LECTURE SCHEDULE

Date Topic

1.	Wed	28.10.	Course Introduction & Short Review of the Elements
••			

- 2. Fri 30.10. Periodic Properties & Periodic Table & Main Group Elements (starts)
- 3. Fri 06.11. Short Survey of the Chemistry of Main Group Elements (continues)
- 4. Wed 11.11. Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)
- 5. Fri 13.11. Redox Chemistry
- 6. Mon 16.11. Transition Metals: General Aspects & Crystal Field Theory
- 7. Wed 18.11. Zn + Ti, Zr, Hf & Atomic Layer Deposition (ALD)
- 8. Fri 20.11. V, Nb, Ta & Metal Complexes and MOFs
- 9. Mon 23.11. Cr, Mo, W & 2D materials
- 10 Wed 25.11. Mn, Fe, Co, Ni, Cu & Magnetism and Superconductivity
- 11. Fri 27.11. Resources of Elements & Rare/Critical Elements & Element Substitutions
- 12. Mon 30.11. Lanthanoids + Actinoids & Pigments & Luminescence & Upconversion
- 13. Wed 02.12. Inorganic Materials Chemistry Research

EXAM: Thu Dec 10, 9:00-12:00 Ke1

PRESENTATION TOPICS/SCHEDULE

- Wed 18.11. Ti: Ahonen & Ivanoff
- Mon 23.11. Mo: Kittilä & Kattelus
- Wed 25.11. Mn: Wang & Tran Ru: Mäki & Juopperi
- Fri 27.11. In: Suortti & Räsänen Te: Kuusivaara & Nasim
- Mon 30.11. U: Musikka & Seppänen

INSTRUCTIONS for SEMINAR PRESENTATIONS

- Presentation (15 ~ 20 min) is given in a group of two persons
- It will be evaluated in the scale: 10 ~ 25 points
- The presentation is given in English, and the slides will be put up in MyCourses afterwards
- Content of the presentation:

- **ELEMENT:** discovery, origin of name, abundancy, world production, special features if any, etc.

- **CHEMISTRY:** position in Periodic Table, electronic configuration, oxidation states, metal and ionic sizes, reactivity, etc.

- **COMPOUNDS:** examples of important compounds, their properties and applications, etc.

- SPECIFIC FUNCTIONALITIES/APPLICATIONS: Two or three examples of exciting functionalities/applications/special consideration of the element or its compounds. <u>Here the meaning is to discuss why this specific topic is important</u> /unique to the element in focus. You will be given one or two scientific articles for a reference (you can use these papers but it is not mandatory), and you should search for couple of more (recent) articles to be discussed in the presentation.

QUESTIONS: Lecture 5

Below are Latimer diagrams for bromine in acidic and basic conditions:

(a) Which of the species tend to disproportionate?

(b) Calculate E_{red}^{0} for the reduction of BrO₃-ion to bromine.

(c) Why the last reduction potential is the same in acidic and basic conditions?

REDOX CHEMISTRY

- Electron configuration
- Oxidation/valence states & ion charge
- Latimer diagram
- Frost diagram in SOL
- [Pourbaix diagram (corrosion)]
- Ellingham diagram (metal/oxide)
- Oxygen (non)stoichiometry
- Mixed valency
- Disproportionation
- Valence separation
- Charge ordering

in SOLUTION

in SOLID

REF: CHEM-E4100 Laboratory projects in chemistry

Electron configurations of 3d metals: 1s²2s²2p⁶3s²3p⁶4s²3d^x

			3d			4 s	
Scandium (Sc)	1					↑↓	
Titanium (Ti)	1	1				↑↓	
Vanadium (V)	1	1	1			↑↓	
Chromium (Cr)	1	1	1	1	1	1	
Manganese (Mn)	1	1	1	↑	1	↑↓	
Iron (Fe)	↑↓	1	1	1	1	↑↓	
Koboltti (Co)	↑↓	↑↓	1	↑	1	↑↓	
Nikkeli (Ni)	↑↓	↑↓	↑↓	1	1	↑↓	
Kupari (Cu)	↑↓	↑↓	↑↓	↑↓	↑↓	\uparrow	
[Sinkki (Zn)]	↑↓	↑↓	↑↓	↑↓	↑↓	↑↓	

Element							
Sc			+3				
Ti	-	+2	+3	+4			
V	-	+2	+3	+4	+5		
Cr	-	+2	+3	+4	+5	+6	
Mn		+2	+3	+4	+5	+6	+7
Fe		+2	+3	+4	+5	+6	
Co		+2	+3	+4	+5		
Ni	-	+2	+3	+4			
Cu	+1	+2	+3				
Zn		+2					

OXIDATION STATES

R: Gas constant = 8.314 J·mol⁻¹·K⁻¹

F: Faraday constant (magnitude of electric charge per mole of electrons) = 96 485 C mol⁻¹

Redox potentials may depend on pH STRONGLY !!!

