LECTURE SCHEDULE

Date Topic

1.	Wed	28.10.	Course Introduction & Short Review of the Elements
2.	Fri	30.10.	Periodic Properties & Periodic Table & Main Group Elements (starts)
3.	Fri	06.11.	Short Survey of the Chemistry of Main Group Elements (continues)
4.	Wed	11.11.	Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)
5.	Fri	13.11.	Redox Chemistry
6.	Mon	16.11.	Transition Metals: General Aspects & Crystal Field Theory
7.	Wed	18.11.	Zn + Ti, Zr, Hf & Atomic Layer Deposition (ALD)
8.	Fri	20.11.	V, Nb, Ta & Metal Complexes and MOFs
9.	Mon	23.11.	Cr, Mo, W & 2D materials
10	Wed	25.11.	Mn, Fe, Co, Ni, Cu & Magnetism and Superconductivity
11.	Fri	27.11.	Resources of Elements & Rare/Critical Elements & Element Substitutions
12.	Mon	30.11.	Lanthanoids + Actinoids & Pigments & Luminescence & Upconversion
13.	Wed	02.12.	Inorganic Materials Chemistry Research

EXAM: Thu Dec 10, 9:00-12:00 Ke1

QUESTIONS: Lecture 6

In octahedral crystal field, transition metal cations with the electron configurations of d⁴, d⁵, d⁶ and d⁷ have the possibility for two spin states. Give the electron configurations for which the same applies in tetrahedral crystal field.

How many unpaired electrons the following ions have (assume high spin) in
 (a) octahedral, and (b) tetrahedral crystal fields: Cr³⁺, Mn²⁺, Fe²⁺ and Co⁺²?

Which of the following ions is/are (a) colourless, (b) lightly coloured,
 (c) strongly coloured: Fe³⁺, Co²⁺, Cu⁺?

GENERAL FEATURES (d block transition metals)

- All are metals
- Multiple oxidation states \rightarrow richness of chemistry
- Reactivity varies
- More electronegative than alkali and alkaline earth metals
- Both ionic and covalent compounds
- General rule: at lower oxidation states more ionic bond nature
- General rule: positive metal ions at low oxidation state, oxoanions at high oxidation states (e.g. Mn²⁺ and MnO₄⁻)
- Coordination complexes

Ionic radii for 3d cations (CN = 6) in Å:

- with increasing oxidation state ionic radius decreases

Ox. state	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
+11	0.86	0.79	0.80	0.83	0.78	0.75	0.69	0.73	0.74
+111	0.67	0.64	0.62	0.65	0.65	0.61	0.60	0.54	-
+IV	0.61	0.58	0.55	0.53	0.59	0.53	0.48	-	-

Explain the relative sizes.											
Nuclear Number of Ionic											
charge electrons radii (A											
H-	1	2	2.08								
He	2	2	0.93								
Li+	3	2	0.60								

FROST DIAGRAMS

Element	Symbol	Electronic Configuration	Element						V	Cr	Mn	Fe	Co	Ni	С
Scandium	Sc	[Ar]3d ¹ 4s ²	Sc		+3			+6 -			- 17	e +6			
Titanium	Ti	[Ar]3d ² 4s ²	Ti	+2	+3 +4			+5 -			+6				
Vanadium	V	[Ar]3d ³ 4s ²	V	+2	+3 +4	1+5									
Chromium	Cr	[Ar]3d ⁵ 4s ¹	Cr	+2	+3 +4	1+5	+6	÷+2		• +6			130		
Manganese	Mn	[Ar]3d ⁵ 4s ²	Mn	+2	+3 +4	1+5	+6 +7	் – பே +1 –							+
Iron	Fe	[Ar]3d ⁶ 4s ²	Fe	+2	+3 +-	1+5	+6	-0 -			+4 0	+3	Ŷ	0	
Cobalt	Co	[Ar]3d ⁷ 4s ²	Co	+2	+3 +-	1 +5		0 <u>4</u> / <u></u> ₀ <u></u>	+5	$ \rangle $	+3	¥ +2	+2	+2	
Nickel	Ni	[Ar]3d ⁸ 4s ²	Ni	+2	+3 +-	1		₫ -2 -	+4	+3	$\begin{vmatrix} 2 \\ +2 \end{vmatrix}$				
Copper	Cu	[Ar]3d ¹⁰ 4s ¹	Cu	+1 +2	+3				+2 +3						
Zinc	Zn	[Ar]3d ¹⁰ 4s ²	Zn	+2						1			humut	unui	ши
									0 0) () (0 0	0	0	
										C	Dxidatic	on numl	ber		

