CS-E5875 High-Throughput Bioinformatics RNA-seq analysis: differential expression

Harri Lähdesmäki

Department of Computer Science Aalto University

November 10, 2020

Contents

- ▶ Linear regression and generalized linear models: basics
- ▶ Differential gene expression analysis
- ► Transcript-level analysis

Linear regression¹

Recall the multiple linear regression model

$$y_i = \beta_0 + \sum_{k=1}^p \beta_k x_{ik} + \epsilon_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i,$$

where

- \triangleright y_i denotes the measured response for the *i*th sample/data point
- $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$ denotes the regression coefficients
- $\mathbf{x}_i = (1, x_{i1}, \dots, x_{ip})^T$ denotes the predictors for the *i*th sample/data point, and
- $ightharpoonup \epsilon_i$ denotes the Gaussian observation error for the *i*th measurement, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

¹See e.g. (Agresti, 2015) or (Murphy, 2012) or any book on (generalized) linear models

Linear regression¹

► Recall the multiple linear regression model

$$y_i = \beta_0 + \sum_{k=1}^{p} \beta_k x_{ik} + \epsilon_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i,$$

where

- \triangleright y_i denotes the measured response for the *i*th sample/data point
- $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$ denotes the regression coefficients
- $\mathbf{x}_i = (1, x_{i1}, \dots, x_{ip})^T$ denotes the predictors for the *i*th sample/data point, and
- lacktriangledown ϵ_i denotes the Gaussian observation error for the *i*th measurement, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Assuming *n* measurements $\mathbf{y} = (y_1, \dots, y_n)^T$ and $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T$, this can be written as

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where X contains \mathbf{x}_i s as rows, $\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^T$ and $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_n)$

¹See e.g. (Agresti, 2015) or (Murphy, 2012) or any book on (generalized) linear models

Linear regression

- ▶ Parameters of the linear regression model are $\theta = (\beta, \sigma^2)$
- ▶ Equivalently, we can write the linear regression model with Gaussian noise as

$$\rho(\mathbf{y} \mid X, \theta) = L(\theta \mid \mathbf{y}, X)
= \mathcal{N}(\mathbf{y} \mid \boldsymbol{\mu}, \Sigma)
= \mathcal{N}(\mathbf{y} \mid X\boldsymbol{\beta}, \sigma^2 I_n)
= \prod_{i=1}^n \mathcal{N}(y_i \mid \mathbf{x}_i^T \boldsymbol{\beta}, \sigma^2)
= \prod_{i=1}^n \mathcal{N}(y_i \mid \mathbb{E}[y_i], \sigma^2),$$

where $\mu_i = \mathbb{E}[y_i] = \mathbf{x}_i^T \boldsymbol{\beta}$ denotes the expectation of random variable y_i and σ^2 specifies uncertainty around the expected value

Parameter estimation for linear model with Gaussian noise

▶ A common way to estimate parameters is to maximise the likelihood of the observed data w.r.t. model parameters, i.e., the maximum likelihood estimate (MLE)

$$\hat{\theta} = \arg\max_{\theta} p(\mathbf{y} \mid X, \theta)$$

Parameter estimation for linear model with Gaussian noise

A common way to estimate parameters is to maximise the likelihood of the observed data w.r.t. model parameters, i.e., the maximum likelihood estimate (MLE)

$$\hat{\theta} = \arg\max_{\theta} p(\mathbf{y} \mid X, \theta)$$

▶ In this case it is useful to study the logarithm of the likelihood

$$\ell(\theta) = \log p(\mathbf{y} \mid X, \theta) = \log \prod_{i=1}^{n} p(y_i | \mathbf{x}_i, \theta) = \sum_{i=1}^{n} \log p(y_i | \mathbf{x}_i, \theta)$$

$$= \sum_{i=1}^{n} \log \left[\left(\frac{1}{2\pi\sigma^2} \right)^{\frac{1}{2}} \exp \left(-\frac{1}{2\sigma^2} (y_i - \mathbf{x}_i^T \beta)^2 \right) \right]$$

$$= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2$$

▶ Instead of maximizing $\ell(\theta)$ one can minimize $-\ell(\theta)$

Parameter estimation for linear model with Gaussian noise

- Minimum or maximum values of a (log) likelihood function w.r.t. parameters are obtained at parameter values where the gradient of the function, i.e. partial derivatives, are zero
- ▶ For some models, the minimum / maximum can be obtained in a closed form
- ▶ The linear regression model with additive Gaussian noise is one such model:

$$\hat{\beta} = (X^T X)^{-1} X^T \mathbf{y}$$

$$\hat{\sigma^2} = \frac{1}{n} (\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}})$$

$$= \frac{1}{n} (\mathbf{y} - X \hat{\boldsymbol{\beta}})^T (\mathbf{y} - X \hat{\boldsymbol{\beta}}),$$

