(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 50481991, 834861] NotebookOptionsPosition[ 50386818, 833113] NotebookOutlinePosition[ 50432786, 834075] CellTagsIndexPosition[ 50432702, 834070] WindowTitle->Adversarial examples. Differential privacy WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Initialization", "Subsection", CellChangeTimes->{{3.7473066384671297`*^9, 3.747306643754882*^9}},ExpressionUUID->"80e9b62a-f232-488e-89cd-\ cc48f362f2bc"], Cell[BoxData[ RowBox[{"SetOptions", "[", RowBox[{ RowBox[{"EvaluationNotebook", "[", "]"}], ",", " ", "\n", " ", RowBox[{ "\"\\"", " ", "->", " ", "\"\\""}]}], "]"}]], "Input", CellChangeTimes->{{3.744175926858658*^9, 3.744175977222474*^9}, { 3.7455881503627443`*^9, 3.745588162563171*^9}, {3.746544200097827*^9, 3.746544204867042*^9}, {3.7474113866116247`*^9, 3.747411402015126*^9}, { 3.748093316923214*^9, 3.748093318313554*^9}, {3.74877874058527*^9, 3.7487787471676617`*^9}, 3.749393938592222*^9, {3.749745688345806*^9, 3.749745717352708*^9}, {3.750763415521533*^9, 3.7507634336411743`*^9}, 3.750975068344574*^9, {3.814084330357498*^9, 3.814084335462694*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"cd7560b7-0da3-4b5f-b538-2df1488cb933"] }, Open ]], Cell[CellGroupData[{ Cell["", "SlideShowNavigationBar", CellTags-> "SlideShowHeader",ExpressionUUID->"b4e903e5-b6e2-44fc-8f36-b3928eccc377"], Cell["Adversarial examples and differential privacy", "Title", CellMargins->{{Inherited, Inherited}, {20, 20}}, CellChangeTimes->{{3.520677779770745*^9, 3.5206777856383314`*^9}, 3.5431988096378574`*^9, {3.5432821883411975`*^9, 3.5432821914465084`*^9}, { 3.5572388988490076`*^9, 3.5572389008382063`*^9}, {3.615563812383658*^9, 3.615563816927433*^9}, {3.680272810102916*^9, 3.680272812420767*^9}, { 3.744177430091611*^9, 3.744177433531406*^9}, {3.745588140052843*^9, 3.745588144206962*^9}, {3.7465442202008743`*^9, 3.746544227984172*^9}, { 3.747411425343184*^9, 3.747411453044457*^9}, {3.748093333873733*^9, 3.748093337386014*^9}, {3.74877875445037*^9, 3.7487787808097353`*^9}, { 3.7497457312517443`*^9, 3.749745741787785*^9}, {3.7503420069863577`*^9, 3.750342045578046*^9}, {3.750763130933503*^9, 3.750763170675413*^9}, { 3.814343812062305*^9, 3.814343820238743*^9}, {3.814413872724741*^9, 3.814413905560347*^9}},ExpressionUUID->"673397e0-114c-47ca-b6e8-\ 1ba2701cca33"], Cell["Chapter 10 . How something small can have an effect?", "Subtitle", CellMargins->{{Inherited, Inherited}, {10, 10}}, CellChangeTimes->{{3.557238904316554*^9, 3.5572389077378964`*^9}, 3.5572395094510612`*^9, {3.615563818997319*^9, 3.615563823598475*^9}, { 3.615564130252593*^9, 3.6155641420537643`*^9}, 3.615646357457625*^9, { 3.615646558384777*^9, 3.61564656041888*^9}, {3.6179733624640408`*^9, 3.6179733642492228`*^9}, {3.6802728151013393`*^9, 3.680272827308239*^9}, { 3.680962020558037*^9, 3.680962027001802*^9}, {3.744297067466214*^9, 3.744297081771214*^9}, {3.745588136718836*^9, 3.7455881368549623`*^9}, { 3.745588190038888*^9, 3.745588193817032*^9}, {3.746544230843753*^9, 3.74654423111903*^9}, {3.7465459201164017`*^9, 3.74654596301882*^9}, { 3.746546072526559*^9, 3.74654608157216*^9}, {3.747411413206105*^9, 3.747411414175329*^9}, {3.748093341007968*^9, 3.74809334183584*^9}, { 3.74809338730348*^9, 3.748093397499199*^9}, {3.748778783536829*^9, 3.748778794827999*^9}, 3.749745728008355*^9, {3.749746423805499*^9, 3.7497464260094957`*^9}, 3.749746517398889*^9, {3.7497465574263353`*^9, 3.749746578930334*^9}, {3.750763125331543*^9, 3.750763126979435*^9}, { 3.750763176420314*^9, 3.750763190990056*^9}, {3.8140833941265717`*^9, 3.8140833948576307`*^9}},ExpressionUUID->"bc674b96-27b2-4506-b096-\ 3232f6c6fc6c"], Cell[BoxData[""], "Input", CellChangeTimes->{ 3.744177423575264*^9},ExpressionUUID->"70606add-61f0-427a-8219-\ 59cb9e02661f"], Cell[CellGroupData[{ Cell["\<\ Leo K\[ADoubleDot]rkk\[ADoubleDot]inen leo.karkkainen@aalto.fi\ \>", "Subsubtitle", CellMargins->{{96, Inherited}, {10, 20}}, CellChangeTimes->{{3.520677813734141*^9, 3.520677823088076*^9}, { 3.520687372999189*^9, 3.520687386262189*^9}, {3.531071777663422*^9, 3.531071778362876*^9}, {3.543198724399335*^9, 3.543198731422037*^9}, { 3.5572389103601584`*^9, 3.557238925440666*^9}, {3.557239511682285*^9, 3.557239528678984*^9}, {3.615563825556082*^9, 3.61556382915606*^9}, { 3.744297093014111*^9, 3.744297094809079*^9}, {3.744692378606221*^9, 3.744692379038123*^9}}, FontSize->18,ExpressionUUID->"8a1c21e9-b6cc-412f-bb7b-baf57a2b8da0"], Cell[BoxData[""], "Input", CellChangeTimes->{{3.814496129239408*^9, 3.814496130850111*^9}},ExpressionUUID->"93bce190-a26f-472c-a6f1-\ 6a920d193743"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["", "SlideShowNavigationBar", CellTags-> "SlideShowHeader",ExpressionUUID->"dca6144f-5976-4c77-8ccc-7784153dfcba"], Cell[BoxData[ StyleBox["Outline", "Title", FontSlant->"Plain"]], "Input", CellChangeTimes->{{3.814458480629573*^9, 3.8144585064328327`*^9}, { 3.81445855789006*^9, 3.814458592731841*^9}},ExpressionUUID->"6b998253-3021-44e8-a1b2-\ 650d9e7ebff3"], Cell[TextData[StyleBox["Properties of neural networks.", FontSlant->"Plain"]], "Subsubsection", CellChangeTimes->{{3.744002663399671*^9, 3.744002696764913*^9}, { 3.744002902088481*^9, 3.744002905941862*^9}, 3.744010525517058*^9, 3.745480091273404*^9, {3.745588739210264*^9, 3.745588741285788*^9}, { 3.745590699642372*^9, 3.745590703264373*^9}, {3.746291860142119*^9, 3.746291861190962*^9}, {3.746292028069665*^9, 3.746292054923457*^9}, { 3.746546106955564*^9, 3.746546110999503*^9}, {3.7468490368241587`*^9, 3.746849041420682*^9}, {3.747411897438089*^9, 3.747411901496002*^9}, { 3.747412461272674*^9, 3.747412490036854*^9}, {3.748093689936184*^9, 3.748093700933371*^9}, {3.748093739720146*^9, 3.748093762534342*^9}, { 3.748093844397892*^9, 3.74809384988162*^9}, {3.7489153828111267`*^9, 3.748915387290978*^9}, {3.748932217631062*^9, 3.748932220860036*^9}, { 3.749746583035824*^9, 3.7497465938682613`*^9}, 3.750068811044676*^9, { 3.7507632703409986`*^9, 3.7507632783678207`*^9}, {3.750958289102953*^9, 3.750958337999626*^9}},ExpressionUUID->"b3b04053-1fc1-4434-b8e1-\ 85514c8d656c"], Cell[TextData[StyleBox["Adversarial examples", FontSlant->"Plain"]], "Subsubsection", CellChangeTimes->{{3.744002663399671*^9, 3.744002696764913*^9}, { 3.744002902088481*^9, 3.744002905941862*^9}, 3.744010525517058*^9, 3.745480091273404*^9, {3.745588739210264*^9, 3.745588741285788*^9}, { 3.745590699642372*^9, 3.745590703264373*^9}, {3.746291860142119*^9, 3.746291861190962*^9}, {3.746292028069665*^9, 3.746292054923457*^9}, { 3.746546106955564*^9, 3.746546110999503*^9}, {3.7468490368241587`*^9, 3.746849041420682*^9}, {3.747411897438089*^9, 3.747411901496002*^9}, { 3.747412461272674*^9, 3.747412490036854*^9}, {3.748093689936184*^9, 3.748093700933371*^9}, {3.748093739720146*^9, 3.748093762534342*^9}, { 3.748093844397892*^9, 3.74809384988162*^9}, {3.7489153828111267`*^9, 3.748915387290978*^9}, {3.748932217631062*^9, 3.748932220860036*^9}, { 3.749746583035824*^9, 3.7497465938682613`*^9}, 3.750068811044676*^9, { 3.7507632703409986`*^9, 3.7507632783678207`*^9}, {3.750958289102953*^9, 3.750958290104897*^9}},ExpressionUUID->"888feff4-81ee-41fd-9bc8-\ f2cdb9ae01b1"], Cell[TextData[StyleBox["Minimizing the size of the neural networks.", FontSlant->"Plain"]], "Subsubsection", CellChangeTimes->{ 3.68034367667273*^9, {3.744702618391471*^9, 3.744702626337927*^9}, { 3.745480137699726*^9, 3.745480159883543*^9}, {3.7455905104524117`*^9, 3.7455905303772497`*^9}, {3.745590707197031*^9, 3.7455907080599537`*^9}, { 3.745590769021575*^9, 3.74559077540351*^9}, 3.746292059380515*^9, { 3.746546115862632*^9, 3.746546119368478*^9}, {3.746848943428334*^9, 3.746848976020653*^9}, {3.747411913487205*^9, 3.747411928327582*^9}, { 3.7474121861510487`*^9, 3.747412186522653*^9}, 3.7480937666353197`*^9, { 3.748093966174837*^9, 3.7480939741596413`*^9}, {3.7485444028544893`*^9, 3.748544403254087*^9}, {3.748544441169343*^9, 3.748544442357046*^9}, { 3.748925062728566*^9, 3.748925066393312*^9}, {3.749704740861907*^9, 3.7497047469014*^9}, {3.7502440027709723`*^9, 3.750244003841001*^9}, { 3.750763281277707*^9, 3.75076329544531*^9}},ExpressionUUID->"9583d73b-420f-43c4-a310-\ f1e0e240ea77"], Cell[TextData[StyleBox["Embedded systems.", FontSlant->"Plain"]], "Subsubsection", CellChangeTimes->{ 3.68034367667273*^9, {3.744702618391471*^9, 3.744702626337927*^9}, { 3.745480137699726*^9, 3.745480159883543*^9}, {3.7455905104524117`*^9, 3.7455905303772497`*^9}, {3.745590707197031*^9, 3.7455907080599537`*^9}, { 3.745590769021575*^9, 3.74559077540351*^9}, {3.7465466817514343`*^9, 3.7465466828371477`*^9}, {3.746848987794156*^9, 3.746849020428833*^9}, { 3.74705242095008*^9, 3.747052422068021*^9}, {3.747052458298312*^9, 3.747052478115937*^9}, {3.747052546390512*^9, 3.747052550905034*^9}, 3.747411949039452*^9, {3.747412060927414*^9, 3.747412065317256*^9}, { 3.74741214975526*^9, 3.7474121548040543`*^9}, {3.748093708094067*^9, 3.7480937324979887`*^9}, {3.748093790499542*^9, 3.7480938583793583`*^9}, { 3.748925074401202*^9, 3.748925091666216*^9}, {3.7502440078736153`*^9, 3.75024402104671*^9}, {3.7503253774949083`*^9, 3.750325378255953*^9}, { 3.750763442897724*^9, 3.750763449385313*^9}},ExpressionUUID->"b44dfbde-de1b-4b49-9f00-\ 55e7363f4f2e"] }, Open ]], Cell[CellGroupData[{ Cell["", "SlideShowNavigationBar", CellTags-> "SlideShowHeader",ExpressionUUID->"bf87e8a2-a196-4927-a2ad-20c490639276"], Cell[BoxData[ StyleBox[ RowBox[{ "10.1", " ", "Representation", " ", "capability", " ", "of", " ", "a", " ", "two", " ", "layer", " ", "neural", " ", "network"}], "Title", FontSlant->"Plain"]], "Input", CellChangeTimes->{{3.814458480629573*^9, 3.8144585064328327`*^9}, { 3.81445855789006*^9, 3.8144585785298643`*^9}},ExpressionUUID->"c6cc361f-65d0-41d2-899e-\ 001a24342f9c"], Cell[CellGroupData[{ Cell[TextData[StyleBox["Any continuous function with given accuracy with \ (exponentially) large hidden layer.", FontSlant->"Plain"]], "Subsection", CellChangeTimes->{{3.744002663399671*^9, 3.744002696764913*^9}, { 3.744002902088481*^9, 3.744002905941862*^9}, 3.744010525517058*^9, 3.745480091273404*^9, {3.745588739210264*^9, 3.745588741285788*^9}, { 3.745590699642372*^9, 3.745590703264373*^9}, {3.746291860142119*^9, 3.746291861190962*^9}, {3.746292028069665*^9, 3.746292054923457*^9}, { 3.746546106955564*^9, 3.746546110999503*^9}, {3.7468490368241587`*^9, 3.746849041420682*^9}, {3.747411897438089*^9, 3.747411901496002*^9}, { 3.747412461272674*^9, 3.747412490036854*^9}, {3.747584004609747*^9, 3.747584006696958*^9}, {3.747709115881094*^9, 3.7477091475197687`*^9}, { 3.747710619791629*^9, 3.747710627094282*^9}, 3.7477106575929003`*^9, 3.747710697743372*^9, {3.7484873581016483`*^9, 3.748487365674474*^9}, { 3.748505877235465*^9, 3.748505906480434*^9}, {3.748506002231324*^9, 3.7485060104975977`*^9}, {3.7485407111189327`*^9, 3.7485407208364697`*^9}, {3.748540943386221*^9, 3.748540957347314*^9}, { 3.748543294073736*^9, 3.748543300651854*^9}, {3.74958599168602*^9, 3.749585992538477*^9}, 3.749586033525942*^9, {3.749615078009986*^9, 3.7496150786951323`*^9}, {3.7496954807027082`*^9, 3.749695481608212*^9}, { 3.749696350605179*^9, 3.7496963659731903`*^9}, {3.749748113795589*^9, 3.749748114698409*^9}, {3.750228840936438*^9, 3.750228849455237*^9}, { 3.750228908648554*^9, 3.750228913013723*^9}, {3.7502336291765842`*^9, 3.7502336321601477`*^9}, {3.750325106050521*^9, 3.750325167097307*^9}, { 3.750856673894622*^9, 3.750856701314238*^9}, 3.7508567373576317`*^9, { 3.814345998417757*^9, 3.814346115046432*^9}, {3.814415203771813*^9, 3.814415204853363*^9}, {3.814432607669931*^9, 3.814432675714406*^9}},ExpressionUUID->"7006939b-e660-426e-bb6e-\ f791e063dd82"], Cell[CellGroupData[{ Cell["\<\ In chapter 4 we discussed a result from Leshno and Schocken (1991):\ \>", "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596125266101*^9}, {3.745648372256975*^9, 3.745648465723386*^9}, { 3.7456486935273952`*^9, 3.7456486938302717`*^9}, {3.745648968954913*^9, 3.745649132002026*^9}, {3.74564925133853*^9, 3.7456493214027357`*^9}, { 3.7456507479382133`*^9, 3.745650749101879*^9}, {3.74565085311819*^9, 3.745650946291975*^9}, {3.745766074455529*^9, 3.745766074588695*^9}, { 3.745817823956843*^9, 3.745817927323584*^9}, {3.745817966665299*^9, 3.745818074174057*^9}, {3.745818379025392*^9, 3.745818523099464*^9}, { 3.745818583398939*^9, 3.7458186156680326`*^9}, {3.7458403538163443`*^9, 3.745840358191988*^9}, {3.74610318675078*^9, 3.746103211240683*^9}, { 3.746103468339367*^9, 3.746103476329481*^9}, {3.746108239878901*^9, 3.7461083149560337`*^9}, {3.746108493002754*^9, 3.74610849736054*^9}, { 3.746108718961493*^9, 3.746108749847951*^9}, 3.74610890900134*^9, 3.746202510111837*^9, 3.746982974268188*^9, {3.747238388801518*^9, 3.7472384040954742`*^9}, {3.7472384788392153`*^9, 3.747238478839571*^9}, { 3.747322728100184*^9, 3.747322729592958*^9}, {3.8143461231583033`*^9, 3.814346133512026*^9}, {3.81441514701189*^9, 3.8144151600704403`*^9}, 3.8144151911829844`*^9},ExpressionUUID->"3627408c-7f7d-4b3d-bb83-\ 167835bce83d"], Cell[TextData[{ StyleBox["A neural network with one hidden layer can uniformly approximate \ any continuous function on a compact set ", FontWeight->"Bold"], "if and only if the activation function is not a polynomial: Piecewise \ polynomial like Rectified Linear Unit (ReLU) is OK." }], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596125266101*^9}, {3.745648372256975*^9, 3.745648465723386*^9}, { 3.7456486935273952`*^9, 3.7456486938302717`*^9}, {3.745648968954913*^9, 3.745649132002026*^9}, {3.74564925133853*^9, 3.7456493214027357`*^9}, { 3.7456507479382133`*^9, 3.745650749101879*^9}, {3.74565085311819*^9, 3.745650946291975*^9}, {3.745766074455529*^9, 3.745766074588695*^9}, { 3.745817823956843*^9, 3.745817927323584*^9}, {3.745817966665299*^9, 3.745818074174057*^9}, {3.745818379025392*^9, 3.745818523099464*^9}, { 3.745818583398939*^9, 3.7458186156680326`*^9}, {3.7458403538163443`*^9, 3.745840358191988*^9}, {3.74610318675078*^9, 3.746103211240683*^9}, { 3.746103468339367*^9, 3.746103476329481*^9}, {3.746108239878901*^9, 3.7461083149560337`*^9}, {3.746108493002754*^9, 3.74610849736054*^9}, { 3.746108718961493*^9, 3.746108749847951*^9}, 3.74610890900134*^9, 3.746202510111837*^9, 3.746982974268188*^9, {3.747238388801518*^9, 3.7472384040954742`*^9}, {3.7472384838325787`*^9, 3.747238494839965*^9}, { 3.747272881199046*^9, 3.747272922884603*^9}, {3.747273091945835*^9, 3.7472731206447897`*^9}},ExpressionUUID->"4fe72c6c-91fd-4459-b9c0-\ ade3ea5f9a1d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Clear", "[", RowBox[{"y", ",", "w", ",", "b"}], "]"}], ";", RowBox[{"Graph", "[", RowBox[{ RowBox[{ RowBox[{"Join", "[", " ", RowBox[{ RowBox[{"Table", "[", " ", RowBox[{ RowBox[{"j", "\[Rule]", " ", "i"}], ",", RowBox[{"{", RowBox[{"j", ",", "1", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "6", ",", "12"}], "}"}]}], "]"}], ",", RowBox[{"Table", "[", " ", RowBox[{ RowBox[{"i", "\[Rule]", " ", RowBox[{"j", "+", "100"}]}], ",", RowBox[{"{", RowBox[{"j", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "6", ",", "12"}], "}"}]}], "]"}]}], "]"}], "//", "Flatten"}], ",", RowBox[{ RowBox[{"VertexLabels", "\[Rule]", RowBox[{"Join", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"i", "+", "100"}], "\[Rule]", RowBox[{"Placed", "[", RowBox[{ "\"\< y = \[Sum] \ \!\(\*SubsuperscriptBox[StyleBox[\"w\",FontWeight->\"Plain\"], \"k\", \ StyleBox[RowBox[{\"(\", \"2\", \")\"}],FontSize->7]]\) \[CenterDot]\[Sigma][ \ \!\(\*SubsuperscriptBox[StyleBox[\"w\",FontWeight->\"Bold\"], \"k\", \ StyleBox[RowBox[{\"(\", \"1\", \ \")\"}],FontSize->7]]\)\[CenterDot]\!\(\*StyleBox[\"x\",FontWeight->\"Bold\"]\ \)\!\(\*StyleBox[\" \ \",FontWeight->\"Bold\"]\)+\!\(\*SubscriptBox[StyleBox[\"b\",FontWeight->\"\ Plain\"], \"k\"]\)]\>\"", " ", ",", " ", "After"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "1"}], "}"}]}], "]"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"i", "\[Rule]", SubscriptBox["x", "i"]}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "2"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"5", "\[Rule]", " ", "\"\\""}], "}"}], ",", RowBox[{"{", RowBox[{"4", "\[Rule]", " ", SubscriptBox["x", "d"]}], "}"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"i", "\[Rule]", RowBox[{"Placed", "[", RowBox[{ RowBox[{"\[Sigma]", "[", RowBox[{ RowBox[{ SubsuperscriptBox[ StyleBox["w", FontWeight->"Bold"], RowBox[{"i", "-", "5"}], StyleBox[ RowBox[{"(", "1", ")"}], FontSize->7]], " ", "\[CenterDot]", StyleBox["x", FontWeight->"Bold"]}], StyleBox["+", FontWeight->"Bold"], SubscriptBox[ StyleBox["b", FontWeight->"Plain"], RowBox[{"i", "-", "5"}]]}], "]"}], ",", "Below"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "6", ",", "12"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"3", "\[Rule]", " ", RowBox[{"Placed", "[", RowBox[{ "\"\< \!\(\*StyleBox[\" \",FontSize->16]\)\!\(\*StyleBox[\"\ \[Ellipsis]\",FontSize->16]\)\>\"", ",", " ", "After"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"12", "\[Rule]", " ", RowBox[{"Placed", "[", RowBox[{ "\"\< \!\(\*StyleBox[\" \",FontSize->16]\)\!\(\*StyleBox[\"\ \[Ellipsis]\",FontSize->16]\)\>\"", ",", " ", "After"}], "]"}]}], "}"}]}], "]"}]}], "//", "Flatten"}], ",", " ", RowBox[{ "PlotLabel", "\[Rule]", "\"\\"Bold\"]\)\!\(\*StyleBox[\"]\",FontWeight-\ >\"Bold\"]\)\!\(\*StyleBox[\"=\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"y\",\ FontWeight->\"Plain\"]\)\>\""}], ",", " ", RowBox[{"ImageSize", "\[Rule]", "Large"}], ",", " ", RowBox[{"VertexStyle", "\[Rule]", RowBox[{"{", "Red", "}"}]}], ",", " ", RowBox[{"VertexSize", "\[Rule]", "Large"}]}], " ", "]"}]}]], "Input", CellChangeTimes->{{3.814415475658574*^9, 3.814415564975665*^9}, { 3.814415605286931*^9, 3.814415620958725*^9}, {3.8144208045742207`*^9, 3.81442080471045*^9}, {3.814420900449094*^9, 3.8144209050759087`*^9}, { 3.814421053980665*^9, 3.814421073938743*^9}, {3.814421145320827*^9, 3.814421147629938*^9}, {3.814421188375987*^9, 3.814421223288732*^9}, 3.814421266403352*^9, {3.814421301512088*^9, 3.814421327506997*^9}, { 3.814421388152677*^9, 3.814421407843107*^9}, {3.814421474413218*^9, 3.814421475192614*^9}, {3.8144215242228727`*^9, 3.814421539473105*^9}, { 3.81442158071747*^9, 3.814421581044591*^9}, {3.814421633502492*^9, 3.814421656380411*^9}, {3.81442171084717*^9, 3.814421711244079*^9}, { 3.8144217484184837`*^9, 3.8144217655571423`*^9}, {3.814421960549768*^9, 3.814421961533517*^9}, {3.814421992114625*^9, 3.814421992504655*^9}, { 3.814422034114956*^9, 3.814422127928708*^9}, {3.814422208462204*^9, 3.8144222216195917`*^9}, {3.81442231067523*^9, 3.814422313650448*^9}, { 3.814422355254187*^9, 3.814422377414608*^9}, {3.814422427201728*^9, 3.814422474056726*^9}, {3.814422538332548*^9, 3.814422541352789*^9}, { 3.8144227402072897`*^9, 3.814422761456479*^9}, {3.814422828555965*^9, 3.814422871373646*^9}, {3.814423854828909*^9, 3.8144238691821136`*^9}, { 3.814423955939033*^9, 3.814423958155851*^9}, {3.814423993028533*^9, 3.814424028329314*^9}, {3.8144240626391983`*^9, 3.8144240627583513`*^9}, { 3.814424153683235*^9, 3.814424154654377*^9}, {3.814424236303125*^9, 3.8144242530364933`*^9}, {3.814424703188802*^9, 3.814424703671496*^9}, { 3.814424734424251*^9, 3.814424734606452*^9}, {3.814425945970497*^9, 3.814425976929862*^9}, {3.814426043826997*^9, 3.814426068650131*^9}, { 3.814426129192203*^9, 3.814426163483775*^9}, {3.814426207035653*^9, 3.8144262351395063`*^9}, {3.8144263321788073`*^9, 3.814426385584929*^9}, { 3.8144265716606092`*^9, 3.8144266034092293`*^9}, {3.8144266413811007`*^9, 3.814426666743009*^9}, {3.8144267068199997`*^9, 3.814426784262805*^9}, { 3.814426841505694*^9, 3.814426887273587*^9}, {3.814426954934833*^9, 3.814426995608986*^9}, {3.814427038637348*^9, 3.814427059893004*^9}, { 3.8144270913507032`*^9, 3.8144271157338057`*^9}, {3.8144271668961563`*^9, 3.814427170009844*^9}, {3.814427260360976*^9, 3.814427322447651*^9}, { 3.8144273597100773`*^9, 3.814427446080875*^9}, {3.814427490287938*^9, 3.814427543872855*^9}, {3.814427603344211*^9, 3.8144276758740997`*^9}, { 3.81442775189902*^9, 3.814427753530273*^9}, {3.814427784650947*^9, 3.814427898151843*^9}, {3.814427928358871*^9, 3.8144279795059757`*^9}, { 3.814428070462131*^9, 3.814428096950903*^9}, {3.814428145183317*^9, 3.814428156676634*^9}, {3.814428194936453*^9, 3.8144282005636253`*^9}, { 3.814428262191869*^9, 3.814428346671489*^9}, {3.814428392336348*^9, 3.814428449154022*^9}, {3.814428484467248*^9, 3.8144285186063766`*^9}, { 3.814428679989685*^9, 3.8144287268114*^9}, {3.814428762056378*^9, 3.814428789558125*^9}, {3.814428873050138*^9, 3.814428887471191*^9}, { 3.814429093027585*^9, 3.814429108911859*^9}, {3.814433648418384*^9, 3.81443369490301*^9}, 3.814433738038602*^9, {3.814433778561431*^9, 3.814433813922412*^9}, {3.814433846528564*^9, 3.814433852019841*^9}, { 3.814434281191033*^9, 3.8144343090944567`*^9}}, CellLabel-> "In[238]:=",ExpressionUUID->"c04567af-1625-4440-8bb4-37b22db645ed"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 6, 7, 8, 9, 10, 11, 12, 2, 3, 4, 5, 101}, {{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {9, 2}, {9, 3}, {9, 4}, {9, 5}, {9, 6}, {9, 7}, {9, 8}, {10, 2}, {10, 3}, { 10, 4}, {10, 5}, {10, 6}, {10, 7}, {10, 8}, {11, 2}, {11, 3}, {11, 4}, {11, 5}, {11, 6}, {11, 7}, {11, 8}, {12, 2}, {12, 3}, {12, 4}, {12, 5}, {12, 6}, {12, 7}, {12, 8}, {2, 13}, {3, 13}, {4, 13}, {5, 13}, {6, 13}, {7, 13}, {8, 13}}, Null}, { ImageSize -> Large, PlotLabel -> "Universal function approximator f: \!\(\*SuperscriptBox[\(\ \[DoubleStruckCapitalR]\), \(d\)]\)\[RightArrow] \[DoubleStruckCapitalR], \ f[\!\(\*StyleBox[\"x\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"]\",FontWeight-\ >\"Bold\"]\)\!\(\*StyleBox[\"=\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"y\",\ FontWeight->\"Plain\"]\)", VertexLabels -> {6 -> Placed[ $CellContext`\[Sigma][CenterDot[ Subscript[$CellContext`w, 1], $CellContext`x] + Subscript[$CellContext`b, 1]], Below], 3 -> Placed[" \!\(\*StyleBox[\" \",FontSize->16]\)\!\(\*StyleBox[\"\ \[Ellipsis]\",FontSize->16]\)", After], 11 -> Placed[ $CellContext`\[Sigma][CenterDot[ Subscript[$CellContext`w, 6], $CellContext`x] + Subscript[$CellContext`b, 6]], Below], 5 -> "bias", 8 -> Placed[ $CellContext`\[Sigma][CenterDot[ Subscript[$CellContext`w, 3], $CellContext`x] + Subscript[$CellContext`b, 3]], Below], 7 -> Placed[ $CellContext`\[Sigma][CenterDot[ Subscript[$CellContext`w, 2], $CellContext`x] + Subscript[$CellContext`b, 2]], Below], 10 -> Placed[ $CellContext`\[Sigma][CenterDot[ Subscript[$CellContext`w, 5], $CellContext`x] + Subscript[$CellContext`b, 5]], Below], 9 -> Placed[ $CellContext`\[Sigma][CenterDot[ Subscript[$CellContext`w, 4], $CellContext`x] + Subscript[$CellContext`b, 4]], Below], 4 -> Subscript[$CellContext`x, $CellContext`d], 101 -> Placed[" y = \[Sum] \ \!\(\*SubsuperscriptBox[StyleBox[\"w\",FontWeight->\"Plain\"], \"k\", \ StyleBox[RowBox[{\"(\", \"2\", \")\"}],FontSize->7]]\) \[CenterDot]\[Sigma][ \ \!\(\*SubsuperscriptBox[StyleBox[\"w\",FontWeight->\"Bold\"], \"k\", \ StyleBox[RowBox[{\"(\", \"1\", \ \")\"}],FontSize->7]]\)\[CenterDot]\!\(\*StyleBox[\"x\",FontWeight->\"Bold\"]\ \)\!\(\*StyleBox[\" \ \",FontWeight->\"Bold\"]\)+\!\(\*SubscriptBox[StyleBox[\"b\",FontWeight->\"\ Plain\"], \"k\"]\)]", After], 12 -> Placed[" \!\(\*StyleBox[\" \",FontSize->16]\)\!\(\*StyleBox[\"\ \[Ellipsis]\",FontSize->16]\)", After], 2 -> Subscript[$CellContext`x, 2], 1 -> Subscript[$CellContext`x, 1]}, VertexSize -> {Large}, VertexStyle -> { RGBColor[1, 0, 0]}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[Medium], ArrowBox[{{0., 2.}, {-1., 1.}}, 0.2], ArrowBox[{{0., 2.}, {0., 1.}}, 0.2], ArrowBox[{{0., 2.}, {1., 1.}}, 0.2], ArrowBox[{{0., 2.}, {2., 1.}}, 0.2], ArrowBox[{{0., 2.}, {3., 1.}}, 0.2], ArrowBox[{{0., 2.}, {4., 1.}}, 0.2], ArrowBox[{{0., 2.}, {5., 1.}}, 0.2], ArrowBox[{{-1., 1.}, {2., 0.}}, 0.2], ArrowBox[{{0., 1.}, {2., 0.}}, 0.2], ArrowBox[{{1., 1.}, {2., 0.}}, 0.2], ArrowBox[{{2., 1.}, {2., 0.}}, 0.2], ArrowBox[{{3., 1.}, {2., 0.}}, 0.2], ArrowBox[{{4., 1.}, {2., 0.}}, 0.2], ArrowBox[{{5., 1.}, {2., 0.}}, 0.2], ArrowBox[{{1., 2.}, {-1., 1.}}, 0.2], ArrowBox[{{1., 2.}, {0., 1.}}, 0.2], ArrowBox[{{1., 2.}, {1., 1.}}, 0.2], ArrowBox[{{1., 2.}, {2., 1.}}, 0.2], ArrowBox[{{1., 2.}, {3., 1.}}, 0.2], ArrowBox[{{1., 2.}, {4., 1.}}, 0.2], ArrowBox[{{1., 2.}, {5., 1.}}, 0.2], ArrowBox[{{2., 2.}, {-1., 1.}}, 0.2], ArrowBox[{{2., 2.}, {0., 1.}}, 0.2], ArrowBox[{{2., 2.}, {1., 1.}}, 0.2], ArrowBox[{{2., 2.}, {2., 1.}}, 0.2], ArrowBox[{{2., 2.}, {3., 1.}}, 0.2], ArrowBox[{{2., 2.}, {4., 1.}}, 0.2], ArrowBox[{{2., 2.}, {5., 1.}}, 0.2], ArrowBox[{{3., 2.}, {-1., 1.}}, 0.2], ArrowBox[{{3., 2.}, {0., 1.}}, 0.2], ArrowBox[{{3., 2.}, {1., 1.}}, 0.2], ArrowBox[{{3., 2.}, {2., 1.}}, 0.2], ArrowBox[{{3., 2.}, {3., 1.}}, 0.2], ArrowBox[{{3., 2.}, {4., 1.}}, 0.2], ArrowBox[{{3., 2.}, {5., 1.}}, 0.2], ArrowBox[{{4., 2.}, {-1., 1.}}, 0.2], ArrowBox[{{4., 2.}, {0., 1.}}, 0.2], ArrowBox[{{4., 2.}, {1., 1.}}, 0.2], ArrowBox[{{4., 2.}, {2., 1.}}, 0.2], ArrowBox[{{4., 2.}, {3., 1.}}, 0.2], ArrowBox[{{4., 2.}, {4., 1.}}, 0.2], ArrowBox[{{4., 2.}, {5., 1.}}, 0.2]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{0., 2.}, 0.2], InsetBox[ SubscriptBox["x", "1"], Offset[{2, 2}, {0.2, 2.2}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{-1., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ SubscriptBox["b", "1"], "+", RowBox[{ SubscriptBox["w", "1"], "\[CenterDot]", "x"}]}], ")"}], Offset[{0, -2}, {-1., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{0., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ SubscriptBox["b", "2"], "+", RowBox[{ SubscriptBox["w", "2"], "\[CenterDot]", "x"}]}], ")"}], Offset[{0, -2}, {0., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{1., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ SubscriptBox["b", "3"], "+", RowBox[{ SubscriptBox["w", "3"], "\[CenterDot]", "x"}]}], ")"}], Offset[{0, -2}, {1., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{2., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ SubscriptBox["b", "4"], "+", RowBox[{ SubscriptBox["w", "4"], "\[CenterDot]", "x"}]}], ")"}], Offset[{0, -2}, {2., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{3., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ SubscriptBox["b", "5"], "+", RowBox[{ SubscriptBox["w", "5"], "\[CenterDot]", "x"}]}], ")"}], Offset[{0, -2}, {3., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{4., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ SubscriptBox["b", "6"], "+", RowBox[{ SubscriptBox["w", "6"], "\[CenterDot]", "x"}]}], ")"}], Offset[{0, -2}, {4., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{5., 1.}, 0.2], InsetBox["\<\" \\!\\(\\*StyleBox[\\\" \ \\\",FontSize->16]\\)\\!\\(\\*StyleBox[\\\"\[Ellipsis]\\\",FontSize->16]\\)\"\ \>", Offset[{2, 0}, {5.2, 1.}], ImageScaled[{0, 0.5}], BaseStyle->"Graphics"]}, {DiskBox[{1., 2.}, 0.2], InsetBox[ SubscriptBox["x", "2"], Offset[{2, 2}, {1.2, 2.2}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{2., 2.}, 0.2], InsetBox["\<\" \\!\\(\\*StyleBox[\\\" \ \\\",FontSize->16]\\)\\!\\(\\*StyleBox[\\\"\[Ellipsis]\\\",FontSize->16]\\)\"\ \>", Offset[{2, 0}, {2.2, 2.}], ImageScaled[{0, 0.5}], BaseStyle->"Graphics"]}, {DiskBox[{3., 2.}, 0.2], InsetBox[ SubscriptBox["x", "d"], Offset[{2, 2}, {3.2, 2.2}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{4., 2.}, 0.2], InsetBox["\<\"bias\"\>", Offset[{2, 2}, {4.2, 2.2}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{2., 0.}, 0.2], InsetBox["\<\" y = \[Sum] \\!\\(\\*SubsuperscriptBox[StyleBox[\\\ \"w\\\",FontWeight->\\\"Plain\\\"], \\\"k\\\", StyleBox[RowBox[{\\\"(\\\", \\\ \"2\\\", \\\")\\\"}],FontSize->7]]\\) \[CenterDot]\[Sigma][ \ \\!\\(\\*SubsuperscriptBox[StyleBox[\\\"w\\\",FontWeight->\\\"Bold\\\"], \ \\\"k\\\", StyleBox[RowBox[{\\\"(\\\", \\\"1\\\", \ \\\")\\\"}],FontSize->7]]\\)\[CenterDot]\\!\\(\\*StyleBox[\\\"x\\\",\ FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\" \ \\\",FontWeight->\\\"Bold\\\"]\\)+\\!\\(\\*SubscriptBox[StyleBox[\\\"b\\\",\ FontWeight->\\\"Plain\\\"], \\\"k\\\"]\\)]\"\>", Offset[{2, 0}, {2.2, 0.}], ImageScaled[{0, 0.5}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Large, PlotLabel->FormBox[ "\"Universal function approximator f: \\!\\(\\*SuperscriptBox[\\(\ \[DoubleStruckCapitalR]\\), \\(d\\)]\\)\[RightArrow] \[DoubleStruckCapitalR], \ f[\\!\\(\\*StyleBox[\\\"x\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\ \"]\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\"=\\\",FontWeight->\\\ \"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\"y\\\",FontWeight->\\\"Plain\\\"]\\)\"", TraditionalForm]]], "Output", CellChangeTimes->{{3.814428764054903*^9, 3.814428783469899*^9}, 3.814428829797962*^9, 3.814428890099457*^9, 3.814429118228224*^9, { 3.8144336638385763`*^9, 3.8144336969560547`*^9}, 3.81443374103303*^9, 3.8144337801731377`*^9, 3.814433820523361*^9, 3.8144338561573553`*^9, 3.814434179885811*^9, 3.814434311000474*^9}, TextAlignment->Center, CellLabel-> "Out[238]=",ExpressionUUID->"f938d3bb-d07d-47ab-8791-3555d7280400"] }, {2}]], Cell[CellGroupData[{ Cell["\<\ The number of parameters needed depends heavily on the accuracy.