OXIDATION STATES

	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	(Zn)
+VI I I										
+VI I					•					
+VI				•	0	0				
+V			•		•					
+ I V		•	0		0			0		
+	•	•	•	•	0	•	•			
+11		0	0	0	•	•	•	•	•	•
+									•	
	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	(Cd)
+VIII						0				
+VII					•					
+VI				•	0	0				
+V			•	0						
+ I V		•	0	0	0	•	0	0		
+	•	0	0	0	0	0	•		0	
+			0	0		0	0	•		•
+						0	0		•	
	La	Hf	Та	W	Re	Os	١r	Pt	Au	(Hg)
+VI I I						•				
+VII					•					
+VI				•	0	•				
+V			•	0	0					
+ I V		•	0	0	0	0	•	•		
+	•		0	0	0		•		•	
+			0	0				•		•
+									0	•

 $ns^2(n-1)d^x$

: most stable: possible

MELTING POINTS (°C)

Ti	1668	Zr	1852	Hf	2220
V	1890	Nb	1470	Та	3000
Cr	1860	Мо	2620	W	3410
Mn	1245	Тс	2140	Re	3180
Fe	1535	Ru	2282	Os	3045
Со	1492	Rh	1960	lr	2443
Ni	1452	Pd	1552	Pt	1769
Cu	1083	Ag	961	Au	1063

- compare to Zn 420, Cd 321, Hg -38
- compare to alkali metals 179 \rightarrow 29, alkaline earth metals 1080 \rightarrow 725
- many valence electrons
 - \rightarrow many electrons per atom in the metal bond
 - \rightarrow good electrical conductors
 - $\rightarrow\,$ strong bonds
 - \rightarrow high melting points
 - \rightarrow hard

CLASSIFICATION OF MIXED-VALENCE COMPOUNDS

M.B. Robin & P. Day, Adv. Inorg. Chem. Radiochem. 10, 247 (1967).

Class-I

- e.g. Na₂S₂O₃ (S^{-II} & S^{VI})
- clearly different environments for the two different atoms
- large energy required for electron transfer between these atoms
 - \rightarrow no interaction \rightarrow no special properties

Class-II

- e.g. Ag₂O₂ (Ag¹ & Ag¹¹¹)
- different but sufficiently similar environments → only a small energy required for electron transfer between the different atoms → semiconducting

Class-III

- e.g. Ag₂F (Ag^{0.5}) & YBa₂Cu₃O₇ (Cu^{2.3})
- all mixed-valence atoms have identical environments
 → electrons delocalized → metallic conductivity

VALENCE SEPARATION (Verwey-type) $2 M^{m+0.5} \rightarrow M^m + M^{m+1}$

(mixed valence state) \rightarrow (valence-separated state)

Example: Magnetite Fe₃O₄

- Inverse spinel structure: Fe^{III}_{tet}[Fe^{2.5}]_{oct}O₄
- Verwey transition (around 125 K): 2 $Fe^{2.5} \rightarrow Fe^{II} + Fe^{III}$