assuming X has full rank and the inverse $(X^TX)^{-1}$ exists

Nonlinearity in the linear regression model

- ▶ To model non-linear function we can replace \mathbf{x} with some non-linear function $\phi(\mathbf{x})$
 - So-called basis function expansion
 - ▶ Model is still linear in parameters, thus called as linear regression
- ► For example, polynomial basis functions

$$\phi(\mathbf{x}) = (1, x, x^2, \dots, x^d)^T$$

▶ The above theory works for general basis functions as well

An illustration of the linear regression model with Gaussian noise

- ► Examples of linear and non-linear regression model fitting

 - $\phi(x) = (1, x_1, x_2)$ $\phi(x) = (1, x_1, x_2, x_1^2, x_2^2)$

Figure: Figures from (Murphy, 2012)

- Often one is interested in
 - Evaluating the model accuracy, or
 - Testing the significance of covariates/predictors of the model, either simultaneously or individually
- ▶ A natural measure of how well a model fits the data y is the so-called residual sum of squares

RSS =
$$(\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}})$$

= $(\mathbf{y} - X\hat{\boldsymbol{\beta}})^T (\mathbf{y} - X\hat{\boldsymbol{\beta}})$
= $\sum_{i=1}^n (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2$

▶ RSS quantifies the amount of signal in **y** that a linear model cannot explain

- ▶ Assume two nested multiple linear regression models

 - ▶ Model 1: $y_i = \beta_0 + \sum_{k=1}^{\rho_1} \beta_k x_{ik} + \epsilon_i$ ▶ Model 2: $y_i = \beta_0 + \sum_{k=1}^{\rho_1} \beta_k x_{ik} + \sum_{k=\rho_1+1}^{\rho_1+\rho_2} \beta_k x_{ik} + \epsilon_i$

- Assume two nested multiple linear regression models
 - ► Model 1: $y_i = \beta_0 + \sum_{k=1}^{p_1} \beta_k x_{ik} + \epsilon_i$
 - ► Model 2: $y_i = \beta_0 + \sum_{k=1}^{p_1-1} \beta_k x_{ik} + \sum_{k=p_1+1}^{p_1+p_2} \beta_k x_{ik} + \epsilon_i$
- We can define a test statistic that compares the RSS values between two models as

$$F = \frac{\left(\frac{RSS_1 - RSS_2}{df_1}\right)}{\left(\frac{RSS_2}{df_2}\right)},$$

where
$$df_1 = (1 + p_1 + p_2) - (1 + p_1) = p_2$$
 and $df_2 = n - 1 - p_1 - p_2$

- Assume two nested multiple linear regression models
 - ▶ Model 1: $y_i = \beta_0 + \sum_{k=1}^{p_1} \beta_k x_{ik} + \epsilon_i$
 - ► Model 2: $y_i = \beta_0 + \sum_{k=1}^{\beta_1^{-1}} \beta_k x_{ik} + \sum_{k=p_1+1}^{p_1+p_2} \beta_k x_{ik} + \epsilon_i$
- ▶ We can define a test statistic that compares the RSS values between two models as

$$F = \frac{\left(\frac{RSS_1 - RSS_2}{df_1}\right)}{\left(\frac{RSS_2}{df_2}\right)},$$

where
$$df_1 = (1 + p_1 + p_2) - (1 + p_1) = p_2$$
 and $df_2 = n - 1 - p_1 - p_2$

- ▶ Under the null assumption that the p_2 additional covariates included in model 2 do not provide significantly better fit (i.e., $H_0: \beta_{p_1+1} = \ldots = \beta_{p_1+p_2} = 0$), the F test statistic has F distribution, with (df₁, df₂) degrees of freedom
- → Significance value from hypothesis testing

Likelihood ratio test

- Let $L(\hat{\theta}_1 \mid \mathbf{y}, X)$ and $L(\hat{\theta}_2 \mid \mathbf{y}, X)$ denote the maximum likelihoods for the two nested linear models, respectively
- ► The likelihood ratio measures how many times less likely the data are under one model (null hypothesis) than the other model (alternative hypothesis)

$$\Lambda(\mathbf{y}) = \frac{L(\hat{\theta}_1 \mid \mathbf{y}, X)}{L(\hat{\theta}_2 \mid \mathbf{y}, X)}$$

- Intuition:
 - Values of Λ(y) close to 1 indicate there is no difference between the null and alternative models
 - Small values (close 0) indicate that the alternative model can explain the data much better