\ \>", "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596125266101*^9}, {3.745648372256975*^9, 3.745648465723386*^9}, { 3.7456486935273952`*^9, 3.7456486938302717`*^9}, {3.745648968954913*^9, 3.745649132002026*^9}, {3.74564925133853*^9, 3.7456493214027357`*^9}, { 3.7456507479382133`*^9, 3.745650749101879*^9}, {3.74565085311819*^9, 3.745650946291975*^9}, {3.745766074455529*^9, 3.745766074588695*^9}, { 3.745817823956843*^9, 3.745817927323584*^9}, {3.745817966665299*^9, 3.745818074174057*^9}, {3.745818379025392*^9, 3.745818523099464*^9}, { 3.745818583398939*^9, 3.7458186156680326`*^9}, {3.7458403538163443`*^9, 3.745840358191988*^9}, {3.74610318675078*^9, 3.746103211240683*^9}, { 3.746103468339367*^9, 3.746103476329481*^9}, {3.746108239878901*^9, 3.7461083149560337`*^9}, {3.746108493002754*^9, 3.74610849736054*^9}, { 3.746108718961493*^9, 3.746108749847951*^9}, 3.74610890900134*^9, 3.746202510111837*^9, 3.746982974268188*^9, {3.747238388801518*^9, 3.7472384040954742`*^9}, {3.7472384838325787`*^9, 3.747238494839965*^9}, { 3.747272881199046*^9, 3.747272922884603*^9}, {3.747273091945835*^9, 3.7472731206447897`*^9}, {3.814433900089013*^9, 3.814433943457909*^9}},ExpressionUUID->"269a8708-3922-4df8-b795-\ ad7faefdfa76"], Cell["For a size of n middle layer this is ", "Subitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596125266101*^9}, {3.745648372256975*^9, 3.745648465723386*^9}, { 3.7456486935273952`*^9, 3.7456486938302717`*^9}, {3.745648968954913*^9, 3.745649132002026*^9}, {3.74564925133853*^9, 3.7456493214027357`*^9}, { 3.7456507479382133`*^9, 3.745650749101879*^9}, {3.74565085311819*^9, 3.745650946291975*^9}, {3.745766074455529*^9, 3.745766074588695*^9}, { 3.745817823956843*^9, 3.745817927323584*^9}, {3.745817966665299*^9, 3.745818074174057*^9}, {3.745818379025392*^9, 3.745818523099464*^9}, { 3.745818583398939*^9, 3.7458186156680326`*^9}, {3.7458403538163443`*^9, 3.745840358191988*^9}, {3.74610318675078*^9, 3.746103211240683*^9}, { 3.746103468339367*^9, 3.746103476329481*^9}, {3.746108239878901*^9, 3.7461083149560337`*^9}, {3.746108493002754*^9, 3.74610849736054*^9}, { 3.746108718961493*^9, 3.746108749847951*^9}, 3.74610890900134*^9, 3.746202510111837*^9, 3.746982974268188*^9, {3.747238388801518*^9, 3.7472384040954742`*^9}, {3.7472384838325787`*^9, 3.747238494839965*^9}, { 3.747272881199046*^9, 3.747272922884603*^9}, {3.747273091945835*^9, 3.7472731206447897`*^9}, {3.814433900089013*^9, 3.814433960281949*^9}, 3.8144343213629503`*^9, {3.814434505925563*^9, 3.814434508723288*^9}},ExpressionUUID->"731da8e6-3d21-467e-b7fb-\ 9014f8dadf62"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"d", "\[Times]", "n", " ", RowBox[{"(", RowBox[{"the", " ", "first", " ", "weight", " ", "matrix", " ", SubsuperscriptBox[ StyleBox["w", FontWeight->"Bold"], "k", StyleBox[ RowBox[{"(", "1", ")"}], FontSize->7]]}], ")"}]}], " ", "+", " ", RowBox[{"n", " ", RowBox[{"(", RowBox[{"the", " ", "biases", " ", SubscriptBox["b", "k"]}], ")"}]}], " ", "+", " ", RowBox[{"n", " ", RowBox[{"(", RowBox[{"the", " ", "second", " ", "layer", " ", "weights", " ", SubsuperscriptBox[ StyleBox["w", FontWeight->"Plain"], "k", StyleBox[ RowBox[{"(", "2", ")"}], FontSize->7]]}], ")"}]}]}], "=", " ", RowBox[{ RowBox[{"(", RowBox[{"d", "+", "2"}], ")"}], "\[Times]", " ", "n"}]}]], "DisplayFormulaNumbered", CellChangeTimes->{ 3.814346826588695*^9, 3.814361676890769*^9, {3.814433980282638*^9, 3.8144340631628313`*^9}, {3.8144341005955048`*^9, 3.814434140897657*^9}, { 3.814434200866996*^9, 3.81443423282596*^9}, {3.8144343304441977`*^9, 3.814434423240848*^9}}, TextAlignment->Center,ExpressionUUID->"622d4581-f50c-4444-abac-cc897fcac8bf"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["", "SlideShowNavigationBar", CellTags-> "SlideShowHeader",ExpressionUUID->"e5058e62-9441-4226-83d7-c40fe9a80822"], Cell[CellGroupData[{ Cell[TextData[StyleBox["Real valued function of any finite set of n \ d-dimensional points can be fitted with 2 n +d parameters perfectly.", FontSlant->"Plain"]], "Subsection", CellChangeTimes->{{3.744002663399671*^9, 3.744002696764913*^9}, { 3.744002902088481*^9, 3.744002905941862*^9}, 3.744010525517058*^9, 3.745480091273404*^9, {3.745588739210264*^9, 3.745588741285788*^9}, { 3.745590699642372*^9, 3.745590703264373*^9}, {3.746291860142119*^9, 3.746291861190962*^9}, {3.746292028069665*^9, 3.746292054923457*^9}, { 3.746546106955564*^9, 3.746546110999503*^9}, {3.7468490368241587`*^9, 3.746849041420682*^9}, {3.747411897438089*^9, 3.747411901496002*^9}, { 3.747412461272674*^9, 3.747412490036854*^9}, {3.747584004609747*^9, 3.747584006696958*^9}, {3.747709115881094*^9, 3.7477091475197687`*^9}, { 3.747710619791629*^9, 3.747710627094282*^9}, 3.7477106575929003`*^9, 3.747710697743372*^9, {3.7484873581016483`*^9, 3.748487365674474*^9}, { 3.748505877235465*^9, 3.748505906480434*^9}, {3.748506002231324*^9, 3.7485060104975977`*^9}, {3.7485407111189327`*^9, 3.7485407208364697`*^9}, {3.748540943386221*^9, 3.748540957347314*^9}, { 3.748543294073736*^9, 3.748543300651854*^9}, {3.74958599168602*^9, 3.749585992538477*^9}, 3.749586033525942*^9, {3.749615078009986*^9, 3.7496150786951323`*^9}, {3.7496954807027082`*^9, 3.749695481608212*^9}, { 3.749696350605179*^9, 3.7496963659731903`*^9}, {3.749748113795589*^9, 3.749748114698409*^9}, {3.750228840936438*^9, 3.750228849455237*^9}, { 3.750228908648554*^9, 3.750228913013723*^9}, {3.7502336291765842`*^9, 3.7502336321601477`*^9}, {3.750325106050521*^9, 3.750325167097307*^9}, { 3.750856673894622*^9, 3.750856701314238*^9}, 3.7508567373576317`*^9, { 3.814346558779121*^9, 3.814346565477873*^9}, {3.8144152080647297`*^9, 3.814415209166546*^9}, 3.814432572439636*^9, {3.814432688873249*^9, 3.814432844954865*^9}, 3.814434452555738*^9, {3.81449454450106*^9, 3.814494565916061*^9}},ExpressionUUID->"f630353f-0bdb-42c9-8f15-\ 1a4e4f1f207b"], Cell[TextData[StyleBox["One can show that a very simple neural network can \ learn a finite data set perfectly by heart.", FontSlant->"Plain"]], "Item", CellChangeTimes->CompressedData[" 1:eJwlzF1Ik2EABeAvk1koc6x1FcGmNHfTp0ZMkVbfq6yhbjYGBZqEFXaxSW5O cyg1UkZeeGERLBAtbAWpkE0vdqHSz5xsRKykP4kyUbf1zp8tGSFivefr4vDA 4XBUV1otzVkcx6lZ4MzP6eMFq5S8Cih4+OXsihba7aFyqCzw6SDXtCBA4fm7 2GaMkjrbkxQcDzRn4H3PzV2Y1ZMQ1HFKZl/mE3j496ob1nwy9cDNgfbRIuZt U5MfWqL2KGwLLS7Bvy+uxmGxcHoX1nlXOA2Tc/ZKIB95ZIRvd95fhE+3Djmh qnesE5rfOPyDvygp2Z+ZhDcSC7UPKSU/WqImaE6rg+vM+e3/fjg11JBiZoz5 VliZoXo+yf61ewaY9zEoObJOyff5fTmijnOFcPnOZdG7qWMaqHSXi36m53Nn mCMXtFL459JUEbTdUmigzjDV5dmgpN/3rBu2G2TyvS1KHvNSJZQn9GZ4oFFh gd7BgU4YsLpccLHE/Y1LUbKtly3BxsjX7NI021sFKRyRKo/CiLq+UOzHJk5A /73hMjix9qAa1kzmGCE/XdE6zieJKqbrgKGT18PVtiTJlnhE++Res40pOzgn ulYRrmxjLoflVfBaQ9oBFcFRJwzEfS54xv66C/4DKcFLPQ== "],ExpressionUUID->"fbe03a0f-9090-4a73-a199-4e6ee010bbf3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Clear", "[", RowBox[{"y", ",", "w", ",", "b"}], "]"}], ";", RowBox[{"Graph", "[", RowBox[{ RowBox[{ RowBox[{"Join", "[", " ", RowBox[{ RowBox[{"Table", "[", " ", RowBox[{ RowBox[{"j", "\[Rule]", " ", "i"}], ",", RowBox[{"{", RowBox[{"j", ",", "1", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "6", ",", "12"}], "}"}]}], "]"}], ",", RowBox[{"Table", "[", " ", RowBox[{ RowBox[{"i", "\[Rule]", " ", RowBox[{"j", "+", "100"}]}], ",", RowBox[{"{", RowBox[{"j", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "6", ",", "12"}], "}"}]}], "]"}]}], "]"}], "//", "Flatten"}], ",", RowBox[{ RowBox[{"VertexLabels", "\[Rule]", RowBox[{"Join", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"i", "+", "100"}], "\[Rule]", RowBox[{"Placed", "[", RowBox[{ "\"\< y = \[Sum] \ \!\(\*SubscriptBox[StyleBox[\"w\",FontWeight->\"Plain\"], \"k\"]\) \[Sigma][ \ \!\(\*StyleBox[\"a\",FontWeight->\"Bold\"]\)\[CenterDot]\!\(\*StyleBox[\"x\",\ FontWeight->\"Bold\"]\)\!\(\*StyleBox[\" \ \",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"-\",FontWeight->\"Bold\"]\)\!\(\*\ SubscriptBox[StyleBox[\"b\",FontWeight->\"Plain\"], \"k\"]\)]\>\"", " ", ",", " ", "After"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "1"}], "}"}]}], "]"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"i", "\[Rule]", SubscriptBox["x", "i"]}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "2"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"5", "\[Rule]", " ", "\"\\""}], "}"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"i", "\[Rule]", RowBox[{"Placed", "[", RowBox[{ RowBox[{"\[Sigma]", "[", RowBox[{ RowBox[{ StyleBox["a", FontWeight->"Bold"], " ", "\[CenterDot]", StyleBox["x", FontWeight->"Bold"]}], StyleBox["-", FontWeight->"Bold"], SubscriptBox[ StyleBox["b", FontWeight->"Plain"], RowBox[{"i", "-", "5"}]]}], "]"}], ",", "Below"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "6", ",", "11"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"3", "\[Rule]", " ", RowBox[{"Placed", "[", RowBox[{ "\"\< \!\(\*StyleBox[\" \",FontSize->16]\)\!\(\*StyleBox[\"\ \[Ellipsis]\",FontSize->16]\)\>\"", ",", " ", "After"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"4", "\[Rule]", " ", SubscriptBox["x", "d"]}], "}"}], ",", RowBox[{"{", RowBox[{"11", "\[Rule]", " ", RowBox[{"Placed", "[", RowBox[{ "\"\< \!\(\*StyleBox[\" \",FontSize->16]\)\!\(\*StyleBox[\"\ \[Ellipsis]\",FontSize->16]\)\>\"", ",", " ", "After"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"12", "\[Rule]", " ", RowBox[{"Placed", "[", RowBox[{ "\"\<\[Sigma][\!\(\*StyleBox[\"a\",FontWeight->\"Bold\"]\) \ \[CenterDot]\!\(\*StyleBox[\"x\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"-\",\ FontWeight->\"Bold\"]\)\!\(\*SubscriptBox[StyleBox[\"b\",FontWeight->\"Plain\"\ ], \"12\"]\)]\>\"", ",", " ", "Below"}], "]"}]}], "}"}]}], "]"}]}], "//", "Flatten"}], ",", " ", RowBox[{ "PlotLabel", "\[Rule]", "\"\\"Bold\"]\)\!\(\*StyleBox[\"]\",FontWeight-\ >\"Bold\"]\)\!\(\*StyleBox[\"=\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"y\",\ FontWeight->\"Plain\"]\)\>\""}], ",", " ", RowBox[{"ImageSize", "\[Rule]", "Large"}], ",", " ", RowBox[{"VertexStyle", "\[Rule]", RowBox[{"{", "Red", "}"}]}], ",", " ", RowBox[{"VertexSize", "\[Rule]", "Large"}]}], " ", "]"}]}]], "Input", CellChangeTimes->{{3.8144296935853767`*^9, 3.814429708090086*^9}, { 3.814429749971991*^9, 3.8144297513248253`*^9}, 3.814429821348428*^9, { 3.814429874320641*^9, 3.8144299124652557`*^9}, {3.8144301510599737`*^9, 3.814430182826837*^9}, 3.814430228631606*^9, {3.814430291296214*^9, 3.8144303310996304`*^9}, {3.8144303972356787`*^9, 3.814430451232849*^9}, { 3.8144305255242767`*^9, 3.814430624029958*^9}, {3.8144306777938957`*^9, 3.8144306911889677`*^9}, {3.8144311242801323`*^9, 3.8144311473416557`*^9}, {3.814431266315763*^9, 3.814431340405945*^9}, { 3.814431412645466*^9, 3.8144314349980927`*^9}, {3.814431472498578*^9, 3.814431505616797*^9}, {3.8144315950664587`*^9, 3.814431613617442*^9}, { 3.8144316554440393`*^9, 3.814431682965929*^9}, {3.814431753868143*^9, 3.814431755462265*^9}, {3.814431811501698*^9, 3.814431825529587*^9}, { 3.814432880890504*^9, 3.8144329160936737`*^9}, {3.81443298024992*^9, 3.8144330456302547`*^9}, {3.8144330776712914`*^9, 3.814433079348133*^9}, { 3.814433117199253*^9, 3.814433123769802*^9}, {3.8144331944232683`*^9, 3.814433194943564*^9}, {3.8144337687728653`*^9, 3.814433768873526*^9}}, CellLabel-> "In[229]:=",ExpressionUUID->"5afcbb84-862d-40db-8394-f7f6d1403f2c"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 6, 7, 8, 9, 10, 11, 12, 2, 3, 4, 5, 101}, {{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {9, 2}, {9, 3}, {9, 4}, {9, 5}, {9, 6}, {9, 7}, {9, 8}, {10, 2}, {10, 3}, { 10, 4}, {10, 5}, {10, 6}, {10, 7}, {10, 8}, {11, 2}, {11, 3}, {11, 4}, {11, 5}, {11, 6}, {11, 7}, {11, 8}, {12, 2}, {12, 3}, {12, 4}, {12, 5}, {12, 6}, {12, 7}, {12, 8}, {2, 13}, {3, 13}, {4, 13}, {5, 13}, {6, 13}, {7, 13}, {8, 13}}, Null}, { ImageSize -> Large, PlotLabel -> "Zero error network f: \ \!\(\*SuperscriptBox[\(\[DoubleStruckCapitalR]\), \(d\)]\)\[RightArrow] \ \[DoubleStruckCapitalR], \ f[\!\(\*StyleBox[\"x\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"]\",FontWeight-\ >\"Bold\"]\)\!\(\*StyleBox[\"=\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"y\",\ FontWeight->\"Plain\"]\)", VertexLabels -> {6 -> Placed[ $CellContext`\[Sigma][ CenterDot[$CellContext`a, $CellContext`x] - Subscript[$CellContext`b, 1]], Below], 3 -> Placed[" \!\(\*StyleBox[\" \",FontSize->16]\)\!\(\*StyleBox[\"\ \[Ellipsis]\",FontSize->16]\)", After], 11 -> Placed[" \!\(\*StyleBox[\" \",FontSize->16]\)\!\(\*StyleBox[\"\ \[Ellipsis]\",FontSize->16]\)", After], 5 -> "bias", 8 -> Placed[ $CellContext`\[Sigma][ CenterDot[$CellContext`a, $CellContext`x] - Subscript[$CellContext`b, 3]], Below], 7 -> Placed[ $CellContext`\[Sigma][ CenterDot[$CellContext`a, $CellContext`x] - Subscript[$CellContext`b, 2]], Below], 10 -> Placed[ $CellContext`\[Sigma][ CenterDot[$CellContext`a, $CellContext`x] - Subscript[$CellContext`b, 5]], Below], 4 -> Subscript[$CellContext`x, $CellContext`d], 9 -> Placed[ $CellContext`\[Sigma][ CenterDot[$CellContext`a, $CellContext`x] - Subscript[$CellContext`b, 4]], Below], 101 -> Placed[" y = \[Sum] \ \!\(\*SubscriptBox[StyleBox[\"w\",FontWeight->\"Plain\"], \"k\"]\) \[Sigma][ \ \!\(\*StyleBox[\"a\",FontWeight->\"Bold\"]\)\[CenterDot]\!\(\*StyleBox[\"x\",\ FontWeight->\"Bold\"]\)\!\(\*StyleBox[\" \ \",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"-\",FontWeight->\"Bold\"]\)\!\(\*\ SubscriptBox[StyleBox[\"b\",FontWeight->\"Plain\"], \"k\"]\)]", After], 12 -> Placed["\[Sigma][\!\(\*StyleBox[\"a\",FontWeight->\"Bold\"]\) \ \[CenterDot]\!\(\*StyleBox[\"x\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"-\",\ FontWeight->\"Bold\"]\)\!\(\*SubscriptBox[StyleBox[\"b\",FontWeight->\"Plain\"\ ], \"12\"]\)]", Below], 2 -> Subscript[$CellContext`x, 2], 1 -> Subscript[$CellContext`x, 1]}, VertexSize -> {Large}, VertexStyle -> { RGBColor[1, 0, 0]}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[Medium], ArrowBox[{{0., 2.}, {-1., 1.}}, 0.2], ArrowBox[{{0., 2.}, {0., 1.}}, 0.2], ArrowBox[{{0., 2.}, {1., 1.}}, 0.2], ArrowBox[{{0., 2.}, {2., 1.}}, 0.2], ArrowBox[{{0., 2.}, {3., 1.}}, 0.2], ArrowBox[{{0., 2.}, {4., 1.}}, 0.2], ArrowBox[{{0., 2.}, {5., 1.}}, 0.2], ArrowBox[{{-1., 1.}, {2., 0.}}, 0.2], ArrowBox[{{0., 1.}, {2., 0.}}, 0.2], ArrowBox[{{1., 1.}, {2., 0.}}, 0.2], ArrowBox[{{2., 1.}, {2., 0.}}, 0.2], ArrowBox[{{3., 1.}, {2., 0.}}, 0.2], ArrowBox[{{4., 1.}, {2., 0.}}, 0.2], ArrowBox[{{5., 1.}, {2., 0.}}, 0.2], ArrowBox[{{1., 2.}, {-1., 1.}}, 0.2], ArrowBox[{{1., 2.}, {0., 1.}}, 0.2], ArrowBox[{{1., 2.}, {1., 1.}}, 0.2], ArrowBox[{{1., 2.}, {2., 1.}}, 0.2], ArrowBox[{{1., 2.}, {3., 1.}}, 0.2], ArrowBox[{{1., 2.}, {4., 1.}}, 0.2], ArrowBox[{{1., 2.}, {5., 1.}}, 0.2], ArrowBox[{{2., 2.}, {-1., 1.}}, 0.2], ArrowBox[{{2., 2.}, {0., 1.}}, 0.2], ArrowBox[{{2., 2.}, {1., 1.}}, 0.2], ArrowBox[{{2., 2.}, {2., 1.}}, 0.2], ArrowBox[{{2., 2.}, {3., 1.}}, 0.2], ArrowBox[{{2., 2.}, {4., 1.}}, 0.2], ArrowBox[{{2., 2.}, {5., 1.}}, 0.2], ArrowBox[{{3., 2.}, {-1., 1.}}, 0.2], ArrowBox[{{3., 2.}, {0., 1.}}, 0.2], ArrowBox[{{3., 2.}, {1., 1.}}, 0.2], ArrowBox[{{3., 2.}, {2., 1.}}, 0.2], ArrowBox[{{3., 2.}, {3., 1.}}, 0.2], ArrowBox[{{3., 2.}, {4., 1.}}, 0.2], ArrowBox[{{3., 2.}, {5., 1.}}, 0.2], ArrowBox[{{4., 2.}, {-1., 1.}}, 0.2], ArrowBox[{{4., 2.}, {0., 1.}}, 0.2], ArrowBox[{{4., 2.}, {1., 1.}}, 0.2], ArrowBox[{{4., 2.}, {2., 1.}}, 0.2], ArrowBox[{{4., 2.}, {3., 1.}}, 0.2], ArrowBox[{{4., 2.}, {4., 1.}}, 0.2], ArrowBox[{{4., 2.}, {5., 1.}}, 0.2]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{0., 2.}, 0.2], InsetBox[ SubscriptBox["x", "1"], Offset[{2, 2}, {0.2, 2.2}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{-1., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ RowBox[{"a", "\[CenterDot]", "x"}], "-", SubscriptBox["b", "1"]}], ")"}], Offset[{0, -2}, {-1., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{0., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ RowBox[{"a", "\[CenterDot]", "x"}], "-", SubscriptBox["b", "2"]}], ")"}], Offset[{0, -2}, {0., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{1., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ RowBox[{"a", "\[CenterDot]", "x"}], "-", SubscriptBox["b", "3"]}], ")"}], Offset[{0, -2}, {1., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{2., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ RowBox[{"a", "\[CenterDot]", "x"}], "-", SubscriptBox["b", "4"]}], ")"}], Offset[{0, -2}, {2., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{3., 1.}, 0.2], InsetBox[ RowBox[{"\[Sigma]", "(", RowBox[{ RowBox[{"a", "\[CenterDot]", "x"}], "-", SubscriptBox["b", "5"]}], ")"}], Offset[{0, -2}, {3., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{4., 1.}, 0.2], InsetBox["\<\" \\!\\(\\*StyleBox[\\\" \ \\\",FontSize->16]\\)\\!\\(\\*StyleBox[\\\"\[Ellipsis]\\\",FontSize->16]\\)\"\ \>", Offset[{2, 0}, {4.2, 1.}], ImageScaled[{0, 0.5}], BaseStyle->"Graphics"]}, {DiskBox[{5., 1.}, 0.2], InsetBox["\<\"\[Sigma][\\!\\(\\*StyleBox[\\\"a\\\",FontWeight->\\\"\ Bold\\\"]\\) \ \[CenterDot]\\!\\(\\*StyleBox[\\\"x\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*\ StyleBox[\\\"-\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*SubscriptBox[StyleBox[\ \\\"b\\\",FontWeight->\\\"Plain\\\"], \\\"12\\\"]\\)]\"\>", Offset[{0, -2}, {5., 0.8}], ImageScaled[{0.5, 1}], BaseStyle->"Graphics"]}, {DiskBox[{1., 2.}, 0.2], InsetBox[ SubscriptBox["x", "2"], Offset[{2, 2}, {1.2, 2.2}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{2., 2.}, 0.2], InsetBox["\<\" \\!\\(\\*StyleBox[\\\" \ \\\",FontSize->16]\\)\\!\\(\\*StyleBox[\\\"\[Ellipsis]\\\",FontSize->16]\\)\"\ \>", Offset[{2, 0}, {2.2, 2.}], ImageScaled[{0, 0.5}], BaseStyle->"Graphics"]}, {DiskBox[{3., 2.}, 0.2], InsetBox[ SubscriptBox["x", "d"], Offset[{2, 2}, {3.2, 2.2}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{4., 2.}, 0.2], InsetBox["\<\"bias\"\>", Offset[{2, 2}, {4.2, 2.2}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{2., 0.}, 0.2], InsetBox["\<\" y = \[Sum] \\!\\(\\*SubscriptBox[StyleBox[\\\"w\\\ \",FontWeight->\\\"Plain\\\"], \\\"k\\\"]\\) \[Sigma][ \ \\!\\(\\*StyleBox[\\\"a\\\",FontWeight->\\\"Bold\\\"]\\)\[CenterDot]\\!\\(\\*\ StyleBox[\\\"x\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\" \ \\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\"-\\\",FontWeight->\\\"\ Bold\\\"]\\)\\!\\(\\*SubscriptBox[StyleBox[\\\"b\\\",FontWeight->\\\"Plain\\\"\ ], \\\"k\\\"]\\)]\"\>", Offset[{2, 0}, {2.2, 0.}], ImageScaled[{0, 0.5}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Large, PlotLabel->FormBox[ "\"Zero error network f: \ \\!\\(\\*SuperscriptBox[\\(\[DoubleStruckCapitalR]\\), \\(d\\)]\\)\ \[RightArrow] \[DoubleStruckCapitalR], \ f[\\!\\(\\*StyleBox[\\\"x\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\ \"]\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\"=\\\",FontWeight->\\\ \"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\"y\\\",FontWeight->\\\"Plain\\\"]\\)\"", TraditionalForm]]], "Output", CellChangeTimes->{ 3.814429541357901*^9, 3.814429713468581*^9, 3.814429927841771*^9, 3.8144302983854313`*^9, 3.814430334325585*^9, 3.814430411707643*^9, { 3.814430441753376*^9, 3.8144304533193617`*^9}, 3.814430555432692*^9, { 3.8144305999550247`*^9, 3.814430624922698*^9}, 3.814430694095346*^9, { 3.814431127458379*^9, 3.814431150913418*^9}, {3.8144313229048843`*^9, 3.8144313412555304`*^9}, 3.814431475501173*^9, 3.814431506322613*^9, { 3.81443159812706*^9, 3.8144316150005207`*^9}, {3.81443165911751*^9, 3.814431683926845*^9}, 3.8144317591638327`*^9, {3.8144318171291857`*^9, 3.8144318270426483`*^9}, 3.814432884724522*^9, 3.814432918424553*^9, 3.814432953289833*^9, {3.814433018563829*^9, 3.81443304680373*^9}, 3.81443308023836*^9, {3.814433118625557*^9, 3.814433124871929*^9}, 3.81443320518524*^9}, TextAlignment->Center, CellLabel-> "Out[229]=",ExpressionUUID->"cc6c348e-3b99-441e-888b-da50eafabdfb"] }, {2}]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["A finite, d-dimensional data set of size n, can be represented \ with a two layer ReLU network with only 2n + d parameters.", FontWeight->"Bold", FontSlant->"Plain"], StyleBox["\n\[FilledSmallSquare] Even more - this can be turned to a k-depth \ network with order of k/n parameters.", FontSlant->"Plain"] }], "Item", CellChangeTimes->CompressedData[" 1:eJwlzF1IU3EABfCbhgbZJnNBIMHccK6HrpqwhqTcv7CGa7MxKDJF/MCXzXBL cWLUyA966UEjMJBKzIKcoE4fFmgUyoQxYmmfEmkx0/WfzplcQsT6n7uHww8O h5PX2GpvTuM4TssC537MnlWvU/I2oOThl4tRPXS5ggaoUo+WQa5+WYDCxLuN xAYlVc7nSTgeaBbhw77bBzCtOyZoNyl5/UZO4Mk/615o/mTthon+9rEC5l1r vR/aI64IvBlcWYP/ppo2YaFQfgCrBqOcjsm19WRAPjRsgeH99zXwxU5OG8zr 8Xmgbd7tH/pNSVG6OA07YsuXnlJKVlsiVmjb1S5sMRf3Ui5deHw9yRQtcges EKmRj7N//aEJZn1cyMjdouT74pFMSfdlDfx5r0FyIJmvgyqvQfIzvXJ8jjly VS+Df+tmCqDzjlIHy0wzXX3blNwffXkLtpuyFYc7lDzjZSqoiBlt8Fit0g4H h/o9MODo7IQrRd5vXJKSPWP2GqwNfT1avMv2DkEGR2Sq0zCkrdZIvW/yHPQ/ eHIeTv56VAnN05kWyM+Wto7zcTJ2TeGCYQPngWdqSC+8IbclKp1xEiyPSA4s nRLhq6xouplZ3VJyAqrdKX1huwbqP6T8D+lCR54= "],ExpressionUUID->"d74a5e29-c913-4040-be58-4b1822313ee8"], Cell[TextData[{ StyleBox["Let c: ", FontSlant->"Plain"], Cell[BoxData[ FormBox[ RowBox[{" ", RowBox[{ SuperscriptBox["\[DoubleStruckCapitalR]", "d"], "\[LongRightArrow]", "\[DoubleStruckCapitalR]", " "}]}], TraditionalForm]],ExpressionUUID-> "be5ccb76-9788-4355-acc8-2cba42a5eb46"], ", be a two layer network, " }], "Item", CellChangeTimes->CompressedData[" 1:eJwlzF9IU2EABfCbhgrZNtYCQYKpOFfgzXyYw1LuF6zh3GwMDFMRNXzZFGdK k0JHmvTSg0agIJaoBamQTR8WOEmUCUNiKfZHRE3mn/XN5kwuEaJ95/Zw+MHh cNJqG211cRzHZbJA34/p7PRtSma9Kh5+uxXSQafTr4fq9JECyFUvC1B492k3 uktJieN1DI5760T4oqvtGMZ1hAXNHiUzH+UEXvy97YamL5YOGO1uGc1iPrZU e6At6AzC+/7VTXj6/t4evCoUHsOS3hCnZXLNnQmQDwya4eLfzxXwzcGFZpjW OeaC1rkmT/9PSnLixUn4ILxc/IpSslEftEDroWZ+n7lw9N+lGwPlMaZoltvh TZEa+Aj7150YYfLKfELqPiXrC2cSJZtuZ8CtpzWSPbFMLVS79ZJfaek5H3Po jk4G/1RNZUFHu0oLC4xTD7t+UfJs5O0j2GJUKE8OKBnmZWqoDBusMKlSZYO9 /d0u6LW3tsLVHPcaF6PkyKDYhJWB72evHbK9XZDBIZn6Egxo7mZI/dhELvQ8 f5kHJ3b6iqBpMtEM+en8xnE+QkbLlE64qOdc8HIFeQIb5NZokSNC/IVByZ6l FBF+SA7Fm5hVV8rOw+vuUgX8B6EpQKI= "],ExpressionUUID->"288e9ee9-170d-4be5-a008-a3a8664c6be3"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ StyleBox[ RowBox[{"c", "[", StyleBox["x", FontWeight->"Bold"], "]"}], FontSlant->"Plain"], StyleBox[" ", FontSlant->"Plain"], StyleBox["=", FontSlant->"Plain"], RowBox[{ UnderscriptBox["\[Sum]", "k"], SubscriptBox["w", "k"], RowBox[{"Ramp", "[", RowBox[{ StyleBox[ RowBox[{"a", "\[CenterDot]", "x"}], FontWeight->"Bold"], "-", SubscriptBox["b", "k"]}], "]"}]}]}], ","}]], "DisplayFormulaNumbered", CellChangeTimes->{ 3.814346826588695*^9, 3.814361676890769*^9, {3.814435535914554*^9, 3.814435566000812*^9}}, TextAlignment->Center,ExpressionUUID->"cc32b333-e8da-49fe-8279-f8dbbb99ad4e"], Cell[TextData[{ StyleBox[" where ", FontSlant->"Plain"], StyleBox["a ", FontWeight->"Bold", FontSlant->"Plain"], StyleBox["\[Element] ", FontSlant->"Plain"], Cell[BoxData[ FormBox[ SuperscriptBox["\[DoubleStruckCapitalR]", "d"], TraditionalForm]], ExpressionUUID->"ac0cb68c-f96a-492e-9936-5c172ccec2a0"], " (d components) ", StyleBox[", and w, b \[Element] ", FontSlant->"Plain"], Cell[BoxData[ FormBox[ SuperscriptBox["\[DoubleStruckCapitalR]", "n"], TraditionalForm]], ExpressionUUID->"9e50bed4-c483-462c-9b6b-e98c553d950c"], StyleBox[" (2n components, where n is the sample size of the dataset). So, \ there is a heavily factorized weight matrix that reduces the number of \ parameters to d\[LineSeparator]", FontSlant->"Plain"] }], "Item", CellChangeTimes->CompressedData[" 1:eJwlzGtIU3EABfCbhgbaJrYoimhOnDPqZg/mCJX9gzVcm81Bkg/KDCE2wy1X k6JGLulLH1wkBtKDtYpUzKbCiq2SZMKQWkovCbOaufWfzZlcJMS6Z344/OBw ODn1TYaGFIZhdvCB/m++XZIZSoa9IhZ+OhSWQ7M5oIBiibsEMnUTSqh88mY2 PktJuelBAvZ6Gzh4s+3SMkxpjSqlEUpevBISuPHPjB1qPuhaYbzd2p3Pe0VX 54GGkDkEzwYmp+G/p6cicLeydBmWd4YZGS/T7EiDbPCeFo79fVcDH85vaIY5 jh4b1L+2eLp+UVKYyg3A89GJw3cpJV8bQzqoX5COzPGOLq46Xny7OsHLaYVG eJCjKjbG/8tX1DDz/Uja1jlKpkbXpCe1HMmF36+dTOpM5Mmg2K5I+pEezfDz uirlArh0fDAfmi6LZLBEPXih7Tcl192PL0KrOit7ZZ6S+6xADLOjKj1cVysy wM6udhv0Glta4GSh/QuToGRRlTUNa4Of1+5Z4PdGpQC6BOJtMCityk32Pf17 oefGnSLY//NWGdQMpGsh6zvQ1MvGSPexbDMcUzA2WFBDrsIzQn28zBQjgdJQ Uuf4Zg4+ywynanirGvethxLLqvXDsi1waci3He50vsyDRY8yCuDpireVJt4K P1cNn7tdP6y8xftPRGCfY9PQOd6pjo4A/A/aU2h0 "],ExpressionUUID->"21631beb-f390-46b3-8a9a-689a582eed38"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Row", "[", RowBox[{"{", RowBox[{"\"\<\!\(\*SuperscriptBox[\(W\), \((1)\)]\) =\>\"", ",", RowBox[{ RowBox[{"ConstantArray", "[", RowBox[{"1", ",", " ", RowBox[{"{", RowBox[{"n", ",", "d"}], "}"}]}], "]"}], "//", "MatrixForm"}], ",", " ", "\"\<.\>\"", " ", ",", " ", RowBox[{ RowBox[{"DiagonalMatrix", "[", RowBox[{"Array", "[", RowBox[{ RowBox[{ SubscriptBox["a", RowBox[{"#", " "}]], "&"}], ",", RowBox[{"{", "d", "}"}]}], " ", "]"}], "]"}], "//", "MatrixForm"}], ",", "\"\<=\>\"", ",", RowBox[{ RowBox[{ RowBox[{"ConstantArray", "[", RowBox[{"1", ",", " ", RowBox[{"{", RowBox[{"n", ",", "d"}], "}"}]}], "]"}], ".", RowBox[{"DiagonalMatrix", "[", RowBox[{"Array", "[", RowBox[{ RowBox[{ SubscriptBox["a", RowBox[{"#", " "}]], "&"}], ",", RowBox[{"{", "d", "}"}]}], " ", "]"}], " ", "]"}]}], "//", "MatrixForm"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"d", ",", "2"}], "}"}], ",", "1", ",", "10", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"n", ",", "5"}], "}"}], ",", "1", ",", "20", ",", "1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8144348988043537`*^9, 3.814435154700122*^9}, { 3.814435198062998*^9, 3.814435327873186*^9}, {3.814435360709097*^9, 3.814435400810607*^9}, {3.814435453021717*^9, 3.814435458698824*^9}}, CellLabel-> "In[253]:=",ExpressionUUID->"0cf308d0-4643-49e1-9125-8ae215cf10b3"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`d$$ = 2, $CellContext`n$$ = 5, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ Hold[$CellContext`d$$], 2}, 1, 10, 1}, {{ Hold[$CellContext`n$$], 5}, 1, 20, 1}}, Typeset`size$$ = { 337., {56.7010498046875, 65.2989501953125}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`d$$ = 2, $CellContext`n$$ = 5}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Row[{"\!\(\*SuperscriptBox[\(W\), \((1)\)]\) =", MatrixForm[ ConstantArray[1, {$CellContext`n$$, $CellContext`d$$}]], ".", MatrixForm[ DiagonalMatrix[ Array[Subscript[$CellContext`a, #]& , {$CellContext`d$$}]]], "=", MatrixForm[ Dot[ ConstantArray[1, {$CellContext`n$$, $CellContext`d$$}], DiagonalMatrix[ Array[Subscript[$CellContext`a, #]& , {$CellContext`d$$}]]]]}], "Specifications" :> {{{$CellContext`d$$, 2}, 1, 10, 1}, {{$CellContext`n$$, 5}, 1, 20, 1}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{403., {134., 143.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.8144350219790382`*^9, 3.8144350313669453`*^9}, { 3.814435071362383*^9, 3.814435123466*^9}, {3.814435255079432*^9, 3.81443532893329*^9}, {3.814435401830961*^9, 3.8144354250855017`*^9}}, TextAlignment->Center, CellLabel-> "Out[253]=",ExpressionUUID->"c1b2ec6e-77ad-46c6-bd5b-a86ec9b4cdac"] }, {2}]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox[" Pick pairs ", FontSlant->"Plain"], Cell[BoxData[ FormBox[ SubscriptBox[ RowBox[{"{", RowBox[{"(", RowBox[{ FormBox[ StyleBox["z", FontWeight->"Bold"], TraditionalForm], ",", " ", "y"}], ")"}], "}"}], "j"], TraditionalForm]],ExpressionUUID->"ca1dbe45-577a-4926-acc7-e2577a2d7df8"], StyleBox[" of vectors ", FontSlant->"Plain"], StyleBox["z ", FontWeight->"Bold", FontSlant->"Plain"], StyleBox["\[Element] ", FontSlant->"Plain"], Cell[BoxData[ FormBox[ SuperscriptBox["\[DoubleStruckCapitalR]", "d"], TraditionalForm]], ExpressionUUID->"dc92ea9a-0b03-4fa8-b07c-582547ef1dde"], StyleBox[" and values ", FontSlant->"Plain"], Cell[BoxData[ FormBox[ RowBox[{"y", " ", "\[Element]", FormBox["\[DoubleStruckCapitalR]", TraditionalForm]}], TraditionalForm]],ExpressionUUID-> "ef2b5345-46ad-4172-96bd-b133a79e1c37"], StyleBox[" ", FontSlant->"Plain"], Cell[BoxData[ FormBox[ SubscriptBox[ RowBox[{"{", RowBox[{"(", RowBox[{ FormBox[ StyleBox["z", FontWeight->"Bold"], TraditionalForm], ",", " ", "y"}], ")"}], "}"}], "j"], TraditionalForm]],ExpressionUUID->"76af0179-9f4d-45e4-8bdf-d7bf1581a853"], StyleBox[" j\[Element] {1,\[Ellipsis]n}, so that all data points ", FontSlant->"Plain"], Cell[BoxData[ FormBox[ SubscriptBox[ StyleBox["z", FontWeight->"Bold"], "j"], TraditionalForm]],ExpressionUUID-> "053f756d-6cab-4ada-8d2f-d09e7b657f44"], StyleBox[" are distinct.", FontSlant->"Plain"] }], "Item", CellChangeTimes->CompressedData[" 1:eJwlzF9IU2EABfCbhgbaJmtBFNE2aVtQN0tYI1LuJ6zh2mwMikwTM3zZFDeV JkWNNOnFB41AQbQwC5pCNn1YMEVRJgyJqfRPoiymbn2zOZNLhFjfuT4cfnA4 HHVNg6M2g+M4HQsc/x46pVmhZCqo5OGnizEDdLvDRqjSDBZBrnpRgMLrd2up NUrKXC/ScDhYK8In7fe2YUZrQtDGKZmYlBN48PeKD1o+2FphqrPZr2M+sFUH oCPqjsLG8NIy/PfmVhyeFoq3YVl3jNMzuaa2LMhHnlnh3N/5Cvhy40ATVLcN eaF92hPo/UlJQaY4Cm8nFi89pZR8q4vaoH1TO7POnN3adeFC3/U0U7TKnbBE pCY+yf4NO2aY+34m68g6JV9n92RLei7nwx+Pbkp2pY/rocpnlPxIr+SMMweu GmTwT9WYDrruK/WwyDx2p/0XJR2Dr+7CZnOeYmeDkue8TAUVCZMd7qtUOmB3 b6cXBp0tLXCpwPeFS1OyZcpbhpWRz3vPbLK9U5DBAZnqKIxoy/OlfmjkLAw8 7j8HR1Z7SqFlNNsK+dD5hmE+SfzXFG44Z+S88EQFeQjr5fZUqStJwsVRya6F QyJ8mxvLtDDL6wr3Q41n15op/WHY6I+rofPGsZMwNNEn+R+bxE7X "],ExpressionUUID->"53a3e5b9-267f-4d84-a5cd-4e2cce878d4a"], Cell[TextData[{ "Then, It is possible to find a vector ", StyleBox["a", FontWeight->"Bold"], "\[Element] ", Cell[BoxData[ FormBox[ SuperscriptBox["\[DoubleStruckCapitalR]", "d"], TraditionalForm]], ExpressionUUID->"4544d28e-fff6-4d14-b83b-f3c0676373b2"], ", so that the n dot products ", StyleBox["a \[CenterDot] ", FontWeight->"Bold"], Cell[BoxData[ FormBox[ SubscriptBox[ StyleBox["z", FontWeight->"Bold"], "j"], TraditionalForm]],ExpressionUUID-> "087ceb2f-db35-4104-9742-71b45a2000d7"], " \[Congruent] ", Cell[BoxData[ FormBox[ SubscriptBox["x", "j"], TraditionalForm]],ExpressionUUID-> "9096f6d6-d44b-438d-b994-690fa1147384"], " are all distinct" }], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, { 3.750228610184701*^9, 3.7502286246362343`*^9}, {3.750228924518993*^9, 3.750228931763027*^9}, {3.7502338279747133`*^9, 3.750233856508539*^9}, { 3.750856742805952*^9, 3.7508568180129433`*^9}, {3.750856937001786*^9, 3.750857034363675*^9}, {3.7508570661190042`*^9, 3.750857122232614*^9}, { 3.750857817303485*^9, 3.750857871453895*^9}, {3.750858038569516*^9, 3.7508580762465763`*^9}, {3.750858193949918*^9, 3.750858243967038*^9}, { 3.7508583669782867`*^9, 3.75085842025338*^9}, {3.7508585619363947`*^9, 3.75085860996979*^9}, {3.750858655636492*^9, 3.750858675164996*^9}, { 3.750858814002637*^9, 3.7508588325043297`*^9}, {3.750866737659479*^9, 3.750866785098538*^9}, {3.7508670833423033`*^9, 3.750867096728755*^9}, { 3.750867307509996*^9, 3.750867335034234*^9}, {3.7508678055864964`*^9, 3.750867810649123*^9}, {3.750867946514206*^9, 3.750867963974557*^9}, { 3.7508693662471*^9, 3.750869455234705*^9}, {3.750869500146221*^9, 3.750869505688225*^9}, {3.750870782936352*^9, 3.750870787894453*^9}, { 3.75088377846812*^9, 3.750883796833519*^9}, {3.782574065471533*^9, 3.78257408772221*^9}, 3.782574146744403*^9, 3.81434712252489*^9},ExpressionUUID->"d12f3e54-8c01-40e8-a188-\ 25c4a4934e3d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[DoubleStruckCapitalD]", " ", "=", RowBox[{"RandomVariate", "[", " ", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}], ",", RowBox[{"{", RowBox[{"100", ",", "2"}], "}"}]}], "]"}]}], ";", " ", RowBox[{"ListPlot", "[", "\[NonBreakingSpace]", RowBox[{"\[DoubleStruckCapitalD]", ",", " ", RowBox[{"PlotLabel", "\[Rule]", "\"\<100 random 2d points\>\""}], ",", RowBox[{"ImageSize", "\[Rule]", "250"}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.750880771486973*^9, 3.750880829397797*^9}, { 3.7508816856400423`*^9, 3.750881729236619*^9}, {3.7508835052375193`*^9, 3.750883506090476*^9}, {3.750908360807974*^9, 3.750908361381097*^9}, 3.782567511461315*^9, {3.782567544700192*^9, 3.782567575967238*^9}, { 3.782573006984075*^9, 3.78257301048289*^9}, {3.782573107742787*^9, 3.782573107857785*^9}, {3.782573171920431*^9, 3.782573172232338*^9}, { 3.782573220364871*^9, 3.782573224993781*^9}, {3.782574181276951*^9, 3.782574182015081*^9}}, CellLabel-> "In[391]:=",ExpressionUUID->"535750a3-f9cb-42be-90dd-b8e4cfacb58a"], Cell[BoxData[ GraphicsBox[{{}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJwVxX08EwgfAPBQk3R6nqvm/b3LddyU1z315EeXl1K5KCKLlIVLdFpel1Sc