LATIMER DIAGRAM

- Simple visual representation of the standard reduction potentials (*E*⁰_{red}) between different oxidation states of an element
- Involves: metal, cations, oxo-ions, hydroxides & oxides
- OFTEN: Highest oxidation state is on the left, lowest on the right
- More positive E⁰_{red} → more readily the species on the left is reduced to the species on the right

+6

$$FeO_4^{2-} \xrightarrow{+2.20 V}$$

 $Fe^{3+} \xrightarrow{+0.77 V}$
 $Fe^{2+} \xrightarrow{-0.44 V}$
 $-0.04 V$

DISPROPORTIONATION:

chemical redox reaction where the same species (atom/ion/molecule) is simultaneously oxidized and reduced

Which manganese species tend to disportionate ?

FROST DIAGRAM

- 2D version of the Latimer diagram
- The number of moving electrons is taken into account (-nx E⁰_{red})
- x-axis: oxidation state
- y-axis: ΔG (in F)
- For pure metal: y = 0 V
- From the diagram we can see: relative stabilities of the species with different oxidation states

Gibbs free energy: $\Delta G^0 = -nFE^0$

Latimer diagram (acidic conditions)

What can we see from the Frost diagram

- The lower the position of the species in the diagram is, the more stable (in terms of redox behavior) the species is
- A species that is on a convex (*kupera*) curve (compared to its neighbors) tends to disproportionate
- A species that is on a concave (kovera) curve (compared to its neighbors) does not disproportionate

Frost diagram for manganese

Manganese (acidic cond)

- Mn²⁺: most stable
- MnO₄⁻: strong oxidizer
- Mn³⁺ and MnO₄³⁻ tend to disproportionate
- MnO₂: does not disproportionate
- <u>NOTE</u>: According to thermodynamics MnO₄⁻ should be reduced to Mn²⁺; this reaction is however slow without catalyst, explaining why MnO₄⁻ solutions can be stored in laboratory

1

0

-2

-3

(ک) الق

•pH = 7

pH = 10

pH = 15

8

7

n

OXIDATION STATES (slightly depending on conditions !)

Above 900 °C ZnO can be reduced to Zn by carbon

2B(1) Standard Free Energy of Formation of Oxides

Oxygen Release

Oxygen Engineering !

 Ag_2O_2 :

in two discrete steps

 $YBa_{2}Cu_{3}O_{7-\delta}:$

Gradually → mixed-valent Cu

OXYGEN-DEFICIENT SAMPLES

OXYGEN NONSTOICHIOMETRY

(1) Oxygen vacancies

- $YBa_2Cu_3O_{7-\delta}$
- (2) Interstitial oxygen atoms
 - $La_2CuO_{4+\delta}$

(3) Cation vacancies

- $La_{1-x}Mn_{1-x}O_3$
- (4) Interstitial cations
 - $Zn_{1+x}O$

Definition of MIXED VALENCY: TWO POSSIBILITIES

- (1) the formal oxidation state for (at least) one of the elements is fractional
- (2) (at least) one of the elements is at two different (integer) oxidation states

CLASSIFICATION OF MIXED-VALENCE COMPOUNDS

M.B. Robin & P. Day, Adv. Inorg. Chem. Radiochem. 10, 247 (1967).

Class-I

- e.g. Na₂S₂O₃ (S^{-II} & S^{VI})
- clearly different environments for the two different atoms
- large energy required for electron transfer between these atoms
 → no interaction → no special properties

Class-II

- e.g. Ag₂O₂ (Ag¹ & Ag¹¹¹)
- different but sufficiently similar environments → only a small energy required for electron transfer between the different atoms → semiconducting

Class-III

- e.g. Ag₂F (Ag^{0.5}) & YBa₂Cu₃O_{7-δ}
- all mixed-valence atoms have identical environments
 → electrons delocalized → metallic conductivity

CHARGE ORDERING (CO)

Example: Ba^{II}Ln^{III}Fe₂O_{5.0} at low temperatures

P. Karen et al., PRB 64, 214405 (2001).

CHARGE DISPROPORTIONATION (CD) $2 M^{m} \rightarrow M^{m-1} + M^{m+1}$ Examples: Pt^{IV}-Pt^{II} • d⁶ & d⁸: • d⁸ & d¹⁰: Au^{III}-Au^I • $d^9 \& d^{10}s^1$: $Cu^{II} - Cu^0$ • $d^{10} \& d^{10}s^2$: Sb^V-Sb^{III}, Hg^{II}-Hg⁰

S.K. Park et al., PRB 60, 10788 (1999).