Likelihood ratio test

- Let $L(\hat{\theta}_1 \mid \mathbf{y}, X)$ and $L(\hat{\theta}_2 \mid \mathbf{y}, X)$ denote the maximum likelihoods for the two nested linear models, respectively
- ► The likelihood ratio measures how many times less likely the data are under one model (null hypothesis) than the other model (alternative hypothesis)

$$\Lambda(\mathbf{y}) = \frac{L(\hat{\theta}_1 \mid \mathbf{y}, X)}{L(\hat{\theta}_2 \mid \mathbf{y}, X)}$$

- Intuition:
 - Values of Λ(y) close to 1 indicate there is no difference between the null and alternative models
 - ▶ Small values (close 0) indicate that the alternative model can explain the data much better
- ▶ An asymptotic result for nested models: when $n \to \infty$, the test statistic $-2 \log \Lambda(\mathbf{y})$ is chi-squared distributed with degrees of freedom equal to the difference in the number of free parameters between the two models

The likelihood ratio test for the linear Gaussian model

► For the two nested linear regression models with Gaussian noise, the likelihood ratio test can be written as

$$\begin{split} \Lambda(\mathbf{y}) &= -2\log\frac{\max_{\theta_1}L(\theta_1\mid\mathbf{y},X)}{\max_{\theta_2}L(\theta_2\mid\mathbf{y},X)} \\ &= -2\log\frac{L(\hat{\theta}_1\mid\mathbf{y},X)}{L(\hat{\theta}_2\mid\mathbf{y},X)} \\ &= \dots = \left(1 + \frac{\mathsf{RSS}_1 - \mathsf{RSS}_2}{\mathsf{RSS}_2}\right)^{-n/2} \\ &= \left(1 + \frac{p_2}{n - 1 - p_1 - p_2}F\right)^{-n/2} \end{split}$$

- ► Generalized linear models (GLM) are a generalization of linear regression models where the response/dependent variables can have an error distribution other than the normal distribution
- ▶ In standard GLMs the dependent variable is assumed to have a distribution in the exponential family, including e.g.
 - Normal, exponential, beta, gamma, Poisson, etc. distributions

- ▶ Recall that in the case of Gaussian likelihood, $\mathbb{E}[y_i] = \mu_i = \mathbf{x}_i^T \mathbf{x}_i$
- ▶ In GLMs, the mean μ_i of the distribution of random variable y_i is assumed to depend on a linear model via an invertible link function g

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

► Thus:

$$\mathbb{E}[y_i] = \mu_i = g^{-1}(\mathbf{x}_i^T \boldsymbol{\beta})$$

Note that in the case of Gaussian linear model, the link function $g(\cdot)$ is the identify function

- ▶ Recall that in the case of Gaussian likelihood, $\mathbb{E}[y_i] = \mu_i = \mathbf{x}_i^T \mathbf{x}_i$
- ▶ In GLMs, the mean μ_i of the distribution of random variable y_i is assumed to depend on a linear model via an invertible link function g

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

► Thus:

$$\mathbb{E}[y_i] = \mu_i = g^{-1}(\mathbf{x}_i^T \boldsymbol{\beta})$$

- Note that in the case of Gaussian linear model, the link function $g(\cdot)$ is the identify function
- ightharpoonup Variance of a GLM can follow the variance of the exponential family distribution or may be defined as a function $V(\cdot)$ of the predicted value

$$\operatorname{Var}(y_i)$$
 or $V(\mu_i, \phi) = V(g^{-1}(\mathbf{x}_i^T \boldsymbol{\beta}), \phi)$

- ► Lets illustrate the GLM with the Poisson distribution for the response variables **Y** (non-negative count data)
- \triangleright Poisson rate parameter(s) λ must be positive, so logarithmic link function is appropriate

$$\log \lambda = X\beta \iff \lambda = \exp(X\beta)$$

► The variance of error distribution is defined by the Poisson distribution, i.e., $Var(Y_i) = V(\lambda_i) = \lambda_i = \exp(\mathbf{x}_i \boldsymbol{\beta})$

- Lets illustrate the GLM with the Poisson distribution for the response variables Y
 (non-negative count data)
- \triangleright Poisson rate parameter(s) λ must be positive, so logarithmic link function is appropriate

$$\log \lambda = X\beta \iff \lambda = \exp(X\beta)$$

- ► The variance of error distribution is defined by the Poisson distribution, i.e., $Var(Y_i) = V(\lambda_i) = \lambda_i = \exp(\mathbf{x}_i \boldsymbol{\beta})$
- ▶ Likelihood of observed data $\mathbf{y} = (y_1, \dots, y_n)^T$ is then

$$L(\boldsymbol{\beta} \mid \mathbf{y}, X) = \prod_{i=1}^{n} \operatorname{Poisson}(y_{i} | \lambda_{i}) = \prod_{i=1}^{n} \frac{\lambda_{i}^{y_{i}} \exp(-\lambda_{i})}{y_{i}!} = \prod_{i=1}^{n} \frac{\exp(\mathbf{x}_{i} \boldsymbol{\beta})^{y_{i}} \exp(-\exp(\mathbf{x}_{i} \boldsymbol{\beta}))}{y_{i}!}$$

