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Transcriptional regulation

» Transcriptional regulation is largely controlled by protein-DNA interactions
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Figure from (Wasserman & Sandelin, 2004)
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» Transcriptional regulation is largely controlled by protein-DNA interactions
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Protein-DNA binding

» A transcription factor (TF) is a protein that binds to DNA in a sequence specific manner
» E.g. GATA2 protein recognizes and binds sequences ...[T/A]GATA[A/G]...
» TFs can:

> Recruit other co-factors to DNA
» Function alone or with other proteins
> Activate or repress gene expression



Protein-DNA binding

» Transcription factors contain DNA-binding domain(s) (DBDs) that encode their
DNA-binding specificities

Figure from (Kissinger et al., 1990)



Modeling transcriptional regulation

> The goal
> An accurate method to quantify protein-DNA interactions, especially their genomic locations
> Challenges

» Human genome contains about 3 billion (3 x 10°!) nucleotides

— Lots of putative binding sites

» Human genome is physically about 2 meters long, packed in a cell nucleus with an average
diameter in the range of micrometers



Modeling transcriptional regulation

> The goal
> An accurate method to quantify protein-DNA interactions, especially their genomic locations
> Challenges

» Human genome contains about 3 billion (3 x 10°!) nucleotides

— Lots of putative binding sites

» Human genome is physically about 2 meters long, packed in a cell nucleus with an average
diameter in the range of micrometers

» Protein-DNA binding can be studied using e.g.

» Biophysics: all atom-level modeling

> Probabilistic models for biological sequences
> Biological experiments + statistical analysis:

> ChlP-seq, protein binding microarray, high-throughput SELEX, chromatin accessibility
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ChlP-seq

» So, for any given condition, how do we find the genomic locations where DNA binding
proteins bind?

» Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the current
state-of-the-art method

» ChIP-seq can identify genomic locations for a single DNA binding protein at a time

» The basic principle:
> Use a specific antibody to detect a protein of interest
> ChlP-seq procedure enriches DNA fragments that are bound to a protein of interest
> These DNA fragments are then sequenced



ChlP-seq protocol
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» ChlIP-seq steps:

» Crosslink DNA-binding proteins with
DNA in vivo

> Shear the chromatin into small
fragments (e.g. 200bp-1000bp) amenable
for sequencing (sonication)

» Immunoprecipitate the DNA-protein
complex with a specific antibody
Reverse the crosslinks

» Assay enriched DNA to determine the
sequences bound by the protein of
interest



ChIP-seq protocol again
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Strand specificity and read density visualization

> A “data view” of protein-DNA binding
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|dentification of binding sites from ChlP-seq data

> First steps in ChlP-seq data analysis:
> Quality control, and short read alignment
> Read coverage (also called read density) refers to “pile-up” of aligned reads along genome
(see previous slides)
» Given read coverages/densities on both strands along genome, the actual data analysis
task involves identification of the protein binding sites
» Given the above information about the experimental steps, we should expect to see two
“signal peaks” on opposite DNA strands within a proper distance
— This analysis is often called “peak detection”



|dentification of binding sites from ChlP-seq data
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First steps in ChlP-seq data analysis:

> Quality control, and short read alignment
Read coverage (also called read density) refers to “pile-up” of aligned reads along genome
(see previous slides)
Given read coverages/densities on both strands along genome, the actual data analysis
task involves identification of the protein binding sites
Given the above information about the experimental steps, we should expect to see two
“signal peaks” on opposite DNA strands within a proper distance

— This analysis is often called “peak detection”
But how much signal (how many reads) in a putative genomic region is considered enough
to call a protein-DNA interaction site?
What affects the signal strength?

1. Protein binding in the first place

2. Sequencing depth (i.e., total number of sequencing reads)

3. Chromatin accessibility

4. Fragmentation efficiency

5. Mappability (i.e., uniqueness) of a local genomic region
All these aspects affect binding locally, i.e., not uniformly along the whole genome



ChlP-seq controls

> The best way to assess significance of a signal at putative binding sites is to use a control
for ChIP-seq

> Input-DNA: sequencing data of the (fragmented) genomic DNA from the same sample
> ChlP-seq experiment with an unspecific antibody which does not detect any specific protein

» ChIP-seq controls can be used to account for many of the biases which affect the signal
strength

