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Linear regression!

» Recall the multiple linear regression model

p
yi=Bo+ Y Bexi+ei=xB+e,
k=1

where

v

yi denotes the measured response for the ith sample/data point

B =(Bo, p,--. ,ﬂp)T denotes the regression coefficients

xi = (1,x1,...,xp,)" denotes the predictors for the ith sample/data point, and
¢ denotes the Gaussian observation error for the ith measurement, ¢; ~ N(0, o%)

vvYyy

1See e.g. (Agresti, 2015) or (Murphy, 2012) or any book on (generalized) linear models



Linear regression!

» Recall the multiple linear regression model

p
yi=Bo+ Y Bexi+ei=xB+e,
k=1

where

> y; denotes the measured response for the ith sample/data point

> B8=1(Bo,p,--. ,ﬂp)T denotes the regression coefficients

» x; = (1,X1,...,xp)" denotes the predictors for the ith sample/data point, and

> ¢; denotes the Gaussian observation error for the ith measurement, ¢; ~ N(0, 5%)

» Assuming n measurements y = (y1,...,y,)’ and X = (xi,...,x,)", this can be written as
y=XB+e,

where X contains x;s as rows, € = (e1,...,¢,)" and € ~ N(0,02,)

1See e.g. (Agresti, 2015) or (Murphy, 2012) or any book on (generalized) linear models



Linear regression

» Parameters of the linear regression model are § = (3, 0?)

» Equivalently, we can write the linear regression model with Gaussian noise as

ply | X,0)=L(0]y,X)
=N(y|mX)
=N(y | XB,0%1,)

=[INWi 1%/ 8,07
i=1

= IV | Bl o),

i=1

where p; = E[y;] = x/ 3 denotes the expectation of random variable y; and o specifies
uncertainty around the expected value



Parameter estimation for linear model with Gaussian noise

» A common way to estimate parameters is to maximise the likelihood of the observed data
w.r.t. model parameters, i.e., the maximum likelihood estimate (MLE)

~

0 = argmaxp(y | X, 0)



Parameter estimation for linear model with Gaussian noise

» A common way to estimate parameters is to maximise the likelihood of the observed data
w.r.t. model parameters, i.e., the maximum likelihood estimate (MLE)

~

0 = argmaxp(y | X, 0)

» In this case it is useful to study the logarithm of the likelihood

U8) = logp(y | X,0) =log [ [ pyilxi,0) =D _ log p(yilxi, 0)
i=1

i=1
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> Instead of maximizing ¢(6) one can minimize —¢(0)



Parameter estimation for linear model with Gaussian noise

» Minimum or maximum values of a (log) likelihood function w.r.t. parameters are obtained
at parameter values where the gradient of the function, i.e. partial derivatives, are zero

» For some models, the minimum / maximum can be obtained in a closed form

» The linear regression model with additive Gaussian noise is one such model:
B=(X"TX)"'XTy
7=ty -9ty

=~(y—XB)"(y - XB),

assuming X has full rank and the inverse (X7 X)~! exists



Nonlinearity in the linear regression model

» To model non-linear function we can replace x with some non-linear function ¢(x)

» So-called basis function expansion
> Model is still linear in parameters, thus called as linear regression

» For example, polynomial basis functions
Bd(x) = (1,x,x%,...,xH T

» The above theory works for general basis functions as well



An illustration of the linear regression model with Gaussian noise

» Examples of linear and non-linear regression model fitting

> ¢(X) (17X17X2)

> d)(X) (17X13X25X]?7X22)

Figure: Figures from (Murphy, 2012)



Comparing two nested linear regression models

» Often one is interested in

» Evaluating the model accuracy, or
> Testing the significance of covariates/predictors of the model, either simultaneously or
individually

» A natural measure of how well a model fits the data y is the so-called residual sum of
squares

RSS=(y-9)"(y-9)

» RSS quantifies the amount of signal in y that a linear model cannot explain



Comparing two nested linear regression models

> Assume two nested multiple linear regression models

> Model 1: y; = 8o + > -, Bixic + €i
> Model 2: y; = Bo + > 7L, Bixi + Zig,fil Bixik + €i



Comparing two nested linear regression models

> Assume two nested multiple linear regression models

> Model 1: y; = 8o + > -, Bixic + €i
> Model 2: y; = Bo + > 7L, Bixi + Z’ZS,TZH Bixik + €i

