CS-E5875 High-Throughput Bioinformatics RNA-seq analysis: differential expression

Harri Lähdesmäki
Department of Computer Science Aalto University

November 10, 2020

Contents

- Linear regression and generalized linear models: basics
- Differential gene expression analysis
- Transcript-level analysis

Linear regression ${ }^{1}$

- Recall the multiple linear regression model

$$
y_{i}=\beta_{0}+\sum_{k=1}^{p} \beta_{k} x_{i k}+\epsilon_{i}=\mathbf{x}_{i}^{T} \boldsymbol{\beta}+\epsilon_{i},
$$

where

- y_{i} denotes the measured response for the i th sample/data point
- $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{T}$ denotes the regression coefficients
- $\mathbf{x}_{i}=\left(1, x_{i 1}, \ldots, x_{i p}\right)^{T}$ denotes the predictors for the i th sample/data point, and
- ϵ_{i} denotes the Gaussian observation error for the i th measurement, $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

[^0]
Linear regression ${ }^{1}$

- Recall the multiple linear regression model

$$
y_{i}=\beta_{0}+\sum_{k=1}^{p} \beta_{k} x_{i k}+\epsilon_{i}=\mathbf{x}_{i}^{\top} \boldsymbol{\beta}+\epsilon_{i},
$$

where

- y_{i} denotes the measured response for the i th sample/data point
- $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{T}$ denotes the regression coefficients
- $\mathbf{x}_{i}=\left(1, x_{i 1}, \ldots, x_{i p}\right)^{T}$ denotes the predictors for the i th sample/data point, and
- ϵ_{i} denotes the Gaussian observation error for the i th measurement, $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- Assuming n measurements $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ and $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)^{T}$, this can be written as

$$
\mathbf{y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where X contains \mathbf{x}_{i} s as rows, $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{T}$ and $\boldsymbol{\epsilon} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$

[^1]
Linear regression

- Parameters of the linear regression model are $\theta=\left(\boldsymbol{\beta}, \sigma^{2}\right)$
- Equivalently, we can write the linear regression model with Gaussian noise as

$$
\begin{aligned}
p(\mathbf{y} \mid X, \theta) & =L(\theta \mid \mathbf{y}, X) \\
& =\mathcal{N}(\mathbf{y} \mid \boldsymbol{\mu}, \Sigma) \\
& =\mathcal{N}\left(\mathbf{y} \mid X \boldsymbol{\beta}, \sigma^{2} I_{n}\right) \\
& =\prod_{i=1}^{n} \mathcal{N}\left(y_{i} \mid \mathbf{x}_{i}^{T} \boldsymbol{\beta}, \sigma^{2}\right) \\
& =\prod_{i=1}^{n} \mathcal{N}\left(y_{i} \mid \mathbb{E}\left[y_{i}\right], \sigma^{2}\right),
\end{aligned}
$$

where $\mu_{i}=\mathbb{E}\left[y_{i}\right]=\mathbf{x}_{i}^{T} \boldsymbol{\beta}$ denotes the expectation of random variable y_{i} and σ^{2} specifies uncertainty around the expected value

Parameter estimation for linear model with Gaussian noise

- A common way to estimate parameters is to maximise the likelihood of the observed data w.r.t. model parameters, i.e., the maximum likelihood estimate (MLE)

$$
\hat{\theta}=\arg \max _{\theta} p(\mathbf{y} \mid X, \theta)
$$

Parameter estimation for linear model with Gaussian noise

- A common way to estimate parameters is to maximise the likelihood of the observed data w.r.t. model parameters, i.e., the maximum likelihood estimate (MLE)

$$
\hat{\theta}=\arg \max _{\theta} p(\mathbf{y} \mid X, \theta)
$$

- In this case it is useful to study the logarithm of the likelihood

$$
\begin{aligned}
\ell(\theta) & =\log p(\mathbf{y} \mid X, \theta)=\log \prod_{i=1}^{n} p\left(y_{i} \mid \mathbf{x}_{i}, \theta\right)=\sum_{i=1}^{n} \log p\left(y_{i} \mid \mathbf{x}_{i}, \theta\right) \\
& =\sum_{i=1}^{n} \log \left[\left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mathbf{x}_{i}^{T} \beta\right)^{2}\right)\right] \\
& =-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{T} \beta\right)^{2}
\end{aligned}
$$

- Instead of maximizing $\ell(\theta)$ one can minimize $-\ell(\theta)$

Parameter estimation for linear model with Gaussian noise

- Minimum or maximum values of a (log) likelihood function w.r.t. parameters are obtained at parameter values where the gradient of the function, i.e. partial derivatives, are zero
- For some models, the minimum / maximum can be obtained in a closed form
- The linear regression model with additive Gaussian noise is one such model:

$$
\begin{aligned}
\hat{\beta} & =\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} \\
\hat{\sigma^{2}} & =\frac{1}{n}(\mathbf{y}-\hat{\mathbf{y}})^{T}(\mathbf{y}-\hat{\mathbf{y}}) \\
& =\frac{1}{n}(\mathbf{y}-X \hat{\boldsymbol{\beta}})^{T}(\mathbf{y}-X \hat{\boldsymbol{\beta}}),
\end{aligned}
$$

assuming X has full rank and the inverse $\left(X^{\top} X\right)^{-1}$ exists

Nonlinearity in the linear regression model

- To model non-linear function we can replace \mathbf{x} with some non-linear function $\phi(\mathbf{x})$
- So-called basis function expansion
- Model is still linear in parameters, thus called as linear regression
- For example, polynomial basis functions

$$
\phi(\mathbf{x})=\left(1, x, x^{2}, \ldots, x^{d}\right)^{T}
$$

- The above theory works for general basis functions as well

An illustration of the linear regression model with Gaussian noise

- Examples of linear and non-linear regression model fitting
- $\phi(x)=\left(1, x_{1}, x_{2}\right)$
- $\phi(x)=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}\right)$