- Lets illustrate the GLM with the Poisson distribution for the response variables Y
 (non-negative count data)
- \triangleright Poisson rate parameter(s) λ must be positive, so logarithmic link function is appropriate

$$\log \lambda = X\beta \iff \lambda = \exp(X\beta)$$

- ▶ The variance of error distribution is defined by the Poisson distribution, i.e., $Var(Y_i) = V(\lambda_i) = \lambda_i = \exp(\mathbf{x}_i \boldsymbol{\beta})$
- ▶ Likelihood of observed data $\mathbf{y} = (y_1, \dots, y_n)^T$ is then

$$L(\boldsymbol{\beta} \mid \mathbf{y}, X) = \prod_{i=1}^{n} \operatorname{Poisson}(y_{i} | \lambda_{i}) = \prod_{i=1}^{n} \frac{\lambda_{i}^{y_{i}} \exp(-\lambda_{i})}{y_{i}!} = \prod_{i=1}^{n} \frac{\exp(\mathbf{x}_{i}\boldsymbol{\beta})^{y_{i}} \exp(-\exp(\mathbf{x}_{i}\boldsymbol{\beta}))}{y_{i}!}$$

- GLMs are typically fitted using maximum likelihood (or Bayesian) approach
- ▶ Note that for GLMs no closed form solutions exist but numerical methods must be used

Hypothesis testing with GLMs

▶ For GLMs the null hypothesis is often stated by restricting the parameter vector

$$H_0: \beta \in \Theta_0 \subset \mathbb{R}^{p+1}$$

▶ Consequently, the alternative hypothesis is defined via the complement of Θ_0 , i.e., $\Theta_0^C = \mathbb{R}^{p+1} \setminus \Theta_0$

$$H_1: \quad \boldsymbol{\beta}' \in \Theta_0^{\mathcal{C}}$$

Hypothesis testing with GLMs

▶ For GLMs the null hypothesis is often stated by restricting the parameter vector

$$H_0: \beta \in \Theta_0 \subset \mathbb{R}^{p+1}$$

► Consequently, the alternative hypothesis is defined via the complement of Θ_0 , i.e., $\Theta_0^C = \mathbb{R}^{p+1} \setminus \Theta_0$

$$H_1: \quad \boldsymbol{\beta}' \in \Theta_0^{\mathcal{C}}$$

- ▶ For example, if one is interested in testing a single predictor x_i , then
 - $H_0: \ \beta_i = 0$ or equivalently $\boldsymbol{\beta} \in \mathbb{R}^p$
 - $H_1: \ \beta_i \neq 0$ or equivalently $oldsymbol{eta}' \in \mathbb{R}^{p+1}$

Hypothesis testing with GLMs

▶ For GLMs the null hypothesis is often stated by restricting the parameter vector

$$H_0: \ oldsymbol{eta} \in \Theta_0 \subset \mathbb{R}^{p+1}$$

► Consequently, the alternative hypothesis is defined via the complement of Θ_0 , i.e., $\Theta_0^C = \mathbb{R}^{p+1} \setminus \Theta_0$

$$H_1: \quad \boldsymbol{\beta}' \in \Theta_0^{\mathcal{C}}$$

- \triangleright For example, if one is interested in testing a single predictor x_i , then
 - ▶ H_0 : $\beta_i = 0$ or equivalently $\boldsymbol{\beta} \in \mathbb{R}^p$
 - $H_1: \beta_i \neq 0$ or equivalently $\boldsymbol{\beta}' \in \mathbb{R}^{p+1}$
- ▶ An asymptotic result for nested models: when $n \to \infty$, the test statistic $-2 \log \Lambda(\mathbf{y})$ is chi-squared distributed with degrees of freedom equal to the difference in dimensionality of Θ_0 and Θ_0^C

Contents

- ▶ Linear regression and generalized linear models: basics
- ▶ Differential gene expression analysis
- ► Transcript-level analysis

Differential gene expression analysis

- \triangleright Consider our hypothetical differential expression analysis using t-tests from lecture #1
- Two aspects
 - ► Expression difference: how large is the average expression difference between two groups?
 - ▶ Statistical significance: how sure are we that there is a true difference?
- ▶ The latter is a statistical question: hypothesis testing
- lackbox On the next slides we motivate the use of a negative binomial distribution by the following reasoning: multinomial \rightarrow binomial \rightarrow Poisson \rightarrow negative binomial

- ► Sequence count data is discrete-valued, so it obviously has a non-Gaussian distribution → t-test based methods are not appropriate, or at least not optimal
- ► For a single sample, we can assume that read counts for genes (or transcripts) have a multinomial (sampling) distribution