» We can define a test statistic that compares the RSS values between two models as

<RSSl—RSSZ)
df,
F=>————7
RSS,
d,

wheredf; = (1+p1+p2)—(L+p1)=pranddfo =n—1—p; — p




Comparing two nested linear regression models

> Assume two nested multiple linear regression models

> Model 1: y; = 8o + > -, Bixic + €i
> Model 2: y; = Bo + > 7L, Bixi + Zi::,ﬁl Bixik + €i

» We can define a test statistic that compares the RSS values between two models as

( RSSld? RSS, )
F=-~"F—,
(RSSQ)
d,
wheredf; = (1+p1+p2)—(L+p1)=pranddfo =n—1—p; — p

» Under the null assumption that the p, additional covariates included in model 2 do not

provide significantly better fit (i.e., Ho : Bp4+1 = ... = Bp+p, = 0), the F test statistic has
F distribution, with (df, df;) degrees of freedom

— Significance value from hypothesis testing




Likelihood ratio test

> Let L(A; |y, X) and L(A> | y, X) denote the maximum likelihoods for the two nested linear
models, respectively

» The likelihood ratio measures how many times less likely the data are under one model
(null hypothesis) than the other model (alternative hypothesis)

M= 16, yx)

> Intuition:
> Values of A(y) close to 1 indicate there is no difference between the null and alternative

models
> Small values (close 0) indicate that the alternative model can explain the data much better



Likelihood ratio test

> Let L(A; |y, X) and L(A> | y, X) denote the maximum likelihoods for the two nested linear
models, respectively

» The likelihood ratio measures how many times less likely the data are under one model
(null hypothesis) than the other model (alternative hypothesis)

/\(y) — L(el | Y7X)
L(02 | Y, X)
> Intuition:
> Values of A(y) close to 1 indicate there is no difference between the null and alternative
models

> Small values (close 0) indicate that the alternative model can explain the data much better
> An asymptotic result for nested models: when n — oo, the test statistic —2log A(y) is
chi-squared distributed with degrees of freedom equal to the difference in the number of
free parameters between the two models



The likelihood ratio test for the linear Gaussian model

» For the two nested linear regression models with Gaussian noise, the likelihood ratio test
can be written as

maxg, L(61 | y, X)
maXp, L(92 | an)
L(é\l | Y7X)
L(HZ | an)

(1 RSS1—Rss —n/2
RSS,

—n/2
—<1+p2F>
n—1—p1—po

A(y) = —2log



Generalized linear models

> Generalized linear models (GLM) are a generalization of linear regression models where the
response/dependent variables can have an error distribution other than the normal
distribution
» |In standard GLMs the dependent variable is assumed to have a distribution in the
exponential family, including e.g.
» Normal, exponential, beta, gamma, Poisson, etc. distributions



Generalized linear models

v

Recall that in the case of Gaussian likelihood, E[y;] = p; = x,-Tx;

» In GLMs, the mean p; of the distribution of random variable y; is assumed to depend on a
linear model via an invertible link function g
g(u) =x/pB
» Thus:

Ely;] = pi = g *(x/ B)

Note that in the case of Gaussian linear model, the link function g(-) is the identify
function

v



Generalized linear models

» Recall that in the case of Gaussian likelihood, E[y;] = u; = x,-Tx;

» In GLMs, the mean p; of the distribution of random variable y; is assumed to depend on a
linear model via an invertible link function g

g(ui)=x/ B
» Thus:
Elyi] = i = g *(x/ B)

» Note that in the case of Gaussian linear model, the link function g(-) is the identify
function

» Variance of a GLM can follow the variance of the exponential family distribution or may be
defined as a function V/(-) of the predicted value

Var(y;) or V(ui,¢) = V(g (x/B),0)



Generalized linear models

> Lets illustrate the GLM with the Poisson distribution for the response variables Y
(non-negative count data)
» Poisson rate parameter(s) A must be positive, so logarithmic link function is appropriate

logA =XB < X=exp(X3)

» The variance of error distribution is defined by the Poisson distribution, i.e.,
Var(Y;) = V(X)) = \i = exp(x;8)



Generalized linear models

> Lets illustrate the GLM with the Poisson distribution for the response variables Y
(non-negative count data)