Figure: Figures from (Murphy, 2012)

Comparing two nested linear regression models

- Often one is interested in
- Evaluating the model accuracy, or
- Testing the significance of covariates/predictors of the model, either simultaneously or individually
- A natural measure of how well a model fits the data \mathbf{y} is the so-called residual sum of squares

$$
\begin{aligned}
\mathrm{RSS} & =(\mathbf{y}-\hat{\mathbf{y}})^{T}(\mathbf{y}-\hat{\mathbf{y}}) \\
& =(\mathbf{y}-X \hat{\boldsymbol{\beta}})^{T}(\mathbf{y}-X \hat{\boldsymbol{\beta}}) \\
& =\sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)^{2}
\end{aligned}
$$

- RSS quantifies the amount of signal in y that a linear model cannot explain

Comparing two nested linear regression models

- Assume two nested multiple linear regression models
- Model 1: $y_{i}=\beta_{0}+\sum_{k=1}^{p_{1}} \beta_{k} x_{i k}+\epsilon_{i}$
- Model 2: $y_{i}=\beta_{0}+\sum_{k=1}^{p_{1}} \beta_{k} x_{i k}+\sum_{k=p_{1}+1}^{p_{1}+p_{2}} \beta_{k} x_{i k}+\epsilon_{i}$

Comparing two nested linear regression models

- Assume two nested multiple linear regression models
- Model 1: $y_{i}=\beta_{0}+\sum_{k=1}^{p_{1}} \beta_{k} x_{i k}+\epsilon_{i}$
- Model 2: $y_{i}=\beta_{0}+\sum_{k=1}^{k=1} \beta_{k} x_{i k}+\sum_{k=p_{1}+1}^{p_{1}+p_{2}} \beta_{k} x_{i k}+\epsilon_{i}$
- We can define a test statistic that compares the RSS values between two models as

$$
\left.F=\frac{\left(\frac{\mathrm{RSS}_{1}-\mathrm{RSS}_{2}}{\mathrm{df}}\right)}{\left(\frac{\mathrm{RSS}}{\mathrm{df}_{2}}\right.}\right)
$$

where $\mathrm{df}_{1}=\left(1+p_{1}+p_{2}\right)-\left(1+p_{1}\right)=p_{2}$ and $\mathrm{df}_{2}=n-1-p_{1}-p_{2}$

Comparing two nested linear regression models

- Assume two nested multiple linear regression models
- Model 1: $y_{i}=\beta_{0}+\sum_{k=1}^{p_{1}} \beta_{k} x_{i k}+\epsilon_{i}$
- Model 2: $y_{i}=\beta_{0}+\sum_{k=1}^{p_{1}=1} \beta_{k} x_{i k}+\sum_{k=p_{1}+1}^{p_{1}+p_{2}} \beta_{k} x_{i k}+\epsilon_{i}$
- We can define a test statistic that compares the RSS values between two models as

$$
F=\frac{\left(\frac{\mathrm{RSS}_{1}-\mathrm{RSS}_{2}}{\mathrm{df}_{1}}\right)}{\left(\frac{\mathrm{RSS}_{2}}{\mathrm{df}_{2}}\right)}
$$

where $\mathrm{df}_{1}=\left(1+p_{1}+p_{2}\right)-\left(1+p_{1}\right)=p_{2}$ and $\mathrm{df}_{2}=n-1-p_{1}-p_{2}$

- Under the null assumption that the p_{2} additional covariates included in model 2 do not provide significantly better fit (i.e., $H_{0}: \beta_{p_{1}+1}=\ldots=\beta_{p_{1}+p_{2}}=0$), the F test statistic has F distribution, with $\left(\mathrm{df}_{1}, \mathrm{df}_{2}\right)$ degrees of freedom
\rightarrow Significance value from hypothesis testing

Likelihood ratio test

- Let $L\left(\hat{\theta}_{1} \mid \mathbf{y}, X\right)$ and $L\left(\hat{\theta}_{2} \mid \mathbf{y}, X\right)$ denote the maximum likelihoods for the two nested linear models, respectively
- The likelihood ratio measures how many times less likely the data are under one model (null hypothesis) than the other model (alternative hypothesis)

$$
\Lambda(\mathbf{y})=\frac{L\left(\hat{\theta}_{1} \mid \mathbf{y}, X\right)}{L\left(\hat{\theta}_{2} \mid \mathbf{y}, X\right)}
$$

- Intuition:
- Values of $\Lambda(\mathbf{y})$ close to 1 indicate there is no difference between the null and alternative models
- Small values (close 0) indicate that the alternative model can explain the data much better