- Consider the following
 - ► A dice that has N different outcomes
 - ▶ The number of genes e.g. in the human genome is $\approx 20,000$
 - Mhen a dice is rolled once, one of the outcomes will be chosen randomly with probability p_i , where $\sum_{i=1}^{N} p_i = 1$
 - "One roll" corresponds to picking a single RNA fragment from a very large pool of fragments for sequencing
 - Assume an experiment where dice is rolled N times (i.i.d.)
 - ► A sequencing run can produce e.g. 10M-1B sequencing reads
 - ▶ Denote the number of times each outcome is observed by $\mathbf{x} = (x_1, \dots, x_N)$, where $x_1 + \dots + x_N = n$ (the number of reads mapped to each gene)
 - $\qquad \qquad \mathsf{Denote}\; \mathbf{p} = (p_1, \dots, p_N)$
 - ▶ The unknown abundances/proportions of different genes

- Consider the following
 - ► A dice that has N different outcomes
 - ▶ The number of genes e.g. in the human genome is $\approx 20,000$
 - Mhen a dice is rolled once, one of the outcomes will be chosen randomly with probability p_i , where $\sum_{i=1}^{N} p_i = 1$
 - "One roll" corresponds to picking a single RNA fragment from a very large pool of fragments for sequencing
 - Assume an experiment where dice is rolled N times (i.i.d.)
 - ► A sequencing run can produce e.g. 10M-1B sequencing reads
 - ▶ Denote the number of times each outcome is observed by $\mathbf{x} = (x_1, \dots, x_N)$, where $x_1 + \dots + x_N = n$ (the number of reads mapped to each gene)
 - $\qquad \qquad \mathsf{Denote}\; \mathbf{p} = (p_1, \dots, p_N)$
 - ► The unknown abundances/proportions of different genes
- ▶ The probability mass function of the random variable $X = (X_1, ..., X_N)$ that has the multinomial distribution

$$\begin{aligned} \text{Multinomial}(\mathbf{x}; n, \mathbf{p}) &= P(X_1 = x_1, \dots, X_N = x_N) \\ &= \begin{cases} \frac{N!}{x_1! \dots x_N!} p_1^{x_1} p_2^{x_2} \cdots p_N^{x_N}, & \text{if } x_1 + \dots + x_N = n \\ 0, & \text{otherwise} \end{cases}$$

- ► Can be considered as sampling noise (or "technical" noise)
- ▶ The use of multinomial is somewhat challenging because we would need to model all genes at the same time

Binomial distribution

- Each of the components of a multinomial distribution separately (e.g. a gene) has a binomial distribution
 - For example, the probability that we obtain a sequencing read from gene i is $p=p_i$, and the probability that we obtain a sequencing read from any other gene is $1-p=\sum_{i\neq i}p_i$
- ▶ Consider a binary-valued random variable that takes value 1 with probability *p*
- ▶ Take *n* independent random realizations of the binary-valued random variable
- Let X denote the number of success in n realizations
- ► The probability of getting exactly *k* successes in *n* trials is given by probability mass function of the binomial distribution

$$B(k; n, p) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial distribution

Poisson distribution

- \triangleright Consider a discrete random variable X that can have values $0, 1, 2, \dots$
- \blacktriangleright The discrete random variable X has a Poisson distribution with rate parameter λ if

Poisson
$$(k; \lambda) = P(X = k) = \frac{\lambda^k \exp(-\lambda)}{k!}$$

For larger number of trials n (i.e., the number of sequencing reads in an experiment) with a small probability p, binomial can be approximated by Poisson distribution

Negative binomial distribution

- Read counts across biological replicates is observed to have a larger variance than what Poisson model suggests
 - So-called overdispersed noise
 - Biological variability/noise
- ▶ Negative binomial has been found to provide a good fit to sequencing count data

- Read counts across biological replicates is observed to have a larger variance than what Poisson model suggests
 - So-called overdispersed noise
 - Biological variability/noise
- ▶ Negative binomial has been found to provide a good fit to sequencing count data
- ▶ The negative binomial distribution is a discrete probability distribution of the number of successes (denoted X) in a sequence of i.i.d. Bernoulli trials (with probability p) before a specified (non-random) number of failures (denoted r) occurs
- ▶ Random variable X has the negative binomial distribution with probability mass function

$$NB(k; r, p) = P(X = k) = {r + k - 1 \choose k} p^{k} (1 - p)^{r}$$

- ► The negative binomial distribution has several alternative formulations: see e.g. https://en.wikipedia.org/wiki/Negative_binomial_distribution
- ▶ Be careful, especially when using in different programming languages!