» Poisson rate parameter(s) A must be positive, so logarithmic link function is appropriate
logA =XB < X=exp(X3)

» The variance of error distribution is defined by the Poisson distribution, i.e.,
Var(Y;) = V(X)) = \i = exp(x;8)
> Likelihood of observed data 'y = (y1,...,y,)" is then

N () _ T ()" ol o)
yl-! i1 yll

LBy, X)= HPoisson(y,-|/\,-) = H

i=1 =1



Generalized linear models

> Lets illustrate the GLM with the Poisson distribution for the response variables Y
(non-negative count data)

» Poisson rate parameter(s) A must be positive, so logarithmic link function is appropriate
logA =XB < X=exp(X3)
» The variance of error distribution is defined by the Poisson distribution, i.e.,
Var(Y;) = V(X)) = Ai = exp(x;3)
> Likelihood of observed data 'y = (y1,...,y,)" is then

n

M o0(-A) _ ] exB)” el eox)
yi! B yi!

LBy, X)= HPoisson(y,-|/\,-) = H

i=1 =1

i=1

» GLMs are typically fitted using maximum likelihood (or Bayesian) approach

» Note that for GLMs no closed form solutions exist but numerical methods must be used



Hypothesis testing with GLMs

» For GLMs the null hypothesis is often stated by restricting the parameter vector
Ho : ﬁE@oCRp-H
» Consequently, the alternative hypothesis is defined via the complement of O, i.e.,

0§ =RPH\ 6
H : B coef



Hypothesis testing with GLMs

» For GLMs the null hypothesis is often stated by restricting the parameter vector
Ho : ﬁE@oCRp-H

» Consequently, the alternative hypothesis is defined via the complement of O, i.e.,
0§ = RP+1\ 9
H : B coef
» For example, if one is interested in testing a single predictor x;, then

» Hy: Bi =0 or equivalently 3 € R
» Hi: Bi # 0 or equivalently 8’ € RP™!



Hypothesis testing with GLMs

» For GLMs the null hypothesis is often stated by restricting the parameter vector
Ho : ,36@0C]Rp+l

» Consequently, the alternative hypothesis is defined via the complement of O, i.e.,
0§ = RP+1\ 9
H : B coef
» For example, if one is interested in testing a single predictor x;, then
» Hy: Bi =0 or equivalently 3 € R
» Hi: Bi # 0 or equivalently 8’ € RP™!
» An asymptotic result for nested models: when n — oo, the test statistic —2 log A(y) is

chi-squared distributed with degrees of freedom equal to the difference in dimensionality of
@0 and @g
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Differential gene expression analysis

» Consider our hypothetical differential expression analysis using t-tests from lecture #1

» Two aspects

» Expression difference: how large is the average expression difference between two groups?
> Statistical significance: how sure are we that there is a true difference?

» The latter is a statistical question: hypothesis testing

> On the next slides we motivate the use of a negative binomial distribution by the following
reasoning: multinomial — binomial — Poisson — negative binomial



Multinomial distribution

» Sequence count data is discrete-valued, so it obviously has a non-Gaussian distribution
— t-test based methods are not appropriate, or at least not optimal

» For a single sample, we can assume that read counts for genes (or transcripts) have a
multinomial (sampling) distribution



Multinomial distribution

> Consider the following
> A dice that has N different outcomes
> The number of genes e.g. in the human genome is =~ 20,000
> When a dice is rolled once, one of the outcomes will be chosen randomly with probability p;,
where >V pi=1
> “One roll” corresponds to picking a single RNA fragment from a very large pool of fragments
for sequencing
> Assume an experiment where dice is rolled N times (i.i.d.)
> A sequencing run can produce e.g. 10M-1B sequencing reads
> Denote the number of times each outcome is observed by x = (xi, ..., xn), where
x1 + ...+ xn = n (the number of reads mapped to each gene)
» Denote p = (p1, ..., pn)
> The unknown abundances/proportions of different genes



Multinomial distribution

> Consider the following
> A dice that has N different outcomes
> The number of genes e.g. in the human genome is =~ 20,000
> When a dice is rolled once, one of the outcomes will be chosen randomly with probability p;,
where >V pi=1
> “One roll” corresponds to picking a single RNA fragment from a very large pool of fragments
for sequencing
> Assume an experiment where dice is rolled N times (i.i.d.)
> A sequencing run can produce e.g. 10M-1B sequencing reads
> Denote the number of times each outcome is observed by x = (xi, ..., xn), where

x1 + ...+ xn = n (the number of reads mapped to each gene)
» Denote p = (p1, ..., pn)