x0tnalG5q9P0otPpyFjxW27XCxbhvG7MW7flbcOaedme5/nj+/laRsT5R2qu WLHi5P/8f7tgClPvnhZXN8+o1u+uAg32HluvEzwIRU/YOaK8WbxRcitsk0yB ZhRhyVlPETaoYvS9c5Rg5RGZW8DowOrJWobf6Af4jfzD8R1xizCb/7PNn4GD WJFWdlu/Zw4v5prkXQr/BKoWTSY9fQ7SfMwCMlOVqNkUTHnXO4s1vTEhhavU kHtAkh80yke147UlQc4MNpWr9OKdFOAWWfJSmDaLIYoikmoPB7jlJcTRK6/x At/H+2xfE5oezBp6qjcIThqML6l570FZV+Q8J5kEI7fW4uf+Tcif+HA05YUI +ImlB6KvLSLzcShjA3UK+DrkvEmWDKP3Hzkhix2CUp0Kmw2HhbgqdoQ0QGzC eQdTcyp7Hnfq8oZy1y6h5WM+a3/dAujaRUdEus+A7T2aPWVCgE4EE3+xsQie svW7zHijuFrzM1G8pB1IWe3FjktTqLrtsDJfMo5hCX/RsrKW4LVbUpKS/An8 NAw/Ht8swfV1pOKAkxpcqxeu9ZOH3kJUvrxMmbiSu9fHKZynIUIt6bdeXbte 4XG6Pouj7ARGdem8Qf0feF2r6/1gpRSPcouiwmKGYKj2lq/q/N94mjVuQFwS wJpDskNn4oZB8QAMe6PEwJY9HSi8KsPK1fbPqqzGQPAXYQc9cwAb44h5Zsmf 4LnFOllu8UukROV68oPksK+CcWxacxANuUaxCu9RjN+6fyk+YBROH1DjSO0s 7LMuoIho41BAri6toQqA/VI7NHXzfbg0nrJeQmyD+a9dSL+zlFDzbcKFPwkD WPUg2eTnkBb85+rWeMaaDnD0DBZChBjadxhnuS4Ow2VXMwuHQwIk2IRlPwwZ BJsOlvrBZil8o5GU3uA4h9b8z8l298UwI6j/fg+vA02TUy4z7QbwYmwGuW5d G6qyi69M0viol8YlRPuPgaVtwvplVxnKTMTWDTIZHNzpH7TFNBoT6od9PTcq IeqCL+PtsAiMbJWeNQa10Odc3veqcAZZ7rQiVp4KKAYq3SIHIaq5P84md8/h i13l7yoshmGrA+3hrmd9aLo1aKJf2o+CR9mJ4dpjKAx0+2H/kWH4wsP9ulwh x/YHNYJQ+0Hs0aZHXOoSY/Ux2yHrwlHwUGU27LFsgQLSzV/MZQNw9Li2QfJM P8zOFBAZj6Ro+iT86KhzJTT+lvpQL3EGy+h3ztBzlqGsXHPflepusAuK2PvT zRSsclkzpHRmg7DNY5O1L0LUGU1mWmEfdCc30bdzJ2B7p2ZlI0uMazON6aJZ PtR/XzW+YN6Cu7Xn8yOdpeBaymEzP9SDDofpKWmW4jkz1R1ipBpy4hgndt6S giL1x1pjiz/Qs/ND6brrMjhtWunLsRjCk/12mT5FQnCo2x1N1dPiEmr9IfMf /fjNqsYKo1kpHvFrTNis7sHBG4G+rpI6fGTjJeMktuPnYcxm1XwHSLPimitT 5JjhVCgOCXwPU6GSeLVxHRgeppyysupEylcDl/rlY5Daus3309V7mC335nfe qsfwhIDpnp1PwCsp0SzfZATdsqZX3QiYxmbRVHeVewZQFyoJ9yPPgaNHy2o/ /yUkWxY3MFuXUZAUkfQwQgU6VHLnREo/PuMs0D/SppAny9/4a3ofBpCTu/2k I5AOH7+jmi1hn9eJ1oscHjR5XI/hBcuhYS+B8Ny3G9zzyi10R8Zw6XXsf2oI I/CWpuD1uvXgVb1r8znLZehAPXXh7O0OIF08saDl3oJl7x6PvjgnggzdRa8t n82jz8dc7dBTnZBOTHS4W/IGS3Q2Xna52QHt5bpnSco59D5fwDZyewzaz9rM 9baJYTlZ12VTIgc3VJhZk/oV8OUX2+/rH5RjxVhv6/kiBRxk8+7+y74NM15v 8TZh83ATtVlXbd+I/dPelUHlQuhuRgFpegyZe5pizyu70HOlwIJ1RYKExZiF xd2NUK9TRaR5vUOvToV6W9wknKr+VUyZacK1v3uYZ/LHIEAcr9e35Q28crFl uvOlcKfvauC/GTVouO3wikeogNLo7NQ3mS3wX0RCWu8= "]]}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6]}, {}}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->250, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotLabel->FormBox["\"100 random 2d points\"", TraditionalForm], PlotRange->{{-2.5585816350518833`, 1.9388602764062006`}, {-2.3820312713716243`, 1.962179779979036}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.782567526778351*^9, {3.78256756711166*^9, 3.782567579297984*^9}, 3.782573014140794*^9, 3.782573110460785*^9, 3.782573173671928*^9, 3.7825732335870647`*^9, 3.782574183324301*^9, {3.7825742241435747`*^9, 3.782574227108781*^9}, 3.7825778786227837`*^9, {3.782579258936702*^9, 3.782579276150687*^9}, {3.782651828733186*^9, 3.782651838920652*^9}, 3.7929107937548532`*^9, 3.814347422983243*^9, 3.814436476408787*^9, 3.814496570168171*^9}, TextAlignment->Center, CellLabel-> "Out[391]=",ExpressionUUID->"a2a77a80-93fb-4cd8-aa50-b6cbe52d12dc"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Construct:", FontSlant->"Plain"]], "Subsection", CellChangeTimes->{{3.744002663399671*^9, 3.744002696764913*^9}, { 3.744002902088481*^9, 3.744002905941862*^9}, 3.744010525517058*^9, 3.745480091273404*^9, {3.745588739210264*^9, 3.745588741285788*^9}, { 3.745590699642372*^9, 3.745590703264373*^9}, {3.746291860142119*^9, 3.746291861190962*^9}, {3.746292028069665*^9, 3.746292054923457*^9}, { 3.746546106955564*^9, 3.746546110999503*^9}, {3.7468490368241587`*^9, 3.746849041420682*^9}, {3.747411897438089*^9, 3.747411901496002*^9}, { 3.747412461272674*^9, 3.747412490036854*^9}, {3.747584004609747*^9, 3.747584006696958*^9}, {3.747709115881094*^9, 3.7477091475197687`*^9}, { 3.747710619791629*^9, 3.747710627094282*^9}, 3.7477106575929003`*^9, 3.747710697743372*^9, {3.7484873581016483`*^9, 3.748487365674474*^9}, { 3.748505877235465*^9, 3.748505906480434*^9}, {3.748506002231324*^9, 3.7485060104975977`*^9}, {3.7485407111189327`*^9, 3.7485407208364697`*^9}, {3.748540943386221*^9, 3.748540957347314*^9}, { 3.748543294073736*^9, 3.748543300651854*^9}, {3.74958599168602*^9, 3.749585992538477*^9}, 3.749586033525942*^9, {3.749615078009986*^9, 3.7496150786951323`*^9}, {3.7496954807027082`*^9, 3.749695481608212*^9}, { 3.749696350605179*^9, 3.7496963659731903`*^9}, {3.749748113795589*^9, 3.749748114698409*^9}, {3.750228840936438*^9, 3.750228849455237*^9}, { 3.750228908648554*^9, 3.750228913013723*^9}, {3.7502336291765842`*^9, 3.7502336321601477`*^9}, {3.750325106050521*^9, 3.750325167097307*^9}, { 3.750856673894622*^9, 3.750856701314238*^9}, 3.7508567373576317`*^9, { 3.782576474653338*^9, 3.782576479615649*^9}, {3.814347387147707*^9, 3.814347391315721*^9}},ExpressionUUID->"32fdfd0d-998b-4c17-9281-\ 94cd164128f2"], Cell["\<\ Let us make it a regression task, by \[OpenCurlyDoubleQuote]classifying\ \[CloseCurlyDoubleQuote] all points with a parabola and follow the steps \ described before.\ \>", "Item", CellChangeTimes->CompressedData[" 1:eJwlzFtIU3EAx/GTlUrFNJ0kyWi6mlptrtCl0uY51Vp4mVOqBxtixV42yakj xdKRZgYFakmGUoqaUNrFSyGSYWQKEmZKaqPynlvH2+Y4hIj1/62HH5+XH9/g S1mpeg+KoiLJYM/0W0nIPMu87+JL4cTpOTk0mfqjoTCkSQGpjFEa0i+HFlYW WEZjfOKArV16DlaVFm5Aj2I7LbaxzLteHwYGrM1bYPxYUjFcqTA/CyXeSMpo h6nDpmGY02+dgn/bLttgBK3cgJrqOSqMSOWWeELpYH0i/LT+5QJsXvXPhcEl LXlQ+yG7vfY3y8i2ch3wqn00oY5lmcnM4SSodYr7logDrv+OHH+U5iByiT4G eIJjVdJF0pdvquGur32eQUss83Ngi5fb7GQRnCm76LbScSAMCi3RbsfZczt7 iA3n5Tz4J70zFBqL+GFQoe4sKF1mmbtNT69Bs9rXb3OVZRqlPCH0s6u00FvH T4XVtRV5sMuQnw+tMst3ysEyLpXvFNQNftt2xEn+BpoHG3hCAYxtTAiHM0Mn JfB+tjoSit+E34HJt5YrYUHMSDN0zZa1wG69shuuO4p6oVAz+Rm+Cro9Bp2c wgZLveOW4f501xpsVus5WBPQ63WUmC/y3QHNe6N+RRFjQkWLUOwy7JYTuZQ9 /nA2xSSBOYHTMljV126Ejz+ezYQZZm0hvBdhsUClbUB6jNhZvBADJ57fjIOr 2+U0fMj9mIS6uutTcHxdE60kylprYuHBBKvghXSRcVC5Iqg6bD8FsyoUZ+CD +tcaaHWWp8GNwHhJG5Gjy92mHRIIOogdV+r3wX8wV8Wi "],ExpressionUUID->"e997aae9-49a0-428c-ac9a-f977cc55e811"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[DoubleStruckCapitalD]", " ", "=", " ", RowBox[{"Sort", "[", RowBox[{"\[DoubleStruckCapitalD]", ",", RowBox[{ RowBox[{ RowBox[{"#1", "[", RowBox[{"[", "1", "]"}], "]"}], "<", RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}]}], "&"}]}], "]"}]}], ";", RowBox[{"y", "=", " ", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], "2"], "+", " ", SuperscriptBox[ RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}], "2"]}], " ", "&"}], " ", "/@", " ", "\[DoubleStruckCapitalD]"}]}], ";", RowBox[{"data", " ", "=", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{"\[DoubleStruckCapitalD]", ",", "y"}], "}"}], "]"}]}], ";", RowBox[{"plot", " ", "=", RowBox[{"ListPlot3D", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"#", "[", RowBox[{"[", RowBox[{"1", ",", "1"}], "]"}], "]"}], ",", RowBox[{"#", "[", RowBox[{"[", RowBox[{"1", ",", "2"}], "]"}], "]"}], " ", ",", RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}]}], "}"}], " ", "&"}], " ", "/@", " ", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{"\[DoubleStruckCapitalD]", ",", "y"}], "}"}], "]"}]}], ",", " ", RowBox[{"Mesh", "\[Rule]", "All"}], ",", " ", RowBox[{ "PlotLabel", "\[Rule]", "\"\\""}], ",", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.750884883483308*^9, 3.75088488884081*^9}, { 3.750908377671294*^9, 3.7509083784663486`*^9}, {3.7818365481390743`*^9, 3.7818365603186407`*^9}, {3.782570719212743*^9, 3.782570794281671*^9}, { 3.7825803698324423`*^9, 3.782580395399166*^9}, {3.782651852131359*^9, 3.78265185289275*^9}, {3.792910764812191*^9, 3.792910765763413*^9}, { 3.792910825392027*^9, 3.792910830030319*^9}}, CellLabel-> "In[392]:=",ExpressionUUID->"eb5f7f67-f78e-4dc7-ab6d-59fceba842dc"], Cell[BoxData[ Graphics3DBox[{GraphicsComplex3DBox[CompressedData[" 1:eJwN0fkjlHkcAGBGZmLa0a5yn1G2zVII28rnZUNIrSsdbjk3R1m5chXKGWqW StpEh1JTjnHEd9JsChNhnYNxTI2QGUzjGGP3h+cveDR9w538cWJiYmf+J/G/ oBx++Ur0JprdYSNvujgLGVNbjz7VV8Z0T3qQSfclaMRspbpjfwuQzc2S21bB GphsvV6R8xlx2o5XJk1zLu/B8fmbydcyspihRcfmY05CZKpZ1EzuXEfSOHfJ vX8oYQeJ9PGsLUKk+YRR5lC/CsHiJy6URcpjFw+rOafFryBc20mPD4OLyKR8 1vmBw1Yshbhmvfu7ZXT4SxbBPbAXiCJ/35lJHPZX8S0vbZ4AqXmMFJ+zYqHO +bwMWJPAdlpgN/gCPup+WMt01x9DrxWDHY3WxDBueng7JY6PUowKOKeOfwTz UqaiE04E3RXEc3orS8jmQh5VyfwJEIzORdZkrMEG7dpibP8SemVZ8aFSYwL4 V7i3zLTFsN/EY5KaDZeQFuMHU90HHFDWaFH6KVkcM/cvfj1ycRGdEhTqiWwb wOmyCz/3swA2DK8LmZkLqK1CRIowEoDQ19/EroCISTWQrabbuehPNdFdOf8N +Erx4BA7ZbGahtWEL1FfEZ2Xs/1p0hBiNZyhXj/IA9Ftg0050zPIK/LfqPR0 IQR72cZ0X5bBBggJvpf6OKjac8+4VsEU/HTTfdIF4wLz8dVobwIbjRw3v+Jw YgLcbVIN11w5oEhTChXYTKGIvQ7CCOcpCJsf4ja9mQbrmGi1HJVJZJ4+L/mX 8zzyGyEQAqX5sJhTovPP8TFUebH8tvzAEtrJdHzSsi6C2t8jE//Bj6Kqh7Eq Jac6kEpm05UjBz4Cvs4J0rYOo98kWyqVFrloQ8vNUuPjEuw1iHpkWTOEVPe6 zQ5zh5GJiyCDeKIfThxridy1MYDG/jpubzJdj55cH25076MD2bYt9MJKH7La xNQoS51GI7ySnd/FcmCB2XTelt6DVGPjLpN1R9FQ1dWBLpdeeKxjzWuI7kY/ eJHbRcs9EGIo7/hSvRWSQ1NM62W6kOhqUepcFAOpJdZEHHjeBHrJfqsSWAcq //Bk6tWfLCgPovuPSveCZOik3qhcG1o2UFUPoC6j2sjUn23PSmBJctEGfxe/ Q8VS2y8b3+wBqbh4gt0rGtAqiuWmUltRIuOwzbmhNiQnVZ24zqkCCe7v1n2W b5FPgnxZw0ov+FRcok2UvIaU1t02KlQ60g5oJ27ot6B/vCdJlugh5FeXLis0 vUE3JPo+jlG4iMi4d6itjQdX+TaM3ltNyDvSeX7g4DOY1VYydj2UD7mk68uZ 6+XIICAw8dztHgg7e5GynFQHum6+dnduxqEqY+nxlf1U+P7kMCLNJkM762t/ FZYCAasU/AP/PyFg3ZdQqaQIqs+8T0/tp0DL8/hHpOgFtG4Z4vfGiw9Ke1as ahXqYGh/xdDbggW0mV2/p6OKD1/dpyM2lOtB0dUjcMeOXtQ7MfBOsaMRRros tLXsEQSF4cgXC4ZAlyLt4LDaCvi1kNW1Qy3QJFUlF2X9AfmoRIRFZlTBkLVf Z3IDHdosboTQT/KBmWRzAD8tBAtRWrOtZgfk6d28p84bhe7FnGuftnTDljTl BNYiA5rOV82sqncghzRnO4p3A1yaiZOdluuC5Z+N9V6WrcCWGfkH20mS2Gbc d6yI6W7QS+8uMhR+RWHjc4ur/lz4fnNnRL50DxhanRwBXw70xeQkvwhmQ7Md Ht9o3w9YdoUGcZKNdGi70yr3T8JpH4JC7MIwLC7kyeU/5qIjGYnhBoFLkGda XVobwATqa4J7/K4HQEihPPU4/x7Ols0oyAmZIO3CcwkLnwDhLwGHlfTH4cyw btrhwhEwqD8UHECSoHHPiLR/zJHHhudtKG4VI9Dfjph682x0nipdtcZhg6pj +vgL0hgYief/GJD9EZzo7gKpiR5QsPOUlTo5BoXPqJms7EWE7sCgSsMa4HW8 rj46NQY6PWUbD3dxwbNT8/cW7SUwwqs4cZRZ8IIq36dGn0LbzEz0BslsYMx+ Oh33igWM6NKjwdfX0N3eP6aKF6Ww07TCIK+QcRivu2UvuvAZDYQ7i+k//wLB Dif8eKHjUCpVqbPNdQTh6eOTMiYs6P5VOd1kbQIum6hpGLgw0bu3+755XRkH YWtoRi1+Et5HCeiD5gPIInHVz7VzDJxNY/uPcSchCb78EaAmRIGcpvWQLiJG 2axfU7WDDcx/8b8mpI0ig1ObQjrN2EC6SMMHO7FBc0+k7LoJD0X4KSKz0v+f X1qopzHY4MyJIA3tfgf4KxzZyvUx8Php9NIwnw3xnfvsv+XeR+IvdYqlzUah eq4u/9jUJ3huesXn1/A1KNxJDbO9Q8QINV3qpH0cWI8lGmtHNyBxXs2r0HsT IHgIioNBHKDyXowW5PLQNe+P2gevC6E/ti3hAG0WDvTiKC1lHER671j/LPAb WPcKNvaFz0Fg9VOOx0IbEn4otFFNnIWV+sL9S9NzoGTeWdTo1IZMxwqTf3ac A/IT9/xtAV+BIWWaPVfGQ2duVcTXL4hhhwjLOf77uWBS2kAlf2oCKun73Z73 uZAZnu938BYXBPHX6pQ13qD0atazRjIP3hrvIWMMLtwdyj1ull+LeCq5zSV0 Hlj1fiqVucGDs6oU+waNceQhrr41nC0AngpHq5nHA8eDTm67VYNRuwLXC6ex BETdYF9/bAH23I/S95hlIu8U1+kouWU4e3QDTdYtwhGtPA9W1Aw0m9z7Mk7E YR5BWVYMNz4cqcz3nMeNoRLdE65SqmJYq3lMzIrpNzgmrvjFZ9c0Kkr5zfSt 1yYsOUsl+5L3NxB14MgJSUtgckciXr91C9YSLpetFvsNGjVkeFlFrxEjo8R8 6+gGVLIHOy8UCsCRSv/7F/0u9AFbrEj6LI4p7nMVe4wEUBp8Nf5dWgeQfaTk KJI4bFulmpbesAB+3HnggbwjH2H3jVV0hTJYZNOEvdX2FQhKtM9/P8GCuqNR d3MnJbFmUYi8TeYK7LDwz8rL70FFXkAd1pTEyhPuhiVkrkN5Be5IanU/pDZa mjl5bsGYMb4xj3xFIBVg2jsbN4z25jdl0pxJWBkWVViWLQIPBRGx0GAEeXom D3v2krDawZBTBZIbkHV0OsdtioE+93RGJ1wiYf8BovjUaw== "], { {RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[GrayLevel[0.2]], Specularity[ GrayLevel[1], 3], StyleBox[GraphicsGroup3DBox[Polygon3DBox[CompressedData[" 1:eJwVw2fbqQAAANDXyojIyMgoVPZIkhWRZITsJDK+v//v/rp773meg79/92/r z8/Pn39t/zssVsAyoVk7YPUHHD6n1+KygTYX7EaQeNLr9NijgMcJgk4b6HK7 LEDIC/lsTrcLCLYCHhDyQF6fw+aGwUYr6Hf4wpFQyOcFEHcMhfyhCATC4RAU 9EcgNGzHo1g4nYARvy+EROMxCI4iQCaRiuLk9/2h0iiciCHJRCqXSSWSbJIk k3E0HY5l0DAWiZLxHJGpYYVsPk3kqgSFZmKJYoEiy0wjguWxdAHLU9k0m0pW mHIuVcVqzRJFVPBxPlsok3iJqJdorlSkAv4gXinTpXqxVmBYssrSRLVe4oqF LMVWU8FIYxloVel6s41xtWKzNmg3sA5TwXtjtj8adios02/zDXY0aXbb3eag M5zz7a586QpMB7f3ugO5L4wEaTSsjPuM0OBbC3E1kib0RJyKkwUnaruH0JnP 1sPpRBI5eiFzG1Faz3ayeunNxvO1Ig84SZyOZ8PVZqsuVoowzxBoi18+VWPW e6znQ0k5KpJw2O65QW2hyoZ6Uta7zfG8Pe+3m/OF724Pq52mHPanx26mrg76 +Xo4qdJxw19ue/20P+vX89E0dO3x0e/m9ahdNfO25O/6Vdys7lfzabyeF/Vt fo6K9jG11+1pfo3n7fI138ZJ/76Mvy9rcBQ= "]]], Lighting->{{"Ambient", RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, { "Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{0, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, VertexNormals->CompressedData[" 1:eJwNlfk7FAgYgNlEqU2yIqWQtnKVIxH5ZFdKqZQkq9yaFqt1dcmRJGyOch9l 0eHIKnYd4YtRjmiGYYxhmDGMOcyUZcgK64f3L3jf53nVPQLOen8nISHhtcKq FYxY16meyyII2uF4Pk6qBVT8GL5TFW2gcsn7YrWyAOw9N8os+I6AvtjMNNK4 A4zux0bRekXwoG0q/ZMMES+35izmRHWCdMR1fGDIBC0lnZDiBj5oq0ZK3Lf6 CBoQO0R04YNh+MHyWDkWfrpT5bhc1Aa3/PwtXlzlwpcrpPDtc6NwSiHELPIB GcJGxMlqg0I4Wjr3wsK3Ey893ijyV+sBgz+QMFAnBML5arMnUmRoy1o9aBzQ DV4etIFWMR/0R1quVIzQ4fTpRHZjZh+Uxcnneu0XguQXKf/bXe0oHyFs9KdS 4TK55tMfO0VAzE6uvP31JSw9tZUl2vTBmdJVBkWZAijbG03a3kxFSfqB7RS5 fgg2HVfTOc6H8rz9cxakEQzsp4dqcLrBMhejQGoSgmZzbe4VNqH90fp//ylk gHnchs+73UaB9ov1IUI4F7frhaWNp/eA3LvVbwpfUWCtRtAz53ohZpF3dUyZ dMBasXsQuPLBmmi95+GffZCnohlWvZkBm+KpNe1PKKDfyLWS2CREJf2ZXWH7 eiBYKtCm2nICHu0ZrQqOZuHOss/fah7TodZf7YgynwOBcjbm5n/RMSE1on2J x4KMvIccZuwQtPvkfyjT42Fxq8DFzm4QImZr88u02ZBvdZdY4sWB2FKPu4sc Gvxnw9TJfkuDZz8WK5t1CaBFV5WvSqbA5FrlQnPXCaidcWpkb/0EY4vJGodj xsCT8SF4oqYXQoJM5aQcBPAqP+Wu/EY6HFaCWxkto1CNiuXtTSwoGDqy24Y1 CjnVqhl3T47DoFfCa6+r99DC4VK6LWsCjBX0ynQIFGjsasg8fZYHtM2rrUMX mUCtfdimRu0CD4FfwvbFcaiR3eC7IMWBrx9/zGl7wASvfST1Ak06GhoV/TSv wIWiTUpWTRYM4OrWj1V/PwDRbVsvKyXxwKVuT/n5c51Qeur4z6PfJvBCsnL6 kpgNFQpBIXPserh6T4K24LfSdWzWgYnQFV+BUlffJ1LA9sXM2dsH6eik9M3d NUoAs7clwo7ld8Jg0MnbW6jD0Kk787JimwD+VmXLZg6Q4cmtngC26SiOLYde yuZz4SSBe9N91ScoI/qd7E0igZmgzlhPSQSxfoaCxcs1AIab3ZKdJgFYyldM 5BlQKTGxruAlBfTsi5fk7Fqwomw6SyQtAp7Z/oQk1RrYYR53gd47gkKvKNHw Sq8k0nqPTrkW/G08JzbKtBtDp9VISQQRRH/WNX9e2Iyu2a8mSCMl0B/v/eGn vM9QJdTuonql4I0Ct22zhkJ4dlWyXH0XHWyaTr5VIzehR9H7ixK3hNCXLFaJ +akf2KpzRj3n/sET6iGqzlGjIKk/Zb44w4Nlp5iYx5JkNHZ+dEy9lomux453 yCvyIdjI2jixn4iZhB8se3L74M/1ofI3/xbCBu04vYx1FXB9fKb1tq8Q2152 MFYN0iCP9owQV9ONB9QaDfbs4WDw2y1WG8+OQ27ktsFJYGBdlWY5J4wGVh96 Ct695sEvVeGlIYE1mFFZlM5uFqGCdLtTbjwZVodZRtX7d2FRhV2q6kEB6BJy k51shmGRZEFLM2/DVd7zh6GAjxLr69t6SpmwptBOfbaXhMKaLIeXqlzovCOj 63eDDXfjD4w4X6RiDFXlocUqAfwsX/mqZQ0dJkyYLj4Zo0gNy5Gbb6rEwQU9 lWQhD8Kf2iQ5SbHRf0zTRDaOjZ2tE7qWTUyIKthioH/tHcaXpzlYzolgY0/8 Wu/WjwDly0IX2yF0KdkrLiZOQMJS4g2bLUzYRrkTTjgzipt8iu+T99Kxg9s5 9TtyIEOUye06QsVE0zyVnWsm4YVUeOwzzz7gqxfrz1swsGTt7tYf+nn4JZWQ IRruhxTWUu1zAgsr19tFjOWMwRMtZXn+ARbMf8T3c4mtyNyUf5anKQKz0bSL RHE3tFCkI4L7meh+4sLFpAkONLyRvXrBjQE/Rni4b9gwil53odJliAV/1ykM Dl9ng2hr2eFXp8Yx7wTP9Dx9BHxicnuhnQWRLaf0lYo46Kqd+U3Wkgpb6o73 aVSw4Wa13+N304P4ZvOOmtUpAmh3HtC6l0YGLXGt75c0Dood1R0WDJgQ9zZy +kj1CJSTFZ++UmKidmDzMXIDF7I3tEvR62jgKRloG7mGh2/anbf6XqOgWEf+ g8EVFhxkPLKM/Z2HvSnz5+Kbi0HM38H6/gIbmj1pdAeXXuwxsZQRqAkxb+Ea Q0ZMhu18haNsKQH6/KfoNOb2Ftb9Utk12cmEO/VpvVXPmXjeLzP9sSYPSJvD v/Mm9MFM3fXgtp5xlBm5FXmplQ3ZX09cm149AELB0tERfz4GQsjmmMMUcDb2 2Rd9fxj0qhx/dZwSYKbi0dqvH1sgysDTmXqFARsD3vVN7RvDql8lnod2cyAv K6DZ6zEFpJW9njVvncSS7xhZOddb0WNh0eg5DIFYj3lKmjWJZ/6lKjuQiBDf 2BVkUTcAQS/bbDruTKL1fJJWPLcEqn33/ntwaghuBpuG2EvwsSuZOGeSOggd WwcHXHYMANrHbrK6L8RdH/307lUFwH+VQ06/ltOAIpi13/9FgNwngmz2hR44 dOiN2ajFAPRFBi++cOQi43WSt5sCC/O8ynedK+0HDaMjUerxk3g6pfVO4iMK XB5eKFo+t/LNyvXxGeF8LMi6gt88huFhM92xaAsFZKXt5Vc+he6pgX91qoyh olK/J6e9G6ZsfVuPDAlR5lF0p9psHSx/y163tNwH04TDd953CDEh++j3NYof wOrs3tIf0nvB1nBALk5dhJI3FcyUlOtR53Slu4ZbL+x08KdW1I5jadnlM8Za HNAJvKH6TpsE2+SGfN4emsTUAk+bi1b9qOGsQFzUooC1nJPE3DYRkvenuj7d 3QrZeSnSrBM9cHOsgTAkK8KEZL9dX//pxPbCR0LTWjIU5jdENxuLsN9Ez6iS 0AHH5UdeBwWQYbfJDQbbToic1N/iquYpEFPGmuHvI4MmbZrIeS/C5HHdyeaS SmgI4+YErvzgf06YAzI= "]], {}, {}}, Axes->True, AxesLabel->{None, None, None}, BoxRatios->{1, 1, 0.4}, DisplayFunction->Identity, FaceGridsStyle->Automatic, ImageSize->600, Method->{"DefaultBoundaryStyle" -> Directive[ GrayLevel[0.3]], "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" -> "Globe"}, PlotLabel->FormBox[ "\"Set of 2d points classified by thes square of their norm\"", TraditionalForm], PlotRange->{Full, Full, All}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic, Automatic}, ViewPoint->{3.3564793482202018`, -0.2080162169533589, 0.37520079751481356`}, ViewVertical->{-0.11066966080621063`, 0.006858699781550937, 0.9938335798383676}]], "Output", CellChangeTimes->{ 3.7818365623038683`*^9, {3.781838070631878*^9, 3.781838100298826*^9}, 3.782570646711174*^9, 3.782570797691101*^9, 3.782577776547803*^9, 3.782577897520159*^9, 3.782579291874238*^9, {3.782580375194994*^9, 3.782580389615937*^9}, 3.782651855831337*^9, {3.792910754004154*^9, 3.792910776080387*^9}, 3.792910833747016*^9, 3.814347430332946*^9, 3.814364123888605*^9, 3.814436616674047*^9, 3.814496577973638*^9}, TextAlignment->Center, CellLabel-> "Out[392]=",ExpressionUUID->"88f1343c-05c3-4fcc-8098-a3dd683a2a28"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"x", " ", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ".", " ", "#"}], " ", "&"}], " ", "/@", " ", "\[DoubleStruckCapitalD]"}]}], ";", RowBox[{"ListPlot", "[", RowBox[{"x", ",", " ", RowBox[{ "PlotLabel", "\[Rule]", "\"\\""}], ",", " ", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.7508817855915737`*^9, 3.750881817036543*^9}, { 3.750910635998508*^9, 3.750910692987669*^9}, {3.781836474392104*^9, 3.781836474806405*^9}, {3.7825708101499043`*^9, 3.782570843590561*^9}, { 3.782571753380773*^9, 3.782571766623748*^9}, {3.782571850163028*^9, 3.7825718568809423`*^9}, {3.7825801779945917`*^9, 3.782580202819499*^9}, { 3.792910844704012*^9, 3.7929108467803373`*^9}}, CellLabel-> "In[393]:=",ExpressionUUID->"36dcf17c-831c-4ff0-84a9-1c3681c0c9e7"], Cell[BoxData[ GraphicsBox[{{}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJw1yw0s3Hccx/F/qz06ql2YnbrqWlZrK1ZUa+3wOdydh+Lc4U7V2KFBemMT 9TDWIyPqYZu1ZjN7iJFh6WIrhg0301o8hKhQPZR6CNOao8ahblt8/ZNf/nn9 3r/PUVmcKGo3wzCR/53//9vfokt0wUqFJmmPki5gHRxaZPidDlkPRo02n4sj d5EPwp7brecn2mzdtjGc9Nsn8gx2zEaah7k4630NmYMM/Q3+if1r5FfwWWlJ mKV6lXwMr3Jxa2V1hWyJxey4rprUHR9Hf7X+uzaaZ+TXoFV+vJwytOOTcNuV fL3FfsfWcI4q/X00bZlsA639zc2R3CXyaexrKuLNdS2SbVHXtJ7+V+IC2Q5b X9rtKZibJ9vjgW66LHNwlnwGI1U5SeG602QHmCoPyVcFU+Sz4CcnmRdwJsnn sFzwtdXdoEdkR9QLEz64yxojvwFWg8gl66CKfB6n7RIrXeseki9A6teWcFz7 gPwmijw75dc0g2QnLI00v+fZfp/sjCorvropqZ/sAoU8w7HxQB8ZsFFErOug e9sKYK980mbMpJM6F9dNkuy+Lf2TOhfK6lKTqQ87qLtCZ1HIH3S9R90VGR0n BJxf2qm7obC2bI3d/Ad1N+SsCHoGSpqpu+Mjw5truc8rqLvDWiLz+uqLVOo8 dI0vDN1Bhst25+Hwj+EhUw4122b4OHRKw6tnN1DnY+HyXLzWrJG6AKN9XEsL 71bqArA2Ytc33Nuoe+AhP6JX0dRO3QPcrawWz6Pd1D1hkGWWPr7cQ90TmfOp RnMmfdS9oLd7/3j8XD91L7yo1xtf+MJ96t5o8WKxfvUeou6NkLd12SlLKuoX 8YljbVn9lRHqF3G1fJ5tsklmfBCpss7yKB6l7gPV34IaSTWZ8cVh/+yJnwwf UfcF2+sto33BZMYPLKuwnMpLO90PZ1gc0azZOHUhep7MhKT+RoYQIcri6LDY CXovRIyPNEItJyuF6L9gln1u4zHt/bHZIb9Rz5qkvT/EjilDfotkhT9q9F6v u3Nsmvb+MExTsmJEZEYEg5+5R7J6yBAh9ORYpmqFrBCh9mlDod/UDO1F0K3r O2JoO0t7MVa/dzEdjiZDjKGUzvTzyie0F4M/sKq1jXtKezE0jcUOz+bITACK frhcaHxlgfYBcNddK4hyWKR9AHLjCiOcSsjKANw7e6oIPWQmELyBmbIDt9S0 D4SaM2vRoiYrAqFvHSOLwhLtA3HVV9s62bBM+yCERufxeiQrtA9Ch3Nyssbx H9oHQZHHyc8MJyuD0BZnkm+eQmYkuD093HuteJX2EpjaBjJVrWSFBMa3zS1s VGSlBAnNj715L2loL0XLVuzLglwypKhI/+ad9NzntJdiJFmWXCnbor0U5Ugs Ls8nM8GoH4699Olercu/M9b0tg== "]]}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6]}, {}}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0., 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->600, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotLabel->FormBox[ "\"All points projected and ordered into the x-axis\"", TraditionalForm], PlotRange->{{0., 100.}, {-2.5585816350518833`, 1.9388602764062006`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.750881801027103*^9, 3.750881819297496*^9}, 3.75088489653494*^9, 3.750909677140305*^9, 3.750910694307283*^9, 3.7509932287402267`*^9, 3.78179729316505*^9, 3.78183632910427*^9, 3.781836476612402*^9, 3.781838105431932*^9, 3.782570847421503*^9, 3.7825714060979137`*^9, {3.782571756866753*^9, 3.782571767937533*^9}, 3.7825718601292973`*^9, 3.78257779367618*^9, 3.7825779047116613`*^9, 3.782579298572947*^9, 3.782580203353499*^9, 3.782651861224945*^9, 3.792910848961801*^9, 3.814347462496421*^9, 3.814436515713835*^9, 3.814436584723013*^9, 3.8144366298265038`*^9, 3.814496613064736*^9}, TextAlignment->Center, CellLabel-> "Out[393]=",ExpressionUUID->"9b8ec49d-34a1-49fb-88ce-50ca103687b5"] }, Open ]], Cell[TextData[{ "Create b values in between of the points so that ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["b", "1"], "<", " ", SubscriptBox["x", "1"], "<", " ", SubscriptBox["b", "2"], " ", "<", " ", "\[Ellipsis]", " ", "<", " ", SubscriptBox["b", "n"], " ", "<", " ", SubscriptBox["x", "n"]}], TraditionalForm]],ExpressionUUID-> "71b06583-6008-4d8d-a726-d12b4716e4c8"] }], "Item", CellChangeTimes->CompressedData[" 1:eJwlz1tIk3EABfAvK5WKeZsYiTBdbfrgXJHLRc59xRqkzinVQ4msYi9TaNOh w9CPZsuoHrQEI8nCG5RFtUaIZRiZgoQtJTOpnLc2+3vbHB8lYv3Pejj8Xg4H TvL5i0XGMIZh5DSwb/p1eso8Yd/2CGVw4vicAprNg1lQlNKRDRnDmBqqn454 V7yE1ZV2+uHjHiMPmxw1GzDMvqCW+Aj7pj+KhfFr8xw8MZ5vhysN1kdS6uV8 gxMWuc1uWD446YF/n1/wwQy1agPqmueYVCpTURcOZcMP8uCH9U9nYddqXAVM ruuugvp3FmfLL8LKt/IvYOXCWO59QtipMnc+1AckA0vUoeB/R4/cO+On8nlR JniUJxrZIt1XbGrhrs8D4YlLhP0xtCUipKVADGfqz4Vs9O9LhSIuK+QXcmpn H7XttEIAf5e4pLC0VpgKs7WuascyYW92PLwErdro2M1VwrbLBCIYu6DRw8hi YRFsbmmogj0mmw1OyrlvjJ+wQU20BxYPf922P0D7JrUAtglESfBwe24anBk5 lg5vW7QHoeRl2g1YcHW5EVYrR7tgcLa+G/YaVb1w3V/bD0W6qY/wWeK1cRjg s33QEZmzDPeWBNdgl9bIw7vx/REHqDZx9A5o3ZP5M5OqlIoXoSRoilFQ+cKE ODhbaE6H5bun5bBpwFkKW9+fLIMGq74G3srgOKjyDckOUV12rxJOPLmSA1e3 K9TwDv99Cv55JfBAKyeOVOFnqyEGGrjOBHhdXpkE/wFRsKag "],ExpressionUUID->"c1b301ba-76ca-4fac-9659-9f8939728716"], Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["b", "1"], "<", " ", SubscriptBox["x", "1"], "<", " ", SubscriptBox["b", "2"], " ", "<", " ", "\[Ellipsis]", " ", "<", " ", SubscriptBox["b", "n"], " ", "<", " ", SubscriptBox["x", "n"]}], TraditionalForm]], "DisplayFormulaNumbered", CellChangeTimes->{3.814347536457491*^9, 3.8143476183057003`*^9, 3.814361580363402*^9}, TextAlignment->Center,ExpressionUUID->"cffae5f5-609a-4bef-bc5c-be8fd7ac93ba"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"xmin", " ", "=", " ", RowBox[{"Min", "[", "x", "]"}]}], ";", RowBox[{"b", " ", "=", " ", RowBox[{"MovingAverage", "[", RowBox[{"x", ",", "2"}], "]"}]}], ";", RowBox[{"b", " ", "=", " ", RowBox[{"PrependTo", "[", RowBox[{"b", ",", RowBox[{"Floor", "[", RowBox[{"xmin", "-", "0.001"}], "]"}]}], "]"}]}], ";", RowBox[{"ListPlot", "[", "\[NonBreakingSpace]", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "b"}], "}"}], ",", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.750882995483961*^9, 3.7508830032686996`*^9}, { 3.7509096952107763`*^9, 3.750909728263647*^9}, {3.781836462097241*^9, 3.781836462770816*^9}, {3.7825802163013687`*^9, 3.782580221411304*^9}, { 3.7929108569829206`*^9, 3.7929108575164757`*^9}}, CellLabel-> "In[394]:=",ExpressionUUID->"8137001d-bc93-43dc-b990-ab2852d3a9da"], Cell[BoxData[ GraphicsBox[{{}, {{ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJw1yw0s3Hccx/F/qz06ql2YnbrqWlZrK1ZUa+3wOdydh+Lc4U7V2KFBemMT 9TDWIyPqYZu1ZjN7iJFh6WIrhg0301o8hKhQPZR6CNOao8ahblt8/ZNf/nn9 3r/PUVmcKGo3wzCR/53//9vfokt0wUqFJmmPki5gHRxaZPidDlkPRo02n4sj d5EPwp7brecn2mzdtjGc9Nsn8gx2zEaah7k4630NmYMM/Q3+if1r5FfwWWlJ mKV6lXwMr3Jxa2V1hWyJxey4rprUHR9Hf7X+uzaaZ+TXoFV+vJwytOOTcNuV fL3FfsfWcI4q/X00bZlsA639zc2R3CXyaexrKuLNdS2SbVHXtJ7+V+IC2Q5b X9rtKZibJ9vjgW66LHNwlnwGI1U5SeG602QHmCoPyVcFU+Sz4CcnmRdwJsnn sFzwtdXdoEdkR9QLEz64yxojvwFWg8gl66CKfB6n7RIrXeseki9A6teWcFz7 gPwmijw75dc0g2QnLI00v+fZfp/sjCorvropqZ/sAoU8w7HxQB8ZsFFErOug e9sKYK980mbMpJM6F9dNkuy+Lf2TOhfK6lKTqQ87qLtCZ1HIH3S9R90VGR0n BJxf2qm7obC2bI3d/Ad1N+SsCHoGSpqpu+Mjw5truc8rqLvDWiLz+uqLVOo8 dI0vDN1Bhst25+Hwj+EhUw4122b4OHRKw6tnN1DnY+HyXLzWrJG6AKN9XEsL 71bqArA2Ytc33Nuoe+AhP6JX0dRO3QPcrawWz6Pd1D1hkGWWPr7cQ90TmfOp RnMmfdS9oLd7/3j8XD91L7yo1xtf+MJ96t5o8WKxfvUeou6NkLd12SlLKuoX 8YljbVn9lRHqF3G1fJ5tsklmfBCpss7yKB6l7gPV34IaSTWZ8cVh/+yJnwwf UfcF2+sto33BZMYPLKuwnMpLO90PZ1gc0azZOHUhep7MhKT+RoYQIcri6LDY CXovRIyPNEItJyuF6L9gln1u4zHt/bHZIb9Rz5qkvT/EjilDfotkhT9q9F6v u3Nsmvb+MExTsmJEZEYEg5+5R7J6yBAh9ORYpmqFrBCh9mlDod/UDO1F0K3r O2JoO0t7MVa/dzEdjiZDjKGUzvTzyie0F4M/sKq1jXtKezE0jcUOz+bITACK frhcaHxlgfYBcNddK4hyWKR9AHLjCiOcSsjKANw7e6oIPWQmELyBmbIDt9S0 D4SaM2vRoiYrAqFvHSOLwhLtA3HVV9s62bBM+yCERufxeiQrtA9Ch3Nyssbx H9oHQZHHyc8MJyuD0BZnkm+eQmYkuD093HuteJX2EpjaBjJVrWSFBMa3zS1s VGSlBAnNj715L2loL0XLVuzLglwypKhI/+ad9NzntJdiJFmWXCnbor0U5Ugs Ls8nM8GoH4699Olercu/M9b0tg== "]]}, {RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.009166666666666668], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJw11HlQlHUcx/FlBV0cUBoIFLBZisFVkVsT5PgAC8Jy7bILCxrQcARTIJGG pKbrmRzBYKBJDOARSSCmYHIULrBcKQmRCMThsgiMxiU3ElazX56ZZ555Pe/n 899vHqPweP8oJoPBiPzv/v+pvCadlE+WlF6Ad6hoy1lNVTILbPVG3TtnmGQt lHRnGR77+s0DpXWwx8Tj8zjzZfIm9G5LyGHJlsiGWCnS8BHLFshsaPzJ6zB5 M09+F/0HxxbTZubIxlg/9NRcWDlLNoH8W4e8CdtVczB6z8dKNDpD3g4j+Rnb 3HOrNgWsU9i+XdNkM+Q90gvrW7NqC6ge0TGKKJ4iW+JuqqdL/JpJshX2F+vW VpuPka3xsl1ctu7DF2Qb9HQx46bGh8m7sFQueFX8wxB5NywMW9xc7irI76Mg 7L3u+Qg5eQ9EEyxhQ2k/2RahqorQ71N7yXYwmFVMKwZ7yHshkxqk2/R0k+2R 6N34qe/yU7IDuNrcyYHQJ2RH+DKZVsx3OshOyPpNoVPl2k4GLu8s21Vt/rvS EiAn8bpOwo6H1J1R53zL4kFwC3VnFDxLNq7TaqbugvDWRLM+RSN1F9Qd+NV9 8XgDdVeoOw7n69vJqLviR/H1285utdS5iKlpNm71LqfOxeHggas1/CvU3XCz aCx7W76f8lxK3LA7JbRzKeQanVN35P5dwvfZWk7dHarchL/251RQ34fhS9m8 TOtfqO9D1ZRbo/uslLoHJtkjkTUn66l7IP3ajPvzuGbqniisbduSvb6VuidY pSz/bq3H1HlomKtfNJW0U+dBQ+0gR2XpD+peiCn6eK/JjifUvaDRuXajfn43 dW/MPQrpu2zaS90bJ8Yfh3x0h8zwwaiTht9tzz7qPiiIqtJvKyAzfHGcPdJ8 9oN+6r7I8fnsaJ/1AHU/ZFT0t3YFkyV+uH/F65J9y2rnQ/KFitgy9pnS4CMr 0GkwVltO3/MxuHYhihNLlvKRJ6s8nGUzSHsBRk7J1s0zFLQXgCM5ZHHmGFki wGm2qPFU8hDtBQirmw9Jt3tOe39o6qloz2eQ4Q+b8Y2Cn+RkiT9YaV4pb8cN 094foe2yrtKUEdoLcdLsQu609yjthRjROvcwOesF7YXYsFXu+LPeGO2FYDc1 6X9TQmaI0GR1NEKVM057ETaEFHbGx0zQXoToallSezT9F6UicIShyzVlq//J AJxXUze8aTFF+wB8lxStGK4jSwJw4gan/q3Nr2gfAHsHm8wby2RGICIPNJwO ujBD+0Bc7FAJi2iepX0gjKN4zBrvOdoH4uqXm9PaYskMMSq2L9ziseZpL0ZE qt5oRjFZIobuRGXmJ61kqRjce5L7tkkLtA/Cpv5Cy0a/RdoHwcpRzTU85TXt g4DXkumLc//QPgjS3pdfFR5ZoX0wdmpOJhm0rDj9C86R8LY= "]]}}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6]}, {RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.009166666666666668], AbsoluteThickness[1.6]}, {}, {}, {}}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6]}, {RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.009166666666666668], AbsoluteThickness[1.6]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0., 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->600, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0., 100.