Likelihood ratio test

- Let $L\left(\hat{\theta}_{1} \mid \mathbf{y}, X\right)$ and $L\left(\hat{\theta}_{2} \mid \mathbf{y}, X\right)$ denote the maximum likelihoods for the two nested linear models, respectively
- The likelihood ratio measures how many times less likely the data are under one model (null hypothesis) than the other model (alternative hypothesis)

$$
\Lambda(\mathbf{y})=\frac{L\left(\hat{\theta}_{1} \mid \mathbf{y}, X\right)}{L\left(\hat{\theta}_{2} \mid \mathbf{y}, X\right)}
$$

- Intuition:
- Values of $\Lambda(\mathbf{y})$ close to 1 indicate there is no difference between the null and alternative models
- Small values (close 0) indicate that the alternative model can explain the data much better
- An asymptotic result for nested models: when $n \rightarrow \infty$, the test statistic $-2 \log \Lambda(\mathbf{y})$ is chi-squared distributed with degrees of freedom equal to the difference in the number of free parameters between the two models

The likelihood ratio test for the linear Gaussian model

- For the two nested linear regression models with Gaussian noise, the likelihood ratio test can be written as

$$
\begin{aligned}
\Lambda(\mathbf{y}) & =-2 \log \frac{\max _{\theta_{1}} L\left(\theta_{1} \mid \mathbf{y}, X\right)}{\max _{\theta_{2}} L\left(\theta_{2} \mid \mathbf{y}, X\right)} \\
& =-2 \log \frac{L\left(\hat{\theta}_{1} \mid \mathbf{y}, X\right)}{L\left(\hat{\theta}_{2} \mid \mathbf{y}, X\right)} \\
& =\ldots=\left(1+\frac{\mathrm{RSS}_{1}-\mathrm{RSS}_{2}}{\mathrm{RSS}_{2}}\right)^{-n / 2} \\
& =\left(1+\frac{p_{2}}{n-1-p_{1}-p_{2}} F\right)^{-n / 2}
\end{aligned}
$$

Generalized linear models

- Generalized linear models (GLM) are a generalization of linear regression models where the response/dependent variables can have an error distribution other than the normal distribution
- In standard GLMs the dependent variable is assumed to have a distribution in the exponential family, including e.g.
- Normal, exponential, beta, gamma, Poisson, etc. distributions

Generalized linear models

- Recall that in the case of Gaussian likelihood, $\mathbb{E}\left[y_{i}\right]=\mu_{i}=\mathbf{x}_{i}^{\top} \mathbf{x}_{i}$
- In GLMs, the mean μ_{i} of the distribution of random variable y_{i} is assumed to depend on a linear model via an invertible link function g

$$
g\left(\mu_{i}\right)=\mathbf{x}_{i}^{\top} \boldsymbol{\beta}
$$

- Thus:

$$
\mathbb{E}\left[y_{i}\right]=\mu_{i}=g^{-1}\left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)
$$

- Note that in the case of Gaussian linear model, the link function $g(\cdot)$ is the identify function

Generalized linear models

- Recall that in the case of Gaussian likelihood, $\mathbb{E}\left[y_{i}\right]=\mu_{i}=\mathbf{x}_{i}^{T} \mathbf{x}_{i}$
- In GLMs, the mean μ_{i} of the distribution of random variable y_{i} is assumed to depend on a linear model via an invertible link function g

$$
g\left(\mu_{i}\right)=\mathbf{x}_{i}^{\top} \boldsymbol{\beta}
$$

- Thus:

$$
\mathbb{E}\left[y_{i}\right]=\mu_{i}=g^{-1}\left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)
$$

- Note that in the case of Gaussian linear model, the link function $g(\cdot)$ is the identify function
- Variance of a GLM can follow the variance of the exponential family distribution or may be defined as a function $V(\cdot)$ of the predicted value

$$
\operatorname{Var}\left(y_{i}\right) \text { or } V\left(\mu_{i}, \phi\right)=V\left(g^{-1}\left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right), \phi\right)
$$

Generalized linear models

- Lets illustrate the GLM with the Poisson distribution for the response variables \mathbf{Y} (non-negative count data)
- Poisson rate parameter(s) $\boldsymbol{\lambda}$ must be positive, so logarithmic link function is appropriate

$$
\log \boldsymbol{\lambda}=X \boldsymbol{\beta} \Leftrightarrow \boldsymbol{\lambda}=\exp (X \boldsymbol{\beta})
$$

- The variance of error distribution is defined by the Poisson distribution, i.e., $\operatorname{Var}\left(Y_{i}\right)=V\left(\lambda_{i}\right)=\lambda_{i}=\exp \left(\mathbf{x}_{i} \boldsymbol{\beta}\right)$

Generalized linear models

- Lets illustrate the GLM with the Poisson distribution for the response variables \mathbf{Y} (non-negative count data)
- Poisson rate parameter(s) $\boldsymbol{\lambda}$ must be positive, so logarithmic link function is appropriate

$$
\log \boldsymbol{\lambda}=X \boldsymbol{\beta} \Leftrightarrow \boldsymbol{\lambda}=\exp (X \boldsymbol{\beta})
$$