> Accounts e.g. for the biases 3-5 listed on the previous page

» Input-DNA is currently considered to be the best control



Detecting binding sites from ChIP-seq data

» Early methods used a single cut-off for signal strength or a log-fold enrichment (for a given
putative genomic region/window)

# ChlP-seq reads in a window
# Input DNA reads in a window

score = log

Enrichment
ratio: 4
Enrichment
ratio: 1.5 Chip 20

Control

Figure from (Park, 2009)

» Current state-of-the-art methods are probabilistic



Model-based Analysis of ChIP-Seq (MACS)

» A commonly used method for
detecting TF binding sites from
ChlIP-seq data: MACS (Zhang et al,
2008)

» Workflow:
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Figure from (Zhang et al., 2008)



Model-based Analysis of ChIP-Seq (MACS)

» Analyze each biological sample separately



Model-based Analysis of ChIP-Seq (MACS)

» Analyze each biological sample separately

» Find model peaks:
> Define two parameters to find genomic regions with high confidence fold-enrichment:
InfOld]OW and meldhigh
» bandwidth = assumed sonicated fragment size
» MACS slides 2 x bandwidth window across the genome to find genomic regions where the
number of reads is more than mfoldiow relative to a control, i.e., exp(score) > mfoldiow (but

smaller than mfoldyign to avoid artefacts)



Model-based Analysis of ChIP-Seq (MACS)

» Model the shift size of ChlP-seq tags

vy vy vy

Take 1000 high-quality genomic regions (randomly) from the previous step
Separate Watson and Crick tags

Align the tags by the mid point between their Watson and Crick tag centers
Find d: distance between the modes of the Watson and Crick peaks in the alignment
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Figure from (Zhang et al., 2008)



Model-based Analysis of ChIP-Seq (MACS)

» Shift all the tags by d/2 toward the 3’ ends to the most likely protein-DNA interaction
sites

» An alternative strategy is to extend all aligned sequencing reads to length d
» Remove redundant tags:

» Sometimes the same tag can be sequenced repeatedly, more than expected from a random
genome-wide tag distribution

> Such tags might arise from biases during ChIP-DNA amplification and sequencing library
preparation (PCR duplicates)

> These are likely to add noise to the final peak calls

» MACS removes duplicate tags in excess of what is warranted by the sequencing depth
(binomial distribution p-value < 107°)

> For example, for the 3.9 million ChlP-seq tags, MACS allows each genomic position to
contain no more than one tag and removes all the redundancies



Model-based Analysis of ChIP-Seq (MACS)

> Identifying the most likely binding sites

» Counting process: if reads were sampled independently from a population with given, fixed
probabilities for all genomic locations, the read counts x; in each genomic location/window
would follow a multinomial distribution

> For a single genomic location i, the read count would follow binomial distribution, which can
be approximated by the Poisson distribution



Binomial and Poisson distributions

> Recall the definition of the binomial distribution (of a random variable X)
. . n k n—k
Binomial(k; p,n) = P(X = k) = (k)p (1-p)

» Consider the mean of the binomial E(X) = np and denote the mean by A

» Substitute p = % into the binomial distribution and take limit n — oo



Binomial and Poisson distributions
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Binomial and Poisson distributions

» Poisson approximation to binomial distribution can shown to be accurate when n is large
and p is small

> Poisson approximation is convenient in that is has only a single parameter A



Model-based Analysis of ChIP-Seq (MACS)

> Let x; denote the number of sequencing reads in the ith position / window in a genome

» Each genomic window is analyzed independently

S
%Ge*ABG, xi=0,1,2,...
Xj:

x; ~ Poisson(-|\pg) =

where A\ is the rate of observing reads in the control sample along the whole genome



Model-based Analysis of ChIP-Seq (MACS)

> Let x; denote the number of sequencing reads in the ith position / window in a genome
» Each genomic window is analyzed independently

. B
x; ~ Poisson(-|\pg) = L|Ge*)“3G, x;=0,1,2,...
Xj:

where A\ is the rate of observing reads in the control sample along the whole genome

» MACS also linearly scales the total number of sequencing reads in control experiment
Neontrol to be the same as the total number of sequencing reads in the ChIP experiment
Nechip by a factor Newip/Neontrol, i-€., ABG := Nchip/ Neontrol ABG

> Because ChlIP-seq data has several bias sources which vary across the genome, it is better
to model the data using a local/dynamic Poisson

local —

MY = max(Apa, MR AL AK)