}, {-3., 1.9388602764062006`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.750909730664658*^9, 3.7509932481593943`*^9, 3.781797298732449*^9, 3.78183648208467*^9, 3.781838128063076*^9, 3.782571872362595*^9, 3.7825779114543447`*^9, 3.782579305429369*^9, 3.782580222027584*^9, 3.782651866124462*^9, 3.7929108599528713`*^9, 3.814347479149242*^9, 3.814436523142201*^9, 3.8144365649681387`*^9, 3.814436634090105*^9, 3.8144966438149767`*^9}, TextAlignment->Center, CellLabel-> "Out[394]=",ExpressionUUID->"8d5c0352-f626-4cbb-a51e-752c28a1e202"] }, Open ]], Cell[TextData[{ " Create a matrix ", StyleBox["A", FontWeight->"Bold"], " that has entries ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["A", "ij"], "\[Congruent]", RowBox[{"Ramp", "[", RowBox[{ SubscriptBox["x", "i"], "-", SubscriptBox["b", "j"]}], "]"}]}], TraditionalForm]],ExpressionUUID-> "b798d92e-871c-4015-8e63-ad0356d63639"], " . It is lower diagonal, with non-zero elements on the diagonal, so it is \ invertible. Hence, as ", Cell[BoxData[ FormBox[" ", TraditionalForm]],ExpressionUUID-> "2f892287-37e8-46b6-8b44-79a20bb190f8"], " " }], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, { 3.750228610184701*^9, 3.7502286246362343`*^9}, {3.750228924518993*^9, 3.750228931763027*^9}, {3.7502338279747133`*^9, 3.750233856508539*^9}, { 3.750856742805952*^9, 3.7508568180129433`*^9}, {3.750856937001786*^9, 3.750857034363675*^9}, {3.7508570661190042`*^9, 3.750857122232614*^9}, { 3.750857817303485*^9, 3.750857871453895*^9}, {3.750858038569516*^9, 3.7508580762465763`*^9}, {3.750858193949918*^9, 3.750858243967038*^9}, { 3.7508583669782867`*^9, 3.75085842025338*^9}, {3.7508585619363947`*^9, 3.75085860996979*^9}, {3.750858655636492*^9, 3.750858675164996*^9}, { 3.750858814002637*^9, 3.7508588325043297`*^9}, {3.750866737659479*^9, 3.750866785098538*^9}, {3.7508670833423033`*^9, 3.750867096728755*^9}, { 3.750867307509996*^9, 3.750867335034234*^9}, {3.7508678055864964`*^9, 3.750867810649123*^9}, {3.750867946514206*^9, 3.750867963974557*^9}, { 3.7508693662471*^9, 3.750869455234705*^9}, {3.750869500146221*^9, 3.750869505688225*^9}, {3.750870782936352*^9, 3.750870784460446*^9}, { 3.7508833931093082`*^9, 3.7508834670193453`*^9}, {3.7508835171717987`*^9, 3.750883594253935*^9}, {3.750883715234866*^9, 3.7508837156174107`*^9}, { 3.750883843822631*^9, 3.750884023169112*^9}, {3.750884221282902*^9, 3.750884347995935*^9}, {3.7825766363676147`*^9, 3.782576734273443*^9}, { 3.782578813730707*^9, 3.782578813737775*^9}, {3.78257942306488*^9, 3.782579433229293*^9}, 3.81434754392472*^9},ExpressionUUID->"3640522e-e836-4eab-96f7-\ 145a9dcd3333"], Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["A", "ij"], "\[Congruent]", RowBox[{"Ramp", "[", RowBox[{ SubscriptBox["x", "i"], "-", SubscriptBox["b", "j"]}], "]"}]}], TraditionalForm]], "DisplayFormulaNumbered", CellChangeTimes->{3.814347536457491*^9, 3.8143476183057003`*^9}, TextAlignment->Center,ExpressionUUID->"35e4f319-3f5d-46d0-bf5e-e4ebbe95a5ea"], Cell["\<\ It is lower diagonal, with non-zero elements on the diagonal, so it is \ invertible. \ \>", "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, { 3.750228610184701*^9, 3.7502286246362343`*^9}, {3.750228924518993*^9, 3.750228931763027*^9}, {3.7502338279747133`*^9, 3.750233856508539*^9}, { 3.750856742805952*^9, 3.7508568180129433`*^9}, {3.750856937001786*^9, 3.750857034363675*^9}, {3.7508570661190042`*^9, 3.750857122232614*^9}, { 3.750857817303485*^9, 3.750857871453895*^9}, {3.750858038569516*^9, 3.7508580762465763`*^9}, {3.750858193949918*^9, 3.750858243967038*^9}, { 3.7508583669782867`*^9, 3.75085842025338*^9}, {3.7508585619363947`*^9, 3.75085860996979*^9}, {3.750858655636492*^9, 3.750858675164996*^9}, { 3.750858814002637*^9, 3.7508588325043297`*^9}, {3.750866737659479*^9, 3.750866785098538*^9}, {3.7508670833423033`*^9, 3.750867096728755*^9}, { 3.750867307509996*^9, 3.750867335034234*^9}, {3.7508678055864964`*^9, 3.750867810649123*^9}, {3.750867946514206*^9, 3.750867963974557*^9}, { 3.7508693662471*^9, 3.750869455234705*^9}, {3.750869500146221*^9, 3.750869505688225*^9}, {3.750870782936352*^9, 3.750870784460446*^9}, { 3.7508833931093082`*^9, 3.7508834670193453`*^9}, {3.7508835171717987`*^9, 3.750883594253935*^9}, {3.750883715234866*^9, 3.7508837156174107`*^9}, { 3.750883843822631*^9, 3.750884023169112*^9}, {3.750884221282902*^9, 3.750884347995935*^9}, {3.7825766363676147`*^9, 3.782576734273443*^9}, { 3.782578813730707*^9, 3.782578813737775*^9}, {3.78257942306488*^9, 3.782579433229293*^9}, 3.81434754392472*^9, {3.814347644102323*^9, 3.814347661877388*^9}},ExpressionUUID->"2dfe0aa8-bc96-4bf3-ac80-\ 653560dd7a39"], Cell[BoxData[ RowBox[{ RowBox[{ StyleBox[ FormBox[ RowBox[{ SubscriptBox["y", RowBox[{"i", " "}]], "=", " "}], TraditionalForm], FontSlant->"Plain"], RowBox[{ StyleBox["c", FontSlant->"Plain"], StyleBox["[", FontSlant->"Plain"], SubscriptBox[ StyleBox["z", FontWeight->"Bold", FontSlant->"Plain"], "i"], StyleBox["]", FontSlant->"Plain"]}]}], StyleBox[" ", FontSlant->"Plain"], StyleBox["=", FontSlant->"Plain"], RowBox[{ RowBox[{ UnderscriptBox["\[Sum]", "j"], RowBox[{ SubscriptBox["w", "j"], RowBox[{"Max", "[", RowBox[{ RowBox[{ SubscriptBox["x", "i"], "-", SubscriptBox["b", "j"]}], ",", "0"}], "]"}]}]}], "=", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["A", "ij"], SubscriptBox["w", "j"]}], " ", "\[Implies]", " ", StyleBox["w", FontWeight->"Bold"]}], StyleBox["=", FontWeight->"Bold"], StyleBox[" ", FontWeight->"Bold"], RowBox[{ SuperscriptBox[ StyleBox["A", FontWeight->"Bold"], RowBox[{"-", "1", " "}]], StyleBox["y", FontWeight->"Bold"], " "}]}]}]}]], "DisplayFormulaNumbered", CellChangeTimes->{3.814347536457491*^9}, TextAlignment->Center,ExpressionUUID->"7692703b-82a7-4269-a1d9-660951ceea52"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"A", " ", "=", RowBox[{"Table", "[", " ", RowBox[{ RowBox[{"Max", "[", "\[NonBreakingSpace]", RowBox[{ RowBox[{ RowBox[{"x", "[", RowBox[{"[", "i", "]"}], "]"}], " ", "-", " ", RowBox[{"b", "[", RowBox[{"[", "j", "]"}], "]"}]}], ",", "0"}], "]"}], ",", " ", RowBox[{"{", RowBox[{"i", ",", "1", ",", RowBox[{"Length", "[", "x", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", "1", ",", RowBox[{"Length", "[", "b", "]"}]}], "}"}]}], "]"}]}], ";", RowBox[{"MatrixPlot", "[", RowBox[{"A", ",", " ", RowBox[{ "PlotLabel", "\[Rule]", "\"\\""}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.75088307705846*^9, 3.750883270777567*^9}, 3.750909769774508*^9, {3.782576588978917*^9, 3.782576608588642*^9}, { 3.782576747591611*^9, 3.782576757644332*^9}, {3.782579853780691*^9, 3.7825798600688457`*^9}, {3.7825802972205963`*^9, 3.782580304854862*^9}, { 3.79291087105718*^9, 3.7929108713427773`*^9}, {3.814347703782247*^9, 3.814347704004655*^9}}, CellLabel-> "In[395]:=",ExpressionUUID->"c6c8e206-8aa3-4ebf-8541-296e1b0b65c2"], Cell[BoxData[ GraphicsBox[RasterBox[CompressedData[" 1:eJy0mHk0VeHf9okmQyqVokRJopBUGi+VJBpVkiRFksiYTFFJhgbJUEllDJGQ KSQkc+Z5PIczOPbeRypKSe/+rfd9/nnXev54/nisZd3WfW77vs/e3+91fa4t f97e8IKQgICA5f/7/c/f//fnK5geC9L2MbvwXzPGi5ZJmB8dgZqSlPLm7T0o XsvYZ2ZxFBMWyvLVoiM4Ev5zzLW8B6a7MwVUjxojh3XZ8Pd9PtT8nn2+XNwL jahIcznb82BHB+VN7eCj6utA3LGzfbDhz4u7d9EKq7fXpF2U4UNQy/+sWHwf PEIUCm3krBEy4622Mo+C14entT0z++G+u+FCcbQNtlQmzX3dTEGkYOv2MI1+ 9At+UKzOvIxoC8nomPcUnq8eqT1g1Y9xkW3U4ylbbJOev3VpJAU3nsFrMr4f zUF9scYPr0AUc2133acglhz62rWIXq/j9FpN0x5X/V86P/OlsLbckBHT2I+u iqQCpbf2UO6yfXbTjULW0Oyht9x+RKPpk6GsA86NjL4St6Kw6XHes7UzGDj/ tuAiEeqA2+vv1LAPUrh4VtJbRZaBnL22id3rHBGmflrWW4mC69Jfecf2MLD4 Tq/StqVOMPC3s97xk0RuyOSgtgsDT5aedJMxcobH0v4L3l9InJXZIvX+OT3v c27HKnMX+G2dvfPlCxKlZySL9GoZeDRHR6Az6Cp2iY/J9liRGKZS970RYuJ4 nt53Tb4rRORzNDbsJrFcXHP6YiUmfC0UWlrar2F9cIx78noSL8JmZ/hpMWFX v8doyy43SNXcsDwvTiLe5+KOYFMmRPTr3l1SckfJt9pC7yECLefKDDVvMvEx XKzPR9IDBYoPh6xaCWzV3VOmEkbPa/m1rb3vgRqfEPPoCgLzBe/zu2KY6EoZ DhtneSBPY04c9YFA88o2respTHw7ede7bIUnJjK3EgdTCdi5M0X/FTIxZ67l 0wWhnnDVjZJnhxKwMj5wZWcrE2e7LGJjVb3wQq5b3yKIgNAKDSfdr0yYX+/W aTXwg0V+zeb0EAJ6qozrG+YOYG6sVrSwzyNc2hB3gPuUwDaZYn85zQFES+T5 tR17hsfPqcPpL+hzvtrxWnz/ALSWZ4ad2R6NBSoCDmaxBMRlbTJXnRrAk0uB jqWbYrFz05rIrngCbbOD3wtZDiB9evzfzHtxuLvpDDMqkcCGpmVmCxwG4HZI RvXYrAT0u0r//vuaQG/Z2rvd3gNosGzpPdL5Ci42ixoN3xCQaDN4Kh44gMr5 v/bLSifBr9BH4nsmgT83Vv1MjBlAwMATT225FMzp9vBilxBA9cOL0wfpfU+X qnuGZWCRVqv20QYCu5t6xheuGITeZuXHCS7ZWNuVsFC9nYDa4tb78tqDiCc9 w04czIXa7+v29gwC67990n1kPYji0ITu4Kr3WFwesjuQJCB7647z9ef0vEkm U1rkAxZqjD4iR+n7nKRxRjx7EGHWo39rvIpQduqzS/gYAa+Dj67N+TyIJ1sy MsLdPsLp44XaO5ME2g+MCV4eHETqKqWXy1OKUWexI8BsGonqtV9n/5ochLfe 5MxlLiUQP31Wz0mChMTsfhWlTSw4zL0149fGTyiLXVtvIU3iw7/lT4WsWDCJ ye+yTSuDVdRnhSBZEssqK46ucWPhSFCy7rodn7E4e6uavxKJuTANa49j4TW3 pqwirBwNkRevNauRsFe+WV/yiYX8/EhGS3AF4myexZ3dQqKZPeB5i2Ihb7Zs hk5HJfIOvvqudYRE0HTm7itH2TjxMChr73ANGhJWZqibkhgh750r82Pj3g6z nHG/L3gkMfNFnRmJa9Z2YptC2LAJ2ag12f8Fa81PFP08R0L/uvPVWS/ZaJhm q51zoA7ft6+3cbSg+11o4VyvBDY2nZit7upTB+3c3aGrLpJgHcr1Sstm41aC rlD/VB3+vohtm7hMwuH12qbaaja4Rt8ip+Lrkd//VCXFlsTL+zVHWr6w8Z6T 2t5UWI+Tnp++/rlCAqc5j360s+FRN75kx4wGbHS8pCToQkK3MPjvEMWGoWkU L8K0AS9fmMtu8iQh37F1u504B/f6Qk7e62iAqtA1o14fEkXJZHi5PAcaii/M w5Ua8S+vU107gMQmQTFRZ10OdPd8M2vOa4TlhRAP4xASJ+TWftW6woHO4ynx 3SeaYDu9e5XEYxLaE4/PbvTnIPvUY9GA3CYQuZEqunEkDpjN3B5dyAH5rF8w JrAZ5x7KZOil0PVQNt02sZ8D89E4KSvJFtyIeTLtSRoJYgWrU47PgaF1m9Dx Ay2QnW2hZZpJQi/W0/XpFAc7g3I8l95vwaqxCIuCPBKmda/LXKW50Pzn/ibr dwuYv62y5n0msf6nl4fNES6WBt0c4Na1wr/82fbntN4qJNxvqbzKhfzjFcHM c23ov+dqUD9EouWkYWUOyUWP/9ZTCRs7ELZ4h8WXmRQU1718CJchyPIV1+fp d+H+veTMJRIUTFNdiTVhQ5AWzN+Gyi5Ubly44+9CCgNPM6X1M4cgvidoW+HO bgj//HlpwSoKrD1zd+n9GMKj15/nGuzugeoB5Y9xW+j1D6f9nnGIh0vBNuZR 8b041WnlnqtNoWjr2ZmfrXkQVHHKy1frQ/o9sYiEAxT2C9oXdIbzEOox6QTp fni8a+wPPUUhfSj9ak45D1YBnQJaYgxUhumIss9R2O1pIarA4SFLRX/PzzMM DMi+Lbp1lUL02eTSPerDGG0wKSyTZWLexk3ygk8pSLuo9Z/PGcZuVxHDGM8B yB8peWGXTV+n3b+7Wp7APYPhjwKhg7gklKXKLKFgrU+0th8hoOybVH5enIWL 16NnVZRRMPOtXlJzmoCLhN3hvjUslIZET1xvoujzPRV9EUyAsaGr/HU6Cwme jBuXBym8WxVyIryewMvhl0fETrLBVP9msoVL4UT2gr1jvbRe6s5e5eDFxqiw OWfwF4XaIwFfcuRIBDB1vSWVOZha/TqRI87HHmepQhkHEutWJFtG/OJgm+Ve vVQdPhwGM7slQYEh7P6aP5+H6vqKGZE3+ZjeXJJ3eBUfxxPHj1dfIsBUCp0l +JCP0iqJiYLTfAQMexw99ZNA8gf/S7ynfLTdyTVYS//f8ecDP/ON6bqcrO23 HBtBR9Ob76fGu1DsmG+Vw56L6PnD/DLdESjeSLfff7QHHc0Gae8dDTGeYv+t XWAEhi4G6zf19CBqcukjTetTCDz9iJdCX9f0Rmd7X0cvIpcf+jcxywJPNPU8 szXofY1GWz5e7YN0q+7NCz+tsPei+3EHCT5Wpop4NRX04chd48/8PGukrz/D 0eileWn9Ml7s8n7obBe219lyGcbfjXIyKyioqBUZm+j34/Wfr2qHDGzR76gs nZBKoU89tnrJjX64xVA5S+PtcGpvcb/CAwpPz9SXZxb248Xt+ak9Sva4pP4w Hz4U7Pe5Bup39WOLW5xmNscesusSG77SdeXb61FVSfajWGudcaqqA6yHfBf6 XaYw6dbnVCTAADcoRWmhowM+MhzHRI3p+uGsubtoAQPC+1vWqlIOEPuhcFx7 F32daIlbBcoMaNT67XL2dkRg0HCgsgyFKFZa5sMjDKyIcDVWcnRCYPjtAe1h EsaL2s6vvslA30X13t4kZ6Rt1/aQKyLxym35t8lUBs6udV8nWeqCw5/c7UeC SUxtQFx/FwPF63tMHIeuQjTiwpG19PNULOtYqzOfiYBuxsEvBteQ3DFTebUG CcfRltZZNEf1PC04tXinGxR46uwTCiTKTItfl+5lwqu/x08xwg22dfoH/9H+ 6JnIDmizZUJx7yrhjofuqNkl8biM9uv1X5YvaQph4vWJlROLvT1g0sfsN/lM 95UyK2xpPBNS9ktNHb57IOVvlkBQNgFfjzPRTe+YYHkLdG819sST9PV72lMI 7H3+atjlA5PWh5iyWRGe0Kk8dCWQ5p9hd9t3cfVMpNtOuKSJeGFgJYHlgQSO 13af+TDMRHGV+KOVobeQXfQ5c/ojAvfH+g8lzxuA+d353KGuR5g8tezhyBMC 7zS6V7HVaI7aWbXdb38kZneMO/S8pDnErlBZ9RC9Pn2a+9veaKzdJvrB+RWB +KJGSuAyzTkDM49FWcdDsXzpz3Kai5qCr/8avk5zmsDXbR8LXuFoU/8iQZqL AkZb1yf50xzFFHqozk+EbJOuBestAf6U/o79YTSP+XubPvRMhtsiW8MdNC/t r1q94f6LASx+t3RtSNFrPBDZqOCYRcAx3LxLNWkAeUI7Jl9QKXhxWtjuWD4B h+oZM4ZLBqD+gHVBW+ot4t2e8JKqCDQOKKT8Eh6E2w4qOPL1Oyi3rnq3sYNA n9rJmKc6gyisMCqLD83FbreH15v6COQSt2xun6PnlyesCjd5T/teHfMYzclf Du8cXXh3EJoKTbOChwqgfC6tavQHrR/fn77fXToIMoGt+/TAR6ypS5SQ/E0g M9i9NaNjEBopDy0+GxXj2HcP0XNTBMwfGH+7TQzCodKluHO4GP+MuNfappNg xhxfvFKMhdS0ihVXiBK0/lxpHC5GYsmFZ19jaT1tyorp8WguReQ3xveSxSQW m+3czTBjweqpfJCuaxk6dg4aBK0gcYVrNS8pkIUDTwxRW/4Z3zfsa+hcTUJp 2WprZjTNV5L7qz2vl2PVwcDWbDovzDvcuudfDQvHn9qce9VQAYtNRyektUgo n0xLG+eyMC1ww9r41EqoT1t2+C2dO3q37n60dREbeY8+aIYuroYBL/jqDbqP 9mjMWRF3lY1Qs5UCC2d+Qc/2jnMxF0hM82/qE3vLRvvzKbns6jq8eFVwCNY0 j017F+idz0b2aGtsvkI9csZivWtoLrrOubx6Gs1Fyrw55mUv6uHZyNL0tyMx Od4ZHNHIhubwm2WWXfUo1ze1vu5IYketXjVvgI0IF9ezRusbELgx6N7dqyQe BBrnJPxgQ6div+uiaw3QucolvF1JNI5/mlb3i40gTqKng38DBualvLrvRnPF 1vnXvghycMCmYnfL6wbkCWYvXU7zUk/7naw7sjQvCTt5fZFpRJy6pNCoH4kn Cj5Fp7ZzYLmHIyET0gjNiE/qRkEk5Gwt9R8d5uDdu9H1WT2NmH5AUfT9I3r9 J9+PO104qGjYq/7NlualX68Ppz8j8fb5hx0uzzhY/r6RUJrZjNHHJtOTY0i8 ERj3CMnmYMDwckOfXTOcDLIEXryh9a37SWA3j77Oh8x+/20tsFpRFy6UQ+LO XH1+6Bwuthv9qv9R0wLB9fqCv96TCKtMNOtfzkUAN/X6b4lWxEbqrdD6QHP7 hldnF6lyUW5yd/XgvlaoBkmtSS8l8dgrsFdAl4uZfTXp3xNawXtw8LZePYlb akrnFl7n4oB2S22EdxvuGh+SN+4gETXaaJQdz8XUH9d9DtLtMJZS9HYfI9H/ doHhEoUhFG1baOQp0Yl5CXI3v0tSEHWs9DZPHqL96d/ZNJluzJA6xf5E67y1 8Jar92qGMJkVprUwthtVZRPa3vIUwm+bznjKGsLIOmZSpHAPfnu/yrHQoLBi 7OgXL1UemtxW1Gut7sXlpHJNSofmK/NVN9648bCh/v1lr1t9EOY530kzoPCv f9ZqzUc8PD3oW6c7sx+FCu6hzScpiHwqcllczENsOvOm0Hg/ciWunOi1pJCR 1/zHdJQHfaWbM5Q8GUgPfbT5ii3tU9zin9/FhxGY7H3C7zMDWo12t97T/rgi 5r5ej9Ew1ml/bVbyZcL7xDQJq3iaGw1XaTgyhyEswz3xkhjAmdQzC3KLab5K fH3O8QCBK0TI56+CLLwLOmcQU0tBuZl/+po7gQKRfa1i11iYd//NwqJ6Ci+U XLZs9SPwIfqqSXw4C6OlKpVH+ii8etkdYlBIQIoM+sRQYMP74qyBoq8UnIXN JL4KkhjjbNKc0UX3h++fYe53+n7uHFnPFCexXPG85KIJNoJ5pw9YCvNxcMdR au0BWifuGt9YTtfjttu6y9SX8KGzZ+vu0kgS80uP2Ny5yMVRpFWGHOVjfeCG 8/X2FEqpbeHpITwI6xw2VgjmY2+dppiHMR/Wb35qMvgETsbrnjB7yafz0B1O dTgfhnsEJc88IPFf76n+/zFfa77F9dER2ES7p8lMdUFbKWL6IlkpzD+s5tS7 e4TOc17Koqd6oBO8JQmthjRvZF39OskHa5cU+XOwB8J5Ivfya07hz+N227Lr fPAPJjyKZvTi0F+dycKtFigunP7VVZUP55RrfqrefTi//YOk97qLyI0rag8Q 5SPbvW1T2Ce6bi4dLs0YtsZ4lK/aSDv9HGWaPRYr99P1P1FyxusyfDwXqLh8 olDtqzO7yrAfk+cvllrdtMWRNPvnH5IoOE3Z+XX792OzD+tdf6sdCMsrm7UC KRwqrj7vWd6PBf/8L0VftMde4XK51x4UlqzMVbMa7MeDrANpIXMdsDfbcm+m I11XGoIem8f6ccnWOiZvvwOCHXYF6V6kYBAnXzMmzMDDIo6j/D0HGArIHVx+ jELJ49WdvxczsHVGsOhDMUccP2vwfHIbhXPhw/rjajRfHRIg/r10RMPY3GYO nV88OwM9a04woLh4VDD7kRMS1e6NRg+SOLhEUarQn4Fpf5MzFjY7I+V7X5Yf nb9EMto3PshkYLXzu5hqtgty5s2+/yqQ9p3vGT3LmAzITYuw9J7riufZkkk4 RuLG1TYPJSkmPjx5tlbt8jVs+5V9c+s6Wn9im1ZS2+kcctJVy+OMG+5tLp4m Lktiw9INLIEDTLS/jQjeUOSG5qVdNjnjNOdYGZcucGbCb2G/ODvPHRsevsjy bCQQfe+R4dwnTAgr9k5TfOWB2P2z1kgVE7i8/OOZk8lMLBqNmP53gSfMBGrX PqF5w278m1n+eyauBv1esszbE3IDazYGxtN8tTojLKeMidz9kaoRZZ5o405+ jgojsEfFRjCghQnOmqxjc5W9sMpdzd38Lt2f987FPf3BhDnjQsBaW3+MzWsT qKHXS1dPqVUsG8DDm6d227SGY1f6nyJ+JIGZl8KeR2sNgNHC3SdqH4V9a5qb V8URmDjhknjflOalmHcR/JhYEPeypKOSCRw9HyfU4Ebzj2t2i4zMK/Ckwzau oTlqdzgv/mQAPW8RuLBEKAlzFQJd1qQT2BCeuO9aOM1vLhnz0qOTMbDa+LEw zVH6HsMy4c8HMKQ2b2p+9Gtsuzz48CXNUe/rQvsnaI6SW5QzPXRGKo6cTT3f nEPzTGTtnWeZAyi2amuN3vgGp1Lc+/99IKBzyzH3dyPNgTX1KmcD0jFYPWd3 ei2d93bNNdk8fxAuxqW3fntkYXj1pRlLuwlc22/K23d0ELM0lXkKp/MgUPWS vX2AgNsS+UMuDoMo1vW5FbY3H0K8a/AiCHh8l5jJfjKIHiqpqq6kEJeziqRy 6RzmUJkXaV43iPKM7rqo6cWwWn7byfQvARu39YbzuIMw5U4qt1YUY65OkHMN rXfLC8dbXX4PYqibeeWUeQm0EsYm2LNJNCk5TbGWsdAyrnV82bVShO3/kv1B gkT5LLsZTptZSFoi/kFa+xO69o7u8pehfVbjzMopGxaU3YKyI1rLEB787d2P VSRUF04fe/yEzrcpHymD7eVIv22kpaNCYkj/s0HjW5rTFHPc/nwrB/tlrVKU Jolk6667bzpYcDjc4mylWQn5gN9Ge7aRaPvtU/Z5jIVa6oWYzpIqUIZrc5fo knhhzbiqvIqNra+UB+c/qIb/lqYBUVMScxIe2a70Y8N2f0i48M0vkH6QVTZM c9R7+6DTth/YEOqyGSrbVg/jsYiadbYknHWGZ6XXsPHovC41kVKPUR2D8Sf2 JEwGCxFH+8GxXR+ZVXMboLXiR9QonZ8LFdyc7zDYaPMW54yuboBf1PTyBBcS w/bSjLyvbAiuTj386mIDPvvVTixyp/PXZI+AojAHGYUCu+ZkNeBW+adDlfS8 f7+nz7qZHEQKm5399bEBy84dkz3tRWLbZovgK/M5kNjs82Mb2YAxwxAf61sk Qop3rues5WD3CiXzE8cb0est7ydAc1RQSlS8zCEOvLkvkr61NWKErRU3jfaN sZX1f2LPclCzYM3XQZkmFD29+IgXQdLPx18s5A4H9xjehYLZTZDf68fZE02i Usvl47W3NEeJ3jNknGjGa/aze50J9HOpnagYrODg1fl4U352M9Y9W+Osn0HC I1RoGznBQZfs8PNcjxbEOLqKN9IcZSn+bMZGmqN+r0i/aSreih03713xpTnK bNva5LNqXPB7LPS+HWgFkyzyQDEJ20chc05s4+JGjLbCH89WcNuN0xnlNI/p 3Vc+ZszFF0p4hxC/FTE9D0Tdm2nu/aOSdjGYC7Ej4qdelbeh7JVp3MUeEvfd RrZfy+FCMlqNsc+8HQ8tI0VqJkhwiqemT24aglpuXWvpqU7ofQsT37uYwtxb mRp7Cofw6cr7/rEL3SiznraHlKUgmSRy93TnEM5drFa60NENX8nWD7arKHiV h/pVj9E8ZrXk0Fa9HqRVLTljspnCqbMFvut1eHg8x2zuE69ehN4UP9quR/vX q77Nbv48KOZtCbOv78Ph053OO45QGPbISrGL4+Grgw+Tad6Psz27+EwTCq4R /Z/ja3hgJARYiC5h4I2C30SKNYWekfecj/944EjdiwqNZuBdc/6tdzRPXGn3 HzgsPYyGGzd+vGYzEHKFteijL4W6H0u+zLEapvvhglX6ayaeCmnd7qR9dkb/ X97ub8NoWq3ONJMahJ9fvHpMGYU00mLJ9tO0b/Q3nrJRYqHLIuni3QaafxYn Se4OIKD5786lO89ZmBVb9v5eM+3jZ00UnocSOP3wxleJAhbqb8rJagxSOHJB 4HphHQFTsaR9HcfZuOq1/M79HzSPbdP5bTiXfp5tu6od/7HxwXT3zKafFARu J/FSltK8Lx2bGLycgxNb97hJzeJDy8pSVMmEfm5XVRdf/8hB49yphoqlfHw9 4xF6Iomu68RRobYgLnJmbhKec4KPqPBozm8vCmV1ierf3vGQsXPBpuFQPtL9 7ij72vBRX9mfX7Xsv+eo/27scmjzrO0bgVXdywU7V3bjRq9aWKqTMo7ZmJ5d rTaClrlNjpo3etBzzuJ0ds1xBMq5P8AwH332OwylZ/di8dHNRapJp9Eos+Ba IX2OsWl3+PYz+uDa3PX6wDpLyBU8yyigufGt0N83Zol9sCxtePN+ozW0/D7Y VY5RmH/xrnYNvw9Fd5lL+f8uYXChc9KNEgq1i/7aJxv1Q841aN/eSFsInJEs efeGgqLjxHwB737k+E0sjYuwQ2bq9LPTwiikGn1/I5rRD7Xpvw7K9F1B3Uii vrUDzfN2c+ZW/OzHjz/Vt0aOOuD5glde9y0oHF6kEpA0iwGRzrAZ3XEOmHlm 423uKQqMeJGVO+cz4CWtHnyS6YDCt9NSvxyioLCJo7h3GQPq4+vGFio50v3z 9e5xmqMexq3Hc3UGDmUZTajGOyLFXmWiX4HCKumtBYQuXcdOenv2b3DCssXb qqwnSbA2cfbJ2jOw4sU19pqNzmi+clBSqYaEYuqwkyhd90mao5oi9i6Id67Z dDiK1n9l2c6wOgZsl2t1hz+9iq7zC/bXXiFBmvmGVf9hYNczGecXBa4Q+PJV 7PQm2u9c2yV7NjARWffyz+GVbpAM36I2ez6J+qM3jb6eZEIgu2DeZxF3bBVa 5epD++OhTqNpZtZMDMt1h65xccdJKbn42g6aWzRGa2oeMmk9XbHjzjUP5ASx qJB3BBpOqphWZDOx/bWcRoWlJ77ddi+1f0HgRGNn2udqJiieFOFCeMLu6uVl f4IJaEn21cl30ufhTO4M2+eFb25VH+770314bYsfc5A+j/P741UXvVGlE7Eg +gGBkhIl07ppNBe5VwWtsH6AwIj1xklPCGSGnHv3RnUADhUfuscmn+LC5qR7 06IJOHtHNrYcGkCeUeFalW/RSPjy9/mmJAJTdmFvspxojjJ6bz9mkgDFPVvb j2cQ2LSz2D8scgDqkQ9fPdv1Goapw6yzNOfIHxNxi00fwBFbO/X7P1NxeIu6 iFo+gdVzl3H1//MeaYFecobQW3yDgkULzT/6l0zubaf5R9ur2PitVzp2774X Pp/mzOvLjoSLdg+g5cKYloBUBp7evv50pJSAwORnxRDuAA5squn4150BFde9 fpWfaX2R924Q/jGABZWD5eyXmSisYFYG1tC8N29nuJr4IKL7st+0qWRhL9dV ZWsXgRsNPZttD9Lzl5OEnWTzoL/7ubAyj8BrsuR80YNBkIJScTIrCtHNaPo7 8pVAz8IZ1YXpNHd5u+we1irCqb8SXov+EFBo1j4m1zuIb2Mt4THuxdhccixW m+ai9HcX+fNkWOirGwpgm5ciU+XAtJk0F2UllYsd02ShrVuk9v7qTzAzvMMf petqd8e3Hy57WZjhTDobpn2CeJ6i7uASElHtJ3waLVjg/Nm2dfXzMrpe/3EX LidhatZ4+54HC5M8Ubmxw5/x1njFg9s0LzkwteOH01nYfv3+s+g/5eC8XCH9 mK7nNcus3YyYLNxhlxv5uVVi5lO+S99WEqHK44/FftD8lpCTnC1ahS2Z6h75 OiS8TOOdlZez0aHSoc0wq4Z9xHjjJTrH/lzkNfhZmw3G7eR5Oy7WoMhizeJn RiQeqJx5ZGzHRtSs9Rd6PteiaW+kU44dzTOtq1dfaGKje8fLTR8Y9WA9fXsq x4OEGHv69Z2iHLCatueN1zcg+p+yg6k33dcBi89ukOFAtUtl4fs5jSg4onvX 8iaJNGOtc1eVONiUWL6qb3cj/qkU6O7yJaGVdk89Up0D29BFv9jnG2GQoOGx 2Z+Eu+8fG2oXB0Pzc/REEhsx896vioP3SEhf2vFgrTEH46X3/gRONUKndsUK ufskjoWUOped5uCuq414qlgT+qwyRzODSczgJftOv8jB76S7sSNaTcg1/mpY HE7ijJPfqus3OdgQpjlndkwT5O5w9cZondF6oG4pGMPBlUXKXlNLm7GetHTc EkMi56FaYPI7DsRksl+ftWqGz8vyC7tekzDfVSeg1E3zmOFdm2zBFlgdZL8c zyRxPmRbxnZBLjwsFsHrcQtIosJkLs1LNltMTgzLcMG1VpeyEWiFY+zIJpSR UHJ9/LvxABeVB686fipuhZVHXMn5WhLf5bxCLjlwMTAn36P4QBv87spJZtaT aPAx+TfgzUWnH2mV5teGmFFf406alwzq4hvEQujrDB98L/ulDat7hwNOdZGw Rr6fxxsuLGtC+vjb29HbZyiUx6U56mGR0yiXi8R3UW+ZKzowESdb/3WU9s/i GzMSFgzBXOvT+8ymDhy7HNrMEKMQNeS21iloCGVHu6JmxHZhkh+4c2QdheA5 yhaCMjyUOn1JfdLVA7szqytebaKw3o+zRm4XD4sU2ev8HXph43fFXHwHBbPK uRtIEx7k9HcMZXB7cRKKjP0HKPw4eF3VJ4yHBZGrYjUl++ERYv02zJSCaazq U4kmHuxu/7hduIaBAXFOwFbav7Qk4axK0PvuVMiTvMzAQiW7Ft8rFPbeNjVp WTgM0/0qctO6GFi603mHsCftjxqGzHl7h/HvRuaVgeNMZG3RUjO7RWFK5+me TvNh3P61t2Tlcyb25Uv8NX9M4flAxLmd6cMQ7p25MvHyALSYJ7QPFlBYpH4p Y3IzgZrwuxkFtYM4a8Pncjso/FVr9uhKJPAkOlM0e4SFox3XRXo4FGJtSpLC eggYLT050eXGxmFDG1YJj8KTuGjSn0vn9SSZW0bhbNRIudwy+03fnzWZbgcV SdgdkauK0uJgzybjiDOz+VhX3nT6lxmJiLcqztNqOVhmIXLjhxif1un0jAA6 32yapmKgP8LByh+eAVyaoyq+frP9QnMUcWhxifg9LlLG9gXMWc/Hzhjej+8/ SMRZN2XLGQ7h+N+dUaWX+CDmmXpq1VAgY027XXyG/8cc9d+NmQWfem75jyDi gd3G5IZuOCgrFn6e2oe2+WIHVrXycXq2i/bMDb0IWMCbkik9g1xFYobffT4K o9/VHS/pxY26LtOfjudxM23NLoq+D8cD8kc+l/dhq23Ya7V/1thHvrjomkmh +8FsMsilH8IhguXjp+zwQ7ZBe30wBSXWitDn+f3Ysk9S5IaMPcZtRELdTlDQ uyUbnLCIgbMXTHSf/HUAj3HX8bA2haAP82pfqzCgLzDP1Om2I6wck+0ZK2iO ejyXydVjICfri/J0bSfEPs5S2zVFoorMnrbfjgG7yW6ri2uc8XeT2JJ3I3Qu ll17qciT5pYMS4bSHWc0LbondJZNr99QPiFwhwEHL5+p3xXO+CagP+dxJwmp A6bfs0Lo6zMnJ+ZIuiDroVKj/WcSwdrnBfMTGLBakxB6PdQFWl4/nbRo/bG3 vr3xUzEDNa8lf/C1r0K0bldxBq3D/ayfkgIkAwdKBHKPGLni3gUfm3f7SfRo e9+Jl2PCtTa3cGbSNczPuerjK02ie1rwxduHmZjtVbSuqMUNyYcm5ozSftoR UeBS5sMEMXCWs0/EAyGiBl/MUwjY2b14PPyBCWvybPqfJ57I2j702TmQwJFo 73+qJBM35n290Kvni6IGoVaFEJpnLCK/NorT/FDTeGsdLwSCD2IaomIILPVc PN52YgDWEerst3UxsP/YuOVRJgGz45+9BaIH4BbsP7mBfI2QCKMz0gX0daTH BI98HkBSfs1V1VtvUZxz+bAfzRULs/NPFLMHQPIGl9l/zACDbyI3UU7Aw7WW pTUxgHiVC+9LRzORk7/6miidWwyLCwpWLR5E7Senq/odWXCcdZol00kgNE9R P0BvEC2ei0RvNeZi58svN0QGCSwROeP005le3/Vqd5tXPgS1FNyeDtPcFd1u MD18EItHl5r13C6E9+tHDdd/EODMuRS8r3gQWimPDl5Z9xHPRTq3ddO8cXtq sMCLMYidaYcr5oUVIyJ8+KqqAInM+uByq++DeJgdeLNLqQSFz/d+dBAikXtK enOiIAvR1uFzxp+UIOB5qujxGSSWXgzerTeHBdn5WYKHJktwsqtOL0qE9uUd w5gmz8KCbUlFUcGl4FZP7swVp/2UvJIbocpClEaOr/3vUnyTssyIWUCiev8+ 6dYDLPyuV1x0cugTvq9XPvhBgYSVQI2SbigLGieT05znl8PGd0mgHM0hB7dX jB/uZ6H6+dfYCOtK/F3Buxa/g9ap7p0P1wmwofnmuYLs5So4b1VQXkjX2yID N9mNGmx4fdF+mfyjGp1Cm6VaTtA6pZl/8NslNvIuGCTIptSi5cqko/tpEmos jelxt9g48sxW8KTdF/wJeXbLwJyE4M/XH3Ifs9G88PhvZck6JI/HsLwv0vV/ o2vhxlw2zh9MeNAvUg/vCJ16HzoXFH6hClpb2dg17eai2j/1KA6O9JDwJNEZ vmd3mRjNGzk3C7+3NoD3Rd3SJYCEbuozw5P7OHgxuWrLicJG3CwOnXbpAQn1 bd0p589x4H58ZXHZiiasbY3edOUpCeeumFVhIRzcYmx+dpTRhO6s9R90Y0no TXu0YU8ezQlGCqHX3JoR7XHu6MU0ev2KUZ4BxcGY1ZWbc/a3YNWxZ3PGK0j8 Jprk557h4qDPm8kEgTaox6at0W4jIZn21uv+My7+cF9E2Y234avILzk5Wh/S 3pmOLU/iYvuluzqM1e2YbdJ/JLWHRPTjhaFxuVyMs1avZFu2o0rjmKJqP4nT ujzLyFIufIiJHOGH7QhOUvMWZZFgTsXZM9q5SDVdmp4+2I76kPEMryESR+9a PTxIcHHum0PMYvUOzKw3VFk4TOLz0aP9+75x8VvlqHWQQQfkrD1FRCnah9yI lVv/cWEb8739qncHxk763Yj6TmLBIvNz32WGcGDbi3n2Ix3ovMmMzPtDQnPh SQcbDGHT20VKpEcnLg+pFHX/I/G6yV711tEhqOrJWyws7UR+1OqkmFkUMLGr o//aEHSSxrf9Me7C4z1zVVZJ0rlYYt+aroQhREf5n2sU74Y0o+h36RLax2um rKtKh1B+JG7mS59uLHmUMV1GkcIC1+OpZb+GkDR1eXTkWA98z5/vW6dOwWVt rn6TAg+1czZDU7AXkVd6LSo0KWTvCPswosWDa75d2tEjveBLhlVIbqVgpTV8 NO0wD18XBqdtetOL/AKDoQe0X+Qdyi9UsabX9zjufb62D5dWVjk2H6QwuCHE /FAkD5qms/Xs1vfjjYxZ7IKT9PrAFyO6H3h49nLNbBNuP7SD702PpHN6yoYd VM6yYWgarI66zWfgpFNaRtE9Cov1OvwlAoZxIKFdcYXQAGTVa9JTQykYH+oR ROwwenbx3HbuG0CO1PWcF08pbM/1NsrJG8bDh83r0m4OYKNs2Yt1yRRCL1rm 3fg+jBUVVn5PpQfxNvtS989cCl4/gkYsVAhYbz3f9DNlEMnersu+FtH7Plyg nr+XwHGh9QLuXwfxMrlwf2I1BYWt3vr/HAlYyoude0nnG/7ov+OONP8EhRpf ln5F0DwvEbmaYEFEYs+sRAaFHiktTTk65/WsN+jr2MaGfJWvc/kvCvmGsnf2 ydH6FDdH7BudD8grESWHZPn4dvVQmzTdNzsT3vh0POXC+sT1zOTtfDzpvL6l Xo6CTNO+LxvKhlDpet3WQJ8Pb943AcPjFLRxsFhNnwdeYIBU20E+vl8rm5d1 jkLB0OGd/2x5SL/E8vQ8w4fHdRub5igKRZbXwitmDKNh94UVf+z4qGQuvKnS TWHGrEuKo0nDMJpfVdrowIfy6LodbDaFCK0xkfayYchmTaRo3OQjllmoUrWS j49PctybLhC4MG6isz+SPqd89M2IW3wcevRT5pLp//x91P90vLBT4ef26yP0 KLh6PrsbSjf2WPqK6ANM1smAaj42apeuXqZH81XT+N+EBjME3csa20KfL5Xt GlPW3ov4YnN/rqAFPqYMzv/xl8Kp7m9vgvv64Ou4RKDm8SU0PGfsa3lFodXE Pyvxbj/yxWbe2c63Q1HEYNXtmxQsu/4tq2zth+nkQoOKKnvw3m03UtpP4eiI FI+xgoGm1J6CuQcckWn88nesBoUkrRvztLcwwDB5NBne7Qg1XuGvDQsprJ7v o3jdiIF9EodrlB47IefT4QriK4lzCvu++HswsOnR8+3m3s7ghAS4CjJpnrHQ WH4yiAEzk1XM2kFnPHvw8l5mOwlOmiYiQhmY1i7wUna5C56F/ygdofNU/KRG pe4LBkhq59ZMCxe8IOJVi3JIbL9jnWuYxcCxpgth8qMuSD36xb+Z1vm8fz1H xRoZeKUSOmydfBU/lIqWCTjQuUl5qurJbwZgU5L7450rDoz03E/YQutw2MTq x+pMBARcGzKa4wbdz+6EkhgJoel5seVnmFhn/tFis7o7Mu/1af/nPYZU4qln 5sFMbOk6u8/2igdWlwXmjD8loFv/QGFzPRMvCmRnjs/0QsXSvPp3DwmsaUh9 Oyg6gGi7hmVp9iFozpxZzXhMwMlHbfpelQFo7w0Wd1B8imCbtqlPyQS2Pnjk 6u0+AGOjrL576q8gHDNL0/49gcXZ2r+FigbQkczrDYtKwwunoofnPxEYcjrB 8+cNgHE52Y/9OwON4TEWM6sJ/LuS3Rw+YxDHzZ+HTX16B5eGEOm2LwQ02/eZ b5caRLHWIuXvVVnQeWyaoNFGwL554/Yv2waRGqf5TWt2LgQ4a2YJMglE7WqZ nHN5EKZTLUT61/do8G4Ivkxz1KS3Y+D2sEFkxZoRfm6FuC/5MX3adwIJO2Qj v7wfhK3qgGtQRRFm+YVKrvlLQGWTV4o6ZxBDsesE+cXFSBh0esATJjH0I1lM ahYLT27mGD2pKcGSyzxyJc1FJskx3O+yLGjbjp9z8CmFtkufigLNRQeSzwZJ rmUhzUFAPpVTivsu8505EiQSHfmqClostOyWXRe29xPOZ0fdUZSk/X251JiJ Ls1XGaKZFtmfMBqv7u+7iOZ5Y+utc0+woHdSZu+iNWWY+l7D4i0l8TUmUVDc kd73ccC2ndM/49qsT+8dVGnfPzzXK/MDC5pnF5SsMa/AN9MbbeIg8Yp6xTg1 g42yp0YGb55V4faf7PpmXRJdi4h9xkps9Jyc/mxBYjU85iv4XzAk8aBGZMdX EzZuH06elNhYizNd9b7+Z2mu8/0XbRbGRr5dTm7Lry8w0VVrGbYkkZ6cEsRP YSP+R+vedZl1EL68sfXUJRIXKIc5hh/ZdB/mB2bo10P1y9ajGo4kpjcsvxTD pDlNOaBBf20DptvPW/32Ggnl2ZHOAlNseBi56DKfNaDYQkPQ2o/Ey52znkzb ykH58S3+HP9GELHnGUGPSPyqDu1yceYg9lPP0o5LTRAK/+Ub/YQE/8X7yLkP OFjnb/LYp6kJSQnPmW/iSdywyjT4XMpBiIPTnNqYZvQEVO15mUpCIsUo8Cab 5rcf3WdslFvw/MBncs97Wh/6D3XXLOVi8t1qaaZQK1SUBV0DGkn4ja+fQ97h Iunx+fn7E9rw2nFefwmtGxpl9xz6v3Bherhr/GRhO4Y6vrOF6VxGPCGXrezh 4oWknrvTj3bcVu75Q3BJpK5UfN8yxIXA1fMRZxU7UCJwmJhPkIhUcb//fJwL bngOEWHaARH3tWsM6NxHBWWFz5s9hBzSaKVKQgf2mt29U0bn7VQkU4LyNJ/0 p6UbCnXCO+rmmPQ4ze1eFVe6FYcwa/eDh8elO/Fkk0513S+6rhaHs1M1hrCS obakQa8TI4oy20Dz0k7HlYWth4ZgNsfkbEhuJ7pOuMvPm0Fh8oNMeZLtECIO 1n3rW9sFomB8/wkRCu7F0sQRnyFoGp6S13btQqbNSrs7Cyhc72sUGEwZQqrh O4f7q7oRtqCrYY8shXojxyGPtiEIl+xiSn6hOepd4d0zChTap4LvKY0O4Vr5 6feCm3oQYNIndHkD7aOGVdqTGjxY738TxdPqRV7okbvc7RS+MX12nDHhoWa5 5cZqVi9UJb3/Ke2i4PMxUNDJhgepAY8TTlp9eNXsxlDcS3OF9Glbf3ce3DOj pIbv9MHn1a6kxQYUNvFE2/8G82CkZ1dc9qcPxSaHIt8aU5CfOM08+YmHOCd5 UxchBmKrfbve037vqvGp7Qab5qugfcWHTBnYfekTK9uDwprw3S28PcNIoxrM GUeZmKsRWt34mP5ea/bHDmUMI9TZrPuP/QB+B9RFWr6kEO4H3p26YRxbl7bC Nn8AV9rP1WfEU/j9ZMQheGAYLWYmA/78AeisFFtVnEmh6ab+y1QpAvpHZx57 6zaIiZJe0zOf6PUCVx1cjGhdlwq4+UeGBXUPlSJuFc0TFpnXVewJFNTeytEx ZSHMeODmgVYKAwOx67dEEtDoKVq6q5bOZ3M25OqwKMzsfLC8uolAse/s3RZn 2ZhqPbb0PkWhi0gd6h0j0G140iU6nw2Rg0+Ex4T4yN193i5An8Qz1+qizggO LmJrQf0aPtIfiiqE0nni151Z64ZFhlBVP3Vmx34+2m65+584QsGblWXdCB4u MrDZ0YiPwlOxMltuUVDbyTkfXsKDtHaX/iETPkbnU4+aHlLYNe7f/YDLwxPq l9hraz7caGxeUEGBsXmD3luXYaz2GNZvd+NjRiJDcKMwH8G1fn1pkgTCvqs8 L/biY0hnc9HkfJq/1ilkyG0lMP3IxOLYB3wwJo8w7tP7SzbVzGDwiP91jvrv Rhe7pb+3nR9B6UY7vzzpHlT6lkzfevkwrnzfq3YrjY/M2jMXq316MXCn8+LN L+ZwGL5f1HOBD42J2jbZuX2ovljkd/myJdRuLwod7Kew6BH1Vl+6Hw8rf/B+ L7qMRQk/7l/0p/tone39RdX9kAhifC71toflPo37s85SOJmz5csqcQaIxI2c xGIHPLS8uySVzjVX844mrtjLQJCR/2TLaiewfPdddZ5D4eIxsU0aZxi40/NH Q73UCamV5M3To7RO8tY1LKY5amXtr01PPJ1x7M6Qwhyai1TK73MVXzJg9/zO rCOXXOB7XL5lZSHtR9Pdt4ynMRBxYc6bwjoXDKb9vro0neYu2wvqvHwGAmYN FVvKXMV7lrrT3zjaXyo74r+XM/BYY5V/nPVVHIn7+tudztE7ao69MOxh4PL9 WoMPo1chu2dfylNnEk/fPjk5/ScDM/U9mULPXeH/N3phiR6Jv/FHtcPlmRhv G5ozN+0a+j599LOaT2KexMEXoSeZ2Dv2Ak6z3PH5w1ep1QwCH9VXNV4PZGI4 2KIxWc8Dz5bqHgl6Q6Dv1M2PZQVM+If66mve9QRFrJ+54REBkTluQfbzB/Aw 7mlmnGgoFE5lLHgQS+Bmj6TY+KkB5G3oVjM7Eosk3no9xRQCWr6eX+76DOBJ bH/3b/4rmL+sDbn/gYDSq2tdMxoGUMsm5yVeSkd9Y8RX7ToCJ8ZOhkssGcQv 4fCbyZwsXHklrXqlnQBvwUyZ9bsG0eOLsulmuZCrUp+h2UdAzOigbb3ZIBas 3hgzpfYeO/4RhMoggacqvyICXQbxZOUHl0a/fMyrun2ylOalp4E3ZueFD8LF tdG6I7gQegty+66N09+r2yaSrBxE7ePrwvbZHyGRWBJ/RZDEwPHmib5fg1DI EW9jHCvBno37Zr8TpX0nfL3O51UsWF/uapuXXYrChJuuMjTPJEqZrtx/jIWm hCc20jJlMJ9t8SGE5pl/K+/63LWn+UdmSf6FiTL0hHdzb9L5TULx9omyGyxY Rh352HfjM269EFobt5KEyGWlsy4PWFjqdvpCEPkZdc+fX09UpPPeB9/GhGcs fP3lAcPj5ZDvLY7WVyaxeevZ2vspNBdRNu6OjeVQq/V/VbmORGlehFtzPgvF Np7fQ/dXYJt04BxHTfo8d2PFR9tZcDg1nPtMtRK56ll1zntJMFc5kcdXsDGr zCmm4lo10n1F/jgbkXj9qMDvjS0bUbdzGZHFtSiUTVgsT/PSipcGH148YmO2 ou3NecQXbNjEqA6xIVE3x8/gVRkbVroSk1Eu9QieMBrvcSNhofnooJIQB4f/ zLuslN4AYXOuT4oPieyjK+NIOQ5WnH2ltH1VI1T98j0nfOm+OzKt+OMGDgrs Fp/UtW/Ecdbooif36NzRuOi24ykOGMmfpQKEaP7xrZiRH0oi1GJuSKwbB79H Nhze5N2E/qvc31KxJLZ++5vrmstB9CzPo8euNkMsJ6P+F52Tb/woXFs5woFy 9DKBVsMWxCctuEJlkbDxnfRrns3F9F/S/jrvW3CkqOBx+ke6756Mr2dpcZGb qup5zqkV16PY68hKEneDn7ronONC50LUQbV5bdh1fmGpWCuJ3Le/lA9GcLHW lbOtnNmGHZqcUj06l338fTfKSnwIW2akLNiY04Eir4fy2gIUjHdKr99yjOYQ jvz8lspO3OA4z+mbRvvB+9/dr82GcPuheHPbGM05G0/vtKG5pfH5O3fVK0PY KvY6o1ujC6Zzhf5dnPWf9y38t4OuQ5C29Lgmc6ILioFvNvuIUUg33HO0ImAI ew5HFlx71oWzdk4vt86ncCtE+FpHzBDil3xXk5jqwtMU6zkhkrSfflnxKyNx CFzPJol5C7uhtkf5L28R7def7B1P5AzBXHP8VPyhbszcaG32cykFpYMGkl8a hhC6/OXnDzndsD0b4vyN5h/MNC14930ITasfD03T7oHnp670/DUUOMt+eD6f xcPK7pXsPY968N5WS/zkRgpGGx7+tdjGw3fPaSm/TvXi3Jn3+0dBYfFjgxUd F2heeqDUfkuuDxt/aKhK6dK5eM0MN8nrPExEDHDOPO3Dpi2DYT1HKRxRVjN6 kMzDAvLPqdIb/eif3zIxw4T+XoZrrC5V8qDpYHM0bi4DRo8Er+iZUbBX36Ds 3cGDSePVc9e2MlBnOHlI9zyFhXeFw0Npn37w/s7ud+cYSFz1eZGWNZ27TbL/ zZ7iwUt4JEIuigGHQUv+JRcKzekH42TXDiMzVOn1pCQTUXbkDy8vCkOX9l+I 0R8Gw8dR9pQFE+zyypCJCArSYccictOGMW81MyHt4gAGj1WOqGdRmLV53XrZ ZQSaMuJkO+4MQi/Qb4qbT6FC7u48700EEnUMXDpo3TqkkPTMv5gCaZb174MB gZLbEaqyAixwb8xrEqqn8OnG6XMetwikBEk9uU7rSvCPxvPKDArK+xI09tP5 9Y91zAeJzXR+KhOJHhuiMKNVQ/w2i0Ds7bFa7/tsNJ4xG+8ao5+7TNqPnQtJ aHVISUOMg8Ec84H5NJdsTmvRm6B5KefMiMG/xxw8ktswFSnGh/6ZdW6bLtM6 JFId1EVwYHRhq857eT6UZk+dFyogIfujePhyARda7iaF9np8Wtdx48BBun5V EvXJzTxMhngfXkBzUXn7set9ZRStQx9ujVwZxqsvDfVFLnzYXjwzr+AHBeEW tp8dMYzHS1OnqdK8FMs9fSJbkI8Yt3fT1cQJDCy7o/Q2gN73bOQCSW0+QmR8 D118S+DT8oy7vc/4yFo9oPKA/txHKzaTT59Xak9DcGc0H4uOXxuyoD83rzZ0 JqP+999H/U9HdrhYx4OzI3gZezB7tlwPHmZeC0r5fhj9MpvEW1NoXtyy87GM Xy/C5s+sej5iDsZ87yg1Cz7mWb2Z4bCwD3e+Exz/+5YoDrbfu76HwoKwv8Wx 8v349TVadLHuZXyzbD0kdptCRlJJUklDP9hK4oZByfbQnil56M1pCg3OLBPP //TPT4NU0TYH5HR8H0pcScFGY3m+vB4D6szen+LbnCDy662OvSgF0y+deuvN GVh30VD1UqsTdrTs1UymaJ0fzu4ou87AGUZdhWKoM1R1q9iZtK4m+Gpd9Ypl oI+Mqnvn7YKqlG/XpPNo7tLvK/yVycDTnfGzXIdc8PFK96YSOucaKc8t2lnE wPeTU3cq1a9C/2uggkE0ibdV5m9eVjNQo/tHSuPGVTz+XfLCIYhEicR7+RMM Bqytzie6irpib+5bj/D/vKdaY2Uj/JuB5JbGnu3prqg77vQ+V4fETV7Op8er mPjx1tumquIapmspnTgvQUI4UDrjkQkTXJ+xrSky7jCq2l/t0kOgaP2bzjX3 mZCN33Jey9wDQidvVHomEfhu7f2uupgJRr7xjCspnhCWyxX+G0rA7U6TxW7p AahnaIv++RmGgvtC4pvjCXAkAry1zg1A6YyKdrVmHEqXE+q2qQRucLeLLvMb gEDWqsVKLxLxs+l2mNtHum8t8qRtOgbw6+TinCgqHVbTD39XaSBQn/mk1Ume 5plrxate2mTDv3uL/HgHgb1C4YqD+wYhMHxh6nRFLvL+3prq6SfgEFjSN8+K 5qJtZ5I1Y9+jTbOj8xGtC8MtL7eleAziRxeTsY+Tj1d/Yi1HSAKKjfeltr8c BGuvQPL9VR9gti+W4/uLwIPekF2MxkEYmp7YtkK+GLEdewt7hUjcUnzT6ivE QkCtos6zxBJ0XLywiCFOIrJnp+F+NRaUm0ddyX+lMOzc4j5jMYnlrVEWqadZ 6DFL277wTBn+D3t3/k3VH8ePXpKpSZPKVIrMkWQsT5pnzUpSSqJS5llRkhCp aFBIkmiQMlPIPGUm4zmc+ex9UJJU3P35A74/3Lu+d937vff7017rrN05e3i/ Xq/HM8fmtYGTf1yBgNMT5lEbLwaq/mq9GNYvh0vV79G3Kwiq70af2R5GOUrE 4WRebTkWNykaNSoTiM1c5zT+gIHWftcZZw0qQG849NhAjYBS66aF3SkM5LLu 3/d/XYG1c7yLujQpF+1bNvdLNuWuruCGOLVKlE2++PBTm8A+oeQQyzIGgpvv 3rt0vxIWu7uWf9an3n9J7LUZAwwEPhQGK6AK1bYX+NMpn4ev19UO02Ki4n3E 2MjXGmzNKf1nc5TAyn1/y6U8mHi5oT4zRrgejfvG1C/bEsjXgO6HJ0ysPBss bm3cgIpzdgNCTgQu02xUdn1los5a9bxl1Ve80Nw4yfElwNbPG5Wl+nLIpqeV J1oa8fhewrXYIALac+0GLdRYeG3yPtpoaxOKs5KfpoUQWPQ61fEGWNjSqOxx 72kT2Is8V4tFEehLGj4pbcfCknXNe89qNcMka5eCWiyBdet4F7ddZ2Gtn1nI gtRmDL8QWcFLJvD7blhV3RcWutrFz3S+aIEi90mHyHsCwr8GWwrGWTjOSbWW 9GxFTtfZQJMcAtOkhifYC9iIWPyyhktrBWvE7XFcCYH5Rwxct5mzsf6WEcPm Xhvufm1cN15DYM7dYlnD82y4v1FJs9Nrx+H79q1WHQT2ricSbBPZ+BjjevWC RAf2nHEctf5B4K4y07dXhoOadKPZ6vxOHMrYrqRBOarxj5XLk+McyH7R9Gvi fsP9JeXLNWeQ8Nwq2PfZgYNZGY+k/eW7kG4///gE5aiAj26FZ3w4kJ9u0DNs 0wXnjYfmZUuS+FtGVxoP5CDpumhBsX8X1mb/DVgsRc2n6HW1Vx9y4P9c/dru b124+LiE2byIep/GseE77zkYdLo+NmjSjdQuPl5Qjsoe92tXzeLAW9FWXHRn N0rcFi6LW0oiZJm0rGwpB7zY6d4j/t2QO5fnvGUZieJvpqH0Lg6WQ0PiTF83 rkS9fVymQmLqJadWQoiLWWNKEzede3BzWO3XAS0S/dasn4eXcGGt/TF9SWMP quMKTC8YklCz4XZ3beciWDH6ORnZi5RQ7x7BRhKx7+sllF24mLnQ3Hj38T4c CWkZuryd8pUg5u7IDS5MB66cvFrZh9yDg1svHqKu58yzkus/cPF158Va2Q/9 uDsyXSnTmkTSRl32lWYuLidbivep09DxetryzlMkhuY59mkMcJErtFom+SAN n5Y7PbxuR6LVvGRAYpiLfV0JQtleNFTlnO28c57y1bItMhxRHhTUNxxc84EG bfLF53BPEgeOGShp6fEQ+27W+RFVOiJMTpjmXyHxcrnoh8UHeUhKDOs57kNH laOqXvEjEkvvajP08nhQPTX9+K9rA3B59G27QTaJ7U2bmGVKfHRXHaB9ejwI B9lVxWZFJCqYMprW4GPb+Uc63P5BfFnwICXxC3V/b0p8dLWk+mKdZd8dBQbE FmTes24iUbqF73c0nI9dGWcPRb5g4Ffuu4q6QcpXOUvZIk18TKu+YFdlxYTR x99pcwgS5f9ulhgO87G/Ltt/JJ2Jj0KfHj4bp67n0rCNhcsIWMwz/npThQW7 plP3k0QFyI6S/JdyiMrxt1+KaL5nweFh0G/eXAFCk1Qr8r0IaFr/1HecxUbn VeOx7UoCvOStXfy+jMqLK32eP2xlQ1Yu30Z/lwDLKmUbqi1JXLWrntI7yEWf Xt9I13kBytu0a49TTiyu7TcwDOPhlrOO6w0vAS6cNTppOEX5dLa4SbYoHzNn xc3e5kd5SOq9xPnZAuwrds96psFHaFNy+mC4ACqxpTHauwVQcPD5y/7ve+6p n87FJQjw44Xam/ex1L97+swy687/+xz1P9r+/L7ZpOH4EPhrF+pdUenB+nVh 1f7H9mHI+5LzwlQBumtEpO9E9CLSbPUul2W2GL6cPXXppAAnfrndYMj14Zri AsfjRXYY/ioVcKGDRFD+j+UKGv14VbB1L3HtAi4em7z/9CqJBdv/zb/zrR8i 59dOiQ9chvO2jzfYR0iI3eyXNFpEw7ue+HqPUWewl8QsH1AgkbhF5nz/bhqC K3SWeh9zxQ2iM0xIjMTsp78CHtrRUHiTGZw64grhgLHQaC6BCM+xu21BNCis Tzpo8sYNVx1bRtilBC7Y1sZsSKUhYrn2vvjn7pD5+ve6RSaBERWX3rxcGra7 6oedmu2BG4sjwl+lUnk5e5+3RSkNHz80ze/d6QFmpSw6HhMYPiN9ULKRhuys +oaRJA9UGp9pT7tBYHzFx6b5TBpKdmVV0dQ8EduVF1JznsABsd9h5VM0HBW3 s1Fp88QHWvjAYxDYYBYlSFenY5FV9BEbjhdKvq/YzBUn0EaeqxSypUN1g9gB /mYfnDCsqzzQzofEQXkP83t0xD4Jf7vnpi8+z/PLEU6iXF9fW21YSYei93n5 t61+IK+5BO+L5YPh23H/ktIAEhkrB5W8H2CFoDBF+yUfwSdmZepfGkBntZbh 0/pkvAp0Kd9E5YMFw10dYdEDWP5Fyd1E+RX69V4ozCnlQ3Hg1tKcQcpp1xZW 2Se8xz4HCberzXyYvHwqmqBBOWpzXtwryWzwjD5/daUcKHk28+cKy/+85JS5 OScXctbib44N8qHP73uz32MQnZpnT8jfzUfpQ02LZBYfm9AZn319EBE7O/Lv uhcg6sQXQfAQHykWJ6VvpQ1Cx/lvvmVHEcxeWD1W/MvHieAYrww65TpNK/+Q p8UINdQ9/kuUgHreYuf58xiQhCoX80thVp37IlaK8kbiWM4qEwaefB62Nz/x BcbGxbP7ZAh87DXWkXFgIGPF2wVdn8pwMv6SxVpFao6/uK5cd53av1jLP+th OTpUP0S+pBxlVLDowVbKUesTHOQFayowsbqLcKIcZX/M6HnVS+p93nltrf5Q gW3ac/R0KEeVKlZt+/aBgc6gmAPv51dC5vLk/kzKUZ7Hirp1vjBQFh/84lR4 JTRP/d74WpdA95fjhF4jA0Kfo69/GalE/jvbuBFDal1Vftz9jM9AksrkXb/q KmgVDz8K3EVgf7zFZPV6Jnan3dnH2lYLdelFL/OPE+i/uHZ18XUm2m0alWU8 62GYuSNf2Y7ApqGxB3dSmYjZf30840ED0iqyw60p/6v/i4ma6GVi/FOMgJRv hPDNk+1OVwn8KRb/07eMBYWnSXcWKzYh8Ee4YkYwgfZnDQF9+ixwRtcwwv2a oDh/7FQ6lS+mrzjZKrqfBX0/NWengSbs9ohpNr9LIMrX3HadKwtTx1ruD9k1 I35BU92LRwQmYsXW37zLgrPXxg+zGc04PEOpQomqu7Tz3dX8JhZK/0i8Ot3b gsDNh15sy6Jyxy/7WTYz2Ug6/8b00OdWPNDnbT9B5erfNRF1v5XZUF2tkfdH pQ2bd0e7Lq8goEIL8ZY8zEbXgOmbJfQ2eGsXtc5roHK7kkZ2hRcbWfapf7Md 22H4XSF0vIvK54NDbWsyqPf/N5rwdFsHXn9aXprw6z9fOXy4qkV5abXpkJve NxjMmdZZRTkqMcnm5cULHEhovIubrtoFd/cd3D0SJC5NC1/R5MtBaoX8jEi7 LkSV24kcmUXCsClNaUEoBxn3chd9eNiFhicuXOO5JOZbrNEouM+BWe/MYN+a Liq/7jVfspDEQzFi3bQ0Dpz2rg5YpdCN2p/eHxbJkLjS6KP23/dalIdvdmrd 6IboOokl/z3vpeZabQ+/ioN5fvZNnx90Y1XL2i9tciSMftnLGTdy0F4g8snv Yzf8v0jqbaVy6xuLn99PExzM5K0W2bCyB8c4dtdea5JYM40vemURFy/vpj/l lvWAuXPb1441JH6y1v1dosnFRGiee7N8L+Zt+PjYZT0JiZQz9xKOcsG5+quq oLsXP+SndvluJdGjsnBa2BUuAuNf7Z5I7ANNMu7K7V0kBBp3juREc1G+BYFF Iv14sO63ws6jJNpfKzl0lnDh931+i/xUP6R25c88RjlKpXJX+i4aFzcFxXO/ 7KVhNODo4u2Uo3769IirDXEhba6l7ORBw8zsH2JzHaj5nSvWdekfFxHLWiVu P6b6d1mEJdOJBOHN9ApYwMPTs2KniBYa/K9pai/2pa7z1wDZu+Y8tI6auVXt ouOCvJv0w2vU9Skpl/poy4P36AmadQIdnXMvBec9JXHSvHSOURUP3bkzT4im Uf0y53Pq7zxqHtnpeP7W5aNx8Qjz/edBeJdckDIuITEr5s2RU3v5mCh9pjsu ysDehzbrPlWQGCmb7m14huqLkzkC7Q0M+Jhbtka0kQidp2SmGcdH/vzOA3kN DDxKD766hENidbSytxmdcpfOAttpN5hIG4jnmw6TCKsuvjFLiEDxajU/uTYm buaUVov/IyEt7Jh4UodyUYB0TcMBFjZ/8LwYKClAoU6N1aYzVH6i+YprdbAQ fZ/7oGm+AHu/+A9nXKNyTzB/J6HKhq/r3Hf3VQV4U4ZUopVARdjyxKZJNiyO KwS2WgjAqE0sX+9I4nTX3F8PAqmW675xgc9lAcK6PpY20EikmK/SjsvhweLv yr8e/gIM3zcoGpgnwMNoUnOTAR+3zu7/SV4RgHW/pl5flvKXZF9hiAUfD714 f3qiBHDacrh47XEBmouDJsd+/j/3c73/WVu5fMfZKzcOwWr8o1+AVQ+G9XNF v7IPQNrs3kbHSAG2R704EfW5F6fMyx0f25+GtEF305ctAtQVLKwftOiD9Yq0 m8Ei9vgy+qtLrIDE5hwH6Rtn+jFLomtJKXERiSrLndWpepG7JtQ+YxYNFVuf 3XDOc4ag+sTlWgMSMYrB1sv1aHj7iiWek+8CqzehyXb/CLTk1i5WukSDyM/s fsZqN9zmdmusYRHQvyVYp3ODhjRNIutzqRvoqV1DZysJ1Dif1q98ToPO6Mt3 /0LcIfHDhzE9nnKLl6LUYB0N7Eld4ZxIDxiVZN5bGklgX86s05k9NEhV5qes HPVAGZF2+dJ1KtdLBTvtYtPQeSQmarmhJ5jtDr4plO8/qcqcm/pO+a1wfrje dU+soSeO1toSaLrk2v1RnI6Sbh8Znzle2Lnu6oeN2wikzO1aOm8lHZEtDsz7 OV4IVcgfnC1LYMUCccHEXjpeurVt2N3kjfCNcf0TVP2cfESueHOTDuPcW2Ui G3yx7cIbg5Nv+VCuNjYfyadD3H5PEPuGHyrE2K/2R/Axf3WZXe44HadCc2UL XW/heLzORGIKH2N7E75UXBiAuPXQOjIwGbdEfPfV5PLxe7CZqVtA9YVvrxeO bnqL2TET10+X8JERZvyyijYAzvOjp7a7vMfnrVq/mlr5GG5z4FesGwShdcbd OS0b73zK9tkxKY/RTgNXBnExXkL6nkIBanfTn44K+ChvKPs9L3UQR9XySiMz iuB9ISqhdIwPA8MN19bWDGLcvHBuSPVn3EvMiPr7h4+OBx9951BeGqh/joiH xbA+s2Cz7QwCpwtbb6+QZGDOp7zjb7tLMCc9bejfPAIyI5JDO8wZWJUZMxF6 +ws6wU10lqPu+5GuzIlLDIjDNvP7aBkWtUpWqlIu8rdyUpeLYcC4Z2U/Y3kF xM2kzuRTfcdlZ8bLD5UMZKZyo3veVuL185FXOgYEqo/0Tx8bZGBU/jxd5XYV VHXOty43IdB5tPPb6p8MGCY8YyUurMZO/WhdtikB0V9/mBkzmHj7LmOuf2w1 ZAw1z281J7B5uOOwlBQTXX9q7RdyqkF4XrsruYXAzMxHOaHLmThfWXjzuWMN /Oyl753bTiCSz/u7QZvqm051Mkd6azDtvf+yXxYE5iZtPL13HxMZMNdxotfi b0UXQ4Zab78Dx19ujGPiflCNkIR2A4YXVRuvdCOwQNrdW4HHhPukZOGbPY34 m3HmaKMfgfAVIhlzpVjQsDg7izvQCMdS4R31oQTeNIjP69nOgjW/YO3e0iZ8 DvRKPf2QWrcpC5cI32ZBx7vmuWVDM9ayxXTXJFCf++WFU0UaC8I9NrYXNrVQ ucHN8mYygVFedolcKQvj21o11iW0QPjClgbT1wTCQq9mdQ+ycPHu5Kahla3o kOTk4gPltLa7x/2F2ei5SNw8+6QV94Weh2YXEzAM0ss8sYGN5nsZ9InrbSjc kOB/gnJRruKxO/N82LB6f3hL3aV2HNIRlj1A9f3kjIdcuXtsGEscrDNpa4ev ububKY3K4WvT15pXsvEjhGexL6kDaYrNoz85BH4tyuo6SVLvf+fIIVPDTvR2 xwrNGScgdr7sq602B4p71Vf2mHwDLdOxfmoeiXThY+s7Ejnwf8Xzlp3oQu/4 /K1PVpDwTLBv8eNysCZ50KB5cQ/kbaM2PlWm+hvvd2b8GAcrove1+O/qwYe3 c69FqJHQeHr2RosYF10WlyLUonrgESq/p06DREvJxVuv5nEx7yqMvmX1YN1E dMN7yjOvko7Vumr891yjsw2bZXvh1Fto9o7qk1EX2J+St3BxYOiT2u5rvVCV l0lMMiTR1HlgZv0OLu7OkddOudsLSddJrRQTEuMHmAPxh7lQCJcRyNX1YrbP 00XXNpIQfZc5desyF9lGXHLkQB/cssWnsXaQ2HsyaoFXOHU8Xr2vDBl9KP+o enrxXhI+dv1LLeK4iN7wqD5Zvx8ePz+uPWBJ4lRSWoz2Jy5EHtntW0j0Y+0G +oJsqs9/aHDQT6dz8cS03v3wARquZfboC9mT2DIUppz6k3KarPDMgyE0KF7W ehPpQuJiy+zzBxV5qCtU2s79RcMWlcR9vd4kqINcMLyeB3Eprm8B6FC3MrWu 8yfRsF7IpX4XDw9PH75z1p4OlyMS5W8DSejempzjZ8UDsWWN270IOno9bH9+ DyEhcl2VpurKg1uCYal6DR3Vdcviq++R0Nb+sO91EuWlXRk1VtsHED9vs8EJ ylFl74y29lTwoOrfr+yXMoDGv/PT0rNJGGzQTfNfxUcLKVainzCI7yvWfLvZ SiJ53eS8Aw/4qIgR1/5YxkAubU+nRzeJARPhiKD3fBzSlQlqFGdicGHU1nw6 iZtf5bfpVPORGPVc5/xWJrQvR9+99INE75PAV9KzCISoHLdzGmXCUZsezhYR YEbkJrrcXmouLQwOVktkYZXEm7d7Zgnw7PTSw/OpHN86vCp9gMNCGPuMa+Zi AUi6hMTyGAK7hc7M6z/KxjftlwH+ygIcNGGomVRTud/Vfuc5Ghur5sm8qtcS gFkf+zmVqo/ERR0Rq3Q5KGslf9/cLMA1i/K0MFMSE9u4Tbeodfpni3XB5AUB jN3qbP97zvehZxuVL8bwYHCYdBC/LcByk4flQfsE+LZNcqtyFx9JedwXtk+o 49c2tQoKE6BT+JTcNBcqR3k2C08lCjCxa++FkTgB/va4h1rH/6/z/1H/Z7f3 6YRmFoZwLkR0at/JHuxW5uwvUD6IiUnRLXvCKV9qXKwrLO9Fxi7rfJPI09ia 1j4wuVGAgcblW+0O90HqecnGRhV7jJz7wd+YS8Kmzj1qhmM/2m+NtMyWckIw 657rnBMktBrP3JabS4OgltAyr3eG/IZjgaLrSCzXlHxE06dB/Lwry7rOBaYX /6ZsnyDAENX+auxCg6avcGjWRjeojFYu+zRAoE5G2+FpKA2xnr9UCzrdoD1l 2hb3hQBrS+Bg2EsaeMJu5MoEdxzd0Vdt9JjAyG4UpTTSkDR7Er0pHpAPXBX7 j8rdtjOcl1b302C0W9RiVMwT30+mBL4KpPK7jGTaTB4NhosVnSp2eKIqpsc/ zJ3AV88ABekxGraZ26yd8cATtfwIzlEbAueEPsxeMYuON8o3brsreWEQF15+ 3URgwzOZ3VdW0REo7370Tr0XsqOzRrcvIfBWPlK9YD8dYnq2st8HvNH1cKpM p48Pv0szG53D6RitOCSscdgXQseEhdivqNyivIBh+5mOw5MPDp1J8kOkQ+qH LZF8OPz0WrZp2gACo0/8aXpxG8mTShLZqXxYHjdi0t2pvvCne4drwgsctG+z 8M/nw0Qxv/lJ6QBST0UdMtZ6h46xw9cXfuHje6XifV3OADLYOwL5zPeQfHV4 5HQ7H6oNji6J6wch8uVAxVrpHEx0Ezt/sqjj6TxTvuTGIILX/j53JKwA81+b 5Owa4cPwrAZ3T+YgAtszOXf2f0Jpfc6jg+N8OOmYis9uGsQVfltGskwx+oS/ 3br9j4+5d7KEOOxBXHoYx3FqKIZqhbhRkyiBO5eHXl+QYmDz+wz55bNL0SbZ PF1vIYHgjeFeP3cyYPc+etXjb1+Q9Gxz4goFArPulyTYeTJA0I5t3Kxdjl69 ukY5Fcq9iorMlKcMFGsqbJC2q8Ch580HJHQJxOQyTl6sZ+BuWf/Fvu5KeIuy 4xMNqfkrMbECPAbU59k+f/SpCsN3NPoWbiCwennE/bx/DNQMxW1utqzGvQfL DPLNKJ/7VBulz2aiTzUtZENbNWxiidv91H2vkZq5wEmWiflBNds8zGuQ2f4q xYzytsd0GTM9dcpRFbkfPmbVoLRCMsl/JwHiV7DCMUMmQmMqT/5SqsXO+TOV avYTOK4klb39KBO8XOOXq5fXoVzliWAOlT8ttr8+Xf+cCeXmMhtj1wYYeVli jFqfJx+a1y35Tn1uwU2vOU6NKJ5jGRR2hYB8qHzrX1kWvP/ZOTfNa4K24p1z W8IJaKQdPpd6kIUDpfkZFUQTbtINM49Q9fLXqao5IobaP7HywPBQM/5tP7Nm MJGAybTbVjqZLIxqHle7f6oFyx31bP1SCOzMPO//soYFM+emrvriFtTWinbq viXQb7HW2Z5g4WP+n+83t7RCzjG1pzOLgM1Y+ZJvs9kIeHdhfFF1K7pO/ns2 m6rf14vjnj3axsaKqdUXTF63ISRhwm9uI4EJG7MAv0A2dgsfmP0zvB1xd8bU zrUTECnSnWn4hI3VTxsvzfrdDvNncTfdqf4QG6xRSDSycTeEwzxa1QF+gI3W AoLy2M6gtZMTbCrnddxtcOqE0vrwuSupPnPW02bE35ADqYGX5a9PfsOKuWMz 5BeRsDJQjvF4y0Ht4ws56drdSDnWanFHiUStvUyk6HcOfOtorPNGPThTzD0+ qkIiMvBUUpcQFw5/G6yL3HrgOdMxK1STRGPELi/6Qi4C2i51BJX2QJ/REyap TeK2ybIdncu4mNVjduEZ2YMAq5DeirUkJN79IG7rcXGbPuC8CFSuVVGUdTMm scMxNVR6Pxd+4xH3Qj/2YlPTJoljlKPMjW7a+h3iYqfpAm+dil6cVZ74zdtA ImOzU/QaGy4uJgjPzB7vRYpsl9CxzSQ+nRP4BnhyIa2itlTWqw9fHUXq1XdT 7tq/uFTiPhc24eUVTVL9yPz4IfbtPhLDgbTVS19wMfPy5/5oqq/PeTiioHaM xJLjLKmV5VzobmouUhCnwUbzzbn+05QnM+WXtHO5YG6aNeP+ORrmqIv7nXIg sWGImZg0ycWkevqDN09p6EsLdZR0p3xCN8nMUufhbaNwy34pOs7wrf5F+ZHI /rjpp+I2Hp5rrRE2s6JD6UaXQdcVykvzB27cOcjDtDMnV8T60nEx6EVi4TUS 521oK01P82C51WRGWSIdf4zkkl7cIlH45m+JlT8PUkWBO94x6Li3NmJaYQwJ lbGSh2JpPDhuu2ETcHwAGrcu+xUlUPu/u1/S/pUHzfDQzLaiAdw2vGSvkkfi 8q5T3/u0+ciaxtqVkDMI+fn/NN+3U65e+uGHfwIfc+K2ff7+jYGF93ck5/eS eKwVZryQ6ru+6yPnyi9jYvSN4e4xBokr5vPUHNv4iC4ffatnz4SVzQnWg58k DgeuCzen+txXzcej6RIs3Fd40y8lJkCAy3jptiNUzlj6ZaFDFgvu0Q9aZOcK 8DCuePprqu53L0jW8RBhIzVdYdlZGQGSZ/Xx9lN5iCWf/vCMGxsV2rqZC1QF qLFkms5ooXJbuE9L7282hr1CZhVrC9B7/4WYyDDV5+a9Xr5jCwdBUjuyp28T IP/Ej+/ENhI9xyutv6txsVRyscP7SwJ8f5q4qYc6v5FPYa+H3/HQ+EvtUH+k AB0/Wsw8LAUIMU3rNiL4YEh/WZmXIMD6dyISKx4IkLqB9fBb9P93HfU/2jq4 n+ALrx+C6lWp8VT7HkSsFbEdvX4Q13qHRjfdFMAwXaegpL4XF3scO96UnMaS Ddue7QZ1H6vVUWjdB+M0ixriiD207x66PfCBhF7LD7ccl34sTb4S0rbNCSVS Pxe8PUri0cHnVz0W0CB9bK2YMtcZ5ZNpIuNUn4nVFwlimdBQGmh4OJZwwZqB NqPon1TOrd+1nudBg1yduGbZKTecVVArOdFH5dz4S1ZjETR8mm4qnDDqBie1 RE+Tz5TLqz+3DabTMP9OXoVYgTt2fc6xvkY5nr7AWv1IGw23T4ow+GUekBqb Ut0aQu1fFxHizaBBKX7WD+FVntAJE1uxw5/yUvyOJ3YCGk4mn9uadtYTLpar p/lfJrA1yEtU7g8NQkeVkkxzPCEuLbg1foxAy/XvU75UX2jNrLU/auaFiGlF GiWmBD6mL9QL1qDDWM+4spr0wsmDYj7GCwgoqYbOLzlCR8FOlTCN6T4gR8w1 3Tv5+Df1+c3KaDrMzj0WzffxhV7MG5P/nod5Iuik7pIKOn4Rcnmu9X4w962u bbvDx05Ptb3eswZg9mxvrv79aLTN9Vl1Lp2PjYpNvi8D//t9QO0vnfNeIsjj Z9D7Ij72/uFNT24cQNnc8XgLtwzcEveKSy7no3V7S+m5H5THekcEprGZQGHv 7yjqeIirDheUtg5C7s3PGnZ6DtSJFFcOl4/dqlWqU9GDeL0uxWzH4UKUfxor e/SDD1FrqZ2nCwehc9myQGn4E1x6JJte/eHjtsXhxOT+QSR9X93sdLsYcxbc ex8oRNU5baldw+ggri39foi9tgQHmq3C6iQJ0Ng3trUpMiBFzi5dElsKUdkI DZXFlK/uDnV1WzLgrcu5uwBl1PV+WNSynMD4sWPr1K8xcODDW1pveDkiNi0T d1MnMGxmGGD6mgHGWi+b/vYKBH+I8P2rR81f8R1fDnQxkLJF/5uleRVUpFtr P5pQdZ+wmcz6xUCYY+7YNdVqxCdcWXSBctRuPNfcP4uJgbHRs3E11diY4npJ ajMB54e0po1yTAjpTE8V3V6DeamzUy5vJfAmutA8aRUTK/wVpuIf1eA0K7bl EOWoqw/tJNMNmFi4TEosflktRjtsPmvtIfCtSO6jwmYmhs7JTd4JqsW/lZrr rQ4RWP+ihBFwhnr9Q6TNUe86fF+3QiPEnoDX61e2PzOZiMlQOOfGbYBDiJeL hjcBN1fXf8uEWPje/GGhSXIjBPJeHz4HEdA5vXeGiDoLhxZFz57c3oRe7cH4 uEgC26svTlEHh64t58w1VjVDV2A5qUPlyI3PvEXtU1jIbPZ4r6fbglWHZG8v f0EgfvpwaX4ZCzpJYacDX7Wgwevmw6ZXBByaghbiGwt1PwIu6E60wOvb56W1 7wnM+y3drvCXhYeLXp23vt6KKk9bBZc8ys8Jr65Ey7NxSnKpM0+0DSIXLX6I V1K5JmrN+unH2BB+eqIoZ7gN2ulXmzVaCRySK7ricZeN3pnTDr5qbseOhB22 Rd8IKPbseP41jY3s5QFTzrodIN7kt+xlEejK6R4qp7NRmRu7+alkJx6GL76c PkT1kx92j7IlOZjqCZZ8nt6Jph2b9xf8I/Bg2UbLdds5+LH+8Iagp9+wW3a7 5ZKlJF69K9Du/8xBuuFjCVX3bjTYRaTXq5JY7RgwdkeEiwxzqeWW13ogXp3Y 1E45Sqln42wDaS7+hQdallT2QEH6kDRbh4Rp6/2tf1W4OJutIJIyuxcnh+6z tlGOGtpw7f1pXS427ndOvq3fi2ennY/WGJJ4aVH4yXcnF1U9C0/uj+mF7fCJ HzqmJP7OuPHH6CQX1arhdxdN9iJzz4h3GfX6unSe0zlbLuz3twQ5SvRBbepn pvRGEnYysQajTly8HEv9k7mzD+JOntV7tlNzcbnLTecbXHSd/yNFK+vDmoLE mGWUowwlHzf8TeJC/uuDT7E2/ahvmV907CB1XlFXnq1+x4W46SNhsfh+QNnm sjCVl2eJxu5728KF/qkQkx9aNExeDLOwt6fyte6hEbVfXOw7oBhqGkbDm/PM 0+wLlE8uy/mOzeTBwahY5mgxDWqRi8WbPCmnTb4e0V3Hg2RR8unHVL9828CN O0I5Sr3po17Cfh6mlrZEh3pQufMW+4E/5SjvRL7Gblse1f9ePd8bT0dDs7nj +xASTxef0VnjwoORg1JQSiUdi475Ve2LICEoeKznHMJDRDLZxZ2k42ZTju70 xyRkuopm6ubzMOA1u+3WDcpXB14f9HtOHeduF72JXh72PRfTfTIwgMhp6abM QhKKnPVnhU356Fp6tvZszyD2JjgGhHWRmFN2eq34Wz6kcv+sr5xiwGgseY/8 AImGZcd8U2r4aHHZFWywk4ncm3ozVnBJ6C42/qrB5EN7ZJvK2igmrhbnRk38 JhHqKlLbokRg1WlLxwo9FlT0fJYrzhRg2HDvk6SzBLzN6JFHe1n4sGNR7YX5 Auya2rdJh6rvf4stcqYrs8E680Q6S16Ao86X1NvTqT634siy7/fYEOG8e3VG Q4ArBR5XbvUTKI5Ssroow8GW+HmrTfUE2BezbeGkEImzu+LvubhwMBwxpnx5 pwBvvx6Z6jxEufXsS3rkLi7ydo5aGLoKsEqhQ06HT+JEfYJ2XDMPP4/d+Gd+ T4CZrKRAMQcB+t3O7Tu0+P9/jvofbXub/mw2UB2C3ZP98v9u9yD0i+uiO/6H cbr5ypoa6nqGtbNqL4/14o5BYk9KxRk0nMp57qkmwIp5tasUQvuQqhGsvN7p HJhZZVGz4klkytw/vvRpP0KUP9CVbC6hszfhXhWoXNZhXK6jSeWW4PC2+psu WBXYe9dxMYlAz0+7dh2ifMVuPLrwlita1bqc//teRH/SOs7hOzQ0fF02vFHS HftlskTlyggUafuFz3xJQ/rGmD/f49zhItOvfu8ZgVmTzi3HqmlouxKZLubt gecH9G7c9SXgorly/5JhGmapdrvGOHvix/R28eeOBPz1UxbwheiINk3yutbj ifkPe6elnCRwV/yMWockHXWb/9WoyXlh7bW4WX0HKact/70iXJqO+Wm+FRvO eeFwwcfdL9cTkPCouPZYi/JVDy1Q648XpnsnqdatINAa6Va7YxsdC3fty/6R 4I36bn0pxigf3MEfMxjudEh/8RMJKvOB34muB0vy+DgY8mXezgw6xrRW06PM /WCTcHNaYCgfgh+Hfotw6CiutYr4sj4Isju8skyf8rFQ9ptl0cYB7Bv3/XOO H4+07qPasbl8bLVjkXvzB1Cc+G3WkMpbWKxv+aRex0f28KTf0NxBnJLq+7rE 8iM6Gm72mrZS+1+vf7ZpLeWo299I9rVsRFwTmKiz+bDJP71TKGQQ+6x7q+88 LMDQaw5J/uZD3eql29zOQWiubZxVtb8YIn7TL1eJEDD7I7Y2RIxy0WkdrlJl CVTvD7yaNoeAgvVZlR5tBuZrF/hfFvmCnfUXnNfOp3xyL42zdiMDuxV9/fPu f8GiaAeZI7IE2FqTWirnGag5HVnzp6EMNV1r319SofrL3rgfsxIYCPltXy99 uQJznVz8Q3QJHJ3Ny4v6Sn1ugb54BlEJi+mVt/ONCQz8HYy5/IMB1sTPhwOi 1ahwqZ/7cguBlHsvpdatZOL13ZyqtCs1GPjaHxVKOefCg4LO9C1MpG03n1F+ uxbHjoV9Mz1AIMtAZsk2KyZ+tQW492rX4brdh+kFlH8CV2KZ8lkmxAOCHxy7 UYf9Zz9usbYk0JzCtn7hzMSg17PCpv46PE/ucJiyIhC18ovl7UAm5C5Gjw1b 11N+nnFSxobAZPO2r4qRTLw9k1DwpbIeeX1NP/lUP7234KLwwQwmbBmLEvJb G/BmSGvoGOWogeTle/iUo7oqW/KtXjbivv7uh64RBB6HCUXUH2VB3yxw9fRp zXjSsKSNSeWLPevGNBWvsTAs3bs28nkzbvXzaqY/J+Czij4aUMBCvcLHvRo3 WnAqoUJGP5PyjLZx5fd/LMQ7mDMiwlpxRFQpYTCXwFMxZtYqWSoPnzr81uFf K/xV1fJ/FRG4kay23noNG44/q6NLD7XhRdhq/cZyKkfc7IxNP8hGcLr704/d bfitJrLqex0Bv6XNz3tc2UgYGWg9faQda+SUZPZ1E1iZ+rkm4z0bOyXVO67u 6UD7kWWqT7gE2p6dSdcfZkNz4/6/Dps6cX7b3u6FVN5mb16feH0WBx+379uf m9mJmYeVj3L+Uvcr7XH+480cyOWeDzgU9Q3mRvx3D0RI6Jx1Vde35yDRroV5 bUEXfH8tvvtyPuWNOxacj885uF/2fIntjG6cL1nC+kHlvgea26paV3JhOfey msW/HvTunF161ZwE/8HNb3kXuBDUWrfJog/C33856m8mcf/144oJDy7Ya8tX ubn3Yfi4hqoi5ZlTN3UHKoO5aBU78Mm1pA/zLtAMqneQUOly2CMZzkV72pl6 4YE+OFxWFPfdS+3/dUXflydcDL6iTRmY9kM7YJsVcYDKodIrd0a/4WJ2Rm9h Ykw/6KeNG7Mp/+ztXH0kMoMLWeJ3suaLflRUvnuWfYREkZxt3mABFzru0Wor aP3wcBEya7YmIbnIcf14Mxf7h9Y/W0r14/jP6rOS7UgcmIy+HjzMhafizPFR bxpsXApErjuQ+NTpsFJ5igu5sR1zpyXQkHfod8Q/ZxLMzEsztJfxUBG0vvfI dxpKsr3WnvchMW5T4ioCHqS3TxgpbaG89HyBfQDlJckzG6rWHOAhV7a8ZYYX HS1BA0/ZYZQ38o66yQbx4DsYJTxrhI7dD56Hjd0lcb3lanZkAg9lRytVzcwG cPfAsxC5BySak7LfmLzjYU7WU2NRxwHUrTy+PTSOhKd+667hzzxkZ1xb6Ht/ AA5ig8PsZ5RbTJu4Mzp5kJv72XZZywCyWUJhP9+S0BMTHj0qwQfKE+0vHBzE UNwjg6vZ1Jzy6ctqVeZjySPaYNDTQTwKaCvTbSJR8DkyMD+Mjxk788/9eM5A oxrxO+A7dR8DC6/dEifw+vbxJzp8JgKiWWlXJkiwFk79rVhFgGV1tafTiIVg TYntCkICSB5U5YtSc0MoriZWwYWFMTHc0pcSIHGn1p5Oqr5ZXHumxVw2Vt24 O/VrmQDVlp9zbD8S+BmKFZpUnnBPJ8MyVARQtpxzN7KJwA+3oE1zx9iQ2Nta obNWgPeMpvkiVG7YHvr95dJzHPAGUoz3mAvQ4aD8+IguCY54THftCAfqj8Q/ q1COSt34S7uWWkdhZXMWNW3nwurVBW89WwHEhuKDGGkkrs4oPmSjwcP3JCP1 gVABTLV3N7eYCXDX4Xqy9fv/9b8f9X/3tjLj5/J9IkPQPrj/0f62HvQ0WA5+ mXsMHRrNZdp7BAjXCV+obN4HaSepd8SLswgO7OlvmiaAXUzDGnp7Hx4/HvG+ bu9I9alLg2NU3SXONStNH+tHQ2xExem9zlC+KnsnVYp63b74m9BxGhKVi/gK H12xY5/xYZLKm6sX5u3yCKYhNW7aY6lPbiBmBtXLpBJYu3TD5t5SGoyZkYXn 93ogrVRrll7Uf88VzKx61E1D1ei1UFnSA9Wlljr//Z3TIIlUKc4/GsZ1/A11 qj3xd+J1WBo1T5kGVpEpSnSod1VNFZV4QXi8YuqMHgHPG/m1X9fR4Z1l8bVN 2xvZo72LFmlQc7OxkD8HdCzX1bitcsEbEeoL548pUHNHU+fU0l10aFs7HLTP 9ca7M1oHPotRTgv891n1NB0jkQ2zj+z2gduihicBPD6ubLBoM7xKx+w3Baur RH0RAD2t8Hw+PqhMDX97S0d5ydkNRwz9MNPX3l47nI9Hez6Lf/lBR+Cibvc0 4ZswvXynRCuRj+3yR8qiLQbAmXHzkp3EM1ySGqyXz6Hqv0tpnPZhADrC55iJ J97ALa4kxo7yEm11RgyH8lLyV6tZM29nI17IZewri4+xPRk3PIIH4c4vXLw3 sADLo4pMiSE+2sXfD+x+PYgnveUvZH8UYZP+smXzRKk6/1f6YOVsBgS9v79a /CiBwvGdkmYyBJbHEJrnzjLw+jnDLv5VGYxXn7NsXEm54vpetlEUAysc15s8 +V4O2vY311I0Ka8u+p3Sl8WAQkbZ0gcrKjF1VdjGeg3lYduO6d41DGROhWQl llWiYWs9J9eIwLYT5f3iQwyor4t9tIlRBb/w2A+y2wgY69im3VVjwnSdV1JR Rg0g5xQZS/nH8NPpFxXHmejw33E3xaQOQh+iHr+iPJPv4CkjfZUJS6bYesf9 9fihEKNvYv/f87TzHrx5z8TX9/WCU/0NuBPg/v6PE+Wrxezxey1MBN45snkm 7yvExJb9ee9KzeucLYbaHCZYkdXf5m1tRPqcNzsWeRIoC8meK/SLCZnWr/cs AxvhNds30diHgKnCOKdEhAU9oVPubtmN2LLzSe+1AGqdjx5g+S1mIWNhV7OM UBPajHT6+gMJvNNK1lizioUatq3cqFET2gP/RB65Ra3Pym22ertY8N+YYHGz tgkbI0JLtJ8S0N1HXzwtierXuRfXEMtb8KrF7azKewK04a6hA79ZWFv+8L21 dys0HV5UBBUQ6LoiZ/toFRvPb3ufvKzehnj/+Q9zK6kcG1FwdLo1G7XP65qC /7bB3eTQd80OAhnL6OMPE9gYL7Pae0S0A45J7z27egn8+hXOritkQ6bo0hJd nw7MLJHNbhskoOwtZ/qznQ2nTfbJC2gdWL0s73g2QWDh9X9fK/+xwTmycHe5 dyeVn4vPx48SePHBeuvx5RwIr7xh+EXoG9a9WWAnP52E5U2d1s8nOTj2cvfq JRPfcJRt7hU2j8SCinzZ9ngOWDtHtxp978KFdglj+yUkNhtu3dJayIHLfXdP HYdu3OUsCpVSIpGrE1HSMcRBs/HMBW06Pcgr7dh2aDWJCQtbkwI5LvL3+Qed pvfg+m/RZWKmJJ5t8uDH2XAR3xy8p3+iF0a6vdMijpJUfVWdbCrlItT48lVp YRrO/zm73/kcCUok8ov/cJG0rGa+x30aopL2/V51nprjh95LHp3Bw5ODVwqW v6PhlkGMTagTiYUctVUK83kwfWFyx6qRynlfX9mcu0ziuKWohs5SyhWBq+9/ GqBhjucTpqUbiVbOhOICVR6Ge38beUnQsclg7VcvLxK7ZlxTeWXAg9OBb0+n 6VL94+hY3SpvEl9y8+1NjXl4dCHzXp4hHWlFF+JX+VFu+UdU39vCQ6L25GG9 I3SoPo8oWxVEwpStGGhmzcPfkxsYq6Pp2D+SfWc8lDr+xp2VdT48rLw700Sy jw5CQi1XN4KE62Htx5M3eIjdMetE6T866ucwp92KIRH3rH5g6ysedP6myIUe G4Cr0NC9qQQSTtY11xsbqXmscMjyZPEAGHMkQgUvSAQ092E9m4fApZUDGRMD +H6lJkb9PeWQcI58xjw+8tN3Kss7DkLaYIORTy4J7407K3dr8TE6OefoUMYg rL8br0soJFExL+jT7/V8mB1nOmZ9G4SberuyfTEJnsXrKOyicqRRxN62yUE8 syL1l1SSKLy24n6EHR8fU87FJpsxcPt9er+ghXLG6jciUjF8yB3sj2/9xMCc R0HapT2US3ddOuWYzccx2zjRe4uYWLT2h93qv9R5zTh7cpUWARtOtMnFnSyo rxYi78kIILNlX6VwIrWuU+MStT3YOJlw+7q2ogCPlnd3TfyXS/TnjCtms3Gr pWHEjXKR6cexmFeNBLj3Hrws+MGGeNeiLmEDAe7b9fxym0nCv0Z9KiWCAzeb mF0Ptgvw74zrX/oeElsKQ+VdjLhIXd0Qeno/5aWRqXY5ah1xO3o0aVFcOMUw 1k9aC6g6j1WaeExCbuRa1Pg0Ht5lSj/bf0GAHavvbJGjnOjlF/W5IpKH1Ufz Nn9yE0Du66LUkWESL1auE7pP52G5T3efYbgAPh8ltNJ2CDDHO9/wWNX/dtT/ 1W0ZX6P+34AAf+Y90L+xuBd1rKxedVtrrJPaJKhXFSDn7cnDTrf6sMqiwCnJ 4xxWaCzLPNtN5YgNwusMVvZjZfajXON9F2DyyM28eRtV1+PP8/SUaOipsSm8 f8gFsswBn1oGAS231bfuhdDw/eptg5e1bjj56PyCmfkEVRKfLsx8T4PV5nlb l/a4Y9z+j3IH5fixKovixhEa7Id6fsT7eWJF1sNtG09Sed/lqrHxTDpuhu47 /ELBC23yzaHnNhDYlJcf0a1Jh5JJzWW7MS8UPUtonStNzTWNnTeGD9Kh/Kp9 mvyIN0rj83ZUixD45J1WuvQsHW7BJ5r0Tvog1zZJ3Pk3H9yjPV9OOlN95GmO xc2XPrCryKsZ5fPRUlq2siyADqHuH2Yu/3xQUZ784UMzVZ+vS+y6Yum4mtZZ YBvvC7MvRUMyWXwkvR4eNftIh93tGy8nrfwQbRQ8uySUj7aAyEuKXMpvpg2X n1YF4eKI8ok/lKNOXbTkLTw4gGHnqFUcr2dY0L9blEs56vm2i2+O5QwgVW2+ XE/NG3z2FzEo/spHHjvkfdyyQVR9C+an7clCqegOiR0kH/cr+uTKEikv3dBW fLGhCL2nrHrChAmEtKYy8v4NQv/A8eF5viWw5CUfHZlFoMo8des6DQbe6jkU dfSXIihWfEadIgH34IKxcyEM2OR7fjR+U46uvLqpE/oEGngPiq1pDGiK2k12 OlfBNYxjf8+Mmsu6PgHTZjOxXajYUrSxGk9fanuXbSeAC8nGrTpMxM/f/KGJ W4Oc7mxXs70ERg9xhBq3M7H+0sw835RazEj6KPzpCOWl2MJNI05MTPrKBt+u qcM6DqOo6AyBuY9ffKtOYWLpz98dObca4OaxvGiZM4GDM38kD/cwISHlOKtz aSO0xMz/+VPOMXSYsYwxg4U/3rsZnPxGPHHe8uHDDao/vq+M32PCwh2fNVf/ RjRhTc2K058iKSevGBXpPM1CjPyEZpBqM9QOPU45eI9AUcDF3gFPav/xxS6H vZqx85jKXOsHBKZeWOfcCGVhxdFEIrOwGfctVS4kPSZw7Vrwr45YFgaGMopF fzZj4J7/m5kJBPyelh9fkcaCuHP6fJZZC5yveeamJRGQsh28NJ7Hgq+M3ibt qy1wqTZ3VEwn0DkRkvynjwVdDxfPUqlW2LTFxX77ROCWqfGowTo2Qq9+shs6 04ZKeUWdqGbKOYfPTTqEs8H6yP03lN2Oho8HvTb3ECBuqTn1ZlFeOr2NxzvR gczPt9IFPAJROf1iUz/Z6PNceVnFqhOTXqd3SP2lcnVdNp1rxkH+XIMdjYHf 4DNgRVUOCeGSRUIaVhyska46r8T4Blnhk31RYiRkc76F6rpxoFr+aW7s1i5s OHk6MpPKUwq7b3KU4ziYeOcUnzPYhdDxuMJTS0kQMrurZEs4UBCmY4ZPN4o4 N8s3qpIoKGoOWyPMpc5fTUrYpwfq6iuNrxqROKDnPOG/hwsj6d3+Dc968aq2 Ya8FSHTR/Wa7n+GCvXtlxvyFfRiSpse07yTxR/2Xhgg1b5LbVIbej/UhznhF 2AMqn+uq6qstyeBC72Z9f3lSP4ZEtpvJ25I41bJw4ZpBLgqP/Ly56wgNW5+2 HFH3oXy1wlVxgSkPs3L7bmVspEPiA3+OLeWQhMziLXe8eChI71xs1EnHk9nb 9paHkbj5xKruUSAP1Awrzx+iw77vuMnMSMpLikKy4xE8DMp7PmHNHYBf6dTz 9XdIdBccDjGP4SFXTDzOXXkAc7OD7l29T3nM+8vg8Rc8VLm5mlhSuYpckzV3 OTUvJazb5BLyebDVNAx5ETKAxMWpN3jU6yXydNUnRTyc37nV90Ik5RbtSMGD pyScDR4r51fy8G3qu3lh6gDWrrr0c0YyiStWsnNFaTy83SRaLWAPYIJv2JSY TmKrSnxh6V8eFl88v/Kt7iDyn1ZXX31HImOah/WZmXwUmr0yzj86iIPO210i ckh8S1o9s0GNj++5lXM7Xw6itWqtrk0JCU1xo37OXj6ufdI/fFycgeCKyC39 FSQ2bJnmkHWGjycv2tjupgxkfb2kVNxMQvnQv/kP7/AhevjBsnUfGFDMVzh/ lJovOVmbjsx/z0fKQMf6d2JMPDDa3feon3L1vT0yKiV81G8a3H19DRMxsuWB bgzKGSdz+L4tfAgOPFmmbctE2s+8TYYECWPFi8Ntw1RfHL51OOwNE2cS1+7T +0PiLM/N1kONwN5JZeNmMxYOmPgaZE0XwLen4MiDHQS+/9v40v4+CwvCvwhi lwlAfA4QfM8kcJZxZrFrClVPJYmTtA0CHBuJuXVOmURDguEVlUYOHk7eEr+w VQDL+l/TX28hcezG2axFSlysYZnMObFbABP9x0dXWpOY1Wpx/gbl+tYbzyrv UC6av971pvUjEi0qijll/7iYJktbeu8S5Rz3Q58de0lIaR1sqHjLg/jcSWFh DwHaqz5N5f4kkda7ZIawgIcDD+56+wQJ8Kyd/NCqJECV/LljYQ58rNm8r6o9 WgCxkGjx9NOU+0TOnDstQeW0ldYSp54KsLhsKn5jpAB0I0n3ct///XO9/9nb qCO/L/zuFmBi/Yi6p3IvHp4y8JJceAJCflK3qymH53zL22HzoA9LZvkbz/96 DoMv9flTlIPlZDzpA+v6IaHfETet6gL+Lgr3vUjlwaOs3qgwLRoaw/5ped9x wSrpayWF3dRclg9n3I2iQdHvYt/JGe6QVq1jbXpLQDpzRvynQhoazgo2qqp4 IGr+qNKiSwTWlE8GBf6l4Uqp7x2tYk8MrskI7DlMYOWpPKk7C+nw3T5UEWrl hZyAA7F/dQn8dolo0TOgvLQj1bzK0BsJ05YPJM8kMDgoW7fDhg73nI8tgWt9 MJRZcjZrgqpDMj5S7jId4/V+nU4JPnhcskJ6xhAfCfPeSub50qH4OkaRz/VB RpF6QTeNqk/h/adqQulgue5PVd/si9CNhcSeaj7MH/8x1kmkw/W8l9aWLl/8 3r/sy8FXfFx0M1AZ/UxH09vTybNT/LDd7OCbxbf5aGdkHZL5S0eiz98ZXnLh UPi5Sm5JCtV3XBhGzo4DGNfW1rM2SAb6loyu/sSHcf68uKrmAQQv4RwQjcmA 4Er8DLM2PuYXVqxLNRjE+vJj1iJV2RgRH+yo+k6d12OFZ425g1B1Ebk7mfMJ wSeUGR5UPe1JrG+dkGUgW/xrzGyHUogSLpp35xPQON6wpnkTA8VBLdbuz75A 7V7LrBxVAuv30VipyQz0OfOO6cdVQLLQvqHXhMCqzx2bHccZYPk1ZM9YXY2E sL07H2yl7pfsgacWKkycb9F6/T2+BjteVp3iUo6qfXimJHMXE9JFmQKtolrY 917fSj9I4NilOcRFqg8eLfA8utihDu+f7eEPWBMo++JX8zWUCU/lsM/cp/Xo Y+4osD9P/B/s/WlUTf8fP/xTogyNpFSkEBVJIcIzUkgqU0RpUEiKkmYqhQaF UqRBgxTSYGpAoRSa57nO0Jn3PplSiVz7c/O697/1//+v3/W9tdfaa6/dPqf9 fr4ez1ZnH3zo/TvBq2SB+ONW0OrRCNULpdnbfQgMGjzTahxlYbuLqubVsCa0 inhJPQ4hIFf+q89kKRtxWjPSrNc1Y9sZn4+06wQ2zCi1LTjChoY2YXBavAU2 NWXOEQkENj5aExsRQvXSGL3ZO1Jb0GhZWxJCeeluq13ydspLGk9aNCu/t+Dc gehlj9MIDBnp9/nmsuHs05t0eGMrNu4/fLExg4Bd14WXG16x4Z/pFuB9rhUS NwPK5j8kYJ7f9OzHJzZ+vmJ1KZW14m6w5GvvR9S64Cwey+1kQzLKXW3kRyuS a847PiqinDY6Zh89wca5OY89FELbINK05vnOagJ+C8eCyw5y4CMRIFbPbIdQ cdHm5G6qj7h4Hdz4mIOWCfWqpas7QT6xLLlH9ZrFe/Q+7+vhIGHgip4V2Ym2 ktLOd98JpJyw+rRGgYsGYwd+Hq0LORdqTEtFSDyfIzVt5jEusuS+6h/70Y3k 3qj2XAkSUueuvjsWxMVi5jT2o9OUoyZiZzpJkVh+wmzXiQQuFOImopTqe3Ds 0FhVtQIJXKnyCSjnYuuBJ1OeevRC99eUMglVEum2D/iGA1zMmH5PK17QC5v+ y6pbdEks7jnK81vBw0l7/oJguX7krLZK6DOiepyCwta9rjzs/Zmw5vaaASjm 8EXWUT3u7hzjA5ahPGQeDT7gXDCAFPpmV8t9JEpVvGD0hAevt70Z8ZGDeFUy /PPtERKrv67vUK7lgZub0fBoPg3+665u+3aSRNq51COTf3jwWClz5lQSDbqH PHetDSHR0Zs+tfAwH0F3nU/zrtFxX8qw5AnlpTRxzevWNyhHnRZMk5Zn4FrN kFHTLcon1pF565L5uF50/uEPfQaYQxGJpxIoH07PdazL5YOYney76zADy2Ns fV/eIZGU35R0sYiP+xOO3iwPBmQGtAtLUkjENYje8qjiozwS4prpDCT/kWHe zSBRY2G1ureDj52qcfbyTQxceqjffCmTxLuFOhJGPXzoGLfv5XcxcHbd610j lKOGlbadiWXywRDOV1n0jQHLB4YO2pSjgtRU3syc4OPP8vc5a1cx8X52yffp z0hcie5p/DpXAGudZ5LxnkwMe5Zejn9JvW+GBhJH1ARwHtmrdeE2k/KlyYGG /76fxV/0ykYTAVSyigntYSb2NjrEvP5EzXuCtvTtaQGuPz26utxqCE3i15cv bqB+rlIHfXGwADU3PlZ9vjKEpU+iuh72kGAGV9mcz6fOb/vxW/8UFuYXlwwu oLzkvT9LVJvqr9+l86d8smNBWG6yPZ5L4vKe/Y7STKrvBqrPKYlkIVrB/tda kkTOX/mk2z8FMAj1Yu4oZiHQZi334E8Sfq7dTSFSBJ5OVVti+ZcFiyPN2yAi hNqDzK2y2wm8GXiyYNZVNn70fDxePEsIP3nr0z0nCayc+dBXhcnGd0WrjVoa QvDf1TYkNhLQ7P8u/PqVg4Vhp4lyylHWqZ9EeaYkfrUYG1lo8JCz17RugYUQ CX0KRcVOlPcvr4jOPMvD8Rb5rKIDQozfe9qSGkiCJty79gTl/e2ObwN9nYVo OrmhYT3lVl0dy0j33ZTfpS1uX6YcNbaosCVtlESW+IPCb9/5SAkziIi5KMRc Mz85UXkhNopcqZvcKoChq9KOj1FCpL0+4ziyQ4iTzqZzeZXUPFt/6PBkshCi /bnKMyOFUPfiy+m6/89R/9/a0r9pOB1qFSJcevNIyrp+vLEJzl3w1Q5vn+qc 8FegHP464N/AowE0KC269NHkFNYau9DtPpN4SL5/IrFjEMlrAl9IrDuDJbR7 6zz0qZ444EfzXU/DphQLF40mT1jQbl0sbyaQO2/Z2hAqv2Kvv50nZeKNuYvf nuJR/X1GybwesU80OERtyb589gJiZrEeljlRc6FWsrxmBh3SnC/fr4n7QnNw uUy3GdW71YjmkEV07MwNPlaS7ot/mrXLxjUIOOtX3F5K9cxNjwy6Ry/5QePC aaU7kwJ4GF7y2OpGx4/nlVpFV/2x0iv8phUpwL+IgSeng+jYesNs4tNPf3SF sIzS6QIU5JEaMyhHObs7bzdFAB58culcRPUiTbr7mEci5bGxwYTC5AAE7RkV j3stQKefQmvbUzrCvoop1eoGYp0MgxQmC3BJ0nf7tno6Fp3TrTk1EYjUoP0n D8YLoJZWcNxlPgPSX8vNa41vw3N1DO1OngB/XjyW77vCgNV2+b1ZL3MwT4md u7tKgKBVS43DSAZyE619ozY8Q2VZc1VarwCuZQ+fhO1noim9VnnnpRJsNy54 GDUugNOpot12HUxY520eOLf9HdoS3ta8libACx1f8NlwCG3dc2q2OFWiY0nn zGJFAm9H5WSkjw/haqBMzto7VRj9kjaispoA3ed7/IyPQzigqOnVmVQDm5+T RerGlHPSRaPXK7Awbc8c7rrlX0C+NzdYRDmKdtWsaMtOFtbu93gimlmLVMaq pa6Uh7X6VqQtPMWC1mXiZUVKHTYoqEhfPkKd51eZjuslFqoOFU1XNK9HSLdC 2y5nAm78GN9Vj1j4Vf+5MyqlAU+UA/OlvAgEXu/zcWWxMONxh5mmYRM1J5VL nl8i0Hbtl1SRMhs9icb7Euc2I2Vd+2LFSALicwzfa5ixsdxOs/pETTOi0x+2 rKIctURmfs+UYDZkvse6b7vTgqwJvmdHKoGlz2/O6nnAxtz9HUaLtFtxO8SB /zKLwOd3M3gR5Wy8dxqboX6rFaURr/XGKC81msXZfK5jw2LTpYbVn1sRfi0i SuUxgV2M1jXRPWy4npIsMP/XCuvqgWf0pwSkHyTcFhWwodtwFXON2jD0outt COWohyef53T/ZiPXT+qc3aU20MbaY96WUevl/htTqHNwzMbysJFKOxrFvhTq NRDYYZP16YgfB8evJ9v/detA0a4F/rJMyof93HP3Wzn4EGUWMdLSicJes58y QqpvVz0aKhbl4qp73uiim11QErwcj5sgUBC+g/5xCxcnSqaRzn7dGM61O7Zr FolnGRssg8K4GCqMt3p4tQf2s1VnDMiSMLJbLZn1gIvX9zQrJSR6cWmFuvUm RRJReeeTgt5xMcs5a0W8Ty+WRGoQpYtJ2HIzfqWyuAjXb/qVIt6Hb+qfZopp Ur2d+zyDIcHDQ+MPb7fd6YO5gctElSGJsoq6HXLWPFgdfOMR0NCPjP38iqBd JMZEmYd5kTwouMYlq/cNYHvsi+xvliT+TacbWGbysKKHVSp1dBBiJTu1UilH qQ5Ufk3/wsPVmfVRJ+VpkHXmSSUcp7w0mnstnOBhBhkZHONBg9W7qSnEWRIm 032yNZT4yDTbq9XHoUEY9eWAcSSJP/+KzTkBfFizX83n0egQ3lDXnn2XRPih ss0fn/Fxo7ovb4MXAzNm/9U2TyZx5jmhOaeCD5rsPXOtOAbiyabf/9JIlHgO 5M2s52PB+V9KN14x4DvHRDCP8lLwX4fdRBsfsof3K0vVMuAeuaz2RjYJgw7v bR0sPgbqNUrnjDKgf8dcReQxCXeVC/lZv/j4avVw/gc1JuZvPTuLS+0/Qe6/ Jv6bj67zPIlELSZO2xz0TnhKQn7GnPBl0wTYuSKxmW3CRFX2oc9fKUdlJlu6 OysI4LXpzumYACY0mR9eHCgjIditHbpXXwDVo7c+ra5korRJfa0C5Sh5hdUH orYJwNdMpq/iMhHzuKFztIbExSdkSvdJAdpHttzduGsIGjZ97FdNJKwul55j Rwjw9kvysO79IRgMJvI9OkgwejXiL6cJEPf6waWTnUO4W3VLJY9y1M4lO7qs 2gSQ6PgZe/Q4C1FNFUtUhSR6RpdelhgTIDGqP9XkHQtTrMi7jt9JnGzXMV0o TrlIwH2qyGdhp3nJ1O2/SNQvXjVUK09AtrHq5g5pav3tLXcL/ktiILmSu4jq 3y4HHjXaHmJj074j1acoR0V2XLcpOkHAR1evWoHGBvnXPvbQXMonUxdf9oog cHP7Em3Weg6OfD3yx09HCKtQlZBRaj39FG/Jjd3GxQeHjEeDVkL8sVxoucqd hP/e3N7uKB4iFpbn1h+i3GOt9tnuGokZwtKVvxp4WDz9XH6FnRCqFVUq7akk 3m56wHCR4COenj3c6S7Eq1efg//z5oNoI907OXz01E2/WXOJuh4H9+LsBUIY ODgcmWMhQBm+hbVcFaIsau2YxAYhGm22+ixIFSDjkAxrf4IQ23Mkad1nhXD4 dSk3T+t/jvr/9Xa7RVn+p/dC6DzZVnfJph+5Im/NHhXY45dBll+smBCrvE4/ 9W4cQIz8pqXMda7odvncUUX1mrhny0zG3QcRbHTnaouOO8rn7qo+v5CEhaKB xJ49NORPS7ZZb+uFeC+RpFmlBIbPNOpLPKNhl5K4wwWGN/wTEw/rUnNwoNva LI5Og8/JT5aucj5Q2dffdIxyFHOgZ9tvylEiRQe9KrN8cSKMWV2lQyBoX+bK kxspz9wV1zfb44dx8Rd6w5IEdBtNpMSO0vHxzzZhxEJ/KLikfvjve1jo+TIm l67SMXpqdp372gA86pMe1m0SYLZFFfdQEh1rlPfdOpofALml6b+iqwVI7csK IzPpeGBHKnYJAmA2TeacXbEAi+8O7BJ5Rp3fizvlrnkgFJIJQw/qvr4gnhjy sZaOplpzmYFvgVBe++qbahTVr+aLmy8ZpmPKPUJe5204RO9a9/6ljh9rqN86 1ZSBpuJlMkMl92G142iYawnlt/30uOhSBgzOndIhpPJxTue5ywfqOnuX9r6f toSJKfIRxJz4l1jYmBY6jyvApyJbTbEoJrRV/96q7XyNmbuMf5dLEGDoXvTa qDIERpOwctDzA5Y9EH4oX0ig4mXAGSn/IcQVFR7E9o/IXj1D1X45gerwuS7L s4YgElFS4nKjGp86T00J30Kg03/Zgn+iLKj6Nr7UiPyMjInxkZ/7KJ8kK188 TvXJGMFrBeuddSirYxySsCMwmTq/1Zfqk8ck50fLZdWDxVvhutGFQGzHtptm T1l4rprMHnjTgEsqQ6c6TxMwF3N/2/GRhdT9x1tHLzaietBfzc6bcprH+fWB wyzcnLNZUOXUhDOLti6eGUbA4OecGY90/nueQJGXrn0zch/vXPv1BoFM/5/u MqfY8Lm6yHHO5hb0GTQk6d8jUFe6r2T0NhsK9Cv0bLIFJmmn/c/nENimtePs UAMb4vBQ8G9uBX2iYPJCAZXL3lvTBN/YKLmip7nlaBtaQyvOyL0kkDUqeOo/ kwPJ8gMzW1634VdEyLs7JQRezzImehQ5IDx6iy3H2rDlirmu0xsCJ/+IfvLQ 5MDhJWkTtqEd8dVZCK2g3h9nU415Bhy0TRlarne2Heqv1hsNfCAQnHbnzBdT DoZb3bxmP2qH2p9TE4m1BGw+zDgnPMPBmNjj61LowJWpR878oRG4fu3MePAX DsQjgrrkCjphD8nzJ0cJjO646B2pzcW5uNVuT1Z3g9OZ87h0ComMp9fzzQ9y qXk+++JkUzc6eHKJCXNIlM59khsRw8X0VcxCrfwepKdfMV6wiMSOMf3iJT2U ryT8XIJ6eyErxqCfWUaicoV9ruZvLlyVJb+dtelDvuolo1UrSWjtPHjq5Xwe 3iwXX5NR34fdAey5ButJnH9ncTfZmIctYhtdzQL6Ibc4dEkMSMhO73hp58xD k63K+haFAQxn7+WU/Pd/3ddeeRal8vAgt543y3gQX49HOBUepebjyRm8Qmo+ LXszcGdMlYb4tH07lzqRYJ0W+yzP4aHQWzzHw4EG+e7s/C3UnJseqP9ihgwf d7Jf7blaT8Ps+RtcxS9QXhqdcenCKj7i9mlbyy6gQ7Fg8cXtoSS0x6Y2Ftry YfWkXHR/HB1p6p84TykvOYVc9rn0jo8833UDggQGGgmr9XGUZzTZh/Srxvj4 YHvL02w5EworjxSSlGf2WdkJz4sJ8O1pmJTZLiaGl4dsf1xI4lgsc1OtlACO DJFhHWcmPN/d3h5JOefh34qt/fJU3rwd+R7vw0SR9Sf+rFckFlmfElu8RIC0 GeT9uUlMaj3VCW++JtGmleP5x0CAw68vEgcamZD5We589A2J6+Szi+OGVK/q jqYt6KTOv/6VdzDloj8V5gHS2wUI9tEpWkowwfj28Yf4RxK7vqWvrrIVQKfC d90J7SG8YmT4LKgj0ewzbcDfV4DtjS1Jg56UiyjFnqS8tClKo6j0GnX+YtYj 9ZQhzA5O+W5KOSBLhTUu/lSAPZcjHXT+Unmj3/Gni/LSK/aLk7//e37eI7ek uS4sdDt7PMsSkKhpcIx6IBTgdO1V+Y4cFkwvBFw/NE6CbHRsdFOjcqK+Xid8 FRuhyb9t2qYKAfV2k0vbCFhZd1t8DWXjRMNdl0pqHkl2uGQd3UvlRK6J871c Ni5O17eOkhBizdxb3hn2BKyvETvL6tk48I0z/kZGiHDJuLxkqoedN8j33bOQ A+WCa81CFWreuWhaFeYReFzDiVqRyMFNN/OA3RqUTz7PzJNuovqKMI+38jsH l4M/PtppLMSvsvvSbRtIRHeLHN4hxkO1NXllprMQi/XzZVOoeTgwLTlhyw4+ 3nZt+CvnJkTGzis2etT7t+chnXXqOh/XwpUCF3sK8bHid4Ash0T/+JQkdg0f 7dVrBLdDhOhznCN9YbEQ8Vr23yvtBZjibavYdVuIyx8xb7qHEP8S+UzBMio3 n2WGNKcJofJ14M2reCG0uVcGf0b8z1H//7r9fYI7ReUt9fub/tSy2qkfQ+tO 69nKOUCB9/6p/hQhZPp2Kcv3DFA9xHRgXqArCh0d/spRuRGS9e7RDv9BvIlb 3H7Ezx20qpMTilSfNWrIeZe6j4ZprqqvrC55wSGEaTNeSGD2lhWVc8po4GZH y7LmXcDrFQudWi4TcLA55sWmeuOyBTGzRTf54NKn+vzf1Lr6tTygd68GHXLP bG70t/hic3AAKadJ4IfZsL2kER2Z7/ccjfX0g0ytsqj+DAKfbT+oPXei496H 6R31lv7w741Jr+kV4OdYYX97DB0Sp6V515wDENKVMy/0iwDhpjJK/9Lo2Gty p+R+SwAuJN9s06gQoGCZsbLJYzoKj31b931BILYypd1yCgVYcbSSyCuhA/wz Eba+gTiyyttE6o4Ao9dScxVb6Ai9JNPguyAIjxi37guvC1BSblh3YoLylU35 +JqqKNw0WRNZmy5Az4WpH4z3MRBRu2Oq3rEMdH5tOEKVMRxT22G29wsDZ1hK 09qlChHYq6H+o1VA9a/3PmO6TBA2nJYYj1fI9pO1EQgE+BPygf7lHhN+9c6X Hg++wa3vr5pvzyEgP5W5YsqqIUTlqG1sHPmAAos/N/ZR+TX4W876RcQQYrsZ fy0qPkKzmzbVV5uA5IApX/LlEA7PEf7RV67BvjDpyvatlG/1f6wNk2XB4+u/ G4cmPmNlrmH+NGsCKnXKtdWnWdB+xV/ysKgO77yHt2xzpHJw0+oKYTILM932 vNqn3wBBXJOJriuBWn5sfno5C88aGo23mDRialWk/fmzlE+8DAYmu1lYptRg YyzZBLNrpZLFfgQM93lFXRZh43rOYe+Up034Wh0yx/kagbjO2UcKt7FhYVs/ If64GY+tFus+vU1AWfvhyOcgNgKOv6m6HtuCI33ZBYn3Cfh+DNt2OY8N764H 0zebtcLM1Nch7wmB25/tjx6ls3HMXSJfYUEbjmceHJF5QSCUPrtCbjoHM0ct 71153Abr5S7HC6heIOtS3JBB5fIJHc8AxVnt+K3zo0j2LUHl6vKHXis5SPL2 1bc3aUeNzpHJEcpR17amFslt5MDu8/RVs3zbMd+DqdVbSeDwTpMA5d0cNN37 VzSzrB3phy84XP5EYIt+QtUFew4yM6Mvyc3swIpsqa6YRgJ3OvbHbr9E+cp2 uyHCOnD14V2vCRaBBVV8CxsaB06bFqiLinXhODvEmTFBwO6c06rFRlyo3K3j lF3shntI6PXmaSR40yv09E5yoflOY9GJ+T1oiQ5/fUSOxOXh2JNVD7lwPhVW eFqmF6omoxYbl5Cg+Sedj/3KxfCKxKwsvT7cyFkkIqNNrfcK2ykdsjzMF6z8 61PWh7zKiKNFa6jj756xadLhoSo6x+ycdj9Kn2r4P99EHa+0NeCuDQ8hSy+m fqH1Y+ECmueF7STCamf95Pr85yhVXTP/AZiUikw82kf1tbqQoMQ8Hpgp8tMi bg5iwpZTcNeBhOXKzRqb6DzIONFu6++l4cmHD5vCT5CYz1OakTzKg6nI1KfO 0TScIaw/6HiSMHg3WU4s4qN4Ue+R7T9pcNTkB437kVi1uSXiyGY+ntVZHW+i 8uMH02qfzFUSdgXORm0efNiaR4uEvqejh2b9tCidhNyB6FDPVj681dy719Yw sDNJVXl5AYnekLmzFWYKMPfnj/O2B5no+xF49HoRiarT+XGL5QTwU5RQGzjD xIUpjk2vXpBooofMVVhErW9H298T0UwkSsnTjlGOuqNfHHxkqQCDa1hTt6cw QcodKpSiHNW0wlN67noBTjxTTz72hYl5j/u+l1SQuBIzX75opwD6mP1r1RgT Uemxu769I7El4uzBPXsEeHFOyNCeNoSzYtOUvlWSyK/LKMk8LEC5/sbsnMVD OJqW0JX2mcTvaDtxBQ8BQqx7DPxshnBzfvNuDuUAkVUnLVMjBbA6d//unIwh eDuFzHNrJyG0W/0m7x7V/5yUs93rh3BF60xn3wCJgyUZzbbllAMVCaetmiwU bPmpqcMnsYy1rnsJTwCL41tvRCSxkONxnTb+lfq91DMnGkSo3hNuO9usj4XL ayT2HZ0kkZZ1uufYWspFftO0GuzZ0Jr9+9WV6ULo1jnzN/z3Od3v5yylC9lo sTyUxZhJzanirYGvnAlcPVxk972HjS0so35XKSGYNmvYLRcIzLKpXes9g4Mr bgGbJOYJsW7SlS8TTcAx4faN4i0cTJP6tGeNGuWidvf3dVQfcrJ6EifzjoPc G288HmsJ4bNjMf821WOaA7OH1VW4CN0jZ1W2U4icmp8WJ6ge8OXOHPPPG3kY CLALcD0lxP5nVVaq1SQuxMUn63vxoXlkbKPeOSHiNB11Y5kkfhzcM/iunA/H UjMr4QUhRn3siLWUK/n36u/MHeUjq8lKUXBFiD0ON0LvrxXi55A+d/1tAeQL i3m+yUL88HioKnlNiKqoTVUzTv3PUf9P2xb+nXRa90IIv5gwmwve/SjxeWzX EO4AodPWoZ2/SDwZtZxRRw7gw2uxzxHjrtikcXhpczaJpaahUY9jBtE1Zn9Q fcId8tzFBQtnkyg3/D4jzJ4Ghw+bzWc1e2Hl7KeaeQ+onr6kdK5pNQ1PL6yQ M3O+gBbXs1v7fAjs+SO969MPGtSWum3bHOED1TA/k73UerukEqwwpE/Hn9u/ ysgVfvDO1M9QUCFwrmRDzg9zOsYXuH3bWeWHyQ2WufRxAWrn8IeEZ+l4TWOu e/7AH830wuU19QJM1Y1PKE+m9su4D354G4DOgS+pIZRn4i79aOHkUe4if+T3 aAWCDFfWVaMctWfF2+26pXSUH4iJeRoQiBsTF2NMKBf1uT2b8uMTHV4/Zsys HAxEy/wpmRIRAtyOmt8sRqfjhvfTJXoBQfh84oDnl3gBysx3rndRZMDIaO6N lPe3sfqzhsOnHAG4O3/Gt5xjgPvMZdmLRdnw9a7S3VQpgOvIBmUalwHx7seJ CV+LsNBxL8utR4DKI0pPTSyY4MadXdmoVQLjCfeNmj8EUB4IDQ0oY8J74Wie Zks5nnjJ1PvNI3CqeHFdqNUQSqada9siVoUd9cP3kiiXWoWIreTkDeHLmzV7 JPuqsctWYuC2HoElvxapr2obQtCxdSvFZD6B86+RkW5GIKDhYu6oAQt/Vu8P 7FhRix3LEx9x7Qh4XD7qvjOGhSNyBhXz3tfD9lehZiW17sPU32hXvGFBf9vd ZK91lKOk7Rx6PQkcgl5Z+BALw0oyDx6ub0Ly9qKD63wJiAzdVPw6wYLsMW+9 yvgm2InIbmGFEvhWVqCbq8lGb1RYVdjuZlzeOnvb85vU9V9ZfeqEGxvbnvhh uVkLUE+z8ksl8Ozj6lNbsth4J3piY93SVgwfdml0zKXcaC/58lcLG2/8LIKC 6K1wqBQNtKYcpbZw2klQ+fsvY81q1YI2jCjTVzhSXtp6Y3X951VU/ppO9D8w a4fnI5sDe99TP/fWiiwRIw4eTr/j4BjbDqk8VsfkRwKVsknBvgc4uBWSkdox 0I6uRwoGJz5Tx+vnLDtynIO/YWtcnBQ78Jjr4aBZT0Dh16mIlvMcfOE9Hllx pAMbu1OsTaiefCWb/HcilINYlu7h+BvU/kUNMpNd1Dz4bCcancNB6vxzXolL OzFv0dfXDcNUvl7NGbOaxcW0jTX6IvldGD/e4+9GOYoerNrq7cKFrOMFnyjp Hvwd62p/IEmi+VNgv2YcFy1v21a7vOsBXVRqpqUKCe9fun7mLVwUNxe+zHjT i4fFzzqSdEhs9lv81UyNh3t6OxdtG+1DvIJ3Uut6En+v3ykyNuXhy3rH/W/D +/HBQmT/xc0kWnZdMIi35aEiRj3S7Gs/NE45eN4xJWH675X62CUejHaLbVmf NYBThr/vvthDotbmRlN3Eg9TbmtzJHUGUZFmfm+aLQkF186lw408/N5pevS/ z8eYXJra2elKIvH1O9GV0/h4c4g9LJ9Hg4iUcObGsyQWrg5hhivwkTL4V3oq nYY4730KX/xJ/Bu70eBhxMfqscx3LTvpUPznbcgOJfEivW9Szp6PqufFlRF3 6Th0NKZmcyyJJQWPlItj+HCQCT7bKcNA3Eu6W9ojEsnFCaOaI3xESrRtEC5k wizib7pKMQk15+cWWssFOFpwcSgxi4nbn6Yv8C8jsbuhRLxXX4CoKecuJ1Yx sbJdEJv1lsQhk+ioZiMBzu+sPPKCyYTXxYqzXykvpZHPP1zeJYD6+qhDVr+Z ODmebnm6ijq+uqb0zBEBhHnHflosG8K3+Vcvm1EuijGda9N9RoAA46LdhtZD yPrrNzb3C4nt4qouHWcFuOxYganHhiC69Zz4hjrq9faUOpK+lH8mnaRnnx/C M/67hwdaSExtfT809YYAXXqdKXMLhqCTuOENu4eEuGrhR+cCAWZFKHD2irJg 1bQi+w/lqJ/yK/+1UY7yOPH+t78WC4YKDM+ZlKOUdvyZe48rAONEXuqiuyx4 WQeeaf1J4qm2l/JRGao33B1rUaV6kvjkc92TE5QDx/yy11I59Lfg0f5qqied rq2MOD5DiBPzdqqEHCKw0zk98nYJGyHnpB2DZCjnbFG8nXORgNi6mpgWJQ7y 307R854rhJjnlvKBCAJfbK2fTxpwcGib1vUYBSH43YyRo3cJdO9KidvpyIFj t3rdvYVCbCo+sXJjAYHspA2syhSqx8SsLtfVFkKj5tX62wyqL55aQj+oxsVG ppyB3joh3oREOhwXp3rDE421+eFcTPex8arbL4T2zqCPhv85nXY3IimHh4y4 oddzzgvRPf4v3lpIwrHGbLCuh4/xlJvqFgFCdGle9H4rIUS014SWnJoAjefD drYEC/H2SGtCAnVdNU9luGaUf/kS1sput4RoUTyuNddRiAaj2ypGYv9z1P8p 2769/hcEKULYqXF13mT2457N1KkFTx0h9VnsVkofif7NDQn1qoMocOy+/M7I DTlbH9ACr5MwFzNR/1cxCL15L/zFtpyFhXHSl1lU/s8W6Uh2DqJhpUn23P1R 5xFo2/liTTgB0ditFyLYNBzIlazZrOcDN4/FPaXWBMzV3qx6IUfH1PibWtMP +kJ00zPiCuWEsX/mYf4H6JDdYtsd/dMPjPaaf0kTAlwhbPw2eFDuSr4h9jbJ H5edEi78aaO8z8q/nHCbjiSZq+tabwRAa0PX6yuUZxzl6xdWUL20/KDkzNii QHBCT6txE6iemTOzc0srHe0jBx40LQ5C//b99NgoATKvbeoKH6BDR6pATf10 ENZtOVJ6I1qALZfOmpwaoeOdS5hDZfM12K5W0ihMFKBN7W6D9DIGvoqOtv8Y uIMFRzVFZ2UKELrRfKDkEOWlY6eUBBKZ8Ct2XJ1QLMDS85VzBC8pX1mdMatL fYo3Dl/kY1oFaNLL1N24mok2xgua6v5XsNs1/KNKIIDP+5fjaveY+ClzjXO4 /Q18eg1T4qcTOJsQsumY1BAMqm5ndU37gOPWATMnNAj4RLe98qL652HrsKbv odWYLChn2G0m4DkQzhqbHIL82x3zMx0/I2Bj1oHLOwikvy/230/lJu3rPvmI 8i9QYTTrXKUcle3JrEmKZiFN3FW753k9vk2dsPjnRWDb61lOoTzqeKV8pvHu Jlz8YiphEkzg4/69MdqL2Hjc6vTJZmEzslk2Or+vEQhKn8c2MmHjcvSy7Yte NKNMXm7XplgC7ssr5t13YMO6YnZQ5aIW/G0z0v5C5aNV2Wh1dSwbHiHJiubt LVCVy9jYk0OdX9KkNruJDV2/W4EOXa2wTcu1eEd5Sfe21hpJCQ6ObvrnuulV G25qr3o+rYLA0bbIoJ9rKeckuvDbTrQjOMHFw7aWwHWnNceFbhxsFq31UzXs QOLXR3OmtVH7p+XdrrnFgZGzrPnfxg7E+F+z7aWcQ+d93fjjIQdx8rq+W9U7 kXcxoHFpP4F1KU8Zr0o5CNhT1i3p3onvfnlma+gERuQNr7vVcgC3eqdnzzpR 8UI/7g2Lup99nA6ZDnIgc2hn7ucpXbB88ClOkUc5tvB5ygTJgbZm07fMjV3Y wRoNVf5BoPiqWnalIhecm7I32tldeEooD/ydQaJyvTBO7gIXu5yZs3/v6YGE tkG72EISMivMu93auXihJf+R96kXURWNRpnLKYdsPaLQKsqDT+0vmzPBfXCu bHy7YAOJPWtz9/fs5uH1hy6dknv94KVsnHy4i4RWqMt4RBQPI7PqRJ0GBxBd r72y2YqavwY59ORsHgYlZL9sODOIEIbWk60HSRxNTXd2esUD/aHp7UuVg9hf 8NtB4hgJ6eWuvBudPNxVH3k0y4CGj6ZVU7a5kGi7Ofd493ceOureBokF07Ci XeOR+HkSjMObSzjL+Ah67ux+Zjod68rP1voEk1D97qFDO8jHn8v7FZNC6Oge 21AkuEJi+cgZKVMPPsINLy6XekdHLftv/rObJKJ61G7/S+Sjw+56258VDGxQ mgyjJ5GokM6velbKh6zZ849bwhmQm5E5sS2XBLFyqfzMr3wsmnba8o4MExLz GxYrvqP6o0NfpLKZAK+O8g7QJqj9yhrj9AbKD8UDAb9DKf8YSvFXxwzhxm7P W43N/z1X4c7UWTECPPBfeWPs0RAuvnxgWdZOIqNSR6UrWYBU5o8jfk1D+LE4 N1eti7r+AC21bw8EWNU5TI33ISyL+ZKzispbhuIPluELyksbvo5zpSi3vPF4 HUQnId8aXbLjE7WfKW82ZzsL/v8KAmYwScSO2R5TahAgWf2u7tr9LOzdMDf7 Jptycnj+e99eAUb/EfyRCywcNHp+/QxJwowWOOA0IsC2Q22nHUpZaBFoZU6O kNi38nTFRyp3fZ7Me5k6h41Hs75UzaJcFPRgn3bfcgIZL5NLjMFGouGdl12i Qjg/avZWoXoY23JlaGUCGzNdPRv1JIX4dXBiJ6heVeee/fb6BBvLF2wOcJIT YucpM7c2ag6Ym2YfDKJ6zOD25AWLVIXQ4Q0EjVDr+IGyVHDeEw7yih9bCZcL sfVkrQ06KGe8KL27TYQLh2WKQ+8pFzXOiuS/GCJQMPVbwYAGdb/vGfmxYLUQ P6VPRRz9RqCorjK5eicXnzX4rwbXC2HaohzziuoZh08XNS9O4OJvIWvqFFMh PFdcvzN/O+XrvdlV44t4GI1dfsbASogr/6YdeXWaRGaa7DyPcB48qhbZybgL sfb4mqUlnSQGCqUvjN7n41nyjg2tMUI49RlphFD+0uvLfSakC7Cva7Wx3X/f Q1ySmVFF+av8fTuvby2VCyKDtdPThDAW86ksuSmE+THpy9qh/3PU/+lbn59z 71veEQK33rXTnvZDe++SUK0RR/B1zx//1UZiskNs8h/VMx/EjYdtyXSDgtzi pjAq3w7fnJHeWT+IaXrtll2JZ3HeIfbJGw7V06PnHswJo2Ho7gUzTsl5pPvX JTCDCEjND1lVS9Iw68/An2ZHH5h0xubJWRLoF3Y67VGiI/SJqvbHK74YeLCo YnAOgci6U8WytnTEWRPdZkv9sbM0NtLouwBFMz/JhvnScfr6wMTedn/Izg/c 8K9OgJUjObpXUuhgCNunvv0QgGVX8p160gQIexpSefQLHffe9J+u5wZij4tu Xux1AbI++nlG9NGxmZ11z8UuCA3DF84nRwqQXlkR1kfQ4bDq8VrttDAsnviQ eonqewONwZHJ0xmQ3h9ycLf6TdR9XcgpTqLy8Zbttr161P7I6T8YqsmYrriy vzhbQDnz5oHakwyc+jHlVbroAzieX72o+rUAPRbpi/CJAdpR2YMhAwVYqlw3 c7BTgNgDLo8XGjPxJ1HixZGgYhiLRo36f6XWa5FWTkk+E8tbaEvWKJaj65Zh lc5sArdObStjawyh8NqO+LaPH7BDkq6mv5Ka1zeY/3aVDKEuXm/W/bU1GHK1 Yctuo3Kt4XdcrBwLS1J/vowV/QKHn5sPrzen/FO0UoMHFoab/r3wdqhFSJLb HpoTgRdlXb5Ts1hwVVlg8cutAR1lE7a/fAnorbXoX/+PBePjYgsepzeBGTZX VonKzccRTzP26bNhW7BhVoRnM6YlVzh2xVB59zdLl3+MjZtVU9TnKLYgrcHf 8UI8gXPaDcd8fKlcHnBOSvJvQX/UeZtradT1tNx/MpjDRvuekWkiBq2YVjtj v9xTqq/KHph7kcOGIJF3d92aNrze5x1NKyMQGHh1d5c6B1XmPTr3FrVjZMix +r/n0B6If3bM0JyD6Wab554vbwdzT1KodxOB8MVHTdZe5sD0VWZmeVwHxnOM tY51E0jak7Fd5xEH6UK+7SztTrhqE7nHBqlenT4Z4VHJwaRrzPwd8Z2IWD2o 9IhJIHXf69VrOjigpcsHzO3vxAGdPK8GNoH5/D8SP5kc/Kl7eGS1XBfSXOs/ vxYQWK/YKREyzsGXicyA4ZNdyDv0uzuQ6iNdi3vD2BJcEDJ5aedyu6ieXVm+ aZzAVI+L5TH6XFhlkAf0rLoxJ/OydN8cEuO3gwbexHJhm/pWwHnWAx79tEil OolNW3++DRdyIT9+tvC+Vh+YZ/VyvuiQKLHinFJV52HjhvbXkb/74DfCXMXc QsJZdk1AryMP1kqn136cNQDZ3FvmLZYkbn77UdmVwcN8p5OXcg4PYvJ7+1Yx axIrl3/xMynlwU38h3NYyyA4fZUK/46QeNfGmJCt42GWIEVScwENGnaiJ7yP k3ihv2aBBMFDYl7jeXN3Gn4Haf9iUnNrrDRspZo4HzftRYydXtGQu5Th/NyX xKepWy2jDPjwWFBnvFufDvvP1YqZVM5ccfo7ruPOx5xVGR2Gb+lQPvJ8z7Ro EnM633RfC+VD+LJkdOl3OnTpCcrnEkkIZVy0CvOo84yIJZ10YqAy/8UH43QS WamM5S3NfPRNng7++4GBJtPUjuA8Ei2pff5zpghw79Bf7S2GTGzZs27+6//+ Tyly9wEXewHOCVcqbdYbwtTjFo3fqDxsUrznx7grgCpD49HHT0Mwyzq0cw/l pfGw+2viqHVvobdgx0feEOZ6n1kb30vCRMIk9GuRALIhmSrfJFg4sWPvW+t+ qp+etii9VyKAp7WD+g4lFra5S1syGdTrbU4vjKsXgPXHNL95LwuXPbNel3FJ /G4+HJbNFGBThc+IIdV7nJWqH6XzSHzPWG87k/Pf9ZRypG6z0Fv3hfmdIKEm w1x654cAlS8ePHjxggUj28+vxX6SyI+07tsrSeDTvF+qhr9ZENZ67nr+h6TW zfwoZR0C3R5nXK9asnGxtOWzzxQhFhcp2R2k+lnmFp/L4d5sxF4uj+ZKCBEx K8ZLzPG/v8uaGB1uZiN/n5ltGOWoIwe+5VldIUB+M4us0OGA6amuS1MU4ozo vpSjqQR+/rs1Z5cHBw9r4vzklgkxd3PN0wtU7/n99jv02BzIPttW/mSVENlp c74NU+vm7m49u6cbuRgdon2+t0YI771pFvW/CWik3fc65MiFU8AXUTXKUYd/ xJbyZlH+TSs1647hYlbk8f1jm4TQfHHm0NhiEuVDRLpBDRdVev32P3cLcfCi 96c71P3r+z3iSsgRHmwj33WPHBSCt27HtxMhJDauu97d9YaHtvLiLw1eQty7 5/3mFOVTv51RG5y6+Egttjt15rYQ1VeUlp49I0TJvS+nPqsRuLIsfK4R5aiq 2U4bbt0S4nHZ+Sj7sP856v+t2xkX/LM/UPdBWrrXT05JPxZutIjnGzohOcFo izPV14IDOX/nbB7EYYVM68kRN+hJDsYYX6JybNuxaPQNoq82aI/xj7P4/X2T eQM1jzzcAowiomnoE3465iU4D43ZgetGvAm4jLIU80ZomLZvjYzdbR+Evny5 pcGUQKms0udwdTp2VuvNCizzRWND+TZjMQJ8vci76c50qK2rCNOy9cfwqoeT 5jwB7rz86HGS6rGVqz3P2UkGYNrWBW+dqgSIsf0kK5dNh3tD7pPU8QA4HW// eTtRAPvmyhXxLXQ4dn7dFaYShC52dIplBJWbDu+tdTl0TJl8vLS4LQSX70ck lFPuktjhWHz7Nx1GcaHKfNsoWOZsHIqIF+D6OvcYUwUGvi5Sal4SeBtTMiZF y1IoFzXOl/I3YsAqxC3/g20aVn/o2BbxmOqN05nvu4IYGItkKM269xDXVbwD DrwToODzsgqtPgbqkn3ev1xehObqPgfzPgGORIkxA6wpR1mPBH3NK8HXfH3j 7J8CzLT7J/PzHRNjep/3ihtU4LLhsyWD0gS8lhe8O75pCJPzKkz+naiEd2n5 +RBdAptDUpvn1Q5BPiVXPOBzDWZKr3V7tIPAec/nrpNaVF+V9Cr9VPkFEqkL KpfvpZwzcWLi6kEWBHP81wbPrMOjbfOeF56k/FChxZIsYUE0LI5zU6YR/vbn vg1fJOCbU8o9rMiGsr3JL48ZzYhYoZ7SEkmg55z54L49bAy2+k3pb23GSuPG Zn4c1TOvV55RuMBGWcNba7NzLdjmHSHQTiKQPtc9xecmGzEiD2KFvS2Yuvol 1/4BgVf/llide8+G6MALMjalFSs8mZ2PnhHUHJ0tIP6x8dYy997+uDac/BtO 31NBYEfRsnD99Rzc3DQvs8KtHYkRm1wOfyGQd4O//uJJDtapXOrMWdEBse9G SjeoPtzalVfMTuGgVuW41+uJDiSZhbf1UvetWFu24NZHDjSStGcUJndiZlP1 jnssAvdT1jkVDnCwfHNDT+BkJ/I7ytLBI1A5cn5GppCDEpv2QN3NXfjetG9Z LEkg4Xf9Jd+pXLRZ8ATbr3Xhg6SUzW2qV3ua2uZLy3ExFu10PKiuC+a/N4aN jxAwzh3U3LWMi/NvyJ3zFLphhpadPycJrLFW/hOzh4vWj9pmEc+68XR7ZanN XBLHlUKvLHrCRf+OfwnX1XoRESbz6rImiTd7P64Rn83Dz4BnW1/c70OItJFL 3ToSZoLwJ1VbeTgdp6Aveb4fxl8K6iRMKM/k6V9X9OeBWKYakh8+gI+SVu++ HCChPzwknvGChwyRG19ty6hetSpM8tpREjLuPW/nNvDQeCbRyWkRDbIbhx/a Ov73eafoHNUhHuJ+OxaWHabhvfv96GBXEt3vHO0HRfi4+nRkwfNcGoxWB7Ss OkfiGIPsWqzMx7ktL3+d4NMQsrTikdVFEuSBJY7v9/DBmbHwu78b1ZPcDs4L jiLB26vkdTOYD+/x4FviJB0fEhwWXL1JuUKpfuGhRD4i09pzTJczECvyTY2X QkK2k5a19CMf7RJTNkzPZKBiR2HXlYckdpiWzPDj8REhMaEWMoUJ1trXGwuK SIwWnz+cLSdAqm4gQ9+DCfk9craHa0l49K06keItAL83+LPb6SFsFERNq+4h cSFSfQkvX4AD3cz90iIs3LTOXnKX8tKxPImBW6VU35Kt//1ZhYX8cPGjaXQS pxO8q6s/CSAS+qnqkAkL86t/z745RGJ1/I1adqsAnOv1r3Y4sdC4L7nel/IS /8HwyFm2ACvkfcwvxbEwEDf5Xm+YxMI7bRML/lD9r/VcQs8XFl7ISEtkfSVh nd/SdnUqgV7Jt5d+drEwQ/OXp9UPEmKfopv/ez6NWZWrqckPFuq3Hth47zf1 /thlL9bRIDBbZ2kFZyMbzsbDqYoilB+UDoqEGxO4s++AUlI4G0tGghPHxISY /ksrc8k+Als04tdkP2ZjwE9cwJcWgpi/XBAaSKBFbVfnJnkOZnpnO/2hHBWs 6L60mnLU/ukmK46d5WDMYWuC1CIhbqnwAn4UEvjVLVWJDA4GLRufcrQol+RZ 2QTRCWi/zOdfXMTFFikPc4m1QkQdfJXyV5SE6tGxyc3+XOp8m5rkNghxR35B zTY5EtHPkmR/pXOxI7tkeC3lqM3/9tUqLqK8fF5E5EMFF6cel9t4Ggth6c9t dN9IYsk426hzOg/zNDUqfu0TojRSauvcCyTWLLqu7HKfB41j132VbYWwaN4l mn2HhPgmzqU94zwE/na+Y+VHva7B8KkG1Ps0VzeHd1lSgLZDV/xDUyg/qY6k jkcJoTw2SG7w+p+j/rf9v2+PRnDUMyOE6BGunzqzth9x9X23thQ6IVymvPsb 1eMevl6/qGPPIHLu6mrmOJ7B95LNw97eJIzu3w17PTxI9eIrhosNzuEsT+5+ bjsB5X7v4pQEGr5ftSxX1vbGsotPjJRdqTlbtmb03FQ6Zn/wPdE/6IPaHvdD 5oYELsZFaf1YRad6WmlCk6gfDDsHdd6MCbD50k03WU86numEe0zN84fwfoe4 d78AdD9Zc+3rdFSnv/rYbxMAj12Gj3uLBWA8bGSFF9Eh/sk98fyuQNS7/aLP iRLgmVLtn2mDdHxreqlv4x6ETQa28/bFCBBq316h+JcOB9fRKTPvReMYob6Z HyfA+ecx5TfnMbD6hrr3naZ46I13HjpN9dX4r/dupK2kfHWvbLplWRIY36Ze 7s8QIFdOdvCbNQOHDWY/vvAtAzeku3usCgXY/sD2tnoi5au2zwH9Lx+Bd7pP 2b5aAKlvZ+zv/GLgQRp5/dinZ9CV9xe20AWIS33GeUDlu3mai/SCFWUwnxD5 +u23ACGSsiEhfUyofsmwLfF+B7trzzvM5xP4ujA3IeTwEDxULjqob69C83QN +ej1lItymJ6hrCFcVnH2sEj6BKcjjdoBFgQk19ufr9vFwo6UNZGb8mvB4Vs6 yB4iUN1fre90loUpJXovmO11mIykx+84S8BHffNhdLNgKpknvW9WE5pyz70V oXrpslHddzsM2Fh1cdlHhdBmHD2ndjnqFoHXittL5c6yYTa772ba4RZcijhZ I5ZMIH+aR2DUXTaWmWW+fz7RgoSysg6xDALXRXb31zxjI/PhNVmuUys6fC2q 2p8QCF9oZSvNYEMe8+/QlNsw9mJuv8ZrArP+uq6SXsqBtqQkzXlJO0q2qXSe qiFguqI57uERDv4Uj89eMdqO4ZaOZSuaCew8mLh19xUOvh4/VkFP60DHutny tQME+hM2r+S944A77VOTbWQn3G+FlcVzCLCDUj/u43Bwq/nGHU/VLhyWvWUb KKTm1jPTnnAxLtK2vPytf6cLEwpXXqp+JzA5KzzYZx4Xy4++Sea3d+GdHH+t xS8CNbWjN15rUMcPWSpUq3RD0gp+xVTffsc2+ClmyEWFs9npbNduKGP6pbWU o8xdzqXvNuMiOmtfzqvsbty/ZrBo13QSIzqOGanuXBi+lpySuboHgdeOfFZU IZFAPE483sxFbr/LhzmlvWh8f/6nmz4J05szGPbreXjXnfJX26wf25+ya2pB 9e0v/ifNXHiYM5IXmaEygOUzN00e30PCwVvb8NFdHn7UaJ8aWD6IJxZ935bY kWh41Ve8uo2HjuY9Z0x1aLiTpMo5dJyEG/nsTKqAhynZ8fb6Z2hoo9nOkKUc 9fbvzcitU/lgrtQsuPSABp3i8kxvylH6jRk5K1T4qC03WzaPpOHiS1dPcV8S vowjB6at46PNrF309Uo6ElcE7q++QuKj5nBfiTsfpnY2Q/fL6Vhnv2/gahyJ KmFSGTeVDydDTtQvQwaojNlNu0vNV2ZVPfslH7OHe5OPBTBQpFt+vv0BiTyX 64vk/3vuk+kaffYwAzGKOrSipyQWe6bxbk0T4MqSMs1JUyZy+pYnO5dSbtT0 31i9WgChszF9rJSJDUG0vO2tJGa49dCvU3nwS+FZ1e6SIWSbJ4xOMElIVj7f UNwswEeruA13bVmwmjfpEMshUbzLPmbdINWfnghbnwdTXqp9d61WQGKb5Tkp w2EBtiw5cM/uEQvMAuevf0gSu3gfA8JHBZCTZN8VlLOQskmsaOg7CZGJpdlz ZhI4eCd2ldowC1y3R1Vrxkisf1Huq7iQ2r/15SVTdTb+dE9o6o+TOBt3ToW9 mMAC15Vnl69kY1tNE3H6Dwn7HzsXzFpFgLaOubLCnI13ed9k3SgfuPVfbCre TsDwpNqb0mtscH8rDW6aKcSL6ofztzsRsE/6KpvQRh2/oGyqmZQQA5tvhB+5 QCAmy0fecDoHFHCOuioIcdX9ml7rHQKnzHO6h+w5cIt73hKwWAiFs3Xu88uo fqyTpTW9lIP0ous5nRpCaC5caafWQuXWZn7BjVGqlzibGdTqU+56fVJcjnLU tIXl7b0+XNxfGfTmGuUl9SfzWBaq1Psabj2V/YG638cNkpS2CuH5/K5Usi51 X/+cMntomAvv+Zcru02E6PDUmXvNmETpZDgtdCEP+reXbx4wF+Jk48LgWcdI WAX8Uws8zoPWKuapM0eFiLPveTMrgUS8d41k9Hce7vNzZD47C5FTWaZwpoTy WPJ19xsWfNyaVN1aHSLE4ZeWF3XUhLhwldGb6/i/55n/b/v/2fa+aN0CKWsh 0m7TQsN1BmBQ/nBvp74LbtfXr864QWJw1dCqitJBRHv5WJPzzkLH/rn6ofUk HjcKGPH6NHDFspanvPXEuO3hKyU3CSz2uMCY30ND3tRcxlnmBbhsOqXQrk5g ww3p1G2mdNycevPg0SQ/vBolysx/CKAXti/Xz4cOy87GngcN/kiJMw82fSxA j2fVdNEKOrxWd1SIpAeirz1FajflIoXyu3vqe+nw8K+Z/fJwEK5huEk+gfJM 1swy2UUMhMj7i/OXJWK5ebzn74cCLDP5J2LhTuWymVyLaNEDmB7q0PMtEMDA cukHtzgG3t3pd6UZPcJZqelrZrwQoDvgSaT9Qwam3EuszHvxBNuUVA99pnqp 5LYry2MrGCjp4VbNqM+Hg/jgmB7lpelJea96Rhiwuv3dt/rNMyRoX1HYRPVS /TWyU7r+L/buNKrGN/wbfpIhpFKGMlWaaJCSEvoWSaVESBGKhIgGkUo0oEgy JJVIkUoqaS4UjSTNg8a9d+3pGmSmwn393t/v7vU86/88t1fHWnvttV3DeR7H 53ut7K3NgSbL+ILTmgK4h1JBy4QENuw7lmB8gwN1p5YfwkNlkJHPV/nI9FPn +TF3jyoNonJJ7eqX8a+QMZqy8ZsyiZteJpNW3RyEuvga9i+5alRcLptsYUIi z/HBUOHUIRTcl84aqqqD+njnhFtMfxTRM9N5eX8I+rMnakrua0DhttZqcX8S 8e0O7zZO5iLn1xGvPZWNyO4ptGsJIzEyY6qrnwEXgic+uoIzTSjwfPyz7x7j nA0b9754woVQQdJ+jm0Lzl0ytB8sIHH7nXG9+wwewiqvXJne3YoZ9naf9r8i 0V+zIOqZGQ+W3/G8NakNT4/c2hxWT2L8tFq7MU8ezm4Kzx5n246NScL1/Yx/ snNUcg+G85AcTRgveNwO8V1nbLb1kuhQydALKeHBfd3vMG3PDty/9iF9K+Mc 1nlfdIjxYXjptMalm53YMecJuW+MxCO/E2Zb1/JxePaR9N0XuhDx8PYuAeOT obX3nHZ68uFi2SzltuoDjk9evv2dLIVICZlZck/4yKhYLb5lSTfE9kmLdTJu eRyEwJRWPnIOTChsq+rGd56Ct+8iCqtEhZeXUXxMvKsae1i1B7GUf5uTGgWv oS9/1v3hg3tNe+HVwz3o5vodoDQoOJ6QNzOaIcDePetOzijqgbKCSM08Zh5E aVVI89QFiHA1OWMq3YvMKddHX+tT8JGTdjJZI4D90XpLK5dePHl8bFwG46Ln T59Wv3Fl3n9m1W3xuX0oSmu2uLGNQnVipuf7ZwLIFqTGyhf0Q/He/C97GOd8 rk3WcxUV4kS0Ron3owFc3hjxZtSLwi/7yaUflYRwMbtULjc2gAMH2Gd6zlAY nHeposlWiLH+09adnizMOZYrKLpCIdpDYmrFZSHy7Lghz6exUVOX/9LxJgWt 3qVf6h8IsX2lyHGODRu3dgdbuMUzOWvOxZNppUK0NOoX74hgY6WbwoUZKRTy bwZqH+sRYt6dZvlbfWxk/BaobMxg5uJvtbTCH0I4rE+grqpwIPys/ftoIYXJ nnt0diwm0DBdTJCcysH9WzK5u5h8V9Uo3z22m8Axpa6AG0sHoWD4slrjLQXr IFX6iw/jnOeVMfmHBhG7YdyFhnYKT9pOdBH3CIybFKgn0z2IlC/33av7Kez7 6Oj5voJAiMBQfaXeEL635Y5FfqTQWBWufvQ3gRZ2UvyGhiFsr1Pxvj6VRvWi g42bDpLQ/Km3M5fFhWWKR/KgPI0rr8Ir9Jh8UDy8j2vhx8P75kKj5vk0Cr6Y WphlkvDSDr4sFcPDiIbmHFvGG6ExV3S8i0l8CfPZ41DIg/VfqaQZi2hEfL91 aF45Cdtdy1yzanm41WlSZ61OQ1TP81dPC4klX/y+Th/77/sBzpP7tWgUvd+n K8fkAK8b+haztfkYf99COEObxtLQBK8sAbO/M6cbv1/Ox/5BjKzQoZG0Xf9Y 1SeScV/u9A+WfDiWvzO6Y0CD+Kl4uVCCwrbi5POXrvOxx7dLv86YRn6kw4Q2 dcZ9Dbo86S4+algTK9TNaNzTLulUWkNBgrdjiCUhgNZk0/qdm5jrQw5fTGfc fbM8/tZsbwFczT9UL3JkHNLsdtU9ksLwJ+7bOT0CpEZXrv2xh/GVUVrQsWQK yTxlR6eZQthGS69ec5TGFlGn6FutFDa1x55ujhXi4Hwfw5knaCiJ9K40YrzZ Y3ogRTgoxHSXRmVvPxrDRPGbAsaJnEcPn9ZLEsgoEbTLnqEx884Z0VWyNMyf fL3otIbJvapNxx+H0kgtVzBS0Prv7+gTmuYHEeB+rl0TeoNG02i59J9DNCSs +h+1yZHQNV//riyJxqCz7aof8TTeLJSrbkr49zzqX/0/q45f3rxx3EpD6yvn 09DyPrQ6GX7ZteMAlMknqVcvU0jIaPJtreiHv8HETbWWx7GNm1zwRY9C4MS0 6E8GA6jdQ0xf3uKF8ADD0dRIEn81yPNKfQNQHjy+Z/dvX7Se6i+uVSBxMeTj e0tLFjJj5njVZvoh+s02XGdy3eXfRKOmPwu/v3ZcPsg9DeubMXVLHxKwGGmW l65kwcSlN8GzPAD5aWI3oyMIeBnqngzuZ2F+7PvnpzwDEfddtuvcLQJri4c/ mqqwIWXgEiaXGQt9EeL2knQC+35ZJfefZMPw8lxDub6HsJfYZ77oKQGrjx1V pXGMl/Z17v2hmoG/VXtwPZ8Au+2U6sInbNyeFDVfLCITDQ0ZofJlBOxWFWrn 1LFhstp/Pz0hB59eGEx8WUNA6qvf1vgx5vM30sqfVZ9BaUBy/ZU2Av4aZhNH DDlQyDGbVNNTAD+D9akuJNPfZ5UYNd7hwCmwI8P3bxlS3vusKZtGIkhUW9xm ySAG8zaw8jpfYUW2tp+5GolOd2+J3XcHET/8Uin7cDXem2SprFhL4kPookJ1 2SEojb++cuPkNygoDHv+0JWETnL6ofKMIfy0vXh3MK0BmHBthuIZJt8eG17d OJOLY1+yq8N/NaI4qjvq4kUSu7s/3t24jot01xVPjmQ2wWTRnaXeySR63ljq jSvm4teRLb37Alpw0Uj90TwmlypllCWfVeCBXGzX7jmjDXETJdcEVJHYs7fg t4EdDxOHQ2f8bWvDi4X0qbwGEmvKZT5f8ech0t7S6cGJdmyxNbnv2EbCeran fWIsDy7vco4Nc9txbapR3JEBEg7PTVMmMvNGc43pB4eHHdA0ezvAHWZ8Ln5C Rl6KD4u20tzW8k64vGlUn/2XhLip41nVTXwsatBSHsjrgqxDxPVAcQprqhN1 EgP48Lwpezvn4Af8LL50K3k2hZ/yfYWBxXxIDZ49NXVXN67Kiq46wuTk8aLG m7n9fLzM2WCs8LkbZ+NOPbNSpZAqma8V84uPo+WHJyjv6MGCxESNgiUUJk5y WC2YJsDffT67Fqf0YCCmofzgUgrfP7jyjysKMD9hcurglx5kNdlP/szslxGj yGdW+gJ8vBBKjJr2IreYZ2+8ksKMc7tETloLIJ9+7fS8xF44WAyqZ6ylsPBW 7zFFTwGmxbsVTrDvg+t6C88bOygsDumco/pSgDvNTQWzPvXDQn6mY+gRZl6u WuEbOEWI2h9zOs+VDeBhwvGI9BMU7kiVjk3XEmJa5bk2j1ksSIs6POw5R8F8 XMFh9V1CGB+TdLKPYkH3xe00t2gKumrl1gMxQjg198RKq7GxNnn0mHEsBdtn 4Q2l2UIUvXI+t9WdjZwnByfJJlJgN60sqqkSInCzZsPjFDZO2qrMOpBKoSNF cc0YX4gfhpNUjP+yoTvONDA1k4JTpEvoPREC7gWfJ5Ws5kB/0vrlK0ooCA0G jfv0CGy7sXRM7BUHRMZigXIthbTbSYLQQwS+p4pd/WY1CPFKX4kX7yjkLJ64 //EZAtcNL2SOBg/iwdH2xAkfGB+2m8+dkUlA5F4AnowMYt2BiYQth8KEuQ/n aL0nIB/dof17+xCkVONK/5vfPmdXuV+eRCJgX2x2An8ISb2r0ndNp5FOkH1t XkyOCdzrIfubi6bUyp9gHOW15dWduRkk3riUiPhc5aF4z7FgVwUacvcUn4/m k1iVvjbZPosH2cAZHWOMo1RsTbyvvSaRIObuk9nEQ02Hve0PFRqZ9R/XTX1L In/wmu+CIR4W9MQuTFtCg1uR3lrZQ2K1a+P0lTJ8bPCev2/LUhrxKps/uDA5 Y8qnosPipnzsHDhea8c4qmW86DntzyQa5izbSVjxgfVDcXZ6NNZaLOeE/ibR 3hM4z+0QH6zXytd+/Pd9lBd3ud2bRcFtyci9vHQ+jsRn2YispRF7ZcmG0f+e g7rpfnn8k48VV1fV3drAeM9aN2+OFYWa8AoqdqkAv9e0Vf7dQjN+kfx9jPH7 pKPHEgQxAsyb7hITv4tGwHEfg5IYxkUHfQY3f2U8dnNunJ0L45g6lqP9YwpP HQJ9LmgK8ebQDkLxOA2fzrwj5xn/5u79eWltnhDBHo4/Xp2kUVV8NcBxjMLF il1Fxn+FEFb4Vl4JoHGjrwi+zP0RXeX50kGbwP4Qz4eXz9IwXHkp4xJzf/QX BSfd3E7gWu7FgjUXaEw5KpLdsYKGXrQTf38sgQL13SvUY2nk6fdfeM38O6Hf cjMfrfnnqH/1/5kacTTh23Imp1ydHLh6zK4PBTI1K5znuMF95zITsdMUDk94 5pjJ7ccUNYvlM+Z6YulzfY9ZShQ6NfsicywHEDKQc2Haem9Mz7myRtqPcdSx aY4xnwegHqmnGXnuJLiqUc/OTiGRMWufuMdeFu7OTFj+zug02GhjGXcweVU1 irC/zsJD6S5Jj2B/BKk+iWVdITDi0Ftp0M1C5NJ7L79tC8TfOWvUJKIJDMyJ 6psizjiq+0Dq+bJojH3WefH1LoE/g/WEoRUbjR+jn6i4JCHqu3vZkmdM/3X5 7JmQzIYnHvhoGT/G0vEzj5uVErhw58DopGo2/E64Gry9nY2mAsk7v8sJnNMX c5HsZ17vT5y4xP4pFMvVu10ZR/G37xaVGmVj9WHbKwXTn8Eqb/7ycc0E7Lnk x5OLOagULegr5efjZ0tUiO4AgT7SvePiQQ6KfKQ1dIqLYaHmJCH5k8ByEZl1 rPcc5HxwuHdMuhx06cfazUx+Ovm+mbXZZRDVeUZjpyIqEZyQMb5bj0STwWyu c9sgAodz13jL10J28asPzbYkFp0eqc62HWLy++XIKz1v4X/v7an93iRCetz6 O7hD+DpscvStSSN+849/514mUdrYL3S356I8Lufs/R9N+Oa5NSTnFuMuievB see5+GlTZKL5tBmi4tl/nuWQ2C6XtH7nDy7u7t9cm+DZipoFrecrakmU1FQJ Ipx5uO3anLBlejvsBVs1QltJyFh7n/5yg4dsj/O5Fzvb8VOk3ndhHwmpwJDk kec8GM6ub2890wHxpYVZakOMu5KvrSrt4UGyKe917fcOmAsCS58zjjruNLbI TZKPkI/mv6VedOKAsqTghggFBdvsa4+28WHlAVnfhi7cfcKW/sPk8Dy+9s0t V/lQHMhq1Mn/ADPdZV358kwusHgQ/LGaj0DDxP3DV7uhm3DopoQahbft1ocE Y3yUPRD9vMq1B0bE9NTLuoyjDkZ7aTDz47T51lze4l5E/ulrqmD8U3zSM9Fv kwDnpaddJlJ7sTT7TuJWJs9brLFL/LZLAFV75wezqF4YHhGYiZlSaL0Xb8A7 LMB3+ZRtSfp9KIppIlLXU2gPk1l/JIDxko2xysvoPkx3uBA+ZkGh4mhZl1i4 AJ+UlTU3Nveh39hK7ugWCo9+Tdw49EgAw/IYvYV+/ci09jB97ca4YsEm9Yif AnRe3Taj8coA5mi8k9zE7NPEBV/nxxsLIbN3a6qkGQuGz7kK7BAKg5pVnW/3 CdFgfPXO8mQWDi6Pmh96lUKU/bTTYdeFODn2ae72BWy8/jEydyCJQskx+e8K rUJsema28k8tG7fIea9V0pjj11v6OOGjEAqFd+T9pDioG3ZyVme8tMS5Z+TV HyGWfGZfYBtwEGa7gKx4xtyvTTdy/ecSqI/0GLkZwsGO4xsCl5VScG0ZrLph QKASSXUZbznIao47E1zHzF225tx0DwIvjTc/3eEwiOW5m0q2dVBYqj/rF/c+ gWCb4fVGA4PI2zrSoNxLoYCtOK2vkEAnv3uvk9wQ1APU3CcTFHYcKK90ZHLM +ttkR//9Icxreigi8+2/55aDuzbOYNbX49KSa2JciPJ3LiREafhzVj1JMCeh ZnPY5kEkF0UKy0Q9mTn96fRVxSbGUa4LZqluvMaDiENNQIgWDb/Ak5mRPGYe ryx6uG4pHzdzlUq5jH+c3aT0bjHr12XPu61V5nz4fjJr3rmcxtHwmk3u4yhk DdyZddmbj4g2vlEkM+9PKM0vecbkgLA32jPlwvnYdCU+WWhEgyJ3D+oz69dr VcMz8Wd8mO8dPuoHGvvWLpt/RIOCy+tgqXomB1y65r0xxoTGB+2Cq/cY14sN a/8tFfIxbt2p87x1NMTvujhqrqbw4JVcmfNUAVIqCgIjrWjc6g3v2bCdgr5U LLIZ16dGPdk6wuTrxDuSygI/CvaXzwU4pQtQU5u4WsqBRviNyN2O4cz1Prz4 aliTAJPti08mMl7SGWuEF3P/p6pqb3RbKsTcUb2kiiOM6yK3+b9uprDcaPVl mRtCRIlvupnjRWOb6OEVSwUUKpdnzzrwTojUsqkqD4JolN5LYS2Up9EpG7r6 qTWB2sjDD/TCaUQGb3cwMaaxriHJMj2DgErBiTcXr9CIoxLn7bejMcP5xQbx fgKracnSTddovNSoo9KcaVwyPqC5WIzExKzcwinxNDZ7CFQygmmMTdKxE935 z1H/6v+7ddZUu0fFhjR+tr4cenu4D3+25y8vzHBDvVpdoeZRCn9ODpOzRQZg t8u4j3/UE7keK4pXyjJ5g4h87rtjAKr7udH7E73Rouqsu+QQiXOvhO4uoiwE PuZ95wydxF5BZ5zpCIHFWfNvXf3v+6l+TX9jm3waqxcWfplQS+D5l6eTTt5n 4dAjifXH2f7Yr3ZT7vslAmUjqidqP7OYz5ux3+/iBdRYiZ7Zy+QPpZT11yUX s5G0utreM+E2KpReqb9NJeAWOn/V2aPs/54j+MbFPoC92q15L0sYF/me/Fz+ mo2fS7rHK23JhpfOwy8vXxNQvKlvo0CwUXay6/wfmVzI8Sf98GSOp0EsOeAB k7eTUgvPVdo/g+ATpVPYQEB9QLZAdi6H2fcHV3pNzEcUh5Xys4vpB3WLUm2s OfALa49um1YEYzGKx+MRWGPe9nJNBAfqt7VNL70txUW7otTp40j8nBqos+oH B1btx3NGzCuwnLTRnqhIok19zZuJoYP4bG456eH1Kqyt9bhyajUJ3xPv7oqP DmKiW01c1to6OOwgt01zYLzK/W31yGcI1k8S9fx/1GNFrarG5EASp0xt34+X 5kI+YtOKdG4j8qb/rt3COIps0TL7FcqFsLD8T0NGMzJizPfuvk9ib3xmmnke F/7r6lLrDrXg2ZLWEdUy5njMFNqPLOZBuX8/J1y/DeMtxvTWN5N4wKvxVrnE w/Rre71/PG2H+DSZ+Xn9JM5SKqsHK3nok77NFYvrgKrC8GUDIYlXIiH6fZ95 mPXE5VmXTSdKNvdkxDNzqOyddH39dD6irWv78ks78XXysfq8MRKz78zcXLyO j3w5J27v5S7Ms7pT+mcKhc12v4X6Iczcumx7Izn4A2rqDDf0MHPo/tSb0bE1 fIiNme87f70bp7Y/r6pSofD7gVev7Q8+/noufaC/qQfbcst+6+tTmJuZc7jF SIAt3+5OLN/Ri5VOZ1JVQGFbdWVK+z4B/qSfru+X6oOkv8rjWjMmt59eenyR nwDZqSpaWWf7sO6Ud38m46I5Ry61dVwQIHxy0Sqt+j6UcJcumGrNeCbZUfz6 DcZdOWXf901ncokN3/r6ZmbOnf5rmfVAAP9O6s2Bg/24+6d3sv9WCtfUnR6n ZQvgF6ExEJzUj2Xfnf13OFE4SX+2VWfmWfvDZHKf2gBOsyewmj0pnL1/v/rK AiEeaof5PBsewFv3dS6eYRSIpRfKMg8JcUE75lvQUxZq9hvf33uFwjO+a8bx S0JIfrr+3ZbJJb1hr21lEij0JgmtVrwQYl//JNexq2yE7guRPf2YQp3hlZua Y0Iccz9zTW0ZB73OBvcdnzL+NBOyXWYQEFmqfIlw52C8kVvsUD4Fo6IC3ehF BPaE+FAJsRzIfvc9ihcUPorrhS1YR0ASXttyBBxY3P1DDlUxfePxkmWTnAlU jEoosJcPYt8MqfcprRREvr4oLmX29/Lp10VqqgbRkJD8PILD3MdWbuykRgL3 bMxC9R2GMH7R2NQtQmZOi+7peyAgUC4rcaUtfgg6c0gx4juFAx9m/17L5JXa iPvyT2dxcU2xWzdFhHHIjldav9eQcIhqEl15kgs/w+gtAdNp1GnJn7VhcomM ztmYjX+Y/PH82x27xTT+0lzHkg4SXMm3h+ZN5GP9YL3+D6ZPXigKfto+g8K0 2XEfe+7x0WWs7rtrFY3jyXMNB+ZS8FydlbinkI8DCmNrJRkXlTpLlPQupvDk zhSPV918TNuyVPaGKY0QlZ7Le/QoyMWscvP/ygf/JP1w4QYaJZHaofbM+opc pfRJTEOAlvl6dSusaXguViy7vovxe3efmcRuASxkhxYet6Ghpnx6VNuZwhaJ imVTGde/rBI4VmymseOGclUp07+/9j+msyME8Dhu9LPHnkbKZU2LxlAK2jMV AoqqBLBOmfHn4V4aGt/KX4k+pDDf522F9DwhuqN9gg7vZz6nojJmFeNl7tq2 D5KmQngF9I4r9KDx/EqD9JIPTM5QtLm0NVWI90YZnzgnaVxL5M5pH6OQIR70 IUSEwA9t74VvztBg3XCbzJ9FQ1SnYbudGYGLnXfeKEXSiBA6yC9gzmOn7VbX bU0EEs8IklfdYhwls+Taeh8asxT9D11fTuL2gphOhwTmfPfXl96+QEMrXcu9 3Y3Ek2NzHzrfZ1xVv2HnvkQaTZTW4nnJ/xz1r/7PqKxxmy0ymTz1MTfoSb9H H6zkJ9r3V7rB2h1WtYeZfr74yUY/0QGYhqQWqwV6gjeqvCZImsn1LNVYzZ0D 6Ns03eBdljfsDrdXVh0gIer7qK5CjAWvZttmpW8nYfUakkt/EMjn3RTe8WZh bcZ3o8H80zDvubCGZpzz4Ud5/YWHLFilLp8VNuYPk76UYwqRBHaxF8ixfrAw IOczjjM5AqmimTUbbhN4LOJ1eJIWG9Gf+fpqMXGY3+l+xSGNgLJRraylDxvD rz0/6Xo8xPK+h16CUgLhu4/FdjE5/KeJz+PAT9mw5eVZCCuZvhyg9dlwmI20 4IddGq65+JZ4xr637r/fk3Cjeydw0Dj9oufTomcwT9O5LMr09+ZpXyqeK3Bg uEp/V9DefByKXTRH0E3ggW1wXu02xl2PMotMrxdBrpjhDNP3xda6idyO5qB2 97h3K1AG1sSamX2iTN+3/tKh8pcDb6mdvSbnKxCV5JTYpkQi9XCe16dLg1AO 1ltONFZBPmDmtAxjJj+H/fB/KDYEY9W8ALOoOuRLLM3e4UjCTqbHfvPpIchd CqsUUX6H6QEN6UZBJNy2nH58T56LFQIztRPTmnD1daeuyG0Sue9fhG29zMXW w/mKJTXNCLWge6+mkNiU0R7Gfs7FrZSXsTejWjB9IHBv3nMS10bfZOvr8MBS 7pyxenMbun6JPy9uJfEo+MU89k0eztXaW+n2tIP1oiSByyJx7LftnHMNPHz1 iup4/6IDQS2uEyxJ5rzeVmUIRnkIvt+Rc9SrE9LjC7XpzyTylJQkf83hY8sc vC7idOL9c8sV+/+Q6I1NjZbZyMeCt5vF69K64PtbSl9KgsnD802dTS/z0X+2 Klr/4QeknM1KtZhHYesZh/FN7/iY1W50V+RxN7ZN1VPRVaOQPWvF5ojffEhv XDSQ49aDx66xwREGFGTGVWT+NRNApmIm8epsL9ZNiDl415TCYoOqR1pHBQht NjA/adqHwvjegCkbKMxriOjKOCfA81LJrGmZfbht1OOmbUUhc9fC1PBIAU52 lbbVCPrQVOJwYcSGgl+9kQQ7XoBxaYdCPJb3Q8tayennFgojuypsfqQL8Oze xUODIf3Ia57odXg7BVW7Ndk/CwTYFtxxJLKa8Vi3xeu8PRSmbFG4OPuDAKvy rTWSjAfw5/C9gePejAOTxF1TlYUYmVv6IkqEBY7x0bq9FygEOx4sHzsuxMkl R1aFVbJgTXQkjUVRCOfVbwiPFsKtr85UQ46N7ayNaSsTKXzievG3VwsxbWhD 6vyHbKzM2hi57AmFvvW1fzJFCdx3EnyQWsvBa0+da1rMfB3d+1POSo6AlGpV EzuQA/npV/+2FlJoYMWuGFhCwDrIUu9+Bge7ohqsrcoZ/5jytrVbMfsbgbdf /+ZAMZSrv66WwobpDoe+H2LyytSiPQutB8GLS28waafQ9ll1R2sigUujtRuT 2wZh/nPJrJwhCjPmHtNX6yRgsTWsyt5jCNPrZd7VkRTiffawRz8TmLiYrFN4 NoQ7lvsL4n9RKDn4Iv7wImafPRJunbOMi65iPZksURo5V0/+yVtPQvVqj7n1 JS6ePey4JClNozeTsp3G5BI9yxuND2bzIBu8V7l1CY2Y/oAlR3pJOP+szxfI 8qH5tUrlrRGNnpar/BdyFBZONzJofcrH8IwtvVZraIjVj63SWURht2EYZ/8b PjBh8PJRxlGbXxt9qtdlziMz7/Hfz8w6HTFvm2rGuOVWz9X81cz70+VTqqYJ cPdV4fxOCxqNcYep9k0UXmlFGdGrBAg0JuL8NtGoOhOgKu9KYSd36/nVPgJ8 Wp44nGNL44xfy4GCQxS6Z6/wNjorQFvcjFc5djTIsgl1U0/897t/wcvz7wiQ 1hO8zMuRRvEUEbmrjLs3ay8vkO4XYLo8Na/Nmca40h7NwHQmT1try+arCRH2 VMP28QEaj2cuFHldSsHDxmoudghRLLOCXXGcxo2qEDaLRWG2kkODW4kQaQuv G5mepqEqIru56r/fsZFTlyufTWCudqa2zlkaBifVpy2bR+OuTMIDaTvG6foq iyyjaCTqDBSu2U5j/PYbqb5cAjM/eI263KaR7fhU+0AAjVeqJRnPLEnoy64W Vb7LePXPelW1azQm1z++vzHkn6P+1f/Z9fX6E8crdWj8IdztE073QX5O8F1l qYOIX79tm+5+pi+86505XnwAZZf2f1mY6gn7kuS5HHFmP9t+bCpxGUD2wylN 6/u94etTf7NlN4kMVZuzqdNYkKKnGlSrnUKnq+qrKJrAIYVvMdoBLJyw1dXv JU/DnRsoMcb4JzjdLeTIExYGK4b91ZYG4PGfn8uORRNoT/tk/GwKG1JfFJ90 KF/DbbUVTkcTCLx31PhUZcRGUq2su+z3O7g88mWVUiYBP3Lcva5QNm4Hx8Ye PPkIib+dcbqcwJwsicv1PWw4z+4IjNV9CuMpUz9fryUwRXBu5koRxlHLCvdw 9z7DYHnL3/PvCLzhFEv3zeRg2svb347k5SGnhnC43kpg3+7r+TnLOVDItQvZ EVcAh1KZQtt+Al26k6ek7efAZKTk/urAYozv2iw/gTnfCJuFV0ZSOBBRna+q 4/kctcpzvzROIuF7dL3IG9lBCLcQKmeWvsL3F2d8H6mRsDBT0JuQ9N//A38d U3iyGhPvGLxpX0uidcLgSt6sISTvMtnJmv8GcxaHpH7cQ2JZ5JPg6mtDWCsi H3108B28Y0tvRYeS0DEJmvyNmSt0/XRVo0NNTH6tWmifSCLwxWtWWjIX02zO Kpxb1AKea/eboTQSc+K6WQZtXGy6GHFrp7AFp0WalURfkZB4ldg2aR0PZo/v +q6Nb8PzmUuydT6QCMhPH6jJ5GFw9v3VOkYdWN/9KHw1j8RKcptv2xAPudsd 2mPkO7GX2jzNjHFUiozVFOlZfNy+t8jLqrMT3vPajab8IlGSHdmWo8eHTMjU Uw3WXSjoTpSxH0/hcuHPokJnPrqOxGnxfndhi+zSXU0yTH8fr7H4bRofI+Nl J+6X68aE+INpSkoUzM99Hz3I4yP40MQjqZI9yFy4+cBtbQpz7O/NHZovwDnB l1nfh3pwUyq1q3YNhfU5sxJzmPzvGa+kN/t7LyhqmeVVxlF3855lJoUIkO91 YC0K+vB3RN6j0pqC9NJms023BPDbcPhp4rx+NB+f/NRrM4WB8Rel9R4w8yxG rWbQtR+q5o8WaGyloM3d7xeUJcDM8Tmx3vH9mPSLzhdzYLzHC1nYXC7AfYuF LnW/+jGma7Zv0S4Kc5+dl79TL0D4hduFUXMHEL2kpkWEmaMip+e9nEsLkHxQ JS/Hm3l9UPu27inGXcHchJQVQkgUXNrsuJQFgzclLtGXKazwidaICxVCpHN6 9QUml3xvORFC3WTmpWup9Wgq83rWwMurW9lINI2I+5JMgbuhZOuvbiEEGV/V 3HrZcPJ1zzTPZby6ZUEiayYBmwkOByec4KDAZ+FKtSIKOrsDiFmaBPrq/uyt e8LBsow7fj7PKYQtl2iba8L4ChUF3SwOUuipxmLVTP5KXlp+2plA0YTF8tNW DOLkdP0Gn3cUfqsFt1wPJJBbtEugeHYQ5eYn1W16KFwK4qtn5zFzt1G2VlZ6 CL6i5sWBjKMuTvmW1PmJQIPlOn2NnCFYjDOZLfGFcd3capvUKczcnZS8Nnt4 CJz0pEfb/lLIqp04UWIls+48YtucD3OxRzx30cgkGg8KvVcUM7nksmn+e6cX XIRIprm4zmScsC1om3skiffvow4brOVBc75HojfTD610P9WmMuvXudhspbI1 HzPqU1Q3mTBemqNbcp1ZX8ZvAstE+HzkHB7lH2a8ZMgdk5AzpnBmDdtmn5QA HpJ/tVcyXqrKrXAKYtbR7WSfua36AkQtyDNmWdK4POFnTbkdhVknxpTmmQvg bubT6MF4qfKo1cuig8z1kOc8SQ0UgG+wwaljGw2j5QV7NAMpuNcZj3U+FeCw 45SdFxiX5PLoxIogCrfYsz9HFwlwNiQ75b4DDRejr++CLlEIeHw7V65DgOHV L5U09tJ4csQiTDeFgsbXAYOds4WQuyygx9xofN/m9fYF42I71ewofVchtOJr de4coaFwQ2LCimYKE+e7xKVcEyLQ7pt00gkaEXm6PPOvFCZVOO2BUIiQ+j03 bRhHdV9uU0xiHHWe8onR3UpA5V6aiMN5GppSzzN89Gh8IecuvB5FQBsm1TNj aMxQOLjo4zHm8zbazbJaTCI7my89/z6N+5aS4/bfYTx7Qm8k9N4/R/2r/9+s y6qXCiW1mZxAPdAbDeqDsGWW+j3dg7Dzj+1tdaZw7FJihNPUAXxIOeahm++J 6R+HHpyfRMFQInu9rOsAWl7M3OhAe0M7TXLByV0kJg1O+/J3OgtLJ81+2rni FJ4GNi/UJAhsT7P2vxzEAl0QKOkp6o+flved1hYR+HoigbXgKQta9MjCIfMA jBdbSXVcYxxVdlWZJcXGuc1dQXnp1/FJS0ri5h0CeZyxyS1gfJXz4u1nvbtw +es2lvmEgP/6C0TsJeb9V07eibFKg+/4Y98qKghMOFMl7s5m4yfWcehLT3Fz +tNC4zeMuy4StRcncXDHTX1pb/MzGFWdrlr2nkBHsHKV5nwOKr+IV+9Ty8ek dxqyY20EdnrpJPQZcRAYUV4QNVIAzRd2kXtYzOcnqXx+dJSDOauW9TSLl8Cx 93t/zkcCt4gIE8vHHBTtjPquynmOOBXV3v3MPKihRkOnKgziwfvF/ZPCX8Gy 4qNtB9NXgr4vColJH8QY+2/c54pqfLh78t6QGdNXfMYp8RYOYVpgwKlM1zeg NXd5lTmTsDz+J+Fh3BD+em3t36HUgLoEF6fV50kY9/FL163kQlFe48OPsCaY DYyXnJJEoivMud4/i4v4H3c9f29pQelB+aSvGSTWTvxVZ9DHRdBsNZVyiVZY jeudFlNJwmXdNkfLTTyoCtc0X6xuwwy5FWcX9JBI6B1wMcjn4dDqFx27d3Xg VvfQqWEBiZjcT3sffeJhlYifqoxlJ3I/vuL6fCXRUWXjeH8hHz4Jpl94vzth vnCmlNwoCe68jOc5q/mwmJE+YblnFy719fBdJ1DIV551v/AwH+JjK8qsFT8g SaZlW80sCr1bb7Ke5/Px4fzyNZutu9GdaOLz8b/nBfs3zNrwkY+diikz7mj3 YHTB1z1RyyhEpE5u7VgiwIEjsps4c3rRqeo6sNOEAkmtUjh4UIDus0qn7qr3 4THbK2q9JeOucyZ1cyIEMBefmcLt6MPTSsupYrYUfpoGuby7K0CupIZIk0U/ rrlafFdj5mL4exntxxkCHNXqUIu80I/JrRP0L2ynsH0Sx+VAoQBT2rrZFbX9 qKK0R0scKdg/k1xtVSOAnCfPuUhiAJLnm4fjdlMIYXc0CtsEcD6xf1el3gBM v37zMnGjwLtc2x3/XYCXGy/sehM+AG/vK1lXTlNYlnzg/CUIMfmewvdz5izs 2LAz9swV5jrses0auCRE2JNG75NMLlkp1I04G0vhQfLA+6c5QhQkDbi0HGUj 58ZsdfeHFGxOTZtiMSTEq9sv3yZ8Y+NJwcqdtnkUSjYoK1ybTyCrf9OM8eEc jET0oriEQkd80rF3+gRulv0ZJ1HDQW52wt3YlxSWrOQq61kQiFxA7eV954Ar 9sbsVi0F54Ft63TcCRz7qV5mazuIHzLLv8a+Z45Hc+eijDACw7EXr2vdHISp te8mrz7mvEIr/KrLCJhkm3gpqA5hR/SD9x00hScaJy69HCFQp9v1wa5mCBpX 72od+kbh++r1BldkSOgOG/DbJ3FRbfD3efY4Gu2C8x+/mJJIstcKCD/HRTPn XvKjKTQixx+50LGfhOJK4fGsTi4cvL81WsyhMVI2z9ghlsSCJq2JD/fwgOOj GgJdGk9d1p39xqxTw0eSvY6ufNizXbQG1tL4uX3HGktDCj/KAveYjRPgdWnE qQFzGkkzbSsPMk530HjyKVZdAKfaY+QUKxqZkYrmexh3G/uIvMnfIECVuMvd MWsaPpdWbwzaQ2HR2QllD10FMHlUDjs7xiFt/LRUbya/zg2xko0T4NAa85BR exosw6tZ68IopKe5PxysFqBP72enHuOoOD0e1R/O3IcP1tfZzQK4SE0vGdtJ I3yXT+GBGxRO3tR2MGWc3v9Ne2DMmUbM+jSPGRkUWis9uKsWC2E4OUJZeIjG /DUPgicy96191HOVyikhvHIuGGgz7qlt1A0nuym8lHRZxcsQYliTE21zisZx EQ2DA38oJBRd+xMtRqBZQnutfTCNtSHdD2yVafBq3E10DhJwurTd2SechkzM OO1loPH7h3LRXKZfj0++oj8SS+N0+ASJ3tM0Oq0/5Rau/+eof/X/X9W0xvRA 7kIaoq8Hgs8n9KH+T41UoeAgXisPth1k5svL1hDRzHkD2KN8PgTKXjgbp5s4 5zuJiB03X+z3HYA9NJ0P7PbBknf577ZbkPh81qz5ryILSXvJ0tKcU3h9S8P4 YSuBUzx1VfImC0Yv30/4e80fSzbsty1IIpAaJPknpJaFVrMrJ7/2BKCkutEm LJ7AjWlRiu9XMPNA9tS2u2MJUKZTLw49JJAW6T/5xiE2Jku8dNKc9wCzK1wP JhQQ2LJwS0HqUzY2L7F+GTH7CVQqxl8qektA8+yrqWMSHDSGlroeNMxDVb3M BlnmeJabibpG6HKQOXqX7XuqAIdD1u617CIwsW6Stq0lBzrc0JmlvYVYGake d7WfwL4H/odeujKvV+g1HLxSjJ4AvsJ2xo1LkpW+rrzNQWtQ+u6NhWUIi/10 O4qZB+Oammc0fOAgXldcYu/Bcpj0LszhziThqlnpsM9uELfEh7+IylZi2E+g tFOfxFx90p7sHgQ5rzqLsqnFqF3bLdstJDg3Z9bo2A/BKW5Db4FkPaIGSI8N HiSWt/98dLZxCAluCprNTe+xz+pTpPQNEpE/WPUVvoyv6mJCB72b4XLtporR ExI/zD58UOVzYR550aF5eSs6ZktXuBWROLEZqWJyPASHSn0V+9YKt6ctWpOa SVy7Eq8/K4IHZXu1+/VP2qFQ/uo3myBxTtTBX2OEBz+j7Kpr7p1QCcWnG79I HL8eIj11BR9J1/kKkvZd2JhYpHhZlILRYRlDk918vFd8Emo23AXnBq9V7yZT 0PxUdvCuHx/J22+U8nd9QGzYe68jM5l52uJ4sT6bD88m9WvDy7tR8NLlnqkK hT3V075JfOPD0FYxbdv6HvSviTUK0adQv8n+vcJqAd6Ixm/pd+rF4+Cjd4Wm FCQWrky18RDA6M3HU5s39GG1YjvZu4mC+oFG+zWMl5bVlDzmrO/Hmehtuid3 UHhVvyuu8IUA7nrH2R10P7Rn9h044UQhb0lrbEwT4zF/W82z6gMQvfQ2XZHJ Hef/hrv69wswLVm7MNl6AFPN52xp/u95776mP0coAU6Jbb7K8xzAwQ6WauNB Cjc+7UDwmAA25/aKLro9gIVK3585HaHw51uqh1BciFHf1aITSgcQdW7nthgf Cq5uG9ePqgvBWXlZvGUqCyGST702X2SuT/5ypUs+QiQn/bpT8Y6FrFmlYxF3 KHTJnZrz4rUQIQIVsb132QiLCtkw8xHjnLRnE28RjMe+GQvHTeTAvYW8fzSX whS1WRJeswhY+6mc9ffloGzr7vkzXlEw2PWlLHoLASuWWvE6yUHUG5RzBMzc 3cYrNT56hNmvTY/vn2fWb75iVgnnHePAG60VK4MIBBi+/+0ROogYuajZSu0U nDrOmDsnEtg0HOt2onUQI+fNpQZ7meO5aFGeU0Jg4OlhnTyFIbQqiWZv/si4 V++0ZfgYge9r5g5+fzsEk8ybiSuY+S2Qva/Wupzx/pl3bgf2MOu6/V7yGjEa n/vsWuM3kjiptOhMShwXyep9g7HSNOzkmyMlg5h9ULzkz8A8HuqW3J99Ro7x xkO/RUMJzP470iYW4M7Dr11pY7tVaawYdTW9Wk/CjvXwkaSAB/2CsaQXpjSe jN8yb/xyCoFdI16q3/m4qHM1Mfy/30ERHjqx6hSFL6ZU658HAmR2nF4Pxj/d fwJcAoMpUL73z2S8FGC33dHBWMY5j2Y45/CvMdfjy6q1+4QCBLkofoUT45MD t+Zq3GZyQ2WlZcaIADO2p3BCGP+kKYqdXp/GfI7OUmGkshCKMRM7jd1o9MgI goafM+uCXqwncBJirbb7UAHzeltGgHIB49zW37c1z7sIofdieLfWYRpiaVEX xeqYHJDe/aP4tBB10guzdnnSaNJum6I2SOGo5D7vTeVClCfIic7wo9ElrnF+ I+PTZ6tH38ydRqD2LO+O0RkaZle5L+pkabzYWFD/3pjAu/mvCvUv0iB0TrWe M6Jxce7VYAHTx6uPyt84ep3GGduVkixXGo7O2dlKkiTappR7H4insan1xx+R UBq7C6Xlgnb/c9S/+n9HnRnwrf0Is3/IXfP3kE/7kCWyqdTj9CGIeoYv8VnH 5K60XW6RzFzpydrg4enphd4aVC8QkIj7JnZjQ8gA9OdoP56V4wN9x/MhKYYk tIzunYldxsKrPaTTa1k/ZOH6gp9VBBQ7COdzKSyM84w2v/DRH8SCx98yowm4 BW5Q9upkoXyyDVt1XSCKo2q845j9KmLzs/DQFjbUvb/S5uvu43ZW/IiAyT0Z nftSky+zoeORsX7PkTRMPvdJIPqSgKcRGX6wnQ2LJgXj3+9ykBhW1fu9mcBn zfUm6VqMr+aqna9YUgDDK5NK5vQwvooWjovbzvjqsWzH9HtF2L1u/DtNFoE/ 78UPNBzh4Dbvx6oTY8XIsikYZ8cjsNntlmHWBQ74MqmqpimleGfkm1L2hZlD z59Xj5RxMGykXBb66wU8t+YYlY0nmdzWsumT6CBy72xMlU+pwIp7/jLh80lY pv+qKPcZROou9eKz8lXgGEolnF1DQrW6ZFfk30FY14+TWuJWB0/Z/X+lHUk0 2i+LXeg3hOJX5yJS5N/BP0FavvAkiQdy1U9f/xpCAXLrVlxuRI0I62BGIgn7 tJoTcg+4iL5bWr14cQtqLBZ8jy4kkXnkS97umTw4XMrMe8RtxatmfY/2ChJD N6blWKzlQXA195FdbBss3JzmjO8l4SehN2NhMQ8xxxpeFLt34LcnR5r3g0Rh hlJUoTYfZjmOZ41XdkFitU7uxfEUJgn5BdEufBTYRCavHvcB2lu7x62XYJyz t99cPZKPwX1bSyrSPqAsqGrbZ1kKR/o82CVP+JA1eHHonWY3glarrrm/kIJj fuSIdw8fPfvf/boy2A0JD16Hpi7jhy2LuiK1BMgq2DQlYlEvDhRajnvNOEo0 1v9b4VEBWt2byteb9SGvp6B5wJrC3fR314tvCbC+5w//7YJ+vNyZvPenA4WS M/U97pUC5FSV3cHEAVwg7rod3Udh647h84v4ApQovUxfvH8AkzJ/KtoyLpr0 KKYwjpl/E//e52rfGMDp2xd8q9wp7Nj7QJg1SQi/ebN9V+QP4OU62dWTj1EY DE/aMk5WiKNHXLetaxtARPim9GdeFB5STzT6FYXM+m2t3/ZrAN6x17N2+VLY ItKomrNUCMMW7huz+SzQCpO/TzlD4eTi7X+KrYV4E6TZXX+IhQmWZwbdmTlt 0qCTVhgnxAvRrv2Sy9jIMP8aIc7M48fEkgnLPgrRc6ng2T5JDp65i3gdz6Gg t1v4mZxOQFr/8XPKhQPbmDkTXpRRmOdUpHlsDQGFwWNrB5kc0NxV9DOonkLE 3UPp3/wIjG5J9S/1HcRmr0h7sRYK3L+FlXHXCLzQu3yoJX8QCyc49Et1Ufhl JGnhm0bA+G157oZPg/jcpBrTyaKQVdVRn1xHYH/C9Rk3Nwzhnuc8nUEhhacK FwcamVziGDtQHZA0BJWciPPRoxTOHv78vmkJiX3jFl50MuOCH3SW9W0yjbGQ q/6ezDzOGhMqTarlwnu/2ukzUjRCZet3Dp4m0T+kqiA+g4ebM+d+3DuXhvLk 7ZkTUkhMkzjyRuwMD1jpxFFQprFzws10uUoSTUPPX01v4aHp86siw2U0Ik6p utz4RiLwwE+Xl1v5OL8u7NQfGxrGK98kWzPrYujOH9nIYwJU2Ipbxe+hMSG0 UUvyPoX29+mX30gL0fWWbfXBhQbVJzp3xxMKavMOapQtE+LAk4I5UQdorEz8 emdbKYV9ga9HFtoLUXguIWnLQRomf363/qmgUG4XLHLyoBD72UtKXh1l3r/j zN8oxqf2X3WvfL4jxK68c2GbvWhkZW42rORR2BDIFeTVCXGPK7rfw5uGalxb xk+CcWjajc4HrUI0HHgz4nuCxo7ddz48+sLkCVPRx/f5QuyI4qVoBdLYpyG6 p4m5fntfXpsXuJxxrquX84owGkuWNRlrLWXOe7TuuE8ogYvl/VPUI2jMiuf2 dTPejBKZ6zs1j4DYdjWT8JvMffmqvauTOd44yYczuheR0DwXf3xuMo1pNrI6 ykk0Tr3cKmeR/s9R/+r/3dXcVK43VobGVo2SkGvP+pBqPt9/NPQQ9FZk6txb S+GzZMbPPYsH0Lsl27rQ1wvTo/bXW/FJWO/eqiIfOoBlpTGXduf7QP6Ior+f AQm3oTeXynVZuFItM0l/nh9ubNGe9a6SwM6Q2cfSH7BQ31E4/OO7Pxp1NlDB VwncU/NZFt/FwiXPE5G3rQJxQG7CoMZ9Aj9ez1cUbGVDSm/jqd/X7sNsZeeR wCwCybbhkoui2DDRHtcgW5KGgql1m7cyvtqmtl65poMNp1YL7m1ODt5INloe amH6x56wtXFLObj5bvPoassCuM7206lnfGVg/b0p3YGDgRJTgeX7IlxqkFh5 l/EVOc7y4AsPDpziFHM/ypfAqevKoWTGV8u3fmyRCOdAZHZDQ09RKUaqzkpq fyVg+HGsVviCgyLSRvfv7Je406vw9LgYib3m/QtEJzJeUt631LC0Apwldv6d jK+0btntVmDmlu7u1VdsVKog+fqctJ4xiSUh1RqJokPgb50TtyGoDon3PI6E Mr56Ee4ZJ+k/hISEGDPW4ndQVxOcm3SKRPjEhTaLRocQYFL2LDG6EV8ubenb fZeEg2uL2ZJHXDiwzS8b6rfgS3PUUbMiEtlqf8OOzeFBtcHgdMHnVtBOqZyI V//9Puucc47reXjasuaoS0obTgzXRxUwvvKvM2YvLeNhd65jaO3JDqSPKoSe /snMOUWLHwbL+HAJd908c10XSmsmyXUyviLaTe2G9/ERsOlWZMrED3DoeRpi NJ2C0sPCQcdoPkSD+g+YFH8Ab/KKtw9nUvCIP537NodxlL+lVo9hN9Sqlr4u VKBw2mTj3+UsPh4Ju26b/ejGyh87Ng0wvuqRWJqeqCNA4EhXQ+zSXmRrPrB2 YNZny7sYeZKZfy0qm8PLbPuQWPdUCzYUhl+vXbDgtgDNoemFU1T70TX1na63 IwXrVFl9g2oBti3YIEpNGYCxrLtlNjNHD+y/bqYgECDFq39G6YEBDN/+EviE 8ZVDxZR1f0YFqLP7YdNwawDXLZ9a4AgF/kVybYC4EPK+9z9wigeQpiMZ68b4 Sj9lZu+BmULovCwuZXcOoPV32lcLbwqnlOs2yygLobnipo7U3wFctnge3Mb4 iq0+52wgM48/aHjpfFZkwfDWPtMkxlfmzp6L6E1CWPQQxuHHWHhqbqBgcJ3C NcXPbqXM3P15WLSSa8hG5Y8Fu0MZX62W9dn9e1iIcxwTOSlZDu7sGH37jvFV 2Km9QVukCHSGi6hcOcCBYYiM87znFI6d1CpqNibANahMD+3jwEZmXdnSdxTi OfYJ1wKY/ZoX3xMWOIi3GbPk8xlf/TBLLdC/SWD+rbNv7pQNIt6YnVzB+GrK ud8rpR8TSNDKl5X+OYi77wcaH7Ap/J0Tdzm1nkCSaJn3EdshZH7Xd+IxDgiJ pg0ffCSwZfKJRcczhmDskucwZYyC1HUj9buaJMR2ppPillzsLxJ/mCpOQ6L2 zNFpziSm7O0Pa2zggrrzdLW2NI2bjiXW5wJJrLaYG9LMrGtJ24e5UvNo6Nus u3v/IYlDx/dqNoTy4Ci8UBDP+Eqo1TOOW0XC29hCvayDh3mH5os1ML5yzDK9 UMPkhrFXhVX+jnxcr0tMGWdLY3r6stGFbhS6Ja57nfUT4KjN6/Nue2lsb79G znjAHK9BC3FfTogvgRILtu2jETRpo8+ibAq1Jz5FH14hhPRjz2073WhcGs7f 5fCCwj0OufPHbiGallX7vGV81aRqrvX2NeOux1PdFh0Vom9u/hkfDxpWd458 WsJc12f2ah9LU4SYlGtUPo9xlIjIjB81jE/DOJJWkU1CbBwsu7vSh3EMeevw GE1BWeq5YWCPEP77w1as9aXxKGd33OPvFPanaUw9zayL5hqvg32Mr054Dtt6 MP3+heKFoPWrCIzMvKOXw/iqzFEu9pcODfbWbW0K4QRERw43dDK+Uu1vbTxl RoPYJ9nR+t9zx1nSX4/H0Lhi/5q7zpPGs4DxXuWa/xz1r/6r/7tq8Pvk4xwR Gq8cz1Ut7OqDXVlshODEYQzr6u8d0WDym8RVl14MYMe4jCkTJnpjhVJv749G Elbsz6Hr4wew5qtkn4jVCaz7G39ZRYGEq7u7gLBkIe7vlZ2dOX4QvJeY8CSV wGsbEbdbr1iI8NSa+6UgANMntKjuZHz14PfDGWMT2Eja9zRQ5+dVxP9o35vO OGqc8PhDHuOotImb9ho3p2HCwidxU5j9PcvdKfJxORsOEU3X5g5ngSYaCq2Z Pr5i5Z9pYVIcnAhdp2TknIdxH1eVpgwQaB8R/3XyMAeTP2xqSewoRtLIRr+/ fAJ9Ly23iEVxwN+iuyVzVhleZckkxdIEGmRENwekcuBpMY+Ojn2OK3nXxnO/ EfCf/ajiWDXjsdtds1ZHvcSjuyGVs8aTyJm2vHi+yCAmkzrlfZEVMM/76N8j w/TrU/+LvTv/yukP/0dvKDQgKTJVyqyMRQM9CU0aKJSUOUMRTUhFRJImCZWk URGhMpVoQKQ0z+M9dI97b6FUqM7r/QecH85a56zv+Xy/fnqutXup9t21X9fj su577ycPT5lyYXD6xI/68mJID6vsFmlSGFJNEh/K46KTa1Ezw7IEOjEXOwss KFT3+yonGXVB/9y8DTtufkGRe+LOhqMUku+G9J4q7EJfVbpd+K4KbOqdnpwa RKGyXDdziQkPu+RK16W8q4K8/axfr59QuJY4u1HhJw+dzTbLK/bUIiLh543R pRSGV46wkD7ExyOpjwM96vWQnH9y6bI6Cn5wUhLc4oMaYXVzPrcegS+WSDh9 p7CPlf9svbwAP9e4mlh+boRxqUrCLykaVLLv9yw/AW5S34WcE83YHDIqXjiV eCbfY0d2rgAKMzU0qva0QJDwaKy5GpmfQ4SCmQIBEjZ7SbrKt8KncmjZ9wU0 VnE2WWhICnGyqHVq7qVWZAaEBW5fRaP3gEn9Gwhh8t4zaZJLG3pmlZ30MKbh KW3tufqiEPPHZ7Fn5LSDccs+MnIbjcPpDavSnwkRNWqxJP9hB1x3bcnS20Nj 4+fBhEmtQnQasKLeb+iEzLwvaSnERSqfvLb+liZ9KzV/9af8TuSa5F4SedAY kAjSXLtIhOCyM3ZKE1kw0ZrL33CGOHD8hD2P9ETEBdbxDbosmB83TJb1peHb fbO/30SEsDeH5kvtYeGGUuVRq/PEG9Mj92zeTtbL5IyZcp4F/18L0u8F0DCr vT4m2kmE7pv7PX0eEEetX6utcYXGy8ZOrZEeIiReg6djGQvp9xLrDobTmGl6 WVY+kvw+VmE+i2exsfiG++rsVOJAZvUsB54Icot7OUf72fikPerczlfEXX+f dtRqiDFveMGpl084aImTFpwqojHNOjF2vA2ZA/qOH1CbzIVL3KQ6ywoahtFh tTcDxIh7q9ex+zoX7qOWBYs7aDwxb3i5q0iMAzbTpe5rdWFx4lLOBgGNzQmL jnPJ/NF+5VJjRmAX/mj9cdlC+vrulgvd7/rFcFDJVVMt6sJey53Bzn3EvRHF LXNmUJg1tMjv1gwernypPBA7TKPOuzlIQY+Cek0lJhzj4fXjbycCJzLg7PZv NzhF1s+Ikw0dx8fVtF/u+4mXZi8fCqq/T0FhaPez74F86IyvHrZQYyCkWo9o 51MwiT//eXYhH1oGkf5lSxiYvijOdaGIoyZ02H3TF6BmVVH5FB3iid+zXwVO pHFtWM8EtwWYUV/fOteIgSatknx/I41RGdYNx2cLsbZ53MoY4iW1S2bnFhCf VtW8DpfTFeHypHuPMohzHgQul+JSxKfMrolSDSJkvLq6bT/xjPWdjb/mkPN2 VpN7lfNdhN8PZ46+5M0gPvJiRuEYBiq31vlvmS7GhPACl+c+DFI1GqfIkPP+ fr76XPtSMWqM3Gsm+zNQ7lNaH6rCoKPbbVaFvRhb9Iz2+F0mnnx7qXOEFoN3 98pdRkaI8WFZ//PngQw2v25VuUvOb23VE7vhO2T/WhJiZx/MQM9m5JZ95Py8 s3Tlvr777z6cuelB1xmMaTauCdjHYJdSQfD+MeT6z3/7YE4cg3LtTn4s8dSo z91ZD1wpuGx2/rUnicEr0+bZ8xMZvBj3NkmY8c9R//Jf/j9J9xSmqIXse525 m99/bG5Hl+yRRQHnj8IrTOuyL/HVt7NTD9mv60TjQWu5+VLueOPXOvos8ZW1 lU9QEfHVK9tXHDULT3yyj32WpkLBteEHfcSMhekHVu39nX0GxxePX7yU+Opr bpDz5GIWJtbWqSrm+kA2frngIfFVmjVb13EsGxE8/WUC6whMvz5qZhPx1e+B D06vwtkQbFjzhidOx6iXbk53ia80TJ0uaBYTd7V/LhqFJ3C9/NvDl/hqqem2 8m2TOFBIyt0y4XgO/IMOn64hvvoqvfe1sTMH6f0fRrpzX+PejYe6W4RkDlMI POMUzoGWSobFXo03MDSBQwnxVYm6nZx5Ggdyh2/MdErJh6xl/jvFX2J4zh+8 gBIOol5u2SR35x3m6WT6GxFfpc0M9maIr8x9jjWY3CjER4sZq2UVKPy6Iuli