- The variance of error distribution is defined by the Poisson distribution, i.e., $\operatorname{Var}\left(Y_{i}\right)=V\left(\lambda_{i}\right)=\lambda_{i}=\exp \left(\mathbf{x}_{i} \boldsymbol{\beta}\right)$
- Likelihood of observed data $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ is then

$$
L(\boldsymbol{\beta} \mid \mathbf{y}, X)=\prod_{i=1}^{n} \operatorname{Poisson}\left(y_{i} \mid \lambda_{i}\right)=\prod_{i=1}^{n} \frac{\lambda_{i}^{y_{i}} \exp \left(-\lambda_{i}\right)}{y_{i}!}=\prod_{i=1}^{n} \frac{\exp \left(\mathbf{x}_{i} \boldsymbol{\beta}\right)^{y_{i}} \exp \left(-\exp \left(\mathbf{x}_{i} \boldsymbol{\beta}\right)\right)}{y_{i}!}
$$

Generalized linear models

- Lets illustrate the GLM with the Poisson distribution for the response variables \mathbf{Y} (non-negative count data)
- Poisson rate parameter(s) $\boldsymbol{\lambda}$ must be positive, so logarithmic link function is appropriate

$$
\log \boldsymbol{\lambda}=X \boldsymbol{\beta} \Leftrightarrow \boldsymbol{\lambda}=\exp (X \boldsymbol{\beta})
$$

- The variance of error distribution is defined by the Poisson distribution, i.e., $\operatorname{Var}\left(Y_{i}\right)=V\left(\lambda_{i}\right)=\lambda_{i}=\exp \left(\mathbf{x}_{i} \boldsymbol{\beta}\right)$
- Likelihood of observed data $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ is then

$$
L(\boldsymbol{\beta} \mid \mathbf{y}, X)=\prod_{i=1}^{n} \operatorname{Poisson}\left(y_{i} \mid \lambda_{i}\right)=\prod_{i=1}^{n} \frac{\lambda_{i}^{y_{i}} \exp \left(-\lambda_{i}\right)}{y_{i}!}=\prod_{i=1}^{n} \frac{\exp \left(\mathbf{x}_{i} \boldsymbol{\beta}\right)^{y_{i}} \exp \left(-\exp \left(\mathbf{x}_{i} \boldsymbol{\beta}\right)\right)}{y_{i}!}
$$

- GLMs are typically fitted using maximum likelihood (or Bayesian) approach
- Note that for GLMs no closed form solutions exist but numerical methods must be used

Hypothesis testing with GLMs

- For GLMs the null hypothesis is often stated by restricting the parameter vector

$$
H_{0}: \quad \boldsymbol{\beta} \in \Theta_{0} \subset \mathbb{R}^{p+1}
$$

- Consequently, the alternative hypothesis is defined via the complement of Θ_{0}, i.e., $\Theta_{0}^{C}=\mathbb{R}^{p+1} \backslash \Theta_{0}$

$$
H_{1}: \beta^{\prime} \in \Theta_{0}^{C}
$$

Hypothesis testing with GLMs

- For GLMs the null hypothesis is often stated by restricting the parameter vector

$$
H_{0}: \boldsymbol{\beta} \in \Theta_{0} \subset \mathbb{R}^{p+1}
$$

- Consequently, the alternative hypothesis is defined via the complement of Θ_{0}, i.e., $\Theta_{0}^{C}=\mathbb{R}^{p+1} \backslash \Theta_{0}$

$$
H_{1}: \quad \beta^{\prime} \in \Theta_{0}^{C}
$$

- For example, if one is interested in testing a single predictor x_{i}, then
- $H_{0}: \beta_{i}=0$ or equivalently $\boldsymbol{\beta} \in \mathbb{R}^{p}$
- $H_{1}: \beta_{i} \neq 0$ or equivalently $\boldsymbol{\beta}^{\prime} \in \mathbb{R}^{p+1}$

Hypothesis testing with GLMs

- For GLMs the null hypothesis is often stated by restricting the parameter vector

$$
H_{0}: \boldsymbol{\beta} \in \Theta_{0} \subset \mathbb{R}^{p+1}
$$

- Consequently, the alternative hypothesis is defined via the complement of Θ_{0}, i.e., $\Theta_{0}^{C}=\mathbb{R}^{p+1} \backslash \Theta_{0}$

$$
H_{1}: \quad \boldsymbol{\beta}^{\prime} \in \Theta_{0}^{C}
$$

- For example, if one is interested in testing a single predictor x_{i}, then
- $H_{0}: \beta_{i}=0$ or equivalently $\boldsymbol{\beta} \in \mathbb{R}^{p}$
- $H_{1}: \beta_{i} \neq 0$ or equivalently $\boldsymbol{\beta}^{\prime} \in \mathbb{R}^{p+1}$
- An asymptotic result for nested models: when $n \rightarrow \infty$, the test statistic $-2 \log \Lambda(\mathbf{y})$ is chi-squared distributed with degrees of freedom equal to the difference in dimensionality of Θ_{0} and Θ_{0}^{C}

Contents

- Linear regression and generalized linear models: basics
- Differential gene expression analysis
- Transcript-level analysis