> The unknown abundances/proportions of different genes
» The probability mass function of the random variable X = (X, ..., Xy) that has the
multinomial distribution

Multinomial(x; n,p) = P(X1 =x1,..., Xy = xn)

N X1 X2 XN

o !XN!p1 Py Py, ifxi+. +xy=n

0, otherwise



Multinomial distribution

» Can be considered as sampling noise (or “technical” noise)

» The use of multinomial is somewhat challenging because we would need to model all genes
at the same time



Binomial distribution

» Each of the components of a multinomial distribution separately (e.g. a gene) has a
binomial distribution
» For example, the probability that we obtain a sequencing read from gene i is p = p;, and the
probability that we obtain a sequencing read from any other geneis 1 — p = Z#,. pj

» Consider a binary-valued random variable that takes value 1 with probability p

» Take n independent random realizations of the binary-valued random variable

> Let X denote the number of success in n realizations

> The probability of getting exactly k successes in n trials is given by probability mass

function of the binomial distribution

B(kin,p) = P(X = k) = (Z) pk(l _ p)nfk



Binomial distribution

n=20, p=1/6

20



Poisson distribution

» Consider a discrete random variable X that can have values 0,1,2, ...
» The discrete random variable X has a Poisson distribution with rate parameter X if

Aeexp(—2)

Poisson(k; \) = P(X = k) = 1

» For larger number of trials n (i.e., the number of sequencing reads in an experiment) with
a small probability p, binomial can be approximated by Poisson distribution

025 lambda = 20/6 025 n=20, p=1/6; lambda = 20/6
Binomial pdf
0.2 Poisson pdf
=015
I
X
& o1
0.05 T
Q
0 (900
0 5 10 15 15 20




Negative binomial distribution

» Read counts across biological replicates is observed to have a larger variance than what
Poisson model suggests

> So-called overdispersed noise
> Biological variability/noise

» Negative binomial has been found to provide a good fit to sequencing count data


https://en.wikipedia.org/wiki/Negative_binomial_distribution

Negative binomial distribution

» Read counts across biological replicates is observed to have a larger variance than what
Poisson model suggests

> So-called overdispersed noise
> Biological variability/noise

» Negative binomial has been found to provide a good fit to sequencing count data

» The negative binomial distribution is a discrete probability distribution of the number of
successes (denoted X) in a sequence of i.i.d. Bernoulli trials (with probability p) before a
specified (non-random) number of failures (denoted r) occurs

» Random variable X has the negative binomial distribution with probability mass function

NB(k;r, p) = P(X = k) = (” . 1)pk(1 oy

» The negative binomial distribution has several alternative formulations: see e.g.
https://en.wikipedia.org/wiki/Negative_binomial_distribution

» Be careful, especially when using in different programming languages!


https://en.wikipedia.org/wiki/Negative_binomial_distribution

Negative binomial distribution
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Negative binomial distribution

r=1, p=1/6 -
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» Negative binomial distribution occurs in many contexts

> Negative binomial distribution can be derived as a continuous mixture of Poisson
distributions where the mixing distribution is a gamma distribution

NB(k; r,p) = / Poisson(k; A\)Gamma <)\; r ! _p p) dA
0



Compound distributions

» Assume a random variable X with a distribution F (and density pf) with parameters ¢
> Assume that the parameters 6 of F have a mixing distribution G (density p,)

» Distribution F is compounded by G

p(x) = [ pr(x0)ps(0)d0

> Recall the definition of the joint and marginal distributions

p(x,y) = p(xly)p(y) and p(x) = / p(x,y)dy = / p(x]y)p(y)dy



Compound distributions

» Typical usage:
> Overdispersion modeling

> Need to model a greater amount of variability than what would be expected by a given baseline
model

> Bayesian inference
> Predictive distribution of future data p(y*|0) given the posterior distribution of model
parameters ¢ conditioned on observed data y, p(y*|y) = [ p(y*|0)p(6]y)do
» Commonly used compound distributions in bioinformatics
» Gamma-Poisson, i.e., negative binomial
> Beta-binomial
> Dirichlet-multinomial



Gamma-Poisson compound distributions

f(k: ""p) = ./0. fPoi.sson()\) (k) : fGamma(r, 1’;1’) (A) da

@, e

o K (&) T)
= % /0 Tyl Ve 4y
= % P ET(r+ k)
= %TTJE:;) PP(-p).