bEbm/DEZUutri3E1evP06UvI8WX9GavJ/L/M86ro8rYSvFyRGddNfFU6rqbd 3bgL/uP32xfc+QJD2XLFsc4U7j5mPzcmfct6H/fEwL4KbAzzPvgr6L/nqp6q CydzfuYGASZ9qML1nyZZQuKrS89OR3cRXwUlfV8jcaAWE/VUtqwkvhrYsGN8 C/HVzqoDkovm10Oi4Gu3P/GVf1QiTKP5gNbxqChhPS5ZhX54Tny1f9XvxqTJ Aqw/GWKc97URJQc2O8yTJt7Orn4WcE6AtTnhvUoezSidu8R+mhINQfnnKZfy BHjD+bx6zIEWHNI1+JpPfLVynuzpCSIBYkST++Wnt+LP0UW06kIaS37eGT9I fKUUfFb925VWaM7KNbxMfEV7xN8KXSdE9zX5TCPXNlibTplaTXz1xN1+5t0A IQ4WfPDem9cOsUK88kLiK7Ue3U0GWULYJzkn/3zcAZchvSP7ia9GKO59kkZ8 9XHCSK7Zpk4c3apoOfoYjV3Lzg3skRUh/ZxxgHNhJwRParM0PWn07M4fp79Y hM2J5amPJrHgdQeKV4ivjhzeoPdQXwRDpzSxyxoWTOU0d2oRX+ms6R8TbirC yZDAU+F7WSg4L7odSXwl6VmiZ7qDrO8ct+3hBRY6ZntYDhFfBa6JzRw8JELk CerdrMcsHEq3PXCC+CprxRS5YeKr/XujCr9/ZaFuzJvR6cRXU5Jz+RNviGAy h/PpnQobuRep7Zr3yXV6cHLkQoEIIVI5mtMH2dgx1zeuhvhK1iNkW9ISMZLa +O8O55B5QmLulFziK4VH9V4y28QY+FL09IUiF4fxN/gU8dVfTjd78SUxfMPs l3RFclGpeXaZWScNUU7HnsJiMUZppmwz0enCgo3TY1yIr8ZQIT5n2WIU2abM XxFEjscpxt4gvrLTfvklf0CMWT0TTua874LD9w3rIokzQlrninKJrwbLzcpm zuKh69d06QGyz8ix2cvO6lMofGR/7ekJHp5vaZ6bSZwR/5BN1RJfjRDn7Zos zceLCZMSU4mvZl5bebA2jUJtdfbQ5at8aD9989yL+CpFB6e/EF8tdr2nlF7E x3KW76oe4iuJUfM+j6QpbGsfSvNaK0Bl06MAA+IPb6NLH2fKERdV2N/+EC2A kndhpAXxh0Dn4rM1m0hdn3Wf16MmhJ7fT0EB8VVbxaOQt8RXOclN7beIr7PO vG5miK9SOg9xWTSp3+KnDnebRGhUSbmYSnxl0etdpdZPY3HfQUnTHhHmy69e XkJ8FU29DHw3lnw/55vl3JlilBs6j9rsy2Dvs0C7dZOIjw58/BinLUaF0OGq PvFVk6GPlboqmXcLrh/b7iCGedsyxVTiK0tpPnOL+OreCTr3ynUx1B0MHRSu MAic3VUySo9By0PdlMR7Yvy5eT/wLvGV9uNVi/cYM9C9Eua4n3h579zU3U+J rwrnPmRNI+dnIOhoEoylIPNY51M88ZXJozyHI9cYnEt78nenxz9H/ct/+f9G NpgbTS4j+6F1QWFpqagdj2VW0et5R+H0rCvk9WwaGypSKmTNOrFozZnDDsbu mKJzjhn3kULWomL+7NROJL1yrHwc7okN/SknlxNXOPpV53/ZzsJO+RmPJQfP IF4homVfrBiGKZuel5H+oWRyVmezpC/eNksonrgpBpcd8jpKlY3uo7r8ssu3 UF21VuVmthjCfQaZx1KIr6YnrHY4nYHlP9oS3xeIcTW9SHtKOxvmDgsHmoye IeX918A7VWKs8T9vljufg7gYtzNHyp9Du8Q1fDJPDF6g2921FzhojT/Xl2GR h8qKpy7a38SYL5qyR/MBB6+WHDMdKMzHtwsb07f2irHO+shAVzEHfzsclB0P vSP7U69c4X/vu439WXWUy8Gtb6HSPVkFMD/GlVwjQyHc8PzXN+pcBJ6x/zA5 tQgeV1QDbk2ncPKF4jbWIS4mFIdLr33+Hrm1W82HV1IwGHM1criOix9/jh6x VvmEQ8ct2nW2UVj2eMpv8f4ubJ2xKbTVowxiQ4kLtm4Utp61G7eR3QWBwuHj pUsqIS6e0hwUQSHO+1XvI2ceTIcdWy2Nq7F6gfmKty8p7I0MDFSfwoen9pGC Z8Ja5LkH3x8mHg78u+L9zUt8iMY0UFPj6vH4l6RDVSuFVfumRm56xUeAEtt0 /+EGpPr3HnX7TeHy7223a3QFYPdc9ug+2ITDUTzJ0ZNpTMqf3LAxVYBLKVKK gTItcN15m7tUlUajTmo1u12AIYv1SepMC4KPNTv2LqKxtL48ZnC8EKEFMjuO pLXi5i3HAsmVNB7Mmei8frkQuQ197TNWtCEqzdnLDTQ0GkKn9R4QItD3zOis Ke2ok7KwPmJFo7Ql1cIkQQhtjws6l7Z0YBnvhp6mA421t6oeBFUKIWvAf1A8 txNWxlU3lh6mcSd261m130KIvn9613+d1O/I0PTFHjRO7fXrc5kvQuzGqqPv x7LQpO572c2Hxpa74TWZRiIoHwsJVtjJQnC65OsT/qT+/4ytDtkpwkaLlA/z g1l4l2pN21yiEUXt11l/RIRl52jzw09ZONyElHLipYQVkroHvERoq09ZEFHN QuT9ppFPr9FgZ796JHeJ9GOL83fz+1m40rkk82sYDYvzeWnN4SLILQtKOTyV jQmPE85oR9NwD3Ez35ctwrmFytEVHmxk/LqxwO0xDf3kLoe7o8VwqHWXv7iR g8FzVekTCmmkLy+1fmNB6rc2IMpCkos3Qdc+u5TSOKHe66HsRo4/3B62Yx8X J2c/uyJooKH0rvasYooYtWF7h3ldXHT7rbEV/Xd/bY2696r//f/u/u+TuLe6 wJPxq6j9TmOvcauR9BgK7IArgmfcLtxbrr8k+xeN7K7ZgyeUKDR3eRmFKPDQ pxKUumMEgyPsi4KWNRS+tX67beLBQ4zPhfyHxBnHdo5cGmpHQfoafWRLHg8K Z36E35vCQO+t/tZJ10k9prVs2mrJR5jGrbl/5zDos924dEcJBfOvl6q8W/hw 3ZG4aPRiBkOzf7XMbKewx6OZ/3KKAGUTC++8Ws2gc2xAidoEGkZ0skfiDQG6 eO7z569jsL3ZZPewJg2Pl7ZuF3gCTF7mJDCxYmC467KpJqmX8BsXGH0fIQz3 pHetcGEw8DBiTnoljfEpHU+iQ0Wwr57AX+jDYN29FPYfWQZlr82XBywSY9LH oL4V5xgy7y1b5anEYM/fe7V2JmIMLX3zfNZFBp6vP21dP5+B3aFDCY2uZE6L ezch8BKDPyfe77BfRny3c/+di4FiqA5ZLui7yqDn04YLoo3EOX8mLxjOI3Oj QdbM7HAGC/MWXLlpz6D31QS3XT1isNRTI/0iGLB8tW5EOpLXo36m02yyT712 lMofE8UgYlzgL8aZgX22mzJbmUKe7w1/9bsMWsOTOx1DGdSdzDrjfuafo/7l v/z/Mjdu+zjr1zcaO/zeqDr8bsfXvjRK1cwZQRLtQSHTaJi5ne9dbN2J0X3d z075uGNiru3T828oVDTLD8RmdiIhsG6TR5kn5B/s6d8sRbyhfzs3nszzvj+v W5wy9Eajg77R1zAxzgvfp5k3s1CSddJ1kpUvfkv3KJ2MEaOvtt5g6go2llED 47NqYhE8vHit/isxNB6PXVX4io2nSyY1yPY9xqFZX5omfvzvfe8yBWt62Uix EllOys6C7TemeGyDGHlHM/XdwEGEvlbcecOXcPoWyptDiXHrs8r1j3c40Hpo Olvt2xtc6I/Ln0scVclvF88ljjpzTTs13P4dVB4eGN7/R4wfUVNo13YOcnon pwgDCiB6wtr/bBSF+Oi83fuHOOi5666D84Xwu3nXWmYSBc0/e3vmrOUiwspA 9tuxYjzITnt6T4VCdeV1Ob4v8VWYK//M/g+gh1LCQnQpfNKKFxkxXFjOMWdZ tH/CtNs1c/k7KbxXlX9d7NMFiRkLaOPV5Yh13tF29TQF2VH0fsfBLhzZYC/e E1MJRUG5fdJt4itutOrrqzycVakddaywGmzzyscv3lKwe+Vvdk+LjxEix5+3 9tWBHTV+zd1GCk98HgVzUvn4WmfJUlBpgJUio7iji0JyceuCwDY+5JtaebyB BmxJ9e46OpKGn6rVLis7AY4/8Llf19oEqeyv767MoOGv0nT8cimZ/50ksqTj WyDvPS3KfQENrUnxd0aNFkJ/tb6djm8r5gf1rFqnRdxV3x+TsEoI1bFS6WuM 27CoXt5p3Boa8QGqEvK2Qvy2vRCXVtOGYhlB0XNjGqqOenIrAoR4mfo5euXr dii/p+iYHTTW1UzeeDpPiOn6md/ptg7I0EUGzw4Qh7x6NeYbJUT005kXkk50 YrX3JCxypRHhNa3hgoIIqua9967Xd+Lpw+MHvnnToJTv5f5ZJ8KUmzcs1pux sERK89O0izQuW7R/rt8jwuuX004GxLJwy+Og9sQgGq8WF/2xPyXCo/cT7ijU sXC/ITLakngpqGTRzYSLIhxsnKY5opeFkN8FrvbES7dq/ferh4lwd9bgxO/y bDyMM537MZLG1Ls29Q3xIlCPOn0OGrCxn++YZX2LxsXEJIn1j4j3kvJ9jPYR R70Pc5yfQOM+P6X1UJUIfk/mH+EVsnHPpussO5vG91Vhr3tniIEpt/7UBnCQ VlipdfoTjbhN7ezco2KI1l86rmzJRe25P9SFKhqpshF3u66JsU3q5bHB+1xM O/h08tYOGrI1AmmF/54H9Xdv48slXZj8Mn3w5Q8aAwMJeQfJdVw+MbnGme6C 4snfM6f9prGtPGit8VwKPkrLsn9o87BUWenYkmEaC4I8Q311yHxwKWi88DAP 65rnrw8ijmpv6m6XJo5irQv0HHzNg+VIv7JSOQZ7txqFjPOhEGFkMHekIh8X vjz966XMYKlMnMKTTAq7Fjydan+Hj5i+nsQ7Gv89X2bIbg6XwotN3+4fmifA w66lKm9XMMjZG1Bt/YfC/W/eeVn7Bdj6OnGHrwGDbR9TgrPm03i39pCtcr0A Y1U7yntMGFxNU9i+gTh9z0GplePWCvHM2KZcz5bBmRevmlZcpnF92rW31p+F WD/cm7vLg8FjNWdLP7Ivflpp4/ulTYSPc8tt/vv8mxYlcT9mEQNab/bokNPE rYvGbDodyODuwTaNZ8R3vyNM7sWQfY3jzV+z8xpx17tOnzlmDPLmUfa3P5N9 ytUssJ/45knkxenjtzEYO8fa2pFDvJS5qz00kqz3Ptq+24nB0/hd9FE5Cpzi x4trohnMzD7OlfNjcNZzj6asJYW2lrYN/FgGtSq7g8XEa4IyoczZ/RSmxifu TotnIPFp+5WpNxiMyk4v3HHln6P+5b/8X5Hp9ffO0SIa/NMBmx0kOvCsdIGi abAzNCyuRnrLk/k0QJ5asbMTGoNPAq+lu0M59mfc2xwKGzz3dlm+6MSuKQpP 2wY98eK79Chd4pB+i0XPUg+zkDKwRe3aCW+4zhk1Se2KGHIYSpFms1DA0nP6 FO2LibXf+gbviMF3uJVjuJaNEZ7aP+9E3oVi0ds9p96IEf/iTNf6L8RddrR9 vPJT9HM+VBuS/Ul1iZmO3mgO/sau/7ooPBuHcy6W3W0W4++0BIGKFQcSNyIu 6+i+wo+s3KFZ3WL8NHnvPu8xB3HjMzzPjniLsDe3Kgf7xVBTu3uot4YDpQQz xUvLC6Dp6iivPyzGporawwbfOJCrLObNHVcIT7fm8CVjKahrDLSMludC4vG8 oYfTiiC9s9RZQpFC8FnJ+kuknxmO/KZ9p7cYOV7HG/+oU7BQEc7rD+fi44fZ Hz37P6C/wPmFYC0Fw4DeEXYjuzDGYfidqednqNkN217eTcFmQPtub3gXjo5s i1GvL0fCQss5j3wpFDEP2JWTeTB1ehH++Hsl4tM1IvfFUdAeleziE8+D3VBm 2aTJNXAev7TLq5hCd13wzX2mfLR/0slfk10H3taq2xvInB/qO+p+9Fs+HO4/ sjH0b0BtjdL+GBGFA73nJwb38HH30Otzx7Y1YsdBN42QMTRWjpdtKXIVwOJL g5m6djOivPaxi1RodC8wmzWmTQDTm22PK3ktuL6yVertEhobXDxeX1UWktd1 RoifoBW6/CkhH/WIrzbo12+1FqJuqml9d24bEvo8fm1cT8Mw5sjjFmchTp8Z GB+t1w4jO/s/R8xpXFp84HVPlBDXbi6dGa3YgUS5PfMsdtFISVxD65aT9YrB egtndWKrWY9t9REaDe80OVtGiNCfl5wnm9SJqyO3DRe603iufSK7da4ImvDg PB/NAtS+G047R2PS/fQDL7cQL3mujdb0YGFMNm0aeoXGw/Nlsic9RXhehdSp lSxc8TCWPBlCw7HCzYAXKMLQYzX2zBFsLJwjWTUygjjtpo3BgSgRLCvLXFeo sxF15NkR4Q0avxUM3ecki+C5xm7DDVM2sqX1VLZH0/BpU+A1Zovw/ov+kzFe bGgeGh9qFUeDN/2pMatIBEEtlaYax0ZEzN7ASak0Qqo9VAY4Isx9tvG+1g82 1BJss2++orFd8uX+V5piLJxgunZsFgefL3N8f5YRp/Xt/fH4rBgzl5VnaZ3l opUS8+QaaEhZbH3MSxBj8QL5hHttXOiuy1w9gUdj+dM8fnCTGJ1bRvf/PNmF q41S4T19NO5OFB5cMou4XnWPLEeVh8/+ceX8IXJeDy5lu62msElR6ecKJx7q Rz/wCpRgIPsofHSmOQXzGO+NJ+J45LpomHF5PANDm6HZGa4Ulno8T2jo4cG3 OyEvX4HBmDcP7vRcpXB85jmPKn0++qhJYVnqDGpUuflniijE6BzbUv2VD7+y j6WXlzPY4lF+58Uv4i5j2a6cHQIotJ6XuqTDIDpf5KM+iYaOEsQn7wjgdvPe Wd1NxEvJpw8vJPU1K3LcaXslIdZZD+OeJQPNX+nLHx2koRAUc/CVpxBB3ydb ZTowiBPcn1kWQyN45bOfvCEhDhSPG914msGNWsrx5AgGA7PjCllSYqh/l7lt dZXBzohrVm6GDBp8vi2MeC5GYdiBnS7ES+t270ju28pg8rdted/bxKD4DasE EQzGj0i6NnfPf/edMg7THUGhJ8G5P4m4x4Y1pc/rKIM3xuyA8TMoVH5cGLw0 hkGoyVHm+DkGK5hPE6K3UjjhMrb4XCKDgoipC2rvMjip+kZjYzKFi007F/on Meh3/VyeQL6ubaI1a97jf476l//y/095/kZnfCjx1eLXxR+mS3aAP1VedmK4 M0ZLl2ZNI77anrJiYSTx1cfkOReZh+54mPQocyzxlXOj412Jl514e8HklMso L4RkblZrGkkh1tWMkThC+lnCh1mMmzdmxjq4GhFffTH6lfHgP1+F8t7O0/ZD vqnZdrU4MZIOhuWxiK+6dydczX59F+9XT8uPJb7a+fYk1Ul8RckHrTu44ClS d6ouO0x81axtiCbiq5Ttrdnd0dlQXNS2sIj46sXs6G9via8KLBa7DBm+QsIC RQdD4qvMLW+8PxBf2X3aZL9O+i3WrPiuqTYgRtvCm8ejajk4Mzh13OFVBWjh vDyxh/hqREOZaxvxlavm9aZx4wuhxteirYmv2ld+ZycRX+2X7ukOVS6Czlfb clPiK8sSzoYcKy76tfMnMkPF2C8u0VadQ2HcfJbm7Qgu5qh/e2U7+AH3V32Y PN6AwmAwPbaP+Org67IsDe/PqCzf+fwB8dWEkUtSoiK68Gn3w5AxLeWwvJd+ oZL4yu9XovCEAg/9k2dJqfRUwlz5yrfLxFfdUnfcp9/jYdxjRaMAxRooBVw1 jCW+ymi7GDfCjI/Q0/dWZT6vQ1TJ4t7DxFcml34/Wv2OD5ntk8uzLzYgwNTj XT7xlfLg6SkLe/kwV1Ttb9vRCInmL1efEl8xChLsfScE+Ott8D5qdTMMxXng E19lLDOck0p81b9h43xDYQvWPVh1mE18NeTuUrBARYjqyguS30StOPLrQhmX +Cpyn9O898RXSuUBARvy21A5pmPVAdL/Bl9EDlq4CJGrqZUnWtMOr8Mf9K8Q X60zDZU6fFOIcjPnz6KpHahUKT3kQny1592htY+Ir5ROzr9urdwJ/517oruJ ryLbbFcWE1/FTlkvvyq5E6/k3qGT+OqETcxoq3kilMXI6XVIsHBiuUPAauKr L8XV2Qu3imBW0czs8GRBu8guOIP4yunuLwc28dUOjbY/66pYeHExa1MY8ZUS fSfM7ooI98YV6BiNZGPnypOTVImv0rP9wuqIr7oXOX/YNYeN4tMzH4yNopGz 4ljRLeKrKbd7Y96YscGelrrHg/hq1R+DVZtzRHCa1yS57NR/90s/U36c+CpR p/m2TbEIwUuDh0zvsvEu/cvHpcRXRt13T7hwRfgow/7r+JONrU+KfmYTX8mp s7IWLRGj9AjvxrJsDvqjLPMnldNYo3jNUNVHjPxgZ6ndPlzI/t0xfynx1Xtn n0G7RDHKLj759amdi6NW085oEF9R5V2rB4mvLmQkWM5y78IrvmeFfD8NO83J zxOIrx6f/btfVo2HgfCxE8YMk/MqyRzNJb7inXhu6nCIhzGTFV6kEF+VfH5t o2pBgfk55U70XR70jhg6JBNf/T25wH3Wif8+h2HdN+IXD4+GZf62EF8VNNWI DwWTej89o/T3Gj7m//X9Wkl8FWYwYYKY+ErvhlTanwo+Hrcsl0khvpK53ide 8N/n+xIf6LfbCrBBLDJNIr6yblEou0l81eTeuj42ToCEFOk8W+KrlYWJL++Q +npLpZYHTBPi5D5n/3ziK8HkmgvKTv89F3pVHstLiFcjzoeXEV/Zjqk6ZhBL QyPM0kyO1FFktceGX8RX5j+mZLKJr6J9dZVkZMSwHnG64Tjx1eTM5/c4xFen 6kP8X78QY/b+oUmpxFf6wTYFVdYMIi3nyy3sFGNGn+HpMdcZfJpV1nKb+GpV Ape7n+yP6k/rdAqJryYMrzMWEF85Jp1vXjWTwnBdVKkF8ZXxoRsGncRXVSaH nAqtKcSfdR99l/jJJ3P9GaN4BvI+OwOOp/xz1L/8l/8TMoUTemezgEb81zD1 21IdsN6ioFqf4Yyo74cjF04k/eVFtYWfQyeCTFMT0/LdcdmgOs71GYUH91WN Y153In+/1JcBeS88G+pXvk18sm1g6awNzix4vvmYttXfG85pthmzg8SwXHX1 +BEeC+ukS7y73fxxdXt74n/3H9yoXvts6wY2VN3a33ZMvIeQ9d7Kjm/FULtu dS6yhg0l6/bLrolP4eaU45taKoZvzxVtUykOljUvLvRhsuG48mREaqsYV3Ud BSPsOIjTDzgneP8KzisnZhd9F+NgzNe1O3I4WPcwevQ1t7eQMrh8du9vMc4L mg9INHPw9t27MI19BZj37VzhWzJfPmru/9LWy4Fsia6xwZpCHPu+z7RnHNnn CoXj30/j4pF1vEbyjiIENCmrPJhCYaB0YmLOdi6CK5z81Je8x5K+XRd3z6Xw sGvenLG3uHDuuoVZCz6ie92PE5mgkK/EW6Ek1YXMkaeZ9c8+I7bRRnbRXgrv TdcdmXu7C3kVNqyMCV8xJd2Vrj1H5nYbC1PDWTyo+nhcqJpSBfl52U5l8RRY 3fIJ4x/wECg+lpq6pgad16wy4z9QuKq35G+1NR857b2Zexvr0Fwx51BoJ4Ul 80I8Yj/x0ThfpBOf1gBzmxpVf4qCoGJHevNfPmalel1V9WpEBfdD57JxNFIc p9z/4SXAqRU3XA9vbcbYHxYFJ9RoPE0MVHktEKB8Z9zxWoVWBGV9Lv+wjEZ1 8LLXzvOFsCyzDT4q04ZhPYcjkWtofOL0X5mxUwiP5O331rW3YaHDmexzG2is cHeP3OghxKjFmZ9sD7VD9tG9Bi1LGl5fVF3e3hFiwew1XXydDnyiRv+0cqSh sDtBp6ZWiJFOZ2fQyzrxXLF5w2Fn4pANm/6YjRFBqv9dcvSzTlhtj2kJ9aSR WqfhdF9DhIFLAyWOiix8CuwdtvanMeJ8lonqThGY8tte46+yED71x5iSqzRi 7eq/N/qK8HtR7MW+Lhbyzg6eEYbSCNv44uqZEBG0uqTKYicQ/2RP1866TuPu fAP1D7EirJukvL1sJRu3M1YfNL5JQ+ST3W2ZTlznKr10tC0bD9SeeKwh/Tvj WupB6TwRXKf0XX9zhY3I5T/PcO/SsI0v2dPySYS/clIRjzLYkKmxiatNo5H7 I07iKCPCG7X0s/bjOTD1/Xs+OpfGx8LpmVu1xch21FX+8oGD3YoDnclfaSy/ urlh4gUxpN2UY74Gc6EVWrB4aRONV1ODPvDTxYjwXX3e7QcXy+zUQ3r5NPbt Nj/0hjgg+M7b5gcBXZCUH0x5+ZtG2VJ5s/j5FJKuF3WOW8NDt8P6WBFxxtFD giFpUr9lB8fV/jrDg35F2L4ZYxj4LU2bkU4csLfupsafDB7mSrusnyTH4PuO C8c3n6Eg05J5hjWeD1ZeYJr1FAZeKMxmwimcs4vd5biZD0biCjtmLgOJCs81 Dz9TMAqYvzKIxcfq3t/DzSsZXLB/aHFlmKxPvVOQdFyAM2lOvUp6DMatHxU1 ayqNzdt21fx9KEC020bjNcbEUXtasopMaKSx+m2VNYQIKSlqM9rKYNa4YdMc VxqVPSV6lWGkTjftXHx2N4OQoINfbybQ2Om9ujFMToRMnbKE82cZXOQZnjoj zSArrPT2gLoYrdPWlaVcYxB0+shIw80M+prOSZ4rE2OevemmEeEMnrGO5323 ZTBvsVuyHy2Gp3nrz9nEUX8bM06GHWbQGJ/oMo3sFwnxoYEXbjEonjj5gYUn 8eDbszvWE7e2mz8atymOge8NGT3FYAb7Xb+08U/8c9S//Jf/k7PfIMrzYCeN o1sWJplN68DYskTDCDkXLJi8TkFHkoZKiBXjeKgTKinOHpKD7tDbMPnn6fsU YKxt5/e+Ew9lJgw22Hnhh98NDfqHGJfEt6IaTrFguja4QrLKGxqn8454hIrR 9Py2b8YgCwmTzgU8ZV3D5rmGe7KSyFydxC6IsmdD7ncrq+NAEsomnhJPei/G 5w65okCKjR6D6d8lF2Vh2UqupU+lGJpBSzvL1Th45XX094/zzxE/aqyNEluM mUNbd9ee4GDmlzyLAv1cPBwp63+6TwwZQfgFs3Jy/Hatq9rvdygca3HKgMyR 51JyNsn2c7DExOnAYYtCtL6Qr1Yljqp96GI6fwoX7Efslzp6RVDPDbdSkKPw bGxEPqXDRenVTRX5m4uxIV3AW0Pmzlu1Ij8lVy6SmFHmw/R7sPO33x2lSYGL QyfcXnLB9V5/rm9JCXmdtu0zMyLuMvtpNDy3C74t03vjokphnXhB3uwwhYZw 3lTLF11oHvMn4OPoClicrOhXDKTg3d605w/pc3svGn+8daMKH8Ty17LI67+8 Tvl19BcelMcXZ1x8XwMFa9+vB8opVDTZZJZ78pEU9aVQcnc9JtzaGmgtoOD5 4dncmyI+Pra927xBsxE+U1bsleml4DyeXbxaTYCJLIutiuOa8Pd+8KIhORo6 c13DT8YJkLvp2KwyQTO0c+Sl1y4mnjnaPm71RCGmHPeaqfuoFYdtjrtL69Oo 33L3qLWNEKfDr9+aX9CGkdtLf/pvovG35taXlrNCKHkpv68NbYfqSlHeczMa R851jAsifa5vb/08jZ522HXuWaixg4azvo1P42sh1twxW+Rf14FNXT/f7Hei YdKaqrj9pxC8+6vWGPt3YoJXxpo6NxqDLnYyu9VEKJppUBH/uxOnu/UcOn1o TO8+lr7VRITqFMPe7Y4sNHzxXPEqiEbv/OUhTWdEOKH8M+J6Cws7FmndZkfQ iNhx8k7ObRGU1ntn1yxmI+aP+cqVt2gYduwbUZohQv2yZUK5vWwUlgcVJBAv VU9tPXT5jQgKZy8evnWNrP+Q+k07nlwvx7ZqTSwVIanBdX15JhvCxbuV85No dBj2eS5uIe5yuZJh2cLGDgfVrnXEUddKntXrUSKYhK6/kzmWg6TZh3JqM2mc ZB9gtY4T4+9K68cLrDmwK/TJGiwi7nKO+S69XQytzChdKyXiJZfVPacaaMxz mWJ5hFxPo+osHgezuGCZdh53ZNHQTNl7oqpEjB3FC+KbDLsQWNGxN+U7je1Z TzbYSFJwnXers47dhQvStGvpKAYjM6fOVyV1GlxzbuSBazzET9vXqiTFoP1H QXqPI4XIjIEfuz/zcN1o86rSiQxOBkgPGJymYLj3+Ir5Mnxci7Jg9RJHHdLx 8rONpHCMr/44cSsfW686lTLKDEQSvIjTTynkZu3xGLzHx+5qJ8lVSxiciYqZ tlJE4WIbZbZglQABC/O2VuszOFXa6pg4i0YQW43D5AlwheLOP2fIYFDo31C/ ingw5QXjPyiAY5xbdvQWBjOvfliodozGD8flB1SDhNDYWXVmaCeD6pZfP1PC iX9tirac4wrhGNzo2HGI+G05Z5JVAY3mz5E/5Q+IEPJ6xq7PFxmsusBQnxf+ 97747pwTXmLYLprh3n+TeEn1bYaxO4MJF6NGDC2nsOJlts39GAZdz9eULfFn UM+aGzN/B4XPLQEpk+4xWGq3Z8aDKAbi8OrNLtco3EitM9JLIuflrpobncDg Wup6vdMP/znqX/7L/x3z4ubgUssOGpSNmYn7jA7k/HVbc0DZhfTF/DPeEjR2 lV40mnG4E4/6Iue+H+mBiRLXbV+nUvC9fOSp3odOrN6z6sktRy/4Bl+92PBd DKPjaYfFp1lI3e5u/q3BG+OTn+bkEV8pj1l1nz/Egn96ToGqXwg0t67O+E36 gfxPf1HlLjb67y36nhecBE39+DU+xFdKXjetbRg2/AuKPtoYZSFyt2wCl/jq 3Kyck7FzOHDom1S5Lu45hjWXplwgvnK5Uc8kuHGQbn5QfYJdLmQ0tao6ia/s /RTkp1ZwsC3EQE1HpgBqK71K0oivKnR16xsHOBgK0rUM21WItWw99WDiK/V1 3U0/p3KRTr9I2mNSBEnepTsOxFd9tkv4C/S42PhTqcZzezHUazasLSG+6s7c 7uV1kou3Yxpn3RrxARuEfowL8ZVWnWh47WsuHuYqHlVeWwLpVew3vaRvjXfe mEot6EJ3affj5IxSrChrPVJLfLXceevEjFddGKlSud1xSgUy7/SZnie++uSx u7vEgIeipGf6D2OrMG+qfuuMNAr+zsmmTuU8XNTUnH3rSw28/FJUyomvlE80 GsSe4kPyufbqaU71oN6e+b5XSOFX9vNXK7/xcUXp0UVXNMJ+3c+CBuKrBrdp V5/PFcBzo25ipWIT6XdZPocnkX6W+0NlbbwAaofqIzu+NeNWh96u+8RXN4f2 x4yeJIR3aMd18+xWTDa8cMWP+Ephs4ex5HYh+HlF9YOf2vB4Q/u4HuIrva/H HoT5ChGaaCWRcasdg12aphs30+AFBmUnRQihdtvtgPJwO5xsa5bUE18tsK74 Yf9GCPUWqwNh7A58rxlbXUd8FVTv83NsrxCqa60csi51IvheeJOGO40/trtm PlAXYWbm7O9/Bjuh3mHpZuNLY6fIMFDCTARZ/V2KhftY4BoKVu+/SiPH4PFo Bx8RDr71eqzEZqFqm5KW3nUaYYYej4ajRXCvdqhbtpSN++4FOm3EVyN+tZ02 zxShtDJLMvoQG3f9yyyW3qGxRfXypIS3IixSrLw88TpZv2ZabwfxVdvF8ozr ZSJEnf7uuO05Gzenu69clkxDeW25dXurCGNGJXx53cHGqM1av7OJrz4XXsmh aRH81e3zpslyYCF39rPxExqZrbrvwqXFWFnqXH5jBwe3/iovKy6m8SpcoN1r K4aEjfk2rgoXsso+FyQbaaR6vOu/mCLG9JN3vozmc+E/ntOyk00jo2u7xbUv YrDdzJ4Hm3dh1O/iwT/EV9vis7bFj6Hw5aX3qJW8LgxqVcmojWYwIna6josx Bf7B/eoFYTxkRNSyioiv7kqtVT29l0LQZt+JvAoeXAfCiu3kGHy7lp2805uC /Z/cLQlyfNjP9C8Zr8RgbtDaBd63KDTFni3a68BH+PtxJjkqDAQLtev2ZRO/ 2U4Ni0zjo+mvaVIo8dUp/7hF58QUWl0rj13WFWBP61D73jUMeqovj3ujQiPe 7+TII4UCRB2w01ywgUHeiEHLnbo03m3UlRknIYSu1fN187cyiL3uWrvGlca4 gXMXYkKFaDTuCnWzZyBXX1ZlS/7OaqLmk0KBEHprZ4qPH2YwrBvy5ihxa/fB zkkhR0T43PO2Mey/97HfX7s8R4PBvPPpFRJ+Ytx0evst/xaD35vGdy/3YtAx z3zGDV0KVWdfFCbFMjjQt/yhgPy7/RHGTxv3UBg7db5aA/GVpl/mnhu3GbzR Cj404sY/R/3Lf/l/UtbqfLLc0kxDdcpjy91zO7A4boum9G4XeEdOX90wgsbe Wdj90rkTG7VGe1BKHtj//WtLbgKFm7yY7GWlnWAyU+c7+3mh4nTJmCZKjL1f G51Zviw4pLLeF/V5Q2/5urxNEWKk+fWYjZJmQ9UzdLTdQARaOjWTZqcSL90J sddzYqNxai7TmZUM+9ISneKPYoTuv7LQop+sXxwy2YiThfXf4kI+V4tRp/9T nqPBQff2+qwbyi+gkW+X8JkrRqf/pw+xPhyYvNQ8OaI3F89fO/DL/3sO4PvL YnYLBztOpX3pPFEA0/y4Pl0yt6c3Lcw6JcVFVtr9s4fqC8E9ttTyjwyFH7G/ LUfO50JCW11Q8rYIT9wfPzOdTCE+/l5BjxEXRm0XfGflFmPLvpoNW1UonJ2n MD3Ch4uPzgby32w/4LhXk9TZZRR4ew3XxX4k/c/3/MCq+yXIKZKuYZtSyHn6 /NwrbeKrnJ225nJf0GLrcnW0CwVKL/zF7Y9dePpSr7wroAI2c63PrwimkGGn vfKXJQ8ld49ssmyugmXS35HHyLy7yb/Elt3Cw6Wu/VsiJWqhIl2unVtJ4cNz U6VDAcRXi0TXjt+ux3ij6nWvaQpSP2SGVo4SoFOzy2JRcCP8PvEkmQHiq7nJ I26uFsDnotvlmQ5NGLRNbVabQiO35E8MkyXAxbcROhvWt0DbSTN33zIaJTLH Jj+fK0RTV8zqpxJt+Cr9a/+wAQ3u5r+yRvvJ8YnL730b3466d8U+6qY0zFJ8 x0UHCWHSeL7BpK4dsrLfjwda0fAS18vnJgixculH+VrrDjhOvLpQtJNG/zTZ y39LhFCQkJkVNLETBkKZKQ+P0pg66pyK/2gRsrzm6m9/SOrxiMTzTC8apXZc lnCZCIqNdnWeqiy0pRWb152nsVD8ZfMmWxEknSIHdC+xME3UvnVcCI1L5Xf3 774swslCiYTZf1mY5TzzzISbxD+uXo2n00SQkFmZU7ONDXXznp6yWBqVS7NP auSLoDfhLdsklI3p9iOkVe7RULG3l/YvFyHWumV/wUs29kmGVe5LovEoYIdb dZMIYYkLDMsb2EhZp23nThyVmTgjq5cSYaKlWXKUFAf1R7+oqz+kMU2r2lu1 T4TKmeefjSFzAxeVNXOyaAxdqXy5T1GM3/UH3rxy50BDw0sv4SNxg/75JSX7 xSjbs2mD1BoutGP39mi1EDeaVtiGPBXj9LWVz63HdMFmoxNLik9DP6C7Y32b GAerPl2+e7YLypujP+f00kjJY2VnKhCni6dzSqR5mBaY2tA8hsGWl6a3fbZT iIseLbE9m4fcF7fHSE5goOF67XzYSQoRt+fxCwZ4SE643DYkz+Dd9JRRDgEU Dg2ZbniwiA/Frp6k8BkMeoM+0q+TKVS/f3a/6RwfL9cxuRw1Bv3DG7Vc3lEQ uz85zfrIR9SHt34TVzAwujC3+20/hbrosVuHdgkw/uz+ycfWMRg9Y8nX0Utp iN89bZ0nFOBQbPOKRmMGZvG3WROJ05HysmX6CiGKbX4nh25jsOjSnHJFHxpz lC8clngiJNd/6YhERwaqj1qX7btL46Kkh73OOBH4zedVvF0YTLyodfFZFY21 aaq0WYQI6TusLz+/wuDS31fFB4jvtn6c9aCK7FOSCiyJ1XcYSJeMFCoFMkj2 3fvtqhOFEjPb6D7iKHfRW6kJ0Qwmj5c4hah/jvqX//JfdoMOvhulUk9jgiLn 2jPNDnT/eJTqfsMFgz6de/r/UGAnR/0IPdEJHeHTjb9We6CrOUqi9Q4FpePf jMdWdIJ/wGbAI84L+f1+8uZ8MegWQc/BiywIOBM01GachZmpVWFxpBgH/DZ4 CBTY6FQ5l62TdgNH++pejkoXY4dz2MsqNzaiL7+ZLodU0Jy1S9s/ibH4hvqs iyM5kDALqFP2zIaV5Jm0L3VivLJqqZfW4yBKv2nKNfoF1jdqX7nAI65jP7uk HMDBnFKVT7oueSiqWD2qclAMbsPxJ9JCDhYI0/0cGgpgVztp3O+xFE4f2JTu p8hFvcv93aO0i+Ae0HCgdQKZ54/+zYheSeb/SvXsmtnFeBMUVLZ5CoWLWVcu zdzGhdKWgCUxs9+j44yiVfdsCgYupg/GXOEiyHbtxBlZHzAY+ly6YQWFWzMy RnZXcqGa67sgoK8EhY1dNNecwu33dw07DbtQNH+X1KfTX3D4uPeDea4UGm84 sqxqu1A+cu2hqm8V6NTbe297KIXoZ6N3Zzrw0FoknLRRrhq7XjXMdH1MYUHU kxnSQh7o+AMLt+jUInWGx/muWgqjVpudTbzJh+cj1x61jnrE2Bu5KH+nIFt3 /5fsJAG2LDo8MuJ9I662zV+8YpDC12LbyLZNAuhP9thkFtWEMS5ZCuJpNJq8 TUvOFAvwbfDGxy0XW/DmVM3oUC0aEqHHvLpXEy8dUU5wMm9DaGjQ5JkbaGhw /3Ir3ISw3DJu/Ifd7dDK/aUvZUFDXrXByPq2EOaSAea82R3IUT3V42lNY5D3 YdbXDCHiJCame4V0YGG+xgU/RxojXGiH83VC/L5Gtz5a0QneYERc9DEaCYPH FkVNEOFI52fJeSWduNazcPOhMzRqVmvaLNEXYYLujeSF+iycub5awyKARrdm 8469B0WQESBvy30WbDb/XGcaTuPLT8naB9dFeKNn4jRzJvFS6zfj/Ggah8oX +u1/LsKn22buY7yJ69+WvPeJp6EUflhx6hcRhmLrEnyesTGnj+u/kThqgfu3 zAPEUdIlwoWP69nIqn0irLxPnGNU+eSGSIT9W7J/7hvNgZ3/l8sND2j0bhe/ GfVLhOMJXadUZnNQ0xL/s+oxjX03ApVlJMWIenDrhK4JB7si5rL7cmgYeVG9 41XFqF5TE+QTxkF/k1LkylIaciF7x5idFCOLP3/0kj1c3Ii6kTO9g4bvh4W3 jN6J0Tf7+YlEjS5YvdB59kpEPMFOuaQhFmPe7s4NlfFd2HzhzqTzAzQWLTw6 d6Q6BRW/w/fGLePBhv/64wxpBtFtz8aV7KMgnGT82aqGB1Ov3wZjiKO0+l8F Pz1PgVnRdm/WbD58vfVax01hEDTnUHNDGIX+4+qyQSZ8WBlJRVYqM1j7ZMke yafk+xv0utTG82E0vOUndx6DEcHuCP1KwWTCoWUGDB85lU+VD6xiMGFV2T4l KfL3MXSUuBwowG7TSxotGxnItKfJfgCNd676YXkKQiT8YWZP28wg8v2w9S5b GiGz/iQoWgsx21LzoIcdgx/D52Qqr9JIzhmlZkPqKO6xQafSPgYCRqTvSzx7 LUh1ptUiEdIc5StvnmCwY7q2vT6Lxhlj2ZTnr0SY9S7yxOcQ8nMV51bcsGJg G8mzym0Qo0XiQseFBAaT/k4OU4plcND6RmRYzD9H/ct/+S//7zOnOKAtqZpG 183kufe0OmB5VfcD950LJhy1fFlN5slPCbc3Zrp3Iv7Ey6sS5h6YmuGy7Nlt CqFawdKLazqRrBMTP+qlF752iY/O44pR0yg2unyZBUtnRbdlS8/CcFzSydgo MdyvH638QfrZ01s10dqJN9GZU3hqzUMxLlkcNg31YWPdTrd9Fm734ZRUzKkr FWMTtZQ1U5oD3x3NrX5/smH8vnRHEtnnSg6M1FI05MAkZskW6WMvsfrmts2t AjGipd38nEM5SGH76OqMfwPdUPVCqREU5POM1n/8wYGc8o4KsXohTMP2i6fL kP6x0FlaQ50LhUs7RyYmFOHIul/zV0+iMDoyL4W7louC1ipxtXsxso3WBx5U opCy5ewTY0cuEh4vjXl19D22aR9WOjaHzP+NzDjOdeIofWpJ8NiPOGWu/+6r FoWnni8/BDdx4bBuwaMV+p/w8qZEFqyIZygHfQ2LLvSvlDIs+fQFrQu/uCed pDB95Oj1Gh1dyPrRa5igVgmbX1M9JkeQfpbudS3jCA9DMkVBLqjGFk8HsTTp W55G+uxTPTwc9M17BKdaxDb0WVxsoGAhrFs3IZEP6urH0/KyDbimuHzj4E8K zpOGg2NnCaDU8c7lW28jhmK8ex4PU5BbPvj99RYBxlw2qxv5rgm+C+Jr5syk McZRbadWuQB7op1PRKe3IGNJ95/lOjTuHV7k0WksxPRk73cK19pw3UqnvGoT Dc8lzRbjfYUw3X1wsnRUO8a+OuWXbEVjhgOLPT9RiBAprx0Tt3cgSPmX9sTt NMaqV75Ofi4Ea9zIrPh3HSj75Wv2dw+N0ug5GnS7ELj67MDKzZ0IWs1ymnqC xpHFKQMjlUR42BYa8qijE90Gur3WPjTuxD/drm8kQonpYnWBLQvtLUb1uoE0 Xkc57jx+QoSP/Q16E4tZCKqqdp8eSWO7+QspqzgRYowyeGWr2ZjkEWb/9w4N Zvc83v1CEaa/vEAx0WxcHtfgeiSRRmevaOqcehFeZBxX1fvKRq7knGTzVBrL +ZvONXJFSG59kebdw0Zx4UmzwXQa+aZhSqU/iOvQeP6tEgd/Xs+w2vGI+CBA LeTksAhZdx8MpupywP20Z9vQExrOtzZeWT9eDIPovD83HTnYa1135/FLGhHv Pu/evIj4asNIWeUHHOK4ph97ymhMD1c+4X9GjN315uHBnlzYHx5lZcCm8cHE ZoX6FzFc17wU+2zuwpSraZtbaeIVp6+qUn1ixJ1hv3uY3wWP1qNxTX9p9HzS 2fV4KYWtiTVTh7fwMC13wT6MZ9C5tyUl+TgFRw3TTYt+8DDQtOvJn8kM8tsr d069QqF1avTS3Vp8Uh9HbGOnMajsbHlgE0eBc2fAP9aFj65tJjmNsxlsmnN5 ydk8Ci9sioQJb/hoHR+hSC9kIDX8acKoZgos9ZWZ0rICCHdEbNHSZXA7zPd2 /mQaDywLLmsnCTB35s+PQ8YMtu2rSk/cTGPV1bXSt1YKcfir45s1lgxajRd+ W32AxmidwZndJ4WYJ9c2a+EuBmvMHDzHRxFf5S1L7f0mRNTGth+2Bxm4+fNT Cl7Q6EizvbXaTIRpNStmD7gx6NCNcVhPHNqKOxpLKkX4/kb+2YFwBopbl7oc 3cnAO6qj1vK7+H/5Pv0v/+W//J+XRk/q35s8pxFdMe/9N9cOdI5b3zasfRz9 E+e9GFtPoc/r8XqDm5347fOy8O1CT6xXUmxscafQFl8hKOzrxHPW1Nv5iadg NWH6ws7XYpz1kawJeMLCjz0RitFrfBA9gdpnkipGSH/NV44T8dWCioqckmQs ytbP+/1GjLWSq15cKmdjjlFg5DLDp9D8v9i702iu3jhs9CRJopLMiRIZkgYq lStS0WBskgxNkqRkilBJ0mCoRCiFkpAGZKgkc+Yxmaff/Nt7VyoVydn/F+fd WeusddZzznOec7y61trL2tjfe+3rcxv2fvBp9a8ePuQ9XwaX033zYyxzyZMF BQh/71OoRu/D3xTozTgVO4SqbdOmtaS/xdcrh0Vu/eNj1ciXJXbEED5J59e7 fysG++zf8nAZAgYn7cPv2TKwa8aBRT07yjAtBGEzlAls9720ozCIgfj75mat p8vxWG9a9VY1Au6qb3YKxTNwq65S3mdrBY6vVtybqEPAxfLWiF8RA0G6S9nb nCshpt7de9iAgK65QfCPbwxYzuJkrR+rgrqB6fP67bSvJPV8FhgysblB88gR 6xqwg02eODkT+NxQbG31igmj+JkDLox6BM40aDt7jcCP8G0fNeie6/cXmDm9 rwmn2vh/GtMJiMuJMhJ6WOi+bDG6X6wVJ2x0z1RVE4h+XW9w7DgbxiOmSsuW f0J61pi65Q8CM9PrRIQXcHChaL/KxbHPSKRcRLfOJiFYZP/aIo4DgaPWW4O6 OyHhEVh/jnZUw7cf+S/qOUgo6A06ndWF1WeN5Hn//b36mvQbD/ZwkdTTvnBX Uw9cSxazGDYkbp4KOLf+JRfVX+KiX6f1YQHjo6bAQRJj7/yXlg5yseKXe8bS 3f1I8pULNnUlcfDRoZJPwjwErKJ2u77oh01y1asG2kvhfqrOhfI8TF3LFSxm 9ePRYyf3lf4kZqfZfv5rxEPQ4pvzencMoMRd1f/yVRI6e89j4BwPjy61G3gO DWC/QebF7jskkj87uASn8/Dgx9OGtwcG8e/tsXuFtIsmzH0f7G/nwbVhZfvB pkEsbfUY9ckiEX/W5bW/CB+aJs+9Is2HoDYn+345vf5X6c1ylFnExyDCHx+M GcIXoW1j396QYC+L0zxhwMfNPUStRMsQGlJMWfPek/B9p/PLdAsfbkdLnIhv QxBVLRceLCFhorPNIXkXHzm1sqshw0CMX5HNWAUJ4dqUEwuO8OGy0z4tDAyY lzX3X6km4dE4HBfmwYfsJoM010MMkCznP130fkfawtVQ8CYf3WJFz7bkMFAw 03vck3aA4wNB7hIeHx9VkgSW3mMiol5BQUeQdktNveSMjQQqsrLNI86xkKSn enm7GIUo5fd1xvS6a0v9ve5PLwuht/zeDMnSbqj2SEqKI2AatSYj9ggbRW8r OQm0fxaHh1s1fKZdr7GzhZjOgdn5TDJ2GYVNT965uX0hcOD7kuqiTRykO4r0 jejRDhGP2HNehIRn3LiEfTAHGg1Xtv/bQEFs1U2jT4tJXN964NzWJg7uBq2v 9KW9JFF1IyzFjMSvPUFLjulwkVq5fsr7PRTu7d04x/ES7dCLYgK3yrh4WXVK wP0oBTnFkt1dhSTc82xCGbt42CVkwBo8QUF5QbGe0X/vnT4VeGd/NA9jnzLm J/lS+BAyQD6cIDGn6PjyCnrO8Q1drvwLFPQ/gv9mIQWt5+XK0of5sDtqH+0Y RYHh9XO9ij2FobiIu6Ojk46azMmczP9xebtANKssnu7Zy83j91P6sFrX+v7P K+5Qs1zt7phDQLjr6Zlnr/uhuurcpvUC3iicmZV4zYrA0WIqsVN2ADJtCuaz fXyBpIddsrf44DyIeiLSPgAjquGzjEEAssfH1Ze+5sPA9/OdsueDqMq/mbi1 OxPGD+ViDtfzIXm3RfaJ3BA4ptTyP19y8DaUub3mK70/H19ppfhiCNoX1JPF lxVBOmX+7ykTfOx0480yo4agv7DyV4LAB1CHRW7bS9H3/ZyF+hnbGSh6GVa7 rK8Up+1EJTK1CPQ/7XWKfclAa66K8xeBSoQdYvzR1SNg1K2/d00XA41CCmVH TauQKbNF5grtJaXUhWERwwzaUxEmvyeq4KkQFWlrTODrO6c7pVJMjO7+6iUu Xo0wQTn/W5YEfLoWlP20ZsJU983BnSM1yJRXmenhROD8YQum3V0mND9/N9aX rcegnbz1cACB9dq2H4XmsRCn7PHoyEgjTvZ2VH1OJjD4wr//QyEL+cu/RW0N bsHRjO+lS0oIZM4VKXuxiQ3bvvVDnffasFvFJVKXQaBJcPnV4M9seM/YAB1W O6IDVm7OFydh9nPZHuUIDrKbzY0vvOiEQF6To7wWiQyBx6cfSHARJVfTy3ja jfp9n7dw1pKQd579RdSCi2Z1y5C+pz2IWtlbzN1FwvCI7DLpXC7iTD44FL3t w+JpCwMVTpI4mxeVFzybhwW5GUe0a/vRPauL+dOXREqn4b3La3kwMPfif9Yf gEoOd37mRRIzRs8cWePAw7/EyoidMQNQX8+O/X6FxM8Vo0nD3jzElOvpCLcO 4CzO2+y9RZ//4DIpvfs8zH7VY7TIYBA7qK93HybT3osqznrfyYPAesG9+p2D mG4T63HvOYmPx249ahDjQ6d6zkCL7RA2zvgle6OAxJOeFi+75Xwc2jkwPfDN EGDf9E+bds6UP9+K5h7kw+Sdetq91QxcqLUwKa8ncc8pUDDiIh8Hv18slb7B wG7eL1OXVhISUpzazhg+Cr61fw8sZUBxVSsz8TOJBbpv4ypS+TBcXuzNJhg4 3Hcwc6CLRKZtvoBcNh8rLojv/jGTiVeb5btc+kmc1HUw0ivjw15K7b33WiYG QxOC9zNJyFBHPg19ote1Wc4TcVd6fT24lzv3C4m/i6MHksb42GXFvfPgIxP9 CnUiccIUKtjE9Tf0uovTLxz9k8rCyQz9S6IKFE67tCm8TyKw4qqlQ7YfG+8E L8wsUKXwO8QvZV8FgZqTH6xZ9HpJdmgztlpBYUBH2zfvDwHDvYIlIQ4cLGN5 FHzcRGHnbvEPb2hff5e82rNuBhdN0kc437dR0Jhp8bR+DwnOnMziJ5Zc/BQJ Kiy2ovA3/UTFhdP/PVdj17/A21xo2Gc6vd9PYbl1JyOQnue+x1H7WXwuavMf n517iILex31ay2jnetpEaFEr6fVyTfjRTQ8Kxt6vdhZySPy4cnliVS0P2YZP 11LnKQjMeqM1oURh5nOd6/a2fOQLtsyKD6VwRcfx8ao1FKw8SmK+xNPzjBVv y7hDgb1zlpbaf+fbIz82cxkBPWHfrb+SKNipXIpMeEDR3jLOZzyZ/L3eZE7m ZP7fn08vb75zKI7E1+b5QfapfZgvbVMaE+eO9Yqeu8dfEbhzsWGFeH4/ZJ6c +zRT1Bvy4R7R5+n7u8ei1YwhuQFsuXRA+nWALx6qHGkSp/fb36d0ELM/D+DE vdlJ7zYGoDJ74cWftK84vq/e6GYPgnO/7MGvrc+wd+9nBpf2VabEwOlhhSEo OoTEzJHKReP6GY9vf+Nj5j9x37DsIbwdLk5mHilChu2sHem0r4bVe+tVvw1h xdS5c2RlPmCKvDaxeB6BGbl/7WQsGJh2oq1WYbQUUyXHDtpoEwg52rzAk97/ l8WePH9CphL35VJM82hfdVmbPL/Uw4CrhPOIx/4qoO6+9+l1BD7xB6Wuj9Dn GejS2rXgI6Y3XxwS2EQgxm/XrgcyTIysXh9xdVE1lAoelf6ir4OI+NbcF7uY uHFY+BlXqBYfmvr2/6J9Jdd5YMOTeCbKBw29jTXr8XMOMgoDCfC0V345JcvC hsDYR51CTTh/+4j2UAqBR+tUWs3fs5BzVPbs0ugW+DoFqa8sJeCe+Cxvgykb u+YeqS7OagOv3XaonfaV9ztVU4f/3sc2Nrjd7Vs7nqzYl3hBgt7P/xQNuHGT g73LvI1H3nVizomSOmdtEhfnya7YKcXFgOr3TIPibjxeJz8cYUC7uv3Jm/NW XLRGGLZnvO5BVeL5A5W7SXgN775jl8+FzPtL6SV1fahRXfUilfYVJb87L0qS h5IhMjKkqR+M1ztE88+SiN//VO/weh7uhSrP3Wk4gMrmMcvVwSTO268+ssWJ h6Q60cLHCQP4p6SxKT6M9t6jm+4uZ3mQ/pO590TnAC6wvvrI3SbhPhD3TPIh D+68q8djjQaRO78kMy6FxI6lTQNuvTzMD5I5VzE0iD69DsVNL0hc6NDw2CzB x8vxsBkGTkNgLRHdIVNIYr7RXa/jK/mYFrBoVVvxEETnTRGyryTx52Xa9aij fCiKplWZbmJAvtiysaOBhLXYQcGUy3zYGdQxc2IYsL953E2zjYRwtLVzfhwf 8pohCsPVDOx64H0xoIPErqI/E2LpfJxzT0o4/pMBg5KUvWHdJA7VWNRF5PKR kx0StH8uE4XE9X+aAyQOv6jqlKzko2hHM4u7kYkA/3sSp1gk6u+afvrdycfW qImPGV70+lIYX+74lcQKcv65UAF6fSUn5th+YiLvn0Q2plE4Zxuyb7kNAXnX 5apOz1jwtk5LraF95cxB7r1HBKI+/L2sfpGNO4wPeY6LKWSNzD5dX0VgR9Ka gB19bKQLb3Weu5JCe1bM7Dt/CTyIfMb9fZSD0fvJ7/6YUNgkURa+ZiOJagfR f+x5XIgGC4c0bafgFH9jltR+EmoW4SwNWy7Gs770BFtTGNb85OjgSftXSFBt OJ6LxnNFt7fZUUjLTWRcjybxr6X5suE3LvQ4PjdmHqaQfvS4Q/dLEuF3HlkE beAhpeBT3rUzFArmlF44RpCYXZ2wqLyNh/32b9z8Lvz3HIPzWuIqFF70nH6d 68CHyvJHi25foTBeferzwDoKJ7I/F55/xIeEhWFHVwyF7mkVv5K9KcgkxysU GEw6ajInczL/56X8+rjTqaH0fvKO0NqYmj68vjSo5BR2CvEj+48GJRBYKHXA 9EgD3aPKxfFVid64u63k7NhqAhEX7FwNVwzAfXu/wbDsWSh5pUZKRPBx4evR v1YCgxBwdvA1WRaOp3U3rt4r5SOuX9T9Mm8QJlO9BfxnvMI7z00tfLpXdJQK lL0taV+lS3zQNc9H9h6vZwb/6B5yPqrRwxvC7Nan3JfMYlxwnfUqRYLA3hPO 7x6uYOBH8IljevKlOKY3zjiuQveEeVJHYQgDOVDUFXtYDmetu6cU1hIwmjt7 7T6CgfqPeUHyDVUYW3bGezPtpZZE9vIaWbrnduQ6FmtXI35gTV6wGYGR7QtW Sq1iwitAZ/khoRo4MThrY60I9JIaEq57mSjSvbVsr1wtAhvFWZscaC/Vz3dt j2CCOWxtuq+uDrGDfcVfTxEIms/UWtTNROmLGuZz6UZULPDQ9Q8ncF1CZau5 PQtpxhVTCySbYZNSfU8pm4CSqE8UX5ANn4DNM7TjW1HhZvZ2dwuBpRbmJnUR bBQrSAlvLfuEzK4rjVq/CPQIzU4P0eJgvab8q6faHTixWvniLWXaIa+WzL7V z0FDaMaH0h9dWPtz0VUpui+niPja2DtzUXbjUuHqRb04FJlg/ncbiRB149e3 IrkYO/zdM/ZPL0yFiuOSnUlonFtfKv6bixj704qRN/oxO9h0OCuAxJGXq7c7 bOdBalast8nRAfw8pviceZWEhIRo9Y5AHtbPpVpV2QO4rBb47NEtEnrPmhxs E3lYteZImMKGQRD6nTKLaM8/nDKhN/SahzCX9apfAgZxM7ZYcesjEkPRf4z+ 9vMg6btX6xS9Xt5ev9MwK5tEyd+JtA5ZPlhvo22Lzg1BxqU7r/U9Cf08LWF5 Mz72Ga1j488QnMPNrg5Xk2j+GJSs4MnH7FGrsWBnBipcLjlWt5N4JrgpNCWF j2eeU2KLGAxoeyj7iND+qSwqvnOjgo+/FfFPboAJ2fG2R5/ZJEYlNuhY9PPR M7q6LDyYiWaFpPi7tAPMzuiOGQ3TjrLW2LDhJRMbnHauuEC7aM83pWVCggQ6 i3LmJLYzMern8zvnB338/nZRzmwCJ0x0Lv4UYGHawo56wT///T+bU5M6vX61 DwR5rdViobrnev6oIIXUjo/Gs+h1qmK88dTxSyzc5Wf1W8nQzvg3Wzn7NoH+ bx/ZGrvZ2APT1h5tCgnhtQFKTAJ7zO6YfVvCwdhwX+rO1RQGxfUTI2bSzrHw Wx4aycGqZ5fUUjdTuK6QJVZmTLvbTjs6VJGLD6uU7yvtpfDLKHJ3VQh9XWVy nm+o4mJKz6uuOQ4UdnVrPhJ7QOL0zJMx4TN5gOqXsRraS6nE9A/Pc0jsviPE ajfhQf9ad/CakxS6aksld3wmkRU8d93ZJB62xm1ZYeBFQVnu43D5MAndhWfm 7GHx0CFUrmMfQjtQft7g+2UUmJ5POr+G8PFqX3bU8jsUNP7OVd93igJrhtQG O00CxQ4d3Oj79HWY4JycEUlhqsJvrbqASUdN5mRO5v/7cuB9dc5AIIk1ljHf BHv6kLdrwcmFv08hQ0cqfzZ9H59YWvW0tL0f98qUfgW1ekNK3i2rT4eAj0rw h23rBpB/tkj7n/VZZMWUaVy/xUdn6MlfX+cOolF95Noh19so/Oqr9Jvet/OW a02JHh9EleTmLdv0s2EeO3ZIrY8PT80fO78fGkK/aM8aFY8CGHiOXN40lfbb 2jW/Ngoz8KL6XqVp7geIX//j9GgugY55IrsumjLAK9orvrOiFN9sstMoNQJm 4l1iPfcYmNohdmbQvgJuW3fu3AwCClofT+4QYaIsNmOTSspHTDW3M+SbEghN FqkJXE736LvHYSJfqqHyrzDyugWBSqVhgbPmTCzwVJn1p7kGp6YZdKzaQzvt o8zpuBNMpLDOKS/Ir0UoNZLFPUwgsXmD0LUn//38apPHg8h6LJyi67/Sm8Bc a+so1e9MSKWWPNDyaMQ2g/fzRaIJXPp548V3PxYeu30wOnKpGbveyDyyLCRg anbw7yEVNmqLS6Z/mdeGj6HVWUKdBHTPPZQSymTj1MtIPc3V7Xg5kpwfO06g 5vGdzLitHERyoscUEzpAWBhcSlEn4fZs6Ty/CQ4uOKbVmrt3w7VYLYPYQvvH 2W+ZwQUubndnRJc8pX0V4/4734qE1VmPcpGnXIimv7SaFtSH3XqPeG1uJF6H 7Gg+N4sHU5ct0Rc+0r66qnDvxCW6F6cc299yhAfFFT6Mc08GsCPHukIlksSB 2GePpW7yoDbMOnBXfhAhSy33HqQdNeWfgHt9Hg+Gdpt+WZ8fRJ/kPfnjD0lk xu/c7NjMw1CK6jW3MtpXibcrhDJIPGcusfIY5UEuXj8+VXsIVe/8lDcVkLCY Njt/qy4fdytdm57nD4GVfp7rXUG768+VreqH+LjoyNx73IAB47HxgzOaSCiX v2GoXOODMzHs5ZzMwKpFlQ9X9ZJ4o/5HZ+ANH0phxmK1i5hoXRH1yoRLYm67 /+csJh+LdZzGr0QxcX+x+myPLyTKm6Y+mjLOR5PJe1W9OiaiV65cXPqdxLy/ GRv2iP/3+7juR5m/mPDfc3CsfoTEQtEpYh2yBFzr31+5P4+F88mVh3f+JbHI ae75hKUEDkXkDtzbTvtKI/Ns0QQJ8z2R/fcM6POctx86fZKFNXcb/hyZTiFn 4jx/hx2BW3suDPmUsFD1+uUUTSUK7+zn/o18RqBMrnfXqbu0r7YoBMWvpODS O3b99j8CTm5e+UtOcODzeVWkzgbaIUTtlvKFJBR2vMja+ZGDCgHWmtwdFGRj 91w8bU9CNTx9nH2QC5uw4OdLaUeFvFtd40U7qsN0hdwDcR5u686jlI9SGNjb IpdPz0HSkD9BWfHQm3wo18qVwg/lW/q760ikZJ3d9z2Eh0cmymXJnhS4w35v rtLeVIq1eX6Z9nLNh9j7zeco8LuiXPxmUVjs9sdjnJ6nlGRZC3GDQoG96XU5 SwqPuWJa0h18GJUJnL+YSJ8/eaZr2C0Kucn8C4OXJx01mZM5mf/rZMf5iV83 fUnEn/kmeIPbh+G79oSZ6mmUNr1seHOdwIer4Qtn9vUjQlBbfI2QD2Z2PvwW uYTAk1fPP0YaDcDi2I1B/XNnccTljK5cDB9Lf3EeBCwahOXOqGvp62PxrWR4 wdEaPlbYF2+KnDmEAFLj7F+VHPw7YnT77RAf80qTlk7xHULm9Ka0l5mF4CC5 WEGUgMmBV49OyzNQdvZu3Ve7Erzbh5sGdG/5Z+WsjDrAgEmR1eZ5R8qwQPkW h61FQNR7nfL9Vwy4O0x3HJ1eCSXppZ5x9P4/fW36eQN5JsI4Kc9E11RDT9H9 uNNOAkoj9Zv+mjCxhJnY4RhWg9a6VRn3bQhsTJm2ebMTE8rzZDMEHWuxoPW8 aM1+AkMHyy3SzjMxg+W9j727Dvpv1/edd6E//gR/8O4bJoYPbXh6bGkDLOsl CrX9CbQUvHrEmM5CNWdjTF5FI85OS7QXiCOwyZ4sy45kYf9zrPn6uRmh18rK LhURqJU88KR4JRtBgYbbtBza8M3cSFa4n4Ch2EqnLRVs+FvNqfJObEd/qQJl PoWE7yWN72sOcEDaSIqtJTowRzpQUEOHRLKV7d9xBS7WZGkt9e/tRlxxZzJ/ O4mbQavmKtzmIlZ8msJvsT5sDWjUeL6XhNScu90R77lIW1GRt/p7Hz6oxgke 8yCx9sib4HfKPOw5+cDh8Eg/psRHeH0OI5Ft4+5h48eDtIPvw/ruAbhf/Smd Hk336K8rV/8+5mFi4XyZP5aDqEmY4xdB97RJdp3S4gbaaU/zUkXeDmJFpvvQ zFTaUdPHfmaxeYjviDTuGhvEt0O++kovSJyZmSdYKM7Huby7dg0OQ1gSbB9l X0T3+tJEl6hNfIwyam995g1hy6nDtlE1JC4rS//+7/naQwFb5W65MXC08eGr W59IDKrGVIk+4KNIV2NZ5WcGBLKnhWxgkhg3d9ji84kP6XGHzK8uTARovCxL ox31KY1c2EY7infZ8Om+Biast9p+3P6ThOmBfZQK7fpNIdEd76exkN5TVt/6 h4RMymOVzaoEHJoV9tisZMF6zqvL5uO0V7hbFx5bTkBCq2V5wG4WZmt1bb8k SEHtjtff7UYEkl/sSGoJYkHjn/nHLcIU5rw+XhZCu17sxe37TSksGMlY/p2Q oPCTvNtg7EVgdn7V9cNCbBRWqnbFLKKw8bn83NklBN5v7ptdUsfGOu3A51Fr KWj6LkyRn0e79UXQiQ+POTC/fVkuaxOFV7WSDjbrSBSlle7TFuXC/de07XI2 FDpdPtbEeJPgMsKe5j/kop0Z8pU4TKFybb6pdi7t9EvNDQpbeHgtnG/4lHZU St6z8Qf1JPjuKoUWYTyozlFtDzpNQf+TAzuDQSLrLyGS9oGHJckLhQ/5UdA6 NbrGaBr9+Zu+H50ix8eBbRmXp1+kQM0eZmrQ38eRiKjlq47QXj5VIZVJ++lv R9X0Jtpxa1UzB27NmXTUZE7mZP6vn+tbuB+FHUiUrb3boSbRj6ykfkq28jQk zXQ/uZ0kcOnNlmz18X6Y1mmpOZT5YPb9WC6X9g+lvqVN0GkALb+2V1wx9EPh 2ng35xQ+Xn/pVE2zH8TDQ28XPilLRt5Vs4/Huvi4MXFn7W3rIeQ4iuy8eCof Jlo1Rv3f+fBLt78W824I0RovtksLvYfqxM+8/94nrzdjWjLPhYEpjXM/GJWX 4a9cpWeaBgFj01N3qtIYUMv/eC/1TQX6By+8GV5P4BU27VQdZ8C4OVBwvc1H dH1i71+ym/aY7HZToWNMZBQoEjOia0F17D+d60hA27PNW/0OE8dLFIMFJuow 8/quvLnOBPYd/d4j8JKJ/I8xBpKd9bAKXw0zdwJmOxgL2K1MmO8eW+D7owHO nsUawQEE6o+nmMvNZaFK5nBoF0U76kLUGr9IAuWux+eJOrNQc0m0RkKvGckF BU0zsggoh7Qfy+OzIOwpEtpu3IplG+YaPm8hkBOk/XJXFButmaHXt1V/wvVf 1/+U/SJAdgl4LdThwIB3cNYP/Q74najtsJQnYdBb2qpXzsHUssNr1a92QUlE wWbvVhIa+rL6dRe5mFrVpvv9ZS8upSfViB4i8bFUm5/F4uLs9xsBTo79yDCR u/nNjcR2xq+djFk8SPaZ2EZV9+Pnkldfw0NJLNcwVc84zYO+Tm2PWcUAro39 zHyfSPduQPFzmVoephvJzJXJGcR204y7VhkkYi49OBg7xsM/dd3AlGVD6Jo2 M3Z2Dol3C11GUhT5GNmRqht/eQhkgXx+fQGJY1KNK/eu4GONnViHWNEQfiQ7 PdMoJ6FZeroD9nwEekZ1P1nKwIuhsiqTVhLVu7+m7qL9zqt0E1YpYUBaaPqq D4Mk1v/Y0Tinjg/9+MM+wZZMrAzQPT71K4nPi+a7L5vgwzgn0bmnmQl2Tn7Y Pdo/nu9T+eErCHy1KPnpv48FxT+L1YtoB+x0t9KZRa8Xp8TF09e9YmFh13hK wEwKE8siK0pdCcQkvdB/wWNhZtHvOfvmUIhM2u2kFEjA/N+nZyfl2fgntiay cy6FA8duLI0PJbBM62WcLO1lghtVpylL4b7KjVZWDIGkXEeRIHs2hN9N3U4p ULhqfPHegsf//f1gqlBAMBvTXH7b+KlSyOpJ7DxWTuDGlWhhr09s2MbGbcg0 oJDnFaS0TY6EnkPFqUcvOAh5HfFIzZqCytQ5g4JnaM+K73h5LJYL4SaR1G92 FLg6YfpCsSQKR76lpP3iIv/40iPuxyncqj62YfQjCcuuv1JrA3iYtzT+UI0/ haJB78IYMQrqtyxWDKrxkWd/4+ZP2kXxcXnJT9UoKN48M8/8JB+yhuzgXWEU