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DNA methylation

» Epigenetic changes are reversible modifications on DNA, or “on top of DNA", which do not
change the DNA sequence itself

» DNA methylation is an epigenetic modification where methyl group is added to the 5
position of a cytosine in DNA

» Methyl group is added enzymatically by DNA methyl transferases (DNMT)
» By far the most extensively studied epigenetic modification on DNA
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Figure from http://www.ks.uiuc.edu/Research/methylation/


http://www.ks.uiuc.edu/Research/methylation/

DNA methylation

>

In mammaling genomes, DNA methylation
primarily occurs in the context of CpG
dinucleotides

Non-CpG methylation found e.g. in stem
cells and brain

CpGs occur with a smaller frequency than
expected

>

>

Human genome GC content is 42%
CpGs are expected to occur 4.41% of the
time

The frequency of CpG dinucleotides is
1%

Methylated CpGs are prone to
spontaneous deamination to thymines
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Figure from (Schubeler, 2009)



DNA methylation

» Two general classes of enzymatic methylation activities

> De novo methylation
> Maintenance methylation
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Figure from http://2014.igem.org/Team:Heidelberg/Project/PCR_2.0


http://2014.igem.org/Team:Heidelberg/Project/PCR_2.0

DNA methylation in gene regulation and various traits

» CpG islands (C+G dense =500 long regions) are present in the 5' regulatory regions of
many genes

» Hypermethylation (=overmethylation) of CpG islands near gene promoters contributes to
transcriptional silencing by

> Affecting binding of transcription factors (DNA binding protein that regulate gene
transcription)

» Binding proteins with methyl-CpG-binding domains (MBDs), and recruiting e.g. histone
deacetylases and other chromatin remodellers



DNA methylation in gene regulation and various traits

>

CpG islands (C+G dense =500 long regions) are present in the 5' regulatory regions of
many genes

Hypermethylation (=overmethylation) of CpG islands near gene promoters contributes to
transcriptional silencing by

> Affecting binding of transcription factors (DNA binding protein that regulate gene
transcription)

» Binding proteins with methyl-CpG-binding domains (MBDs), and recruiting e.g. histone
deacetylases and other chromatin remodellers

DNA methylation differences are associated with many diseases

DNA methylation is also known to associate with e.g. age of an individual and smoking



DNA methylation
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DNA demethylation

> Until recently, it was believed that methylated DNA can be unmethylated only by dilution
during cell differentiation/DNA replication

» Recently, TET family proteins were shown to be dioxygenases that converted 5mC to
5hmC, 5fC and 5caC, which can be further converted back to unmethylated C

» TETs thus contribute to active demethylation, but 5hmC, 5fC and 5caC can also have
multiple functions



DNA demethylation

Conversion of 5-Methylcytosine to
5-Hydroxymethylcytosine in Mammalian
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Bisulfite sequencing (BS-seq) protocol

» Bisulfite treatment of genomic DNA converts unmethylated cytosines to urasils which are
read as thymine during sequencing
» Methylated (and hydroxymethylated) cytosines are resistant to the conversion and are read

as cytosine
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Figure from (Booth et al, 2012)




Bisulfite sequencing (BS-seq) protocol

» Bisulfite treatment of genomic DNA converts unmethylated cytosines to urasils which are
read as thymine during sequencing
» Methylated (and hydroxymethylated) cytosines are resistant to the conversion and are read

as cytosine
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Figure from (Krueger et al, 2012)



Reduced representation BS-seq (RRBS-seq)

» BS-seq provides an accurate map of methylation state at single nucleotide resolution

» Whole genome analysis is expensive because only about 1% of the human genome
contains CpGs

— Experimental techniques to enrich for the areas of the genome that have a high CpG
content
» Reduced representation BS-seq (RRBS-seq) uses restriction enzymes prior to bisulfite
sequencing
> Mspl digests genomic DNA in a methylation-insensitive manner
> Mspl targets 5'CCGG3’ sequences and cleaves the phosphodiester bonds upstream of CpG
dinucleotide.
— Each fragment will have a CpG at each end

» RRBS-seq will cover majority of promoters and GC rich regions



Reduced representation BS-seq (RRBS-seq)
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Aligning BS-seq reads

> Bisulfite treatment introduces mutations into genomic DNA in a methylation dependent
manner

> Alignment of BS-seq reads is more challenging

» Standard alignment methods cannot be used directly
» Bismark tool uses the following approach to map BS-seq reads

> Reads from a BS-seq experiment are converted into a C-to-T version and a G-to-A version
The same conversion for the genome

Bowtie alignment in the genome that has reduced complexity
A unique best alignment is determined from four parallel alignment processes (see next page)

vyvyyvy



Bismark tool
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Figure from (Krueger & Andrews, 2011)



Quantifying BS-seq data

» Bismark outputs, among others, one line per read containing useful information
> Mapping position, alignment strand, the bisulfite read sequence, its equivalent genomic
sequence and a methylation call string
» Bismark automatically extracts the methylation information at individual cytosine
positions
> For different sequence contexts (CpG, CHG, CHH; where H can be either A, T or C)
» Strand-specific or strands merged
» That is, for each cytosine Bismark outputs
> n; the number of reads covering the cytosine in sample i
> mj the number of methylated readouts (i.e., “C") for the cytosine in sample i