- ▶ Negative binomial distribution occurs in many contexts
 - ► Negative binomial distribution can be derived as a continuous mixture of Poisson distributions where the mixing distribution is a gamma distribution

$$NB(k; r, p) = \int_0^\infty Poisson(k; \lambda) Gamma\left(\lambda; r, \frac{1-p}{p}\right) d\lambda$$

Compound distributions

- lacktriangle Assume a random variable X with a distribution F (and density p_f) with parameters heta
- ▶ Assume that the parameters θ of F have a mixing distribution G (density p_g)
 - ▶ Distribution *F* is compounded by *G*

$$p(x) = \int p_f(x|\theta)p_g(\theta)d\theta$$

▶ Recall the definition of the joint and marginal distributions

$$p(x,y) = p(x|y)p(y)$$
 and $p(x) = \int p(x,y)dy = \int p(x|y)p(y)dy$

Compound distributions

- ► Typical usage:
 - Overdispersion modeling
 - Need to model a greater amount of variability than what would be expected by a given baseline model
 - Bayesian inference
 - Predictive distribution of future data $p(y^*|\theta)$ given the posterior distribution of model parameters θ conditioned on observed data y, $p(y^*|y) = \int p(y^*|\theta)p(\theta|y)d\theta$
- Commonly used compound distributions in bioinformatics
 - ► Gamma-Poisson, i.e., negative binomial
 - ▶ Beta-binomial
 - Dirichlet-multinomial

Gamma-Poisson compound distributions

$$\begin{split} f(k;r,p) &= \int_0^\infty f_{\mathrm{Poisson}(\lambda)}(k) \cdot f_{\mathrm{Gamma}\left(r,\,\frac{1-p}{p}\right)}(\lambda) \; \mathrm{d}\lambda \\ &= \int_0^\infty \frac{\lambda^k}{k!} e^{-\lambda} \cdot \lambda^{r-1} \frac{e^{-\lambda(1-p)/p}}{\left(\frac{p}{1-p}\right)^r \Gamma(r)} \; \mathrm{d}\lambda \\ &= \frac{(1-p)^r p^{-r}}{k! \, \Gamma(r)} \int_0^\infty \lambda^{r+k-1} e^{-\lambda/p} \; \mathrm{d}\lambda \\ &= \frac{(1-p)^r p^{-r}}{k! \, \Gamma(r)} \; p^{r+k} \, \Gamma(r+k) \\ &= \frac{\Gamma(r+k)}{k! \, \Gamma(r)} \; p^k (1-p)^r. \end{split}$$

Copy-pasted from wikipedia: https://en.wikipedia.org/wiki/Negative_binomial_distribution

▶ The mean and variance of negative binomial distribution are

$$\mathbb{E}[X] = \mu = \frac{pr}{1-p}$$
 and $\mathbb{V}[X] = \sigma^2 = \frac{pr}{(1-p)^2}$

▶ The mean and variance of negative binomial distribution are

$$\mathbb{E}[X] = \mu = \frac{pr}{1-p}$$
 and $\mathbb{V}[X] = \sigma^2 = \frac{pr}{(1-p)^2}$

▶ For our application it is useful to reparameterized NB using the mean and variance

$$NB(\mu, \sigma^2) \doteq NB(r, p),$$

where

$$r = \frac{\mu^2}{\sigma^2 - \mu}$$
 and $p = \frac{\sigma^2 - \mu}{\sigma^2}$

▶ The mean and variance of negative binomial distribution are

$$\mathbb{E}[X] = \mu = \frac{pr}{1-p}$$
 and $\mathbb{V}[X] = \sigma^2 = \frac{pr}{(1-p)^2}$

▶ For our application it is useful to reparameterized NB using the mean and variance

$$NB(\mu, \sigma^2) \doteq NB(r, p),$$

where

$$r = \frac{\mu^2}{\sigma^2 - \mu}$$
 and $p = \frac{\sigma^2 - \mu}{\sigma^2}$

▶ Further, we will consider a parameterization

$$NB(\mu, \phi) \doteq NB(\mu, \sigma^2),$$

where ϕ defines the variance as $\sigma^2 = \mu + \phi \mu^2$

- ▶ We will look at edgeR (McCarthy et al., 2012), a versatile and efficient modeling method for sequencing count data
- ▶ Assume that the number of aligned reads in sample *j* that are assigned to gene *g* can be modelled by negative binomial distribution

$$N_{gj} \sim \mathrm{NB}(s_j \lambda_{gj}, \phi_g)$$

where

- s_j is the so-called library size: e.g. the total number of reads from sample j, or some other normalization quantity
- \triangleright λ_{gj} is the proportion of RNA fragments that originate from gene g in sample j
 - Note that $\sum_{g} \lambda_{gj} = 1$
- $lackbox{}\phi_g$ is the dispersion for gene g that defines the over-dispersion and thus the variance in the negative binomial model

ightharpoonup For the above definition of NB distribution the mean and variance for N_{gj} are

$$\mathbb{E}[N_{gj}] = \mu_{gj} = s_j \lambda_{gj} \tag{1}$$

$$\mathbb{V}[N_{gj}] = \mu_{gj} + \phi_g \mu_{gj}^2 = s_j \lambda_{gj} + \phi_g s_j^2 \lambda_{gj}^2$$
 (2)

lacktriangle Recall that for the standard Poisson model $\mathbb{E}[N_{gj}]=\mu_{gj}$ and $\mathbb{V}[N_{gj}]=\mu_{gj}$