Differential gene expression analysis

- Consider our hypothetical differential expression analysis using t-tests from lecture \#1
- Two aspects
- Expression difference: how large is the average expression difference between two groups?
- Statistical significance: how sure are we that there is a true difference?
- The latter is a statistical question: hypothesis testing
- On the next slides we motivate the use of a negative binomial distribution by the following reasoning: multinomial \rightarrow binomial \rightarrow Poisson \rightarrow negative binomial

Multinomial distribution

- Sequence count data is discrete-valued, so it obviously has a non-Gaussian distribution
$\rightarrow t$-test based methods are not appropriate, or at least not optimal
- For a single sample, we can assume that read counts for genes (or transcripts) have a multinomial (sampling) distribution

Multinomial distribution

- Consider the following
- A dice that has N different outcomes
- The number of genes e.g. in the human genome is $\approx 20,000$
- When a dice is rolled once, one of the outcomes will be chosen randomly with probability p_{i}, where $\sum_{i=1}^{N} p_{i}=1$
- "One roll" corresponds to picking a single RNA fragment from a very large pool of fragments for sequencing
- Assume an experiment where dice is rolled N times (i.i.d.)
- A sequencing run can produce e.g. 10M-1B sequencing reads
- Denote the number of times each outcome is observed by $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$, where $x_{1}+\ldots+x_{N}=n$ (the number of reads mapped to each gene)
- Denote $\mathbf{p}=\left(p_{1}, \ldots, p_{N}\right)$
- The unknown abundances/proportions of different genes

Multinomial distribution

- Consider the following
- A dice that has N different outcomes
- The number of genes e.g. in the human genome is $\approx 20,000$
- When a dice is rolled once, one of the outcomes will be chosen randomly with probability p_{i}, where $\sum_{i=1}^{N} p_{i}=1$
- "One roll" corresponds to picking a single RNA fragment from a very large pool of fragments for sequencing
- Assume an experiment where dice is rolled N times (i.i.d.)
- A sequencing run can produce e.g. 10M-1B sequencing reads
- Denote the number of times each outcome is observed by $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$, where $x_{1}+\ldots+x_{N}=n$ (the number of reads mapped to each gene)
- Denote $\mathbf{p}=\left(p_{1}, \ldots, p_{N}\right)$
- The unknown abundances/proportions of different genes
- The probability mass function of the random variable $X=\left(X_{1}, \ldots, X_{N}\right)$ that has the multinomial distribution

$$
\begin{aligned}
\operatorname{Multinomial}(\mathbf{x} ; n, \mathbf{p}) & =P\left(X_{1}=x_{1}, \ldots, X_{N}=x_{N}\right) \\
& = \begin{cases}\frac{N!}{x_{1}!\ldots x_{N}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{N}^{x_{N}}, & \text { if } x_{1}+\ldots+x_{N}=n \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Multinomial distribution

- Can be considered as sampling noise (or "technical" noise)
- The use of multinomial is somewhat challenging because we would need to model all genes at the same time

Binomial distribution

- Each of the components of a multinomial distribution separately (e.g. a gene) has a binomial distribution
- For example, the probability that we obtain a sequencing read from gene i is $p=p_{i}$, and the probability that we obtain a sequencing read from any other gene is $1-p=\sum_{j \neq i} p_{j}$
- Consider a binary-valued random variable that takes value 1 with probability p
- Take n independent random realizations of the binary-valued random variable
- Let X denote the number of success in n realizations
- The probability of getting exactly k successes in n trials is given by probability mass function of the binomial distribution

$$
\mathrm{B}(k ; n, p)=P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Binomial distribution

Poisson distribution

- Consider a discrete random variable X that can have values $0,1,2, \ldots$
- The discrete random variable X has a Poisson distribution with rate parameter λ if

$$
\operatorname{Poisson}(k ; \lambda)=P(X=k)=\frac{\lambda^{k} \exp (-\lambda)}{k!}
$$

- For larger number of trials n (i.e., the number of sequencing reads in an experiment) with a small probability p, binomial can be approximated by Poisson distribution

Negative binomial distribution

- Read counts across biological replicates is observed to have a larger variance than what Poisson model suggests
- So-called overdispersed noise
- Biological variability/noise
- Negative binomial has been found to provide a good fit to sequencing count data

Negative binomial distribution

- Read counts across biological replicates is observed to have a larger variance than what Poisson model suggests
- So-called overdispersed noise
- Biological variability/noise
- Negative binomial has been found to provide a good fit to sequencing count data
- The negative binomial distribution is a discrete probability distribution of the number of successes (denoted X) in a sequence of i.i.d. Bernoulli trials (with probability p) before a specified (non-random) number of failures (denoted r) occurs
- Random variable X has the negative binomial distribution with probability mass function

$$
\mathrm{NB}(k ; r, p)=P(X=k)=\binom{r+k-1}{k} p^{k}(1-p)^{r}
$$

- The negative binomial distribution has several alternative formulations: see e.g. https://en.wikipedia.org/wiki/Negative_binomial_distribution
- Be careful, especially when using in different programming languages!