Copy-pasted from wikipedia: https://en.wikipedia.org/wiki/Negative_binomial_distribution


https://en.wikipedia.org/wiki/Negative_binomial_distribution

Negative binomial distribution

» The mean and variance of negative binomial distribution are

E[X] = p = 1’i’p and V[X] =% =




Negative binomial distribution

» The mean and variance of negative binomial distribution are

P
(1-p)

» For our application it is useful to reparameterized NB using the mean and variance

E[X] = p = 1’i’p and V[X] =% =

NB(u,0%) = NB(r, p),

where
2 2

and p:U ;M
g




Negative binomial distribution

» The mean and variance of negative binomial distribution are
pr
(1-p)?

» For our application it is useful to reparameterized NB using the mean and variance

E[X] = p = 1’i’p and V[X] =% =

NB(u,0%) = NB(r, p),

where
2 2

and p:U ;M
g

r =
02 —

» Further, we will consider a parameterization
NB(, ¢) = NB(p, o),

where ¢ defines the variance as 02 = i + ¢u?



Differential gene expression analysis

> We will look at edgeR (McCarthy et al., 2012), a versatile and efficient modeling method
for sequencing count data

» Assume that the number of aligned reads in sample j that are assigned to gene g can be
modelled by negative binomial distribution

Ngj ~ NB(sjAg), d¢)

where

> s; is the so-called library size: e.g. the total number of reads from sample j, or some other
normalization quantity
> g is the proportion of RNA fragments that originate from gene g in sample j
> Note that 35, Ag; =1

> ¢g is the dispersion for gene g that defines the over-dispersion and thus the variance in the
negative binomial model



Differential gene expression analysis

» For the above definition of NB distribution the mean and variance for Ng; are

E[Ng] = g =si)g
VNg]l = g+ Gaiz; = kg + ds5 A5

> Recall that for the standard Poisson model E[Ngj] = pigj and V[Ng] = pgj



Differential gene expression analysis

> Often one is interested in comparing two populations A and B, i.e., Hy : Aga = AgB

» edgeR implements a general linear model (GLM) with NB distribution that allows
comparison of two population means as well as many other more complex experimental
designs

» In GLM the mean pg; = s;Ag of the NB is modeled with a log-linear model

T

log \gj = X; B
log pgj = ijﬁg + log s;
P
logpig; = fBo+ ZXjkﬁgk + log sj,

k=1

> X; is a vector that contains all p covariates for sample j, and
> B, is a vector that contains the corresponding parameters for gene g

> The mean of the NB distribution is 1z = exp(x/ 8, + log s;)

> Recall that variance is defined as pgj + qﬁuéj



Differential gene expression analysis

» Consider a simple example with 4 samples, 2 from group A and 2 from group B

» The linear model and the design matrix for the null hypothesis model (lets call it Mp) that
assumes only one population/condition is (i.e., no difference between A and B)

log f1g1 1 log 51
logpgo | | 1 log s»
logpgs | | 1 (Be )+ logss |’
log figa 1 log s,

» The model for the alternative hypothesis with two conditions (M) can be written e.g.

log ftg1 10 log s1
log f1g2 _ 10 < Bea ) + log s,
log /13 01 Bes logss |’
log jiga 01 log s4

where samples 1 and 2 are from condition A and samples 3 and 4 are from condition B



Differential gene expression analysis

> Lets denote the observed read counts for gene g as y, = (ng1,...,nga)" (in the previous
example we have 4 samples)

> In edgeR, statistical hypothesis testing for differential gene expression between conditions
A and B can be implemented e.g. with the likelihood-ratio test

é(ﬁE? Q;g|Yga MO)

T=-2In——2"22
g(ﬁgAv BgB» ¢g|yga Ml)

> {(-) is the NB density function
> Bg denotes the maximum likelihood estimate of 3, given y, and My (similarly for other
parameters)
» The test statistic T is approximately chi-squared distributed with degrees of freedom equal
to dfp, — dfp,, where dfy, denotes the number of free parameters of model M
— p-value
> Remember multiple testing