Tk5cufHWkMLK1Vv3Exl8TPErPbSN9tKg2qFexyMU+tc7pTaLE1AYkvIwuU+7 KpizrzOcgluUi8Frv0lHTeZkTub/dzN0Inb1g10kwj0G/QJl+nFFv/q0oJAH 7L17N007QmD79yiboGkDmH9oXtoWAV8s/602X53urbqTwgdfuQ6g9sEqT4VL frjhaRfGSuMjyPLiaK73IIrvvQ64VPAYsyofFwv08zEr8KthlvMQpr7+3d6Y UQCZozfsnf7wYSQ21elR2xCsU/asLzEshv+6/ALOAgLVc5Z6qwUxUKsRscvM rRw7rFUeXF9GYMnZqgdX6H7Nqd3msjS0EukyG8XebSLQbc1R/yTPxMLqqUrN 66uhKZEWtdOOgE/zaeWhi0x8C3hw2eNYHd5LBsf4HiUg4mAqtyeLieiJe84y 5fWw/eD/y9+NgPNT5iXBOiYerlNI3ve6AUnlN121vei+DNigmUoxQa4q+hnk 2IgXT14FnbxEQKhEJ8puOQuuE2phvUeb6D7PvXWZ7tGp07vedYWwINu+s9gs qxlcvu86/1wCgV/HTNbNZGOXaN3uwpJW+JxqeqLURWAO3zLi8ws2Fm3aYbd0 Wzt2a720afpHYKnfGcWfOzgI3ZA6ddmLDhg/+LbSXoWE/zm9wOkMDixl0nQO TenGGqOtPnHmJHZ6eicb3OciT8flc9LGPrgpJ/roHieRNfz6Wo4gD79VVJqf Pu7HaZVfrp6eJF68i1Q+t4QHh6/xBZdnDKBQOKp6VjjtpSn9f4yu8hCMhYaY NghbhUbRP6kkGtZetdDi87D04bs9xNQhzF589UzLSxJjB1av0pHiY/va0J67 p4awWNhlhfsbEirud5f5reFD9/Kj4Im6IXycOu1t0AcSN675tRy24GNGctri BFEG5Kcn+g7WkJhVkLU51YePyxGWawtOMaCdatn9rouE+/PvmTdf0f0t/HB3 tBgTaSuTPFz4JB7yDqaUkXy0zux9FfmYCf7S8YRZv0gEmbRurJMjMNQz/k5W loVDvib35glTkJVL/1ZtTs8//OdmKomFa1EPbxdLUFg+y2uVjSeB2u8HLX4I sLFunmZlEe0l1ZPEiuW0l4Zb/a6JrGAjcENYspwMBT2ZJXG9twhco8EoaMOG 6YxozTW0l4pfvXU+lUzg+OHn/MBzbDxKsBfQX0DB2HjTk5CX9P6gr8ihIJmN AyyP8JKFtKO23Goji2jvtSY4JJSz8YrK7hPXpnB7s/ezmYMELn78a/NTmYNW 28VWi40p2NVfVL2iR2JHwp/3MqMc2ufbdN/YUpjmxs5JjSCx1iJngjPAxYu9 pctDD1Ooj3EQTcum57xm/7CGMQ/qgmmNpz0o+Jy4tsmQQ+KN7toDw9U8LFyf 2xsTTGHhsWE1MQ0Kn3tUAs978iH2gPF8xnUK/6pkn46ZUtCV+bDtdgUfZizl xrIoClYdI+UPHCjMe7g3vucfHwLe+XP771Eon28u63iDgpTInZIu70lHTeZk Tub//1JTdY9A7XYS3+9KFBgp9+PuYMKg4ToPXJcaKT1vS2Cn26w/w7MHoMx6 PGv/Jl9U6yy7MPydj46Thn9bvAdw6JnJ6ZBqP/iEviwUz+Jjx5XEccMbg1gS YXz1TlAafD9HT7nO5GMsuNiHEzSEssJNpn+WvMHomf7SJtppXj8WuDR9G4Ki aHD5UcUP6DbF4nNqdP9tXMYYimeAci4sO2BegedOxgLdegQsFf9tVO1lQNHO e8ZBxyqEL4720NlGYNb6qbpCq5kgluk+8ZavwVW5sdlHDhHokJqpNfiQiUMy DTdN7Ooxf/46lUbaUec1X3zzrmeiyLR+Y/WHBhTWHTtpQfdr7sGc4j4eE69u q359bNmIC40yXw+fI5Ao9D5BT4KFTyf3nHrY1Yhrz10X/fe+1kz2vBM7d7Fg XfThtcWXJigVJS2cuE/gspzG+PXH9HE2S7lLpwVbR3Qrmt8SGHl7eL6dNhvc Z8ySuUZtaPB5a7VhiEDpbqXG/a1svD55LPBTWztyVyd+fCxMImC5kW2LKwcu K9+lpC3uhNxjb7JXg8S23Nzv60S5YIWYaGVHd2PFaM8Mxm4SX+cZj1Tmc/HS 59DZkYY+pFR5a4qfJmF5YHVGsgIP51Zs01Dk9kPUWmfWFX8SrZted67ZxMPD GTriUpYD8G1goiqaxJre3xfcU3n44fM9VMV6EMPbRbJmZtHr5P1zUa4wH+6F lun+24bQKfc1YkoBCYdvum9slvHhus98md7rIXgp7JztV0rikpfm/J49fBjU SFWIzWdgzwztAoWPJL7sfR++xI2Ph60mp0/tYmDNfpuephYSy1+edE6O5uNl w/WgvHcMlFBnDkgySTQ6ua5qaePj9OUbl0yPMbHjSevdlT9IlOwq0JyQIEB5 feCOjzERkaRb2jlB4kGWVpXIOgLjmwd+hLqz8DJcw19ZnIL/gvV9Oidpz7Yc vTr6lYXhv0/e58+jHXClUuVpOAEd0eJHXpvZ2H+sTzuL9tLWoxk2Sx8RUJHO bRC+wIbDw78cH9pLe0xXkn6v6I83/rhv9WM2vK7sX51Ie+nR4QNXjtBeMrkx sFa/jI3L/5q23FancMTTfGxBEwHmyvp7X36wscGM1bJAi0Kj732Nq70EYjQy 7jXJcFA2b19i6CoKP0Js6mdNITFlkVHUWi8OtopqCLRto2CoOa3Pdg+J6/+e /Pa14IKY9vCx50EKaVsF1rdkkEgPvWxas5SHYeNYF3k3CqcYs35J/vecidgW 7YAYHtYs2RHJ9aP9lO5yxGg6hfXXAu/qK/EhPrg4LYP20KYAHdNFFhR2X7iY eOcTHx6L2vM2RVNQdnt7uO0EhQ+3zvqvVSFwlds3GJdAYYX17wsRVyikHNF8 vvv4pKMmczInczL/9/xee+/gKyMSrMiZ+ts0+3GgZcrJe+c80L86pvvVTgKd OY7dGYoDqM+qiQyP8MW8I3Iry2gvzYxMWMe7NIDI9rRzQ6r+OLdNpLgpmw9z hdhG78eDiLrATB+OzcD3GAWjQoLuXYnEXJvEIZzOVc/eLPMOwzrOiqkiBOZ2 BDyVkGJAdt3vwDcaJWiacvNWiw6B+jWLPxx6z4DJyEq5MycrkaWsuyxtPYGk z0u2944x4NbMuLba7CNCB+Sqp1gTeKF80GOjLRPfD6Y61qjXIrjtwvE1rgT8 /ri4LShlwsVs87Z4lwbEdIR7XfIiIFWtVrvwK+2oJhXRfUcboRsW2hZKO+rM vDL9etpRr770p/7uaYRnmN6ZjSEEbsw2lxpZxYIuI5o9w6sJ/1y+3GHcJhC4 eDjrgB8LT78F7ZK82IxIr305hk8I3P7pmj5ex0LOw1RPsq4Fb57nrtlRTqBi FAddrdjYOJDs9Km5Des0H0/ZRBKY2VjO0hHgQPqZxuU1wZ+RxCs4XzuLRMPX +k+rYzk42zuRaNzaifO7RiqJVSQG90Ya3V7LRZLKjIZW6x780hXRlXakXTRa mXGli4spV8rf2Rv348v0FXqdviRsrwiPKq7lYdBwaUmV3gC6sl26ll0i0d2v GPXtMO2oDQWxuo8H4PRgqf6DRBKCsh5C92t4aOorH29/NYjtea2Olrkk3qQ4 7DugwkdwluaOgZtDaJAy07YsodfP0NUN56z5+Jom8/zxHAYuuVWNZdeQuPHZ 5MGINx8K/Jq9X08y8OuJvvjTJhJ5LGsfvxt8yAol/A1MY2A8KmDK1B4S/ne+ KxzK48NeQVlAXpYJ3f41UuVfSNydeW7+xn+00+aJEO6NTOj5KkbO+EfiWsTy Z0tXEajpue2Uc4D2ksXorzbaDS4+YoxfBwiQV8T86ypYyM6+XcSgHVVa7X3Q IoLAFjE1ycVb2fA3iSrfR3vpwKO4GdNpL1m6LFkw6xEbCxKnW/erUog0Wy5K VhCoPmhm5dLJhnSm1LEVGhR6PT8nb2wnoJnq3NQ3lQPt22dybbUpaEUKbtCi vWz0NehV7yIOuJkJ5yJ0KSxdpyMz+zuBNu/fKvo7ObiSFF64VI+CbP2bzVem ktC+x571yJ+DkYlv+503UAgwdJp/dxGJOU76MmdqOFiU5Wiht5vC5oz7ByMD SRSev+TslcvFpmv7Vv52pfBiz8Te6gYSRH9+2d7rPPx0EXzW60UhL9LMb+VP EhsbbuemEjw4slsfWV+ikJQRnd1I+y6l75x0rj8fPXbbLe/EUrhuwqx2PEuh S85Z6LPRf89Z831UnETh2LX18nWJFCSSdufUPJ501GRO5mRO5v9ZnvdR+/PT kMQHD/9RwaX94ASl/hQL98D2f68fjG0noFarp+ukNAChmbr5AXG+0PN5xc4d 4qOXaz7j5+UBhP+pdR9f7o9P7eHHu3L4kC8qi5l4OojfB1Zx3qllwlw1mVdK 8rHqZc25nuQh3FjUYJXh8A6V+Va8GFECixxHcF2RgZA2q8RAtxKkR7zYvlGX QH668Nv75QwcWnntvldiJS5n5A7vMSSQ2No210CIiTVF63vkLn2Ek3vL2aU2 BEKneyfud2Di8NfReZRFLewOPlz4+ASBwyfMju3/yERoaEL9vbgGnDr6bOlX bwL/1olU2o8wsfHrju0dgY24IonEPYEE/PfsdS6UZsHYKrxUZbwRtVIL1W5c JuC2wTTtoQELc2Ohv+taE9p/SFhY3SHgHNv8NPY8C2tmp8fcjmsGR2Czy7U0 Ah4LjxqmtbBwy8aqRJ/Rguh1bd/y6Z5+4aZ84PFeNuon6pL38tsgmatZ8Y0i IFp75vk1EQ7GkndnaTz4DD+fjjVr55DIP/S86cx9DqaMaw6UEp1o7ZFK+KdP YnzhF8OHxlxc3Z/XfNKnB0uOfb4a4EQipuzox6Z+LvTVXnMXWPZjyKLkVJYf 7ZlrX7ZN28hD+LdvrJKtAzh5Jm5xXch/73F22irmygODNbdYIncAIekkJ+Ih iQcaOipUMw/7Y98r95cP4tnLtuXNr0nsD2gwllDnI9ra0uflwyGU2nU4q5aR MGF7Rhyx5SPBrrvlwSIG5mn92WxVR8L1fdie2QF8TI9Wu1AfyEChZmzDwRYS bV3HR0dv8cF4obnItYCBKItnO5J6SewLWN1y7h0fO8r8l/xWZ6I08bjDoW8k fL4XtdpOJaBRdFBqZz8Tzs9IzukJEpx9DdW+awlMBITc8HFlQdquML18BgXh sCpBsyMEPCF8v62DhfYiG49WGQpO3SvOP6TnVluyQG/pfja6DW/GdipTGA2Y 8bMgj8DBmeZmfa/YGFQ+LhWnRuGZoWm4ex2B2Fkdvrv4bDBtQxsPalJ4q9Ko 9qaLQMo6UiB0NgdFVikTI0spiPps/mHCJaAb19H5diUH507UlmutoDBj4Zl6 jT8ESpRstknZ0+5KiLjxXJ/C61Rt3bUzSGzYKG7gdZWDfaPD2hxDCvIyTSLb NEgsmnrAyLiTg90M3acJe2gPea873xFMglLyuqVfyqV9116x+yQF86TpTws/ k+BnhPbHJvOQzz94KtaHQluI03jOGAnxwEXdt8Z5UHHVOyZ2mULRw4zV1vTX dTJcbEPSdT4ak7uuHY+jwNnaoGB2nsKlWs0lzTaTjprMyZzMyfy/mn4jjds7 dEnUKP3Nm7auH649BS9GWR6w85Q6eNaA9oPigcLyZQNwkv/gICN6Fgry39w/ NfKx0pR3PufuAGYp2G/clO6PAPUqbXO6F3NzviZ+qx/EEtH+i/f3vcCZM97v 4kb4IH3S8y98/O/52vFmV4vew1W4qLZBksDY9ysv+0wYoOrXWrx9WgrrvpCp HmsIbJQ5OuLOZUD6zAnpVflVSPmp/GWVKYEnJawrTjpMmBJL5oR9qsaUN7Bz PkDA7v602c9DmcjjDlZoh9fBN91Do5x2VNCQ2tOkn0zcf2ni8tO/EZfTpR1k LxJw7ZbeuESdhdF1WznvNzRB2XbWe4UwAlXqOektm1kYs50W6vS6CQP7vjmN RBEgjql+ue7GgmqhQWG6eTNOrs0IiX9IoCeg6urwCxYeVaqqv7JrgcBW04jT 2QQ+rknjWgmx8bNy29lnD1qRFXxG3L6JwI/fMWt1Qulev1fh4ZD8Cck/HRZv GiPQ0BFf4bKBg5K8lk4Rzw5cfb3xfsZ8EmG57ywGWjjwCtQQ7Czpwt5w+wjG JhId88q9yr24GLJ0marp3ovvjll8ZTcSw2+dBxtm8hC2LTIuvKQfgSEutqsv k2j1mh977wQPU+fE3F1YMACpZsvXtZG0x1xP3Y6/TR+nsvyXqAzixq2pruUZ JEY5g9N20n28Kq2sfd6qIdSKjHbrl5Lw/nzn5+BuPn7evSd3UZ4B1zdRvxY1 kFC+Ftz5PZiPt4d8IwoiGZj6jjwb30Fis3jA+sB0Pm60bVgcNcLA1lXakl59 JJaL5225W8zHM057zSxdJrbr2Q/NIkmsYD8pmPqDD5Vjr5825TIxt+DdxcFx Ek32+3bFrCTgIjqUq2nHwmUhyeg2MQpTc+8E7nChXVTauGwLg4ULNbqKK6Up 9B9edNE3ksCM/V6W6tvYSM7TaDm7iHZR68q7iR8IKLF/M+Jr2RiLzjUG7SLp jsYnESwCpdbxRJY2B+LJic5etD/CbL5g/SiBRxsUVXsdOdDz6vw+QLtI5sbx 1F+0iwZD3ZMPX+eg50llup0BhcXNYk/kZEnc6lscdOMZB59fLI9aSHtJbTOx 01GNxHOrmh8ZzRzkRB+hbIwpzHmw1Gw17eXIIyzuwBgHkUWqU87toPBz1tMr 0QdIiF340pjhyEVbSY7J6sMUQD2pCXxFHz+luWIhePiR+GzJ6FkKT+NES/Kn UtjQ6BglPI+PNdXMGSsvUTg9Xmtmq0VBs67jXJAffb2v5152uE3BdtzUytOF wjEtyWI32UlHTeZkTuZk/o/OWEWpGCu6D7ykJZuP2PTDYnzTx52XziAyYob8 NSUCm/Okk0K2D0CZV3VI+s1ZvOhVefz5JR8lxm75gXkDGGxbeLT01Dks8+L1 M2v4iD+93LpEYghOd1VLYkxyMDfbkTKbTu/bMy7O6ZJmgBcgRBahBLe3+5ZJ LSJwaLl/ovANBn4IH0s/1lGOU/PdLSq2ETB5/MYqYS0TAUqpAz06Nagx2Pjt zT6C7vHHxk98mPjStNdg7qw6LPizJPWNOwEnLfsTXZ+YkKqRMOMLNuL6YNGr 1KsERp+Ztt/awULvXHYet7EJ8YOH2X+iCbBS17jLBbGwPpG7Oud2M3Jvamzq TiBg8OyLx6p7LERZLhlUnNGCb+GnRRMf0/3amBHaV8GCa3JfEfWyBYIeWnPv 5xA4cqNRyWs6G1F3trr2ZrdCKmhMJbqS9l54DPOwHRu3BKmsOaNtyM++2jeT TeDvVcvpwkw2AgbdJQ/JfMbzJemD7rNJZO1582c8joMX5v7PtPo6IdQT2j2b 7l2nr/sjowy5UL27P8HLuQe5r1kM530k2n9JL9xcwsW0cZH8pwL9yP2TsScu iIRulMSBBGsenpZ4esieHYD/4lvvg+NIWBl8TN+Rz0Nv14RVwoVBKL72edDw mMRcqR1elSwe8qcdl7n4ZxBTJV9I6L0ncXb9SHbRFto5O0IfKH0fwqibzZv7 7bR/MqU+jSbzkemyrklkiIE7a9pe1jBJKF61Cov8zEfy3VPKzu5M5Nq9+DH/ GwnjoCHLvUL0nFf0pmX2MGFrZx6k84vEs/iyH0byBNZbDG43lWMhJ2nwrZkQ hWXPNFcJ0o6+ebXTeEsUCxW4o7J4LoWIlFMJxCUC4gKajirabGzOHe2MUKZw MTu8LOE1gZdJEoMjz9koS4xVraI94dCarSM8QGCr4/4fW5U4EFN9nvlqLYWC +NeSCfNIRInOD5r1hIPevrf779POmbv0zZsdq2kPmktHZ//jYO2CIWVFMwqX rYvIdgsS1z2lXl+j5yBw/P07650Uot1vFZY6khDP/rv6xzEuIrZcU+uzoqCy yfPN99Mkjq6vEHwazUXBXNWQD7spHC5TW5Z0np5n9kOfT4Vc/Dr/ulljP4V6 A4ky0ygSfxsWuyxhcWGbLVrLP0ThzHBTgtNLEvqZgc7r1/OQOZieq+RH4dzV l33GwhQGg583uknz8UnwoWJcFAWmrEnKqD0FarmepO44H46+AoEHEinwrdff +nuTgntDSIlPyKSjJnMyJ3My/59K2Se2CpJ0v9+RNLeIsevHQ8Pudz15Z5B6 0fHtb2naCdp3l4jaDKAvaeCDJf8s3g0VDzCf8HE+ajTB8QPtri9+FhrPzyHE RfLTtQY+HvcKbnqlNITpo8u8rJGL/qR8xf3itFvmrHaf0GbgrLtkNp8sgZNB 47DqEgKdMcvGNJIZCP7lfTr6SgWMZt1xmG1BINhNbLP9DiZmTn2x4URJDWQ1 neUz7AlEpnutWXeDiRXEUbnG/DqQHIXqq54EyqZtGe3lMxHiNq/85q5G7G4Y +mkQSSBBPbbh9xEW9q37yunTbcaxprfzZsQTcJhJVW+IZkFI5lt8Na8ZAQHy CT+SCAitaxfufs1CvtrKgeEzLSgK+Lg6K52Aov7BIaEeFpYrsFWERVthdoB7 NLqQgEpb0/brC9kQEWj2DpBvg5Pbld3ltQR6Vq94KnuGDWGWt7CTzSf4J2Tu 4ZMEJnLvC88S4iDFMKDiSvhneM45ZiEmQyLx9zoN9msOLreE+g9YduHTV9UL u9eTWHtnwklvHxeidzJ33e7ogWjHaCPLngRZK2sh3s5Fa7nbjzz9fox9zUpI DiFxOXPZVdfjPFSlDDxyyx6AzXHVk70PSDhfPGxo08hDTM3MC3LvBxEgdG9F RToJTpJOUtgfHnTyyg6YaQ4h/+0iPr+MdoNOov+eA3w8Udr92VSLAWLa9DxW N4nKI6ePf3/Nx1t1/Tmj0kw0TK20cCBIvCRu5h79xse8W6xtAs+ZaC+Idgke ISGzWfJlngwBixFxdqYkC7fVNyp+GCdh9G/qQtmVBJ6b2voM2rKQui42/9Z0 CmVHQyv/2BF4aNoWvKaMhe4zLpSkHIWUl+/GbOi5mXcfij7mzIYdp+5JgBqF mA9dqkJ1BIYDt8ps4LFhdrkr7PByCtl5YUv0Rujj2j90juzm4IRHK54a0k5b EocDS0hMKzxb2t7Ogf8qCa4z7Sj1Z0nBw5b0PsPqV+FxIy6M1R9vuW1BoeOJ lvkWFxLKLnsGpYO4SHg3e4fiLgpp1NmLx/1IrH/d45CezsWAS6Kk414K+rLe nDeXaecKaxnmVdMeE1P/WG1HIa9/64HTMSTOR0uka45w0U3Zqv91pJBscHWv aSoJxycaD5wW8NATt1P3iguFyrbUO1EVJHr9ZJL2efJQMi8oeOZ5ClGxE0hX oLDIkSOcbcnHL99TboZ3KYzOKG3s9acw80CR5h7TSUdN5mRO5mT+z86y4K+7 n0zQ92PL3+uYJ/oRVmktEKjsiePWT4+qCxEYn8keyHceQEpn25eE4354GOvp OOs2Hy/WDZRLfhoAfJ71/FgZgJ78fZeDO/hwzVsnZ7ZtCG67KihpMg/Lyb8T CbIEDt87ZWbgwICEsPOItkcZVoQONG6m+/V398VTrc0MFL+uqj06rQrS9p3q z2wJ+CWWza/wZ+LL0YnxgGV1YJ15KnPrOAFuhLa0aTETfnnv+jZaNyB36a+v Zy8QcJ+rO+uUKguXnpuUia5swnyp94qa9whsXnWREXafhb1BCzh7Z7VAQ1LX WTCNwF6jGTJWTSwcyFukP6WrBcbFdrWLnxMobgrn3PjKgoTR4crO3a0IKZ5x vC+PQEetTEWONBuhejLTSX4rJJMdgo0qCeTt/XJr1JaNrBMCESE/2rAoKzrB v5NAyeBFdbEsNqY/f1KgjnYUdCh9uPKXgIbJ2l0/jDnY80d3UXtYB1bbeN0p ViURknL9SccwB2H38nWeru/GLrQoWW4j4SkiN3t6OBe3H8xOdyB6saJ6v5rK CdpLXW5HREV5mPY0I+NNfj9u3zkfdu0miY1RM9Ysi+fh2NmLB7esGETv4NAr i2cknDLtSSUhPkLzc1eu3TQEq9hnhhvzSCTveKeYtYSPXWejlPmPhvCSa1M1 o5mEqc6CUl44HxN/HW4aZjJgZxx1LYMkccHsD9NyhI+QjG3hNW+Y+CUuebFj jISrmv5dphY9t66gbo2tLIhRXzd6CdMeWB17W9eSgKP6/YtRj1loDX2WoDGT wrmnrlOv0fM8cbBP7gKbhVDJx1vLpCkE/dg8+95N2ld7v2kUWrCx/4N0uLg6 hZ5F7elqDQSiB6RQ94UNh32jIjZ6FBoehxtICZNQTU/KlgzggO+W9nvKRgon z0c/8llK4rgFo34+kwN2+8lChjkFkYopb18dJeG/OMT0sC8XSRts5Qf3Uehn bT565jqJz/GRO253cDGvJUnH3IFCS+CM2C+0T70jz13oleBhWyN1aMUhCgtP HR1PySLhUFwmoqTHQ45UwqicM4VllM3yo+/oeWpbdgfZ8fB8vnB//3EKyw+u +pxeQ1/vxJ/WiRd46HMIvdLsTqFbad1J214St1ourdN/ycP5i/IP1XwpXLj/ ak4z7dDd90SMJOm5GQbIjG+NpCCqd/ytgC2F2Orv1wy/8v+n3z8mczInczIn 8/84Zw8b1lzqJrBB3FW7LqIfrHmHz5wQ8IKWE7MinPaScl3ZV7GoAVClKu55 Z/yRIfy98EQ0H9X3Rq6rKQ5C90+Y2IT7HYgr3Qq/TvIx7cCrCVbSEFzaJM5f tniHXWa1R3/pEHipIOM28b+xd+fRVAX+/+9lSEoRylSSSkiTyFReIqIkKg2o EKkkJSFDmTNlLhVFEhWpJEMapEgyz/N4nHHvXaFZuufz513r/nHXuvd37+/7 /Z6/Hmsd6+zJtt7Pffayzxsack7cCDDy/ICWIXNTwe0EnFf1VW/fOAb7O9PC n6Q+If+JKF3Xk4DHs+IFSvQxZMZkuvMZNMHn3dxvtBAC8kZhPjPX0nFCL0Sy 0L4ZW/wmfrTeJPCFKst9kkpHghtHwO5nC3IOX9YR4XYRtSxbRlSSAVHWh2+R /W3Qdfpgdv4td07rmg1mGDLwInhb/aeEduwUjem685GAxfhfxmFnBt4ej/59 dHEHJMX07YqbCWimzHpXdJkButHLC4fvd0CavaK0aoRAcmbix10tDFR+UTtU X98JOfLrGuufBHbNtLl5eR0Ty6u7c48YdkNHYYf8hAyJHWdW2m16w4TsmYGb uWd7Uf+u8EzKVhKF555JHubOe5fFJoF5/gMws7GjPed2gESjyc74SRbS89Kj fUOHIObZ/vZAOImtMyPb5E6xYdX4c/Lki2E09m/9osud9338i8RSZnJwfV5S sLbFKCw6yeLuDySmZoy/c3Xl4Bh5x0fCjIaQdO9lOtyOMuy9pXwtjoNHFVaH ph7RMKAw4Rz2lcRRyUzXHkECxfNbQtKGx1C+zOvdv9kU0uf/jVruwu3cwzey xPvoCDij+jhRmsIHmT797BQCIyaForf2M7DX8cOum0spEE5RJ+NeENC/l/1Q /wUDO18/U3JToSAzuvb+rjYCKjT5Lbp/ucfb9uTjcxsoyLvuZ/BNE2gjZ2zP O8FE1EDtTtOtFMr6hUOSNpOQT1izT1CMBYlU9WjXPRTymvf5vvYmcfPS0Zdl d1l4t/XXjpfcLqrhs3ocf4fEXCNanYwkGyK14m05pygs+7A7eUUHiT1Ezr6h NDbkzh+5s+w8hQDFOSI637mds7junMVnNiTVlX3c/Cl4qB6/MzGXwhJdhxvC qzm4QGYtc7tE4Z/KtTaxxRTopwcUbPZy/06WJvTQQiiIeui0r1ejcO3D1d+B 3hxoXBdmd1+mUHdRzZzcREHbI+SQdi4HK9jbPHWvUPA9Hzhf35pCZgnNQLiP gySHVKowlXsc5nsWN/pSKBqOVfxjxPs8iidPnjz/q2lrP77iQC2BnXOu/evO HELxoQlTbS8v5GcVOX+v5OC7zuoZgTnD+CbiEfeY3x+Soxf39KVzsC35rJzY lhEoGtX9yg6+jbEvFslPf3Kwe0r8X27LKOiBjmdMVlZgzeKljr263Hm8/sGt jM80qDWcPTLGrIFq4S27KzYEGm+Sv18eH8NtvV73W3fq8M33+4EFQQRi//4M L1eiw/LktTcH1JuB6ASfZYkE9tldWGTtToes/S8UWrfgsuGDSxseENi48+qz mA46iJ8jy5I/t+Kz8tk82nsCc07TI+/t+s/3i7zaNvypHUEqgU1tjQS6U5dx /C4xsFAMpEBkB6Ra59oNdRK4PGci9kEWA2ejZ6x0lujE7iZqocMwgb7skdYN dQxMCpYuqn7eiX153ec8xgnoPXXraVjIRG2hMp9Wbxdcis+nsoVIHKyu3cR3 ign/+gYJM7Ue+A1rVMqokKg7dbzpwgwWLoR2eaz17kPckmTz2t0k7rt2JIg/ YsHtnYKMQPIg7qv01RWdIxGZU7nOU5WNUa8Mu1lzh2EQrKyxKZmEf+N6ztVM Nl4mV38gjEag39dx6XE5CankC+MeuhzEvYmxC24aRf/p29KT7SSKGFu8Crm/ t7jybtMnLTQMXR5h+IyQ+N5/snPqEwfKX/JnFe4cQ8Typ5/r+Ch0X50xdtOA gOMCa4NWHzo0XPg71OUotIbH6AXeJlB2aPSI3lkGJp6WvH2tTOFv7Eliqp7A 461TH6sJBm4OrGDnraMwWrPV8tIEgTUZZSf2WzKRrC/xKkCbgpg5J8ZwLgm5 gXV8NolMnHBQ0XtpRCGRVer8VptEyNcgodF/TBQLCd88uZfC2pYZxxL9uPvx wkYgn3ucDkrFLL/gROGOtoT948ckoi/4+rdrs/H3min2n+b2zyO15Mt9JPbu 5Q/1y2fjaWPD4c/cXrphXiROF6Mw48sKCRkNDhZ2uZ1XD6fwbKaGYqMGBSvj 10r0WA6qvYbC3GIp0OJ/c9ZZUrgXvVZnSRv3uuLRX0PNBArfPEPCA+257ys2 fmv1i4MySZWbP1K4y3UWUQzkrv+9uc/lpSoErPMXu9XcpFA5lvzbO4yCjYxo 33ZHAvciXo0ezuT2589Y+5QbFLxPdpVtvM7rKJ48efL876JunENDXjUB8bMr FgVlD0FqhntPRowXOiIfyt95w4Gm3WBW3YNhRDFV9pPS/mgv+CDgdJsDQ8M8 o5JtI7jvTWvaJpGJO6Wr3fGHg/TmgMOt/aOY1+D6d+mlChBjaetWbiKwJNBs 7cNfNGR7eCuMaH+Eq//YitL9BH5n5qzQ9hxDieCgiRpRhw1GBssMQwiUCBQ+ 0VKnw3bX9VUZ1s3w2XXGbV8KgeYo54uW/nQE3Z7eVhrZgi3CX44K5BNIyq8f 6hyhw/rnMeuvS9qwkrDKkK4hEJHezM46xIDS7He7GPwdKKO+l1W1EDDcZHRp fywDyn7G826+6EDDjb140kOAdnLVi28FDHREhe+tNOrE7GtpQp40AhZxjIbM bgYe9m5an8LuRNyZMtesbwSeD+7bVLecCY1vq2bpS3Tjlr9NzGIREq2Tz2// vcDEiFibnKVjDzRyTMpPrSJhNaR7Q1ichdj1h93cH/ehUfZmyEMbEr8fUPFU CQsOrlNhMZ8GoSyxfMVKbxI9j+Omnmiw4bpB74bUimFYlvwd57tGIk7AZ7Fo HhvdDnx8yw6PQOVCvEfjKxI5Z+v2+2zhwNfj8u2jY6OYb5Dy4FA3CdOzF86l PuCg7561l94kDR2uqba76Nx+y6REgns44JA/13idG8M128gniQLcuf/RVHq+ OYGgkWhvkWTu8Y6WKw5dRIEeFKa7N5eAg7R5hk4kAz9eBvaKqnG7ZFajwn/u iy5Twy+juUw0PJIPWKDJ7YbdATud+UgERq1PHfZgQui32WlfPW4X3ejYHyFD YryoTTO3gAkHw/78ZFMKy/I3pZqYktj2uW7VvRUsHIh0fxe8n9st6yumDSJI nLy2ZqNoHQv2S6wNPrhQmCj0jlN/SeLP4fKH1gfY6JtFXeY7S6G5Nf3nVe7+ JS8SfpVVzYZDoOnawIsU1B33PIiVpXD02bedGjs4mFuqyBSIomDy8fnuPVso LNgy2/x+IQfHf5gWhMRTKKFKwwYOUrA7Nsvt0jgHX61HVq3kdtQH4+6wE24U 9pe9H1NUJLDLLXDR9esUpGYzStcHcNe/+eDTDzu4Hd/laDp+m4Jka0KyBvd9 z5b/mNoYzesonjx58vzvbtWzYq/TFQTMehyHCh8OwW92o9PRZ144ULHdnr+E g/m3VN7ZFw7DY8/Hk32W/nhdazzlfIeDrDMfG0f2jqBriVrZoyd3ENly3q96 moPlCzUvG5KjeHg1QNL/ZwWspgN2zjckUJVQGFszewymr66wol9/RG2S+k6a HbdPDPqtvMPGIDbj50Chfz2kDijYNkYQSDiTJq5sSEeUeM7uOZnN6HW1jjTk Xt/73mroPRVLxz6T6EeidS24p6Ads/YJAcvtgqLS3+i46D1x67lrG0SF/hUP feLOezeb4XWnGbAwaXgrsLUDMgJn+Eo7CWz0HZD8dYeB3RdbxArEOlFQcDMo eJBAk+MwY+Z7BuyVUpxuX+3E6Ucj6reZBITVFX4PchjoPPgx8IBGF4gwjYKU 3wTy5Cea3PWYOPrrhcgu124EJTWWnJxL4npny7r6WCZe/Bqy3Z7Xg+jifatc 15O4tnWWi7oaCzLJX2ZtWdiPhBk76rRsSRimkXvkPrLwyO54hIfEEGwemcx0 8CPh4C1le8+IjU8W4U4plsNIqVCfdk0j0XJsnpn3GzbeP056vil5BJtfx/HL vyORV53w/IINB+FlNBsPWRrEFkRI+PeTiFFVF1xexsHRF67IXzQGWwfhcDMO ifpa3RkWJAdHVEs4NtljiJx5wlNnFoUzH2XuZ9sSOCD2UOdtBR2Gnp/+zVtK Qc0z9O+lUgK22HB0pIiBfYsaNR3XcLuif6V5B5uAk9mbiiZtJr4sVi/u1KGg 57A074gECa3y8P25t5nIMuulHzag4KI1amm8kkT5myCBv21MhDwh6TY7KDDK hicND5D4q7iUOLmXhbyXj84fsacwc6eOatZ1Enz1JZODf1iIeeG5hO8khQsX pjiKdSSO+M70ag5mY9p3+m3leQrXhrfsS/xJwsLSLvD4Nza8K00qa0IprC+W Fo5f/Z/nFuwWMrjEQVj4JbeIOAof9RS3r9hHoT+leaqRyUHLjZTouKsU/HON AkrOUPBp6VpAriZAGr45E36Two6VfSMXuMsT1dSMKT1MwGCt+YtLGRQ6NUWk za9R6Gpq3nkvntdRPHny5Pk/1awIZQurcgKBq3Jtax4PYb/Oi2K+Ni8EbTMy 0udex799mFApXzKMiy8nJyzd/SGg6TPzz10O9EqfTK93GAGfnU5RhNRdmOve vz2Dn8Dn4puljn9Gse7g1vZM17dIcB7xdjcmcNP733I/2TEoHdiXpKhRi6if 7/0djxBIPiFuVZo8Bp1zb0+XTtSjqTzkVhP3+v7qY9e8B9Z07PCNZZK0ZqQ3 hOb7pxEwNtCaG3eTDtmVp+MyBFrhHNZYlv+MgPp57TkHBRm4vrbLpfRuG+rd 1vfKN3Ln4ZyXErsDGBBZWZh1zb8DHa6ndX16CaisHhiyK2Sgcl7pa0WrTnAk 6l47jhKos/sg/7uNAU+F34LmXZ1Qnnch3oUkYC5iNV3Fx+2DbYU10WFdyGfX 9s2fJhBlqtz02JwJn8KMZuu73XgxWTe7cT63G8as+fgzmbiYbfap7XsPtspc DiW0SLxLdU/7upmFyw+6Tgk496Pvhr/PscMkXqm/ffi5i4XTO8XTb+sP4UXa 9X+BgSQOX3jw5JQlG/S58tHa7sOwFG0wNM0gkVB/XEeqgQ0iKa1pS9kIWs/M 99pbTYLV+bPrviMHAZce+yvq0kD+MlGeHiZRM+b7dl0tB69eFOwSMh/DcZEf 4ozPJLZfPRhTwe3i1DUbfr9sHoMLRyWiXJRCQbiLy1M3bv+KfTWTI+mwN63T WL6CwvFvoZfJDwQM1XP8BPoZuCg/PI9cT0FSVqR1008Ck4tUh/NsmYhoKlg5 fxMF37NRDXEKJNSDrQIPvGbiyddaz79GFGj/+LtLdEh8fz8135mfhcSD/Z6T u7jdFTbj0vMTJHSUb/1uDmbBZdau0s0OFN4/S5I1zCWx6kmF2NhSNtSffJX8 eppCyemrfXUDJDRilwY6FbKRdyPukJofheT4ctONIhRqzN3jnylyz2Nbb/df l7n7tY1zyHkzt7M+/5Zzv8/B+hwxYSqJwgfmDb3aYxTsE0bnyUsRGDIKW7ia 21G/zjrNVA+h8LRz7/K93OuBp432G+UzKczydM1MuU5BzOVK1K2rvI7iyZMn T57/Z5k9u+dYFhPQ1whfVFk0BIEqKy1iwgt+DPr4cD4HQt92/HN7OYxfc3ds don3R399/pmtORyo3HddqHFyBGcGhOet25UNhSYxlflCBGRMSnTfz6Jhoemr q+ymt2D93U7vNCGQmJd+d/byMWwX/9SoF14Lh4Tq32ucCOS6Owj8zuDO9ac6 jkp7G5C7J2zR7SsE8p6VHOYcosNVumZYaUELCEcrW88M7nx7fOvwaB4dG+NX S9dta4WuvLbxS+722wjsjS2fz4BQjpTpoa423Jnx77R7CwG15fcc26MZaPX6 fCKvqAOrpmfV5A4QsOcbrrGsYGD4i1fS34hOGD44tjOJTuDfmloBcoSBRL6S rhViXfiTPSRz/guBs6mnLqnMY0L8NXV/bVkXgoM1ji2dQeJZm5G1xH4m2Cp9 T793dkM4wqXefCGJ3W57yOvPmLAsF1EaNu6Fu97mo3p6JI6IvdAytGLhd7VV 5uon/ci6QJNLdSRx0OFi5F8aC0GKeRt/2Q5BsiZhzoxgEmWdg5NP7diI+7x3 ycv4YYRm5PovzyJxqiP/MbuLDef9qWc820fwp6tb+OVHEoIq9lYRpzkwsy+S SLWl4VDKDvvHdBK0oYoWTi8HVPPa5mU+Y3B4FK++YYKEcidLa+McAhEzBZJX jI8hSGXIM1+cgshiZt9VPwJtgv86OiQZGNs4WVypQkHA6cr1m+0EqiUWzLvG 7c0/Qz84UhspkHXraV+ESTTI33ELC2VicCpnQwootDW+kWhbRaLDKVqif4iJ OGwxtN9GAU3NofrmJK7UD1w/sJqF7fO0PAr2UDD8129f60Mibf6WWM8cFmLP SFvcO0phUOB7wuIiEt9iq3LsjNlwMP5k2XiWQqJP9567LBL3rRYvTub2pmB1 xIlHgRQ+k1+j/RdSOLcqd7mOMQd86y1WxcdSiNJ0yCqxpBA2Y9vtwHYOUPrc 4ngqBacP+oXPfSg03vqdvNiQwIiq7PN1GRRaU5ddVLjK7cS/XpnpsbyO4smT J0+e//c8WG0vpP+YQKlChtLH8iHkR+a5z1h6Hr47t2fLZ3OwaEOp27KqYUQ/ cHaz+uAPa1PHsD8POFhcqr71rN8IdC5G5jtb5iDJ7L1+zSwC82wCXAVkaZh5 +tCrEqtK9J/X+PfYnNtXfGY6PZpjuC12asBH5BNsRMxEqlwIpOig9v7jMczh 77pzqbEBMrWCJt2JBGo6F6icOkPH3J4bxqxDLejtOJEknk2AyCqwX1BBx2BK 0B691FbkxLGiX5UTeFQl/eb2SgaeUEz7c2vakeAtkzunk4CLdPER4QwGAvyM cmQFOyHjGTk7cpTAw8DXKXfaGRiqr3ne29OJ/EWyV5M5BA58vbKx6ScD+uYx n/VdunBCdvU+zW8EShqP0thKTJxYW9nVPrsbXr9kL/0SJFGoSo0Nu3K74b66 7gK5Hpz//XS2iDyJ1Lvbd9vVMJGl3m99+Wovdm59vM3ZgMTR8GNf/xxhIfVV 6rWZ/ANY+uf7vGgXEgNlYQ9ZEywsSHJ+/jF4COEKSQcCw0lc9BWSvneKjfMX pK+2lA/jYe8+/uu5JM782CwURrKxcK52x8w5o5iT6+88o4GEeX5v14OLHHj1 icYmhtHQyLZ4sIrD7Y9g+uQAwUG73bip3t0xNAskXnj8gwTbR+yA6iIC7glV szYp0LH5xoaI9VIU4jZnfRq5TGDciWbvsZEB5Y9VMctWU4icHCRXcDu0JTUr /PYqJnrZJ5oM9ChMGA1k5EuTUEh9Tz+Tz8RH8wVp500odKneShM1IjG9avrM AzkWTps/Wx6xg4Kx6UX8OECi14xfymQfC3Z9HZ8m9lMIDz00Rl4m8THxhpB7 Ewu3DMrus10pLI88L7vlPYllcxUU97mz0XKjLm2HN4X9Mv/OX/tNIqlnMOnB bzaezfnYXh5M4ZnNpwuNKyiM3rl6Z6EbB3d3BH5RTqRwZfRAooQDBbMEA4ks fgKLeyTmtt6icO+4jv63eAoWl3xYay/xOoonT548ef4/s0D4hPDuXAJeNz88 z343hEUth3VO7jkP4uwbv9VpHJy44OvB3zAM2y37r+nyBWAPvanWpIADq69Q 1bwygi8mH1pL0u9j7qhzeeA8AgXhXqW/19NQ4LDRS37BO+wXb73osovA+vWG Uc07x2DKb3K1t/4TGu8yI/3cCGie0JbPrBnDs8knB0aTG5F4dE5jUyqBwKQe 07BoOl6rCc+Med+CzrOdovceEAiNqzAN6KLjStYpfc0f3L5SX0GPqSAgIvke dzcxcNC7JX5xcDtmzuOYXO4nYEiXlHMsZ6DtwtONaec6ITprsvQYm0C2fGNo /gQDeuJlikLWXVhSWGKWPE7Ari0s1k2aiS0//uy81d+FvoJPIppTBMoLbfUi tjDh0a+hrR3aDU4Csfj8HBLxP3dk6ocxQeSmfbwW1QOPlPD4QUUSRrKqs0eH mcidX6v49VcvGE8PTTqbkBA8/vLfWT8WMosNXApiBuA6Z79nrRuJNzoLlkTN YSOa2PpA/80QdEec9rjFkMioW7Ribigbe6sOxMl9H4aIUfezqnwSzYz4Cwtm cDCyUaiP2DwKxYm8Xcpt3F5adCNo+CoHczRKg79V0KB+4sXGm+Pc7roVuXGS 27+tHNmVpsQY9B+JFaRMk9hhkXRDeyMBqVm0rzOc6JD6rrT7vRyFtYy8nLJM bmfUHd0xx4eB6RXP9xdvoKB6m1UzNU1giE/JS+8UEyGhqsuLDSnsGZAqkF9H YtefeZ3THCbEbM9PP+d2VOn91eL5B0l4RQw4yx9g4ZDUE7lteyjcjb3BMPbm diKjhvLLYqEq3Iav+zAF+v4h5ak73NdFSikNKTZ+v1TeeNCDQtVdabt9Q9x+ u2XC51TMxq1PDytcAyloi6hYey2gMGl33DfGkIPWm9+Mr0dxt+dhGRVqTMHG JNHPtpQDaZ2fue9uUCDTRDNvBVGotXk0sG0/r6N48uTJk+f/Gs+7vXj56BqB XHPlavU2bl+t85/j++o8ogTHv6lHcfBko4UbbXAYfoWeKeOeAciSrGi1e87B vpQ3quvzRzCr5mjXO7d8NAqXLKqSJmD/2iAuzpaGn/VudRZ730NBZ6KCzp1j 2Z+yv/GfG0PE0fOh7uN1mFetK+h6njvX/wRNCE2OYf+Ob7JZXk0wvTRx5eRd AoP32g/gFR0e51SbJWJbkZBwJd+3iMADgX2f24S5XeQSa33qaRt6zXoyBOsI OA53setPM+Cwx8vV3bQD2itbFKpZBNp3x62hvjBA67N5p2faBX3FLemM7wR2 SCw8ZqvGRPr2wylSKt3YXacjncDthr5ijdbOHUz8DsmYqMvrxoL6ogIVYW63 nOow9zjLRM2cVsNc9OBajo58mgwJVzOJ8PJXTORMVU6/cuvFojy3kHerSQgP Ki01kmNhTvyX0/c7+2AmK0v+siLRMVerX+s/972kjrbbegxiuEazzILbGRJW u6YMNrDRxd46Ea48DOG/caOPrpEo3LYo/cYjNp6OffpU7TyC8cKVSd+KSTi3 WX1JXslBqvKxVXOzRiGZ+/3JXG5/BJDR7/sqObjpcaLom9YYgu45R5ZyO8ou WlHqDbejFm/Q2ud0lI6/6WqpDrMp3Jr3VPyTE4FqQwflyXY6tt4oaNmsTOHt ReuSBdzjKvvdMLyVwcCaj4Zda0GhXCu++4AaiZ9q/x7x9zNhN2yt/WQnBZfN JuPLHUlEnGj5Ee3Ggr/gaj/+gxRiNDpfENxO3CawJai5h4WgWLVJ8yMU97w7 /DPnLok+1cdLomTYUCbFf7mf5PbY3wOCFfUkjunUKotEsGG3fGQN5Uch1TxB R06UglTdfh0dFQ5ySX6LwGgKUd6rnMZMKYg0OqSueMvBpJrdr95U7vYUNdSd vEBhgmwKj9vK6yiePHny5Pn/rZ3uehMtoQTW+HimMOhDUCy9wJ+p5Y07D8r7 V8ZzEN0xY5Wi0AgypxcbSsbGo7t1+7L+NxzE6cj0Lu0ZwZPAQrm7s54iomae 6wolAjGLn3ZRl2nwNc4L2FxWBbMvj476OhMIqHBc8PvBGD6ueBddl9UATX/l 6tchBFbG3Q04soaOwMLbu5faNuO0lp9J0BMCAwWrpHy/02Eg0KKk5N4GPTP/ vaveEoje/Ou8PRgQLnxW0xrTjn9/kryHugmkRaaInchjYMOJJafrNDth1brX 4Mwv7usVwxOntZiQ7pgp/2BPNxzbVx+GIIlD93Q+P3NmovKpcH3y3B78Ch5v rZ5DYlTQ41tmOBNnLtboSMX3IM+nqV9LmkTDgz7jOyVM/N0mdO7Vnl5oH4ie 0aNMouJ10IDwFBMBNp8H3zv0QdxBKi7RgMSSjPCZuQ4spElXXQsSGoDJ0Nkn /YdJ6JXfXl3I7YymrdfcNQyHYGE8LTkQSqK4BfTQY2zUXIv+M5Q3DDFhmqp5 Dgmp7uKyJCYbEhRf4arpEUhKZihfrCJh3pk/99JhDmymI5fR19Hwba0Mv8lX Erf3ho6wBQj8qSi7pD44hqs9tedr51K41Ja2/qkHgdXLHE2Cf9AxPNdRdL8s haDtBx1t0gj8XLVfWugEAxy5bJUsLQr3Jkz0MZNE5eQcj0WXmLgo1FohZUVB wXNe4tqT3P12f3JRLJSFDSt9hNYdohBZIWpcnEZirnvL4LAAG+nO2fNiXCl4 aG3o6qwkwd971PfhCTaqwysO+pym0P0uf4Svn0StgvjcYm4/rvnhAhFuR8nH Tywtm0Wh1vCf6OklHMhKjRUExVDQs7sWVbadwla+k/PkP3HQfN8R0+kU8iJn yTXHUmiwXb1T0IfXUTx58uTJ838Pz4vg8Rw/AsvmHTW6/WUIT+yuln055w23 hQ/yyBQO7OuKaw8rjICv91dZwe+ryN7SQneo4sAym+8RxkdwoFO1SjSsEB/X fTgqpUqgJOjiwi05NEyt+2LwNrcaogc32Jm6Ebg9YEaUfxjDd33hY0OxjTgz 0Pf9RzSB4rseb2x20/HlUFVxEqMZq9PW20uVEtjk5rs3XZqBgyneVf6f2zDx oDblw0cC2kq+pIALA4GZdsLkkg68OByQrzdCQGvUtOxzIwO7g6qrzr/vRIJu 965RPhKftc3q+fcxEfFHrba2tRuZejJ+k9yO+pDjdu14BBNXCtSPrkjqweqh HJ3tC0h01elu1n/MRNrhiSXPNXpBDlC0YwokxFK9d0l1MiF/TUXfo7EXJ59n n8lYR6JaXGayUpmFn6LyBe2z+hG05Ni3elMSz2d9XlZ9iYUif4J2LHcAfC8W DCgdI5GQnS696jsL4p/qsnMvD0F4cdaWZTEkRF9ubpoKZmP24rca+yaGkbPt RAQrnwRxqrIjfQYHy/f/mrDAKBoIo73v6khkVDz88eMCB9fC3tja+dLwwefj wdJf3E7rSbrRvYxAVYD2XX0NOoJ8b8uvWkBhQd0pZmIMAYuCOj9BQwbq8zQL SxQpyBipyWwsISBbUmkR+ZSB8+tkBj5tolDecOaA1VISK7zn3g+tYoJ6v1zF +gCF570+BZZRJBqXvL/H38aCp9KNSSsXCoPyd5PdX5DQl3s668MeNk7n2xyb 9qAQXm4UXz3C7ahrw2llL9kwPrPsuJo3hXX07/9kfpMIK5XbfPQXG733flZ1 BlMofCMuqqtMwWHQQF/1FAcoo+0qSqEgZuLWc9Gd218DtitiV/A6iidPnjx5 /u/tUG3pq8UOBFyuZOg4zB6GmgF/5RpZH1iNiYYfz+AglDDQ22AxAmYV+5ZD Rib8hesWr2nhQDmj7IC+2ijuz3kzXD/5HFepL+RXbQJr69LWGTNoSDc026yY W4O6eVd0NAMIPPer9Xo/n44Qh43s26wmrEo8PpGXTkBkYN/Tigw6AnJ+K82X aQVt+2efuFoCtcZVj08cZ4DpVEA3X90BdbvPmQO9BO6vkpBSLGJgtrqEpeT+ TjjPPClf9Z2Ag+jPkHeqTCSJCC15t6IbhrSUjFwpEoOVyau98pmonD52umZl L8yGmv/yc7tBjvb8T+AIE/70U9G7p3rRG1WTZKVKon/Y2q1+JgsbdNflKcX0 YX5IboicJomU1YYlf7RYcGKylxVt7ceL19titnM7Kn6pUHx7IAvHPTRTd90a QH/E40jzgyTeP6FiblWxoFP7ffchkSEs+Ly0ca8PiTt3SsaWa/+no5pvPlg3 jNJhXYUjt0n0feBveVjLhs+noplOT0ZQYO3clP2axKanU9m3tnLg+XbmcAo5 Cs+Ij1GRQyQeScb/yn/Pgc2Olyse6Y1Bf6eitNNcCmFLshuUTxPINfjncWmC DpuOvR/nqFJwXr28pKCDAOfCtLGzABOa+/xq2JoUlBtsd0YLkNiVmCwu4cuE zEjU5+bdFGbvvLcyyovEwrtHd/65xcI+j5MGYacovHO9P5rVTkLod8qJ2Jvc /UicF5pxgcLq4pyrqsIUrH9xe1yeg+wkN8GFYRT26mb+KFxDYfmpQEetEA6W ze+4XhlD4eKqwbTCHRT+NKezsuo5uFrlM0P0BoU3PfvuMwIpdGzpq9Oz4nUU T548efL8r6mRabqBMHeOPQz/7G4nN4ybCTcmiy754HO5pILffQ5kDsT3954b QWSIWejmS/cgP9BSjF4OymfPnhq1HsUUy33vS+dSPK38nnl/C4EfCW4dr+aP IYR295fpt4/o77XXLLtMQHimRvnyrXQ0LDh54+3jZujaCwo+v08gNHB/slMb Hd6z12VKMlrhLRN7erydgES0abzuTQai8x2zNL92QHfF13JVJgEtm8F3IywG 7F3NCsPVuuDT1io6i59E5tzkP/x2TMQxtBnnGd3Y8WjqvSa3o4K9V+ftH2Xi zPzbZQ//9aLh3u1tPmtIzPBPM9+7mIVWtvLFl6N9sN2eLC6mQ2Llqo2vt21j YbMntfRlZD8eBtqNaxuR8Bj73n32NAstLmNXDHcOQKpG2DLVmsRrl9K4yPss nAueunzGfxCrXA5nL3Ehobnpbcz+cRYSOUcrnwUOQUPkjqdYKIkmhRIZn6Ns ROiKiI7fHYarmZnaqYckPnn4u2n+ZCP2e4xnm/Io4gKy9tbXknBzNZsT78mB y1eJHQtcaKAMk3+9oEikdYUl7/7NwcvOEnft6jEE8L2OeStLYcP41QYGt1tt fM93yLszoNIRnPNKi0KrWvzi3JkkNCol76kFMVH484B9nyGFdlc+ufx1JCJK tC56k0ywh4vrQo9Q8N0uHhecTcKe41vwVo4NwQ7f7Ym+FArFlgaqC1CQW3Gq fVqcg4BZfR5yERQWpbo57d5IoV/baa3INQ6+RApNqSdR4P9S+f7LUQqPJozz nooSCD8f+EI4jQLnouTGY+Hcjot/uKTsKK+jePLkyZPnfy/VJ77N3s7topba C3f+qQxj5ZPveVn9Pvjq1RF+6zEHTU3B+ySTRzBrap/lBZsHWHTtj8q9EQ6i 5n402uQ5CpWwn+03HF/gnueuYwo7CDjR4mIW6Y/hd463WpHeJzRGBc97lkjg pjs1p8qDjtIV7f/227Xgsajae5FCAvSYlOF1f+kQ5ZM1SbrchqPvRlwLhwgM xR833/SRAV+jxldyDztxpy6/u2mCgLnBTsuuRUz8pnS8J8a7wAxeRSiJktj8 QuvZhstMLDu6bMvWqz3Q2MthTKmTyMgOTu9fyEKZoNhZq1puR6nXEqv0SfAn NrKb9rBQH/j1cVllP+hvztoaGZM4tPNKpIMnC40SDQHPHQeghD8KDTtIhIkG x+QlsXBMbCXzmcggnihV72ixI7F3RHPu+kYWijUO0U2UhiD4+NBb4jSJ2ktf Oxyk2ZCrpdxEBoYwZ09mfF8siWNOjKNBkWzMk0l5vk1wBITmr7++z0jc2UVf 5CrHAf+zuyo1l0ZRYznDqbmNRNAHhS+u1znI6Rb+GvGBhpb6uBv4TWI9Hz2v awUBBcHk36e06Zh8e6h0/zIK5rKKQUvfElDaeS3U5hMDmalLW/eAAtNatnFI jcTUNc3dzgNM/JhbRKRaUGDnCdfNOEQim/QTrnFg4f2qYpbVCQpicYbd0R9J jH0UOCDtz8b7jzayZ0Mp1AzH1xirU9iuKeI+5M+Bj8CYbj23o87YDWyzPEbh 3Y2w+10SBGQdVOU23eH2G3lga1c6hcyKyamiTF5H8eTJkyfP/xkmrN8kamNA IOnC2vTPq4YxIr6oxe+LD9avUc7rf8JBebWsQ8z1EahIGQZfmfEQvZYX98yk cRBgtu3ZVt9RtL0+/Sq04gVoakLXMi0IODhPOD3fMoacNA2hG6c/Idawaef1 ZAIlL4VkxHzpWHS0aNu4fwvc3vkKfH7Gnbe9eaSfEAPOm3/Gqt9vg6Lf+tzU EQJTA5dsIpoZ6LhUIPS8thO2Qat1Ar4TuLOq9l2YChP2hXLn+hW7cUcrf3vD PBIpuYUqQ0lMhCsLGax51wN3kdaNJmtJdFfu6O9SZEE23CM56WsfdK76+K3e zO0lO2aQix0L0wsLJlTY/XivsoRpbEJiQDpH4dsFFvjyoyuWRw1gIiBV6KAl CVOFsqXb0llA9zfZx/qDUOziN1I+zF1vZ7XI304WGFd6QlbqDiE4Pu9wyRlu X612bl2hwMak6NH59z4PYb/H66KYOBIq/JeT++O4fbWv1b5dagQ61tLLVJ6T cPocbvFekYMZX0cabRJG0ek/4Ep1kNiSOXuPcyYHi1bJJ1r00WAU+ik+eYqE 5zef+9lrCFgdEU+1tKQjRb9W+cMKCrWLws1tagmse2SmYDLKwNn2V2UDWyg8 OGrtEqBJgvVHnuP4g4maHVatSrso5L2C061jJBJ3O2VWcfc70mCLqsspCvMY qR6r20ks2zbJsL3BhualJLGqcAqzOpdWiWlRuBAfIVKZxMGt240nZK5R+NrU 61PhSeGN4qCmzgZeR/HkyZMnz//ZrqqMV65UJvD1/PlwW+Nh8JuF1DyP8EVX +Qnl6pcc/Ay1e3+7bgTOpfN/zNN8gj+dsX+lv3Igce7Oc7eno9iU+Hn9Q+PX CH4qYbvfloAKs861IHAM13V9Ku1M65FYMvuZ5T0CT9PfJoVV0fGpfFTpZn4r vm+23Pr6PYHiTvnrfy0ZOJmd/cbiYzuWkAIb930jsI3hLnxpGRN0reGARXO7 cfS31sVTwiQc3RXbUz2ZEA3fdkNraw8UcqVZn5eS+Htxj1g0nYnUJWXxm0X7 sGY4fCLPmMTMUzfjP59jQTlmrUXziQHMmjdzzeZdJCxXqJndy2BB98+LlZo7 BzFY/s/Rfh+JE44BhXEvWMjR6ZfS7B4E2nJ/xB4hMd/bKcSsn4VW7YNapOkQ fG2X9zadJqHItDr5YyEb1RVrNX/0DaF7fv0Px2AS+wyoDYqH2GhBaaVX8jB2 BLvpGt7hdtHS8pWx7WwcHpMmCrjHdVbtvQ7tDyTWlH2QFHThQOko60TvFhqC z+kq32STqMNDuTI2B7r0TeLZt8YgOXXQ+O48CpvelHnQPAm4Ny9c3/aPjgNR 2zY46FBoW00XTxcnkaV94LH4TSYsEs2+3LOh4DX//S+dSyRo5Z7HP5SxEHuj frDckUJxQ6YqLZ+EQP/Z9Ynr2FCZyHA+eJHCzayZJ4VkKRwrqgptMefgnU6x 3ft0CtbrrGy/x1A4PSxp/cmL11E8efLkyZPn/5UvDqQKjMoTyLLL015pOQzt kUbR6U++mOypmWFdycEtJfW0XtoIFm1h3XV4+hQLvluP0r5zUJdmYPuxdhRW PrV+5S1vkPRR/+ITRwIHd2oNNnE74Nl7Sm+ZcQOym+rrXPIJNPgc2hRBo4P/ ocLPK8ptuGzz0F2njtt1wSe9n3gwkNXu4ME074A6/5EL5/8SKGLrMwW2MeEb vIRqvN4Naq5aMyVGgoM77PpUJjIlhccSOnqgWt610VqNRKAo9WrtHBaCjH4y HNL7cOkC/8qo7STEU84kDV5hYcfawg9vvgxg4APfsu/cjjrw5vrT1pcsGJBX IvjHBuEbUaYdepiEl6b2LvtuFhpU8jXKNg2hSMh4ap4ribQJtd25v1iQyz1w vDRhCHZY58PnTYKtl9mqoMGG19KEU9eXDePxpw+EXBQJhy77W5Z+bLSXLh23 GxzGs8vfru14QGITPevH1wk2fp1SXFghPwpOwVNP1wYSP+dIB64K4qDpnXlW QCQNGUfOvkqfINEW9ndxlSiB9BtKahu+jyHlwMzPaQsoXP7mhE1XCDiozHU/ uJWB9O+Fb6pBQeFWr2SyOgnRLCVa/QgTCxU1DJiHKLwetz56+jYJvZ1jcZOz 2UiW/mmRcILCP++RI361JEZsxY9EBLJhOtj5x+4yhbuMg+7z9SnUuebdcszi /P9+nvLkyZMnT57/lWx75rLj2SAHKxRMur9EDWN5Gd+HmB1+0FySOhE/wMGZ rw2nHR1GUcPvavjMrAyay7a/l5AlcKJlS94WBxqUGmqvKAW/hxI59dY6gkDh 3V2tfAZ0mKtqyKSlNuMBEXP4ewuBl93ftNWvMDD15kjJwKsOTDj8eTj7B4GV tU+fT6gx8bxubZKHWjduiV9MDV5JoiBl8WvaNBMR4xw74VN9kAjc8vTOZhJz LwTcW3SIhaw0lueCiX4MXera48ftpQVv33T/e8GCRkV8WVDvILdzznTHeZL4 s53PXX4FG1K5H1TfzBhGq4Rxj0ogCcGw5eNqO9mw2fAkd/zEMBoO2g0SYSQy FpxQDT3JxmaPS8mmxcO4bxX+bMsVEqalxUnTUWzUj76tU501gujE26ozub3S /nVtge1HNoaeXCz8kT+CgoMzVwo9JTEnWDZPaT4HR417dR+5jiI9VzlXuImE yvhOHasIDgQrk876XKfBLW6r8uM/JBQDRWNNVhG4v+VwQpQJHfqB+qMJiylg k/ORnXkE7gR92hWXxEBl5ZHAEfzn+4aNGH+4HfV3sc2VgVEmiPkL/4yfojCT b9rGpJOEsDx/W91tNh7bMLA4msKx9lmefiYUTt5kxJ1/xYGdak3W0usUVia/ 5P6AwhLJO9r623ifR/HkyZMnT57/b9h6a3lMyCcO8o3MbP/dGkZI+JJ/G+v8 0Ge4tiGayQH7iMjSmbGjyOZ8q7L+UY4eY7MHu5YR+FZrtkr4Cg0aX5NvWw9X oehfnM6qFAJ7VSNSEv3oSAjOMmoOb4H21K7Jq8MEbv1NdFpSz8Ce2y3XnMs6 MdtH5e+UAInwU+k5iUeZ2L1hsZSCSA/kF2Rn/NAhcTw3tMJwBwtJ84+r2F/v h+CBS/zHd5Ag7ux7qprIAjNL7m7fjEFkXaOrr3AmUdRbLXOPYmHgcN73BV5D sPU6GznnEomemm8D2/eysfvL0U6/gGFo3vlamR5NQikkPJUviA37+6om6tQw TnVuZ4wnknjdE5hWlsZGU9NyHbONIwhpzyyWSydxz6PxtmwlGzLXid2yN7kd tU50gpFHYlKlP6LxLxsOunVmJ7RGIS9ZXfz5FQm2tp3V1y0cyGTuGMqkj+LL 7PdMwQESEdoN/erlHDjtWjDzx9Ix/B1SumwgQuFilOF0yGECCeWi6s21dMQP dS2PW0XhdjBNUG2IwL+5lrS5i5jIifYROGdFYd652IpkNxLLFJu+P4pg4Yzu aNEcfwo5e6xrokQpmDwqO2arysGFD30+FWkUjP8l7FCMpKBb70VvOsnrKJ48 efLkyfN/pV29RbVmrznIPVOfp5Q3jJc2/65eUvTHmy3/th/6zMFbD87L3gej SHA5FvKk7hV0tgRuF1lFQPK1d2pjAY3bPy07xTnVSJz6PiCUTiDA8aYrO52O U3/fXmGKtkJkPHjUgEPAcmpzx6EfDET+/aERc6QLTme+fXgtSmL88pR5fxQT /ZlvhF9l9GDkzIJtH41I3HebJ5R6hoUX9LWnThwYAKul4K/FXhIS6nnNVYUs sFNlPxY9GcTk+4g3JadIyOlntYiIsfG+do7YgZohNOmvI4wiSVQEvnNR8GHj 5AX+MfHOYTD2fzU5lkxCZHomR/MOG3wKkwejt45gpo7KosY0bq+Mbf78p4IN OZ8Z+hqpI7iL+c2J2STqKjpjFo6wseyftPtOcgT+m9e8v/2MhO1CxZ5vchwc uBjmoR88iuUrpUIvfCCRIJ21ecqFgxrtKKbDVhoMrXft72KSWFX5y3kBjQPv pY0/D8eOoW3dlt58CQo02yIF5RACTpYLNoauZMBWiN4crsXtops+K9qESCiX HRkTushEYM/V/cMHKXht5RveGE/ie2EXn8MoCz3tCWfrwijU7TLY5byewlNL R7eNUbz7ejx58uTJk+f/H3oVuQ8OXeEgb8x2bfS/YShKcoJF6mMxi5J/1SdF YJ+RlnXnThoseq9sNf3yDvzUsRJXKwIZO3re6+0ew6eRVSfjvnxCUZzHEb0a AtJ6D0f0DjMQti5caLNQB+R8K4di5Eh07KR9165mIt+s6qLClV78jrjopGVI IneGoVf3MRYK5du8X60YwN27bW7Zp0kY534J3rWQjVt+Ct5GvUOYWFLBXHeJ hDtjqXzXXjaOryzWZAcOI+HwSkkqlYTW0qSQPYVstGi2dc8/OwKl8osXzhT9 5zmiCubzFDgwFLufYRY1ChFJcTvfN9yO2hc/49U2Dn4WOC8s+jaK6pMMw4fc LnqjqHiq6BgHttPCf2BKAz/7jNDGJhL0QUmPfxEc3AsoWoebNBQdsxUYHOKu d86LVxNVHPRs3STzb/MYiKIXM3f+IHHCScjmuRwBiXO6x7zk6NC9u2LPBxkK W+XXmW+8QeCmY5FX0FEGJgV21P0zpGAwEMuvsZ5ErMlgXQvFhKl6nvK0C4U0 vXqRqZckbs+3POBuy4bu5lWaBtEUrnSE/PxuQiFhZtL5ste8juLJkydPnjz/ d/Kh9D3D9GwOVA26xSacRhAp131vrdtd3NAOWKmuQaDBLvmpYAMNs/aLp8UO fcBsjZ+2Sh4EQu0XJ6Z3jeFmY29H86wm3CxXGx8lCLwr3KkeP81AuOvh4+3+ XXimcmmngzEJie+Hi5o9WRhv3qDL7zyAJ8w70i7OJAx692Zc+8zC7hKT9dHe Q1g8/WnFjEQSN+NmSKpcZ8O22Ws23+oRpO9r+c66y+2uWftM0wfZWM+6eaeX PoKic+VHPpWTEG1ava1bl4OCRnGb5OZRzBpuzinvIvH108wtG3I5uPaqVJKf ouFlrALBHCPxy3by198uDjJe3zgW7jGGOevD9dwpEnutpmvVf3GQuqjPRP/d GCpy/GUP/yTxouaB5isFAst7dJ2/LKdjsKO9oGgWBfOPHYv87AlUJCtZR1TR 4X/1YbXMYgqv5/sGXX5AIMxl3duvVxgwdkq1LtlM4eaB2fNql5NQWi0wcKWB CfWMTgWL4xQkbaIdn1aRUAh4OU/qLBuCrOd6ynEUzi472li2l4KiR2uMwhiv o3jy5MmTJ8//Co7ySSeol3EQ+vt37NDLEeh4/lj8zrcA2mIMdcMd3D6IXGf4 RH8MjYe05hngE65NJTASYgjoxy5OHt9LxzGjCzu6vzZD/tKVD4pzSAg/GGuo DWHi6asZa4jQHgSQqpGGjiQc/m52KR5lwVOo2yJn/xBOn7RqvBJE4so0f+j0 QTa+hGte3BUzDDfa5NJXj0kwhS+o7RDloELKXn2B3SgeazX+aKkgsTv+47se Cw4Gu6eG+QVoGKioih7pJtEzUZh4JY+DkW9lwXt/0eC2c+I+/Te33+YOje9S +c/zIQynOjbTsaDY2M1+JgXT0vSBW3sIDO5qdvMroMPZ9mHZ0DwKdx7lPK47 R6DzkeSOdfwMGFi3XdGSpmBmNSljlkzAVWlfmOReBkLkdk6uU6GwP0ey4Vwr Aa1fAcf+/mbgNwT0v+hTsLhR6SyhQKLmkcWw1Csmzs+O6q0+QiE3Rnzi4j0S R4T31