Negative binomial distribution

Negative binomial distribution

- Negative binomial distribution occurs in many contexts
- Negative binomial distribution can be derived as a continuous mixture of Poisson distributions where the mixing distribution is a gamma distribution

$$
\mathrm{NB}(k ; r, p)=\int_{0}^{\infty} \operatorname{Poisson}(k ; \lambda) \operatorname{Gamma}\left(\lambda ; r, \frac{1-p}{p}\right) d \lambda
$$

Compound distributions

- Assume a random variable X with a distribution F (and density p_{f}) with parameters θ
- Assume that the parameters θ of F have a mixing distribution G (density p_{g})
- Distribution F is compounded by G

$$
p(x)=\int p_{f}(x \mid \theta) p_{g}(\theta) d \theta
$$

- Recall the definition of the joint and marginal distributions

$$
p(x, y)=p(x \mid y) p(y) \text { and } p(x)=\int p(x, y) d y=\int p(x \mid y) p(y) d y
$$

Compound distributions

- Typical usage:
- Overdispersion modeling
- Need to model a greater amount of variability than what would be expected by a given baseline model
- Bayesian inference
- Predictive distribution of future data $p\left(y^{*} \mid \theta\right)$ given the posterior distribution of model parameters θ conditioned on observed data $y, p\left(y^{*} \mid y\right)=\int p\left(y^{*} \mid \theta\right) p(\theta \mid y) d \theta$
- Commonly used compound distributions in bioinformatics
- Gamma-Poisson, i.e., negative binomial
- Beta-binomial
- Dirichlet-multinomial

Gamma-Poisson compound distributions

$$
\begin{aligned}
f(k ; r, p) & =\int_{0}^{\infty} f_{\text {Poisson }(\lambda)}(k) \cdot f_{\text {Gamma }\left(r, \frac{1-p}{p}\right)}(\lambda) \mathrm{d} \lambda \\
& =\int_{0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda} \cdot \lambda^{r-1} \frac{e^{-\lambda(1-p) / p}}{\left(\frac{p}{1-p}\right)^{r} \Gamma(r)} \mathrm{d} \lambda \\
& =\frac{(1-p)^{r} p^{-r}}{k!\Gamma(r)} \int_{0}^{\infty} \lambda^{r+k-1} e^{-\lambda / p} \mathrm{~d} \lambda \\
& =\frac{(1-p)^{r} p^{-r}}{k!\Gamma(r)} p^{r+k} \Gamma(r+k) \\
& =\frac{\Gamma(r+k)}{k!\Gamma(r)} p^{k}(1-p)^{r} .
\end{aligned}
$$

Negative binomial distribution

- The mean and variance of negative binomial distribution are

$$
\mathbb{E}[X]=\mu=\frac{p r}{1-p} \text { and } \mathbb{V}[X]=\sigma^{2}=\frac{p r}{(1-p)^{2}}
$$

Negative binomial distribution

- The mean and variance of negative binomial distribution are

$$
\mathbb{E}[X]=\mu=\frac{p r}{1-p} \text { and } \mathbb{V}[X]=\sigma^{2}=\frac{p r}{(1-p)^{2}}
$$

- For our application it is useful to reparameterized NB using the mean and variance

$$
\mathrm{NB}\left(\mu, \sigma^{2}\right) \doteq \mathrm{NB}(r, p)
$$

where

$$
r=\frac{\mu^{2}}{\sigma^{2}-\mu} \quad \text { and } p=\frac{\sigma^{2}-\mu}{\sigma^{2}}
$$

Negative binomial distribution

- The mean and variance of negative binomial distribution are

$$
\mathbb{E}[X]=\mu=\frac{p r}{1-p} \text { and } \mathbb{V}[X]=\sigma^{2}=\frac{p r}{(1-p)^{2}}
$$

- For our application it is useful to reparameterized NB using the mean and variance

$$
\mathrm{NB}\left(\mu, \sigma^{2}\right) \doteq \mathrm{NB}(r, p)
$$

where

$$
r=\frac{\mu^{2}}{\sigma^{2}-\mu} \text { and } p=\frac{\sigma^{2}-\mu}{\sigma^{2}}
$$

- Further, we will consider a parameterization

$$
\mathrm{NB}(\mu, \phi) \doteq \mathrm{NB}\left(\mu, \sigma^{2}\right)
$$

where ϕ defines the variance as $\sigma^{2}=\mu+\phi \mu^{2}$

Differential gene expression analysis

- We will look at edgeR (McCarthy et al., 2012), a versatile and efficient modeling method for sequencing count data
- Assume that the number of aligned reads in sample j that are assigned to gene g can be modelled by negative binomial distribution

$$
N_{g j} \sim \operatorname{NB}\left(s_{j} \lambda_{g j}, \phi_{g}\right)
$$

where

- s_{j} is the so-called library size: e.g. the total number of reads from sample j, or some other normalization quantity
- $\lambda_{g j}$ is the proportion of RNA fragments that originate from gene g in sample j
- Note that $\sum_{g} \lambda_{g j}=1$
- ϕ_{g} is the dispersion for gene g that defines the over-dispersion and thus the variance in the negative binomial model

Differential gene expression analysis

- For the above definition of NB distribution the mean and variance for $N_{g j}$ are

$$
\begin{align*}
\mathbb{E}\left[N_{g j}\right] & =\mu_{g j}=s_{j} \lambda_{g j} \tag{1}\\
\mathbb{V}\left[N_{g j}\right] & =\mu_{g j}+\phi_{g} \mu_{g j}^{2}=s_{j} \lambda_{g j}+\phi_{g} s_{j}^{2} \lambda_{g j}^{2} \tag{2}
\end{align*}
$$