> )\gé)K is estimated from the control sample (e.g. input-DNA) using the window of size XK
centered at the jth position ([-] denotes an optional input argument)



Model-based Analysis of ChIP-Seq (MACS)

> Assessing statistical significance of x; reads (in a genomic region i) using hypothesis
testing
> Hp: the ith location is not a binding site
> Hi: the ith location is a binding site

» The p-value is the probability of observing x; many reads or more, assuming the null
hypothesis is true:
0 .
p — value = Z Poisson(k|A!"). )

local
k:X,‘



Model-based Analysis of ChIP-Seq (MACS)

>

Assessing statistical significance of x; reads (in a genomic region i) using hypothesis
testing

> Hp: the ith location is not a binding site
> Hi: the ith location is a binding site

The p-value is the probability of observing x; many reads or more, assuming the null
hypothesis is true:

(o)
p — value = Z Poisson(k|A!"). )

local
k:X,‘

Genomic regions for which the null hypothesis is rejected: the location with the highest
pileup of aligned sequencing reads (summit) is predicted as the precise binding location

The ratio between the ChIP-seq tag count and )\f("))cal is reported as the fold_enrichment



Multiple correction in MACS

» For a ChlIP-seq experiment with controls, MACS empirically estimates the false discovery
rate (FDR)
» At each p-value, MACS uses the same parameters to find
» ChIP-seq peaks over control, and
> Control peaks over ChlP-seq (i.e., a sample swap)

» The empirical FDR is defined as

#control peaks

irical FDR =
empirical FDR = = o e ks



ChlP-seq peak: lllustration

» An illustration of a strong TF binding site
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Differential binding

» MACS can also be applied to differential binding between two conditions by treating one
of the samples as the control

> Differential binding analysis in MACS will only work with two samples, i.e., one biological
replicate per condition

» Empirical FDR control will not work in such a scenario



Summary

» ChlIP-seq is a powerful way to detect TF binding sites
» ChlIP-seq approaches are limited in that

> Only a subset of all TFs have a chip-grade antibody
> None of the antibodies are perfect
> A single experiment will profile a single protein

» ChP-seq can be applied to profile practically any protein / protein complex / molecule that
interacts with DNA, assuming an antibody exists (or can be developed):

DNA methylation

RNA polymerase

Histone proteins / nucleosomes

Post-translationally modified histone proteins

v

vy vy VvVYy



Contents

Background
ChIP-seq protocol
ChlIP-seq data analysis

vV v v v

Applications



ENCODE project

» The ENCODE Project: ENCyclopedia Of DNA Elements
» lIdentify all functional elements in the human and mouse genomes

» Huge amounts of functional and epigenetic data from large number of cell types/lines



ENCODE project

» Large amounts of functional and epigenetic data from large number of cell types/lines
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https://www.encodeproject.org

ENCODE project

» Huge amounts of functional and epigenetic data from large number of cell types/lines
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https://www.encodeproject.org

ENCODE project

» Understand non-coding disease associated variants
> Co-localization of SNPs in protein-DNA interaction sites
» Can e.g. increase/decrease the strength of interaction and thereby affect e.g. gene

transcription
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Applications

» Understand non-coding disease associated variants
> Quantify how SNPs affect chromatin accessibility (and thus TF binding and gene
transcription)

a  Aggregate DNase-seq profile at dsQTLs

High-sensitivity genotypes ~ .
Heterozygotes .
Low-sensitivity genotypes .

N
8

@

3

DNase | sensitivity
(fold change over
genome-wide average)

N

-600 -400 -200 0 200 400 600
Distance from SNP (op)

d  Example association

DNase | sensitivity
(relative to genome-wide average)
B

cc CT T
Genotype class

Figures from (Degner et al, 2012)



Circulating free/tumor DNA

» Circulating free DNA (cfDNA) are degraded DNA fragments released to the blood plasma

» Circulating tumor DNA (ctDNA) is tumor-derived fragmented DNA in the bloodstream

» Somatic mutations or epigenetic modifications/changes in these cfDNA fragments can
provide a highly accurate and sensitive non-invasive cancer diagnostics
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36

39


https://en.wikipedia.org/wiki/Circulating_tumor_DNA

Circulating free/tumor DNA

» ChIP-seq based quantification of DNA methylation shows great potential in cancer
diagnostics
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Figures from (Shen et al., 2018)



Circulating free/tumor DNA
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