$$
\begin{aligned}
& 4 \text { PBang-lang. mirtime }
\end{aligned}
$$

$$
\begin{aligned}
& y=\int_{0} 10 t=t_{E}-x_{u} \\
& \text { Bristol, } 1966 \\
& C=\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right]_{1} \begin{array}{r}
R_{6} A=6 . *\left(\left(^{-1}\right)^{\top}\right. \\
\left.=6 \times(\operatorname{sinv} k)^{\top}\right]^{\top}
\end{array} \\
& R G A(G)=(\Lambda) 1-\cap=(\operatorname{la} \cdot[\operatorname{lin} / k)\}^{\top} \\
& n=\frac{1}{1-\frac{\left(y_{12} y_{22}\right.}{y_{1,1} b_{22}}}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=g_{11} u_{1}+g_{12} u_{2} \\
& y_{2}=5_{21} y_{1}+y_{22} y_{2} \\
& \begin{array}{l}
y_{1} \Leftarrow g_{11} g_{12} \\
y_{2}-g_{21} s_{22}
\end{array} \\
& u_{2}=0 \Rightarrow y_{1}=g_{1,} u_{1} \\
& y_{2}=0 \Rightarrow u_{2}=-\frac{521}{5_{22}} u_{1} \\
& y_{1}=g_{11} u_{1}+g_{12}\left(-\frac{s_{21}}{s_{22} u_{1}}\right) \\
& =\left(g_{11} \frac{g_{R} \cdot S_{21}}{S_{22}}\right) y_{1} \\
& \frac{S_{11}}{g_{11}-\frac{S_{21} g_{12}}{S_{22}}}=\frac{1}{1-\frac{S_{221} \cdot S_{12}}{S_{11 G_{22}}}}=n \\
& \operatorname{cond}(A)=\frac{\bar{\sigma}(A)}{\underline{G}(A)}=\bar{\sigma}(\underline{A}) \overline{6}(\hat{A}) \\
& W_{2} W_{1}=W_{2} V_{0} V^{*} W_{1} \\
& \text { svel } \\
& =\sum \\
& W_{2}=V^{-1} \equiv U^{*} \\
& W_{1}=V_{r} \\
& \text { W2bW } \\
& \begin{array}{l}
W_{1}=\tilde{G}^{-1}(d) \\
W_{2}=I
\end{array}
\end{aligned}
$$