- Recall that for the standard Poisson model $\mathbb{E}\left[N_{g j}\right]=\mu_{g j}$ and $\mathbb{V}\left[N_{g j}\right]=\mu_{g j}$

Differential gene expression analysis

- Often one is interested in comparing two populations A and B, i.e., $H_{0}: \lambda_{g A}=\lambda_{g B}$
- edgeR implements a general linear model (GLM) with NB distribution that allows comparison of two population means as well as many other more complex experimental designs
- In GLM the mean $\mu_{g j}=s_{j} \lambda_{g j}$ of the NB is modeled with a log-linear model

$$
\begin{aligned}
\log \lambda_{g j} & =\mathbf{x}_{j}^{T} \boldsymbol{\beta}_{g} \\
\log \mu_{g j} & =\mathbf{x}_{j}^{T} \boldsymbol{\beta}_{\boldsymbol{g}}+\log s_{j} \\
\log \mu_{g j} & =\beta_{0}+\sum_{k=1}^{p} x_{j k} \beta_{g k}+\log s_{j},
\end{aligned}
$$

- \mathbf{x}_{j} is a vector that contains all p covariates for sample j, and
- $\boldsymbol{\beta}_{g}$ is a vector that contains the corresponding parameters for gene g
- The mean of the NB distribution is $\mu_{g j}=\exp \left(\mathbf{x}_{j}^{\top} \boldsymbol{\beta}_{g}+\log s_{j}\right)$
- Recall that variance is defined as $\mu_{g j}+\phi \mu_{g j}^{2}$

Differential gene expression analysis

- Consider a simple example with 4 samples, 2 from group A and 2 from group B
- The linear model and the design matrix for the null hypothesis model (lets call it M_{0}) that assumes only one population/condition is (i.e., no difference between A and B)

$$
\left(\begin{array}{l}
\log \mu_{g 1} \\
\log \mu_{g 2} \\
\log \mu_{g 3} \\
\log \mu_{g 4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\left(\beta_{g}\right)+\left(\begin{array}{l}
\log s_{1} \\
\log s_{2} \\
\log s_{3} \\
\log s_{4}
\end{array}\right)
$$

- The model for the alternative hypothesis with two conditions $\left(M_{1}\right)$ can be written e.g.

$$
\left(\begin{array}{l}
\log \mu_{g 1} \\
\log \mu_{g 2} \\
\log \mu_{g 3} \\
\log \mu_{g 4}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)\binom{\beta_{g A}}{\beta_{g B}}+\left(\begin{array}{l}
\log s_{1} \\
\log s_{2} \\
\log s_{3} \\
\log s_{4}
\end{array}\right)
$$

where samples 1 and 2 are from condition A and samples 3 and 4 are from condition B

Differential gene expression analysis

- Lets denote the observed read counts for gene g as $\mathbf{y}_{g}=\left(n_{g 1}, \ldots, n_{g 4}\right)^{T}$ (in the previous example we have 4 samples)
- In edgeR, statistical hypothesis testing for differential gene expression between conditions A and B can be implemented e.g. with the likelihood-ratio test

$$
T=-2 \ln \frac{\ell\left(\hat{\beta}_{g}, \hat{\phi}_{g} \mid \mathbf{y}_{g}, M_{0}\right)}{\ell\left(\hat{\beta}_{g A}, \hat{\beta}_{g B}, \hat{\phi}_{g} \mid \mathbf{y}_{g}, M_{1}\right)}
$$

- $\ell(\cdot)$ is the NB density function
- $\hat{\beta}_{g}$ denotes the maximum likelihood estimate of β_{g} given \mathbf{y}_{g} and M_{0} (similarly for other parameters)
- The test statistic T is approximately chi-squared distributed with degrees of freedom equal to $\mathrm{df}_{M_{1}}-\mathrm{df}_{M_{0}}$, where df_{M} denotes the number of free parameters of model M
$\rightarrow p$-value
- Remember multiple testing

Differential gene expression analysis

- In many applications the number of biological replicates is too small to allow accurate estimation of both $\lambda_{g j}$ and ϕ_{j}
- edgeR tool implements a moderated test where information between genes is shared that allows more accurate dispersion estimation
- The so-called adjusted profile likelihood (APL) for dispersion ϕ_{g} is

$$
A P L_{g}\left(\phi_{g}\right)=\ell\left(\phi_{g} \mid \mathbf{y}_{g}, \hat{\beta}_{g}\right)-\frac{1}{2} \log \operatorname{det} \mathcal{I}_{g}
$$

- ϕ_{g} is free parameter
- $\hat{\beta}_{g}$ is the ML estimate of β_{g} that depends on ϕ_{g}
- \mathcal{I}_{g} is the Fisher information matrix

Differential gene expression analysis

- One possible assumption is that all genes have the same dispersion value $\phi_{g}=\phi$
- A shared dispersion can be estimated by maximizing the sum of the adjusted profile likelihoods

$$
A P L_{s}(\phi)=\sum_{g=1}^{G} A P L_{g}(\phi)
$$

- In essence, data across all genes is shared to estimate variance/dispersion
- edgeR tool provides also options for other dispersion estimates
- Trended: group genes into bin that have similar mean read count
- Gene-wise