1 single crystal 2 thin film

Crystal (or ligand) field **SPLITTING of d** (or f) **ORBITAL** energies

COLOURS

- partly filled *d*-orbitals
- electrons can transfer from one *d*-orbital to another
- energy needed for the transfer is small
- corresponds to visible light wavelengths
- ions absorb certain wavelengths within the visible light spectrum
- if ion absorbs certain colour (e.g. red) the transmitted or reflected light contains relatively more other colours (blue and green), and the ion looks coloured (bluish green)
- ions with empty or full orbitals (d⁰ ja d¹⁰) are colourless
 - ions with half-filled orbitals (*d*⁵) are colourless or faintly coloured

CRYSTAL/LIGAND FIELD THEORY

- Electron configuration of transition metal (T): ns² (n-1)d^x
- Free T atom:
 - all the five d-orbitals are degenerated (= have the same energy)
- **T** atom surrounded by neighbours (crystal, molecule or solution):
 - outer s electrons and possibly also part of the d-electrons (y) participate in the formation of the chemical bond
 - \rightarrow T^{(2+y)+}: d^{x-y}
- Part of d-electrons (x-y) remain non-bonded

(exciting properties of transition metals originate from these electrons)

WHEN the T atom is BONDED:

• Each T atom (cation) likes to:

(1) get the nearest-neighbour anions (e.g. O²⁻) as close as possible (such that the bond can form)

(2) keep the non-bonded d-electrons as far as possible from the nearest-neighbour anions (to minimize electron-anion repulsion)

 $\rightarrow\,$ this repulsion determines the orientation of the d-orbitals related to the nearest-neighbour anions

- All the five d-orbitals feel the repulsion; in other words, their energy is increased in comparison to the case in free T atom
- d-orbitals that are closest to the nearest-neighbour anions feel the strongest repulsion and are with the highest energy, while those that are farther are with the lower energy
- d-orbitals have different shapes and spatial orientations

 → energies of the orbitals split (△) when the T cation is
 surrounded by anions (i.e. degeneration of the d orbitals disappears)

| ш

Octahedral crystal / ligand field

- three d orbitals (d_{xy}, d_{yz} ja d_{zx}) orient towards the empty spaces between the anions \rightarrow lower energy (2/5 Δ_o) t_{2g} orbitals
- two d-orbitals (d_{z2} ja d_{x2-y2}) orient towards the anions \rightarrow higher energy (3/5 Δ_o) e_g orbitals

4 anions/ligands around transition metal T cation

• $\Delta_{tet} = 4/9 \Delta_{oct}$ for the same metal/anion pair \rightarrow usually high spin

Square-planar

elongation of octahedron

How the d electrons occupy the splitted orbitals?

Two contadictory goals:

(1) Minimum energy \rightarrow low spin (if large Δ)

(2) Hund's rule (avoid electron pairs) \rightarrow high spin (if small Δ)

As $\Delta_{tet} = 4/9 \Delta_{oct}$, tetrahedral case almost always high-spin

Let's consider the OCTAHEDRAL case

(in your lecture exercise you will consider the tetrahedral case)

Magnitude of the splitting energy depends also on:

(1) Transition metal T itself

- 50% larger for 4d metals than for 3d metals
- 25% larger for 5d metals than for 4d metals \rightarrow 4d and 5d metals almost always: low-spin

(2) Oxidation state of T

- With increasing oxidation state of T
 - \rightarrow anions become closer
 - \rightarrow larger repulsion between d electrons and anions \rightarrow larger Δ
- 3d metals: when $T^{2+} \rightarrow T^{3+}$, Δ is doubled

(3) Number of anions/ligands

- The more ligands the larger Δ : $\Delta_{tet} \approx$ 4/9 x Δ_{oct}

Crystal Field Stabilization Energy (CFSE)

For example: octahedral crystal field

- each t_{2q} electron stabilizes (relatively) the compound
- each eg electron destabilizes (relatively) the compound

How CFSE is seen in ionic radius

- FOR EXAMPLE: 3d metals in octahedral coordination
- At a fixed oxidation state, ionic radius decreases from left to right
- HOWEVER: each electron in e_g orbital increases the ionic radii
- Ionic radius depends on spin state !

Number of d electrons