- lacktriangle Often one is interested in comparing two populations A and B, i.e., $H_0:\lambda_{gA}=\lambda_{gB}$
- edgeR implements a general linear model (GLM) with NB distribution that allows comparison of two population means as well as many other more complex experimental designs
- lacktriangle In GLM the mean $\mu_{gj}=s_j\lambda_{gj}$ of the NB is modeled with a log-linear model

$$\begin{array}{rcl} \log \lambda_{gj} & = & \mathbf{x}_{j}^{T} \boldsymbol{\beta}_{g} \\ \log \mu_{gj} & = & \mathbf{x}_{j}^{T} \boldsymbol{\beta}_{g} + \log s_{j} \\ \log \mu_{gj} & = & \beta_{0} + \sum_{k=1}^{p} x_{jk} \beta_{gk} + \log s_{j}, \end{array}$$

- \triangleright \mathbf{x}_i is a vector that contains all p covariates for sample j, and
- igr eta_g is a vector that contains the corresponding parameters for gene g
- ▶ The mean of the NB distribution is $\mu_{gj} = \exp(\mathbf{x}_j^T \beta_g + \log s_j)$
- ▶ Recall that variance is defined as $\mu_{gj} + \phi \mu_{gj}^2$

- Consider a simple example with 4 samples, 2 from group A and 2 from group B
- ▶ The linear model and the design matrix for the null hypothesis model (lets call it M_0) that assumes only one population/condition is (i.e., no difference between A and B)

$$\begin{pmatrix} \log \mu_{g1} \\ \log \mu_{g2} \\ \log \mu_{g3} \\ \log \mu_{g4} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} \beta_g \end{pmatrix} + \begin{pmatrix} \log s_1 \\ \log s_2 \\ \log s_3 \\ \log s_4 \end{pmatrix},$$

▶ The model for the alternative hypothesis with two conditions (M_1) can be written e.g.

$$\begin{pmatrix} \log \mu_{g1} \\ \log \mu_{g2} \\ \log \mu_{g3} \\ \log \mu_{g4} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_{gA} \\ \beta_{gB} \end{pmatrix} + \begin{pmatrix} \log s_1 \\ \log s_2 \\ \log s_3 \\ \log s_4 \end{pmatrix},$$

where samples 1 and 2 are from condition A and samples 3 and 4 are from condition B

- Lets denote the observed read counts for gene g as $\mathbf{y}_g = (n_{g1}, \dots, n_{g4})^T$ (in the previous example we have 4 samples)
- ▶ In edgeR, statistical hypothesis testing for differential gene expression between conditions A and B can be implemented e.g. with the likelihood-ratio test

$$T = -2 \ln \frac{\ell(\hat{\beta}_g, \hat{\phi}_g | \mathbf{y}_g, M_0)}{\ell(\hat{\beta}_{gA}, \hat{\beta}_{gB}, \hat{\phi}_g | \mathbf{y}_g, M_1)}$$

- $\ell(\cdot)$ is the NB density function
- $\hat{\beta}_g$ denotes the maximum likelihood estimate of β_g given \mathbf{y}_g and M_0 (similarly for other parameters)
- ▶ The test statistic T is approximately chi-squared distributed with degrees of freedom equal to $df_{M_1} df_{M_0}$, where df_M denotes the number of free parameters of model M
 - \rightarrow *p*-value
 - Remember multiple testing

- In many applications the number of biological replicates is too small to allow accurate estimation of both λ_{gi} and ϕ_i
 - edgeR tool implements a moderated test where information between genes is shared that allows more accurate dispersion estimation
- lacktriangle The so-called adjusted profile likelihood (APL) for dispersion $\phi_{m{g}}$ is

$$extit{APL}_{g}(\phi_{g}) = \ell(\phi_{g}|\mathbf{y}_{g},\hat{eta}_{g}) - rac{1}{2}\log\det\mathcal{I}_{g}$$

- $ightharpoonup \phi_g$ is free parameter
- $ightharpoonup \hat{eta}_{g}$ is the ML estimate of eta_{g} that depends on ϕ_{g}
- $ightharpoonup \mathcal{I}_g$ is the Fisher information matrix