Differential gene expression analysis

- An example from edgeR User Guide (Chen et al, 2017)
- Three patient with oral squamous cell carcinomas
- Oral squamous cell carcinomas and matched normal tissue from each patient
- RNA-seq experiments paired experimental design
- Goal: detect genes differentially expressed between tumour and normal tissue
- Samples: 8N, 8T, 33N, 33T, 51N, 51 T
- Design matrix X is

	(Intercept)	Patient33	Patient51	TissueT
8 N	1	0	0	0
8T	1	0	0	1
33 N	1	1	0	0
33 T	1	1	0	1
51 N	1	0	1	0
51 T	1	0	1	1

[^2]
Differential gene expression analysis

- Variance dependence on the mean (biological coefficient of variation equals the square root of the dispersion)

Figure from (Chen et al, 2017)

Differential gene expression analysis

- 1269 genes differentially expressed with FDR 5\%
- Additionally, require at least 2 -fold change (blue horizontal lines below)
- MA plot: a scatter plot where a dot corresponds to a gene g, x-axis shows mean gene expression $\frac{1}{2} \log X_{g A} X_{g B}$ and y-axis shows difference $\log \frac{X_{g A}}{X_{g B}}$

Contents

- Linear regression and generalized linear models: basics
- Differential gene expression analysis
- Transcript-level analysis

Transcript-level expression quantification

- Let us assume that each gene i is associated with J_{i} transcripts indexed by j, then

$$
\begin{aligned}
\theta_{i j} & =P(\text { sample a read from transcript } j \text { associated with gene } i) \\
& =\frac{1}{Z} \mu_{i j} \ell_{i j},
\end{aligned}
$$

where

- $\mu_{i j}$ is the expression level of transcript j associated with gene j
- $\ell_{i j}$ is the length of transcript j of gene i
- Normalizing constant is $Z=\sum_{i j} \mu_{i j} \ell_{i j}$
- The true expression level of gene i is

$$
\mu_{i}=\sum_{j=1}^{J_{i}} \mu_{i j}
$$

Transcript-level expression quantification

- Lets denote the aligned RNA-seq reads as $R_{1}, R_{2}, \ldots, R_{N}$
- Let us also make an unrealistic assumption that all reads are assigned uniquely to one of the transcripts
- Then the frequency estimator gives us

$$
\hat{\theta}_{i j}=\frac{k_{i j}}{N}
$$

where $k_{i j}$ is the number of reads assigned uniquely to $\mu_{i j}$

- Correspondingly, we can convert the estimates into expression values by normalizing by the transcript length

$$
\hat{\mu}_{i j} \propto \sum_{j} \frac{\hat{\theta}_{i j}}{\ell_{i j}}=\sum_{j} \frac{k_{i j}}{\ell_{i j} N}
$$

Transcript-level expression quantification

- Recall the union method for estimating the gene expression level

$$
k_{i}=\sum_{j} k_{i j}
$$

and the frequency estimator

$$
\hat{\theta}_{i}=\frac{k_{i}}{\ell_{i}}
$$

where ℓ_{i} is the length of the gene i

- Union method tends to underestimate the gene expression level because

$$
\begin{aligned}
\hat{\theta}_{i} & =\frac{\sum_{j} k_{i j}}{\ell_{i}}=\frac{k_{i 1}}{\ell_{i}}+\cdots+\frac{k_{i J_{i}}}{\ell_{i}} \\
& \leq \frac{k_{i 1}}{\ell_{i 1}}+\cdots+\frac{k_{i J_{i}}}{\ell_{i J_{i}}}
\end{aligned}
$$

where $\ell_{i} \geq \ell_{i j}$

Transcript-level expression quantification

- Consider a simple case of skipped exon

\ldots Intron	
\square	Skipped exon
\square	Constitutive exons

Figure from (Katz et al., 2010)

- We can use e.g. the reads in the skipped exon and the inclusion and exclusion reads together with the frequency estimator to estimate the relative expression of the two transcripts

Transcript-level expression quantification

- With paired end reads we can try to use all (non-uniquely) aligned reads assuming we can estimate insert length variability

Figure from (Katz et al., 2010)

- Estimation can be done Markov chain Monte Carlo (MCMC) sampling (Katz et al., 2010)

References

- Agresti, Alan. Foundations of Linear and Generalized Linear Models, John Wiley \& Sons, 2015
- Chen Y, et al., edgeR: differential expression analysis of digital gene expression data, User's Guide, 11 October 2017
- Murphy K, Machine learning: a probabilistic perspective, MIT Press, 2012
- Katz Y, et al., Analysis and design of rnA sequencing experiments for identifying isoform regulation, Nature Methods, 7(12):1009-15, 2010.

[^0]: ${ }^{1}$ See e.g. (Agresti, 2015) or (Murphy, 2012) or any book on (generalized) linear models

[^1]: ${ }^{1}$ See e.g. (Agresti, 2015) or (Murphy, 2012) or any book on (generalized) linear models

[^2]: Figure from (Chen et al, 2017)