» One way to quantify methylation proportion is

m; the number of C reads overlapping the cytosine

nj  the number of C or T reads overlapping the cytosine

N

pi =
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Beta-binomial model

> At the end, one is typically interested in testing a hypothesis, e.g. is there a statistically
significant difference in methylation levels between group A and group B

» Some early methods applied e.g. the t-test on the estimated methylation fractions p; (or
their logit transformations)

» We will look at RadMeth tool (Dolzhenko and Smith, 2014)

» RadMeth uses the beta-binomial regression model, where beta-binomial is a compound

distribution obtained from the binomial by assuming that its probability of success
parameter follows a beta distribution



Beta-binomial model

» i=1,...,s, where s is the number of samples
» For each cytosine in the genome we have the following model

> n;: the number of reads covering the cytosine in sample /

> mj: the number of reads that contain “C” readout (i.e. methylated) at the cytosine in
sample i (0 < m; < nj)
> If we knew the underlying methylation level p;, then: M; ~ Binom(p;, n;)



Beta-binomial model

» i=1,...,s, where s is the number of samples
» For each cytosine in the genome we have the following model
> n;: the number of reads covering the cytosine in sample /
> mj: the number of reads that contain “C” readout (i.e. methylated) at the cytosine in
sample i (0 < m; < nj)
> If we knew the underlying methylation level p;, then: M; ~ Binom(p;, n;)
> pi: the unknown methylation level of the cytosine in sample i
> Instead of assuming a fixed (unknown) methylation level, assume p; has a compounding
distribution p; ~ Beta(«, 8), « > 0,8 >0
> The probability of observing methylation level M; = m; for a coverage n; follows so called
beta-binomial model

1
P(M, = mn.a,8) = [ Binom(m|pi, n)Beta(p|a, G)dp
0

ni \ B(mi + a,ni — mj + j3)
m; B(avﬁ) ’

where B is the beta function



Beta-binomial model

> An illustration of binomial / beta / beta-binomial densities

binomial: p=0.8 beta-binomial: a=80, b=20 beta-binomial: a=8, b=2
0.25 0.25 0.25
0.2 0.2 0.2
0.15 0.15 0.15
0.1 0.1 0.1
0.05 T T 0.05 T T 0.05 T
o leezmooeeal LG 4 lacsocees®? o, Woo@‘?ﬁ
0 10 20 0 10 20 0 10 20
p=0.8 beta: a=80, b=20 beta: a=8, b=2
1 10 - 4
N\
I N
0.8 8 [ 7\
e /)
0.6 6 “‘ ‘ \
[ 2 / |
0.4 4 || / |
[ / |
| |
02 2 | ! \
||
/’ \
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1

Binomial and beta-binomial densities



Beta-binomial model

» Mean and variance of the beta-binomial model are

nia ) niaf(a+ B+ n;)
u=—— and o° = >
a+p (a+pB)(a+pB+1)
» Reparameterization
» m = —%= is the the average methylation level of a set of replicate samples

a+pB
_ 1 . . .
> Y=giEa s the common dispersion parameter

allows us to write the same model as
M; ~ BetaBinomial(n;, 7, )

where the mean and the variance are now defined as
> E(M,) = n;T
» Var(M;) = nim(1 — m)(1 + (ni — 1))
> Recall that the variance of the binomial distribution is n;w(1 — 7) which is smaller than
Var(M;) for n; > 2



Generalized beta-binomial model

» In most of the real world applications, methylation levels can be confounded by one or
more factors (e.g. age and smoking)

> The generalized linear model (GLM) generalizes the ordinary linear regression to allow for
response variables that have likelihood models other than a normal distribution



Generalized beta-binomial model

» For each sample i (and for each cytosine), the mean methylation level 7; depends on
covariates X; = (Xi1, Xj2, - - -, Xit) |

t
g(m)=> xjmj=x/n
j=1

where 1 is a t X 1 parameter vector and

logit(ﬁ)—log( T )

g(m)

1—7

exp(x/n)

;= logit Y(x n) = logistic(x/ n) = ———1
™ ogit™"(x; m) = logistic(x; 1) exp(xT ) + 1

» logit(-) :]0, 1[— R, thus logit(-)~! : R —]0, 1]



Model fitting and inference

v

The beta-binomial regression is fit separately for each CpG site

v

The parameters 17 and « are estimated using maximum likelihood

> |teratively reweighted least squares algorithm using a Newton-Raphson method

v

Test the differential methylation w.r.t. a test factor 7;:

» Learn the full model and the reduced model without the test factor
» Compare the models using log-likelihood ratio test

D— o likelihood of the reduced model
= 7™ Tlikelihood of the full model

v

p-value from chi-square test with df,; — drequced degrees of freedom, where dy,; denotes
the number of free parameters in the full model



RadMeth application

» Neuron and non-neuron RRBS-seq samples from mouse frontal cortex: x;; € {0,1}

> 6 samples: s =06

» Two additional factors: age (xj2 € R;), sex (xj3 € {0,1})

» 72 000 differentially methylated (DM) regions between neuron and non-neuron samples
that contain at least 10 CpGs

DM regions with minimum methylation difference above 0.55

> 1708 lowly methylated (active) regions in neurons

> These regions are associated with (located close to) 1089 genes

» GO enrichment analysis by DAVID found a strong association of these genes with various
aspects of neuronal development and function

v



RadMeth application
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