Differential gene expression analysis

» In many applications the number of biological replicates is too small to allow accurate
estimation of both Az and ¢;

» edgeR tool implements a moderated test where information between genes is shared that
allows more accurate dispersion estimation

> The so-called adjusted profile likelihood (APL) for dispersion ¢, is

A 1
APLg((bg) = Z(¢g|yg, Bg) - 5 |ogdetIg

> ¢g is free parameter
> [ is the ML estimate of 3, that depends on ¢,
> 7, is the Fisher information matrix



Differential gene expression analysis

> One possible assumption is that all genes have the same dispersion value ¢, = ¢

> A shared dispersion can be estimated by maximizing the sum of the adjusted profile
likelihoods

APLs(¢) = Z APLg(

> In essence, data across all genes is shared to estimate variance/dispersion
> edgeR tool provides also options for other dispersion estimates

> Trended: group genes into bin that have similar mean read count
> Gene-wise



Differential gene expression analysis

v

An example from edgeR User Guide (Chen et al, 2017)
Three patient with oral squamous cell carcinomas

v

» Oral squamous cell carcinomas and matched normal tissue from each patient
> RNA-seq experiments paired experimental design

v

Goal: detect genes differentially expressed between tumour and normal tissue
Samples: 8N, 8T, 33N, 33T, 51N, 51T

Design matrix X is

v

v

(Intercept) Patient33 Patient51 TissueT

8N 1 0 0 0
8T 1 0 0 1
33N 1 1 0 0
33T 1 1 0 1
51N 1 0 1 0
51T 1 0 1 1

Figure from (Chen et al, 2017)



Differential gene expression analysis

» Variance dependence on the mean (biological coefficient of variation equals the square
root of the dispersion)

Tagwise
—— Common
— Trend

1.0

Biological coefficient of variation

Average log CPM

Figure from (Chen et al, 2017)



Differential gene expression analysis

» 1269 genes differentially expressed with FDR 5%
» Additionally, require at least 2-fold change (blue horizontal lines below)

» MA plot: a scatter plot where a dot corresponds to a gene g, x-axis shows mean gene
expression % log XgaXgp and y-axis shows difference log ;(—g;‘
-4

* non-DE
* Up
* Down

log-fold-change

Average log CPM

Figure from (Chen et al, 2017)
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Transcript-level expression quantification

> Let us assume that each gene i is associated with J; transcripts indexed by j, then

0 = P(sample a read from transcript j associated with gene /i)

1

where

> i is the expression level of transcript j associated with gene j
> (ji is the length of transcript j of gene i
> Normalizing constant is Z = 3~ uilj

> The true expression level of gene i is

Ji
wi= Z Hij
j=1



Transcript-level expression quantification

> Lets denote the aligned RNA-seq reads as Ry, Rz, ..., Ry

» Let us also make an unrealistic assumption that all reads are assigned uniquely to one of
the transcripts

» Then the frequency estimator gives us

~ k’
by =0,

where kj; is the number of reads assigned uniquely to p;;
» Correspondingly, we can convert the estimates into expression values by normalizing by the

transcript length
O _ kij
fij o Z b =GN




Transcript-level expression quantification

> Recall the union method for estimating the gene expression level

and the frequency estimator

where /; is the length of the gene i

k= kj
J

» Union method tends to underestimate the gene expression level because

where ¢; > E,‘j

0.

1

IA

i ki' k,' k,' A
ZJ v = 71 + “ee + J'
/i 4 l
ki1 ki,
lin T by’

i



Transcript-level expression quantification

» Consider a simple case of skipped exon

- Intron
1 Skipped exon
mm— Constitutive exons

Inclusion reads

-_—
[}
[}

[E— - [ —

Constitutive ™ Constitutive

reads ——  reads
Exclusion
reads

Figure from (Katz et al., 2010)

» We can use e.g. the reads in the skipped exon and the inclusion and exclusion reads
together with the frequency estimator to estimate the relative expression of the two
transcripts



Transcript-level expression quantification
» With paired end reads we can try to use all (non-uniquely) aligned reads assuming we can

estimate insert length variability
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Figure from (Katz et al., 2010)
» Estimation can be done Markov chain Monte Carlo (MCMC) sampling (Katz et al., 2010)
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