- lacktriangle One possible assumption is that all genes have the same dispersion value $\phi_{m{g}}=\phi$
- A shared dispersion can be estimated by maximizing the sum of the adjusted profile likelihoods

$$APL_{\mathcal{S}}(\phi) = \sum_{g=1}^{G} APL_{g}(\phi)$$

- ▶ In essence, data across all genes is shared to estimate variance/dispersion
- edgeR tool provides also options for other dispersion estimates
 - ► Trended: group genes into bin that have similar mean read count
 - Gene-wise

- ► An example from edgeR User Guide (Chen et al, 2017)
- ▶ Three patient with oral squamous cell carcinomas
 - ▶ Oral squamous cell carcinomas and matched normal tissue from each patient
 - RNA-seq experiments paired experimental design
- ▶ Goal: detect genes differentially expressed between tumour and normal tissue
- Samples: 8N, 8T, 33N, 33T, 51N, 51T
- ▶ Design matrix X is

	(Intercept)	Patient33	Patient51	TissueT
8N	1	0	0	0
8T	1	0	0	1
33N	1	1	0	0
33T	1	1	0	1
51N	1	0	1	0
51T	1	0	1	1

Figure from (Chen et al, 2017)

▶ Variance dependence on the mean (biological coefficient of variation equals the square root of the dispersion)

- ▶ 1269 genes differentially expressed with FDR 5%
- ▶ Additionally, require at least 2-fold change (blue horizontal lines below)
- ▶ MA plot: a scatter plot where a dot corresponds to a gene g, x-axis shows mean gene expression $\frac{1}{2} \log X_{gA} X_{gB}$ and y-axis shows difference $\log \frac{X_{gA}}{X_{rB}}$

Figure from (Chen et al, 2017)

Contents

- ▶ Linear regression and generalized linear models: basics
- ▶ Differential gene expression analysis
- ► Transcript-level analysis

Let us assume that each gene i is associated with J_i transcripts indexed by j, then

$$heta_{ij} = P(ext{sample a read from transcript } j ext{ associated with gene } i)$$

$$= \frac{1}{Z} \mu_{ij} \ell_{ij},$$

where

- lacksquare μ_{ij} is the expression level of transcript j associated with gene j
- ℓ_{ij} is the length of transcript j of gene i
- Normalizing constant is $Z = \sum_{ij} \mu_{ij} \ell_{ij}$
- ▶ The true expression level of gene *i* is

$$\mu_i = \sum_{j=1}^{J_i} \mu_{ij}$$

- ▶ Lets denote the aligned RNA-seq reads as $R_1, R_2, ..., R_N$
- ▶ Let us also make an unrealistic assumption that all reads are assigned uniquely to one of the transcripts
- ▶ Then the frequency estimator gives us

$$\hat{\theta}_{ij} = \frac{k_{ij}}{N},$$

where k_{ij} is the number of reads assigned uniquely to μ_{ij}

► Correspondingly, we can convert the estimates into expression values by normalizing by the transcript length

$$\hat{\mu}_{ij} \propto \sum_{j} \frac{\hat{\theta}_{ij}}{\ell_{ij}} = \sum_{j} \frac{k_{ij}}{\ell_{ij} N}$$

▶ Recall the union method for estimating the gene expression level

$$k_i = \sum_j k_{ij}$$

and the frequency estimator

$$\hat{\theta}_i = \frac{k_i}{\ell_i},$$

where ℓ_i is the length of the gene *i*

▶ Union method tends to underestimate the gene expression level because

$$\hat{\theta}_{i} = \frac{\sum_{j} k_{ij}}{\ell_{i}} = \frac{k_{i1}}{\ell_{i}} + \dots + \frac{k_{iJ_{i}}}{\ell_{i}}$$

$$\leq \frac{k_{i1}}{\ell_{i1}} + \dots + \frac{k_{iJ_{i}}}{\ell_{iJ_{i}}},$$

where $\ell_i \geq \ell_{ij}$

► Consider a simple case of skipped exon

Figure from (Katz et al., 2010)

▶ We can use e.g. the reads in the skipped exon and the inclusion and exclusion reads together with the frequency estimator to estimate the relative expression of the two transcripts

▶ With paired end reads we can try to use all (non-uniquely) aligned reads assuming we can estimate insert length variability

Figure from (Katz et al., 2010)

▶ Estimation can be done Markov chain Monte Carlo (MCMC) sampling (Katz et al., 2010)

References

- Agresti, Alan. Foundations of Linear and Generalized Linear Models, John Wiley & Sons, 2015
- ► Chen Y, et al., edgeR: differential expression analysis of digital gene expression data, User's Guide, 11 October 2017
- Murphy K, Machine learning: a probabilistic perspective, MIT Press, 2012
- ► Katz Y, et al., Analysis and design of rnA sequencing experiments for identifying isoform regulation, Nature Methods, 7(12):1009-15, 2010.