the number of possible reads that could be generated from each 
isoform, respectively. In the model, reads from a gene locus are 
produced by a generative process in which an isoform is first chosen 
according to its rescaled abundance, and a sequence read is then 
sampled uniformly from possible read positions along the mRNA 
(Online Methods). For the exon-centric analyses involving a single 
alternative exon we derived an analytic solution to the inference 
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for ˆ
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native exons to corresponding quantitative reverse-transcription  
PCR (qRT-PCR) values11,13 yielded a Pearson correlation  
r = 0.87 (Fig. 2c and Supplementary Table 2; a bias in the  
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Restricting the analysis to exons with 95% CI width <0.25 
increased the correlation with qRT-PCR data considerably, to  
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Figure 1 | More accurate inference of splicing 
levels using MISO. (a) Generative process for 
MISO model. White, alternatively spliced exon; 
gray and black, flanking constitutive exons. 
RNA-seq reads aligning to the alternative exon 
body (white) or to splice junctions involving 
this exon support the inclusive isoform, whereas 
reads joining the two constitutive exons (black-
gray exon junction) support the exclusive 
isoform. Reads aligning to the constitutive 
exons are common to both isoforms.  
(b) The ˆ

SJ estimate uses splice-junction and 
alternative exon–body reads only. (c) The MISO 
estimate, ˆ

MISO (derived here analytically), 
also uses constitutive reads and paired-end 
read information; orange lines connect reads in 
a pair; the insert length distribution is shown 
at right. (d) Comparison of ˆ

SJ and ˆ
MISO 

estimates from simulated data. Reads were 
sampled at varying coverage, measured in RPK, 
from the gene structure shown at top right, 
with underlying true  = 0.5. Mean values from 
3,000 simulations are shown ( s.d.) for each 
coverage value. Percentiles of gene expression 
values are shown for a data set assuming  
25 million mapped paired-end (PE) read pairs 
(25M PE; blue, extrapolating from an Illumina 
GA2 run that yielded 15 million mapped 
read pairs) and for a data set of 78 million 
mapped read pairs from an Illumina HiSeq 
2000 instrument (78M PE; red), both obtained 
from human heart tissue.

Figure from (Katz et al., 2010)

I Estimation can be done Markov chain Monte Carlo (MCMC) sampling (Katz et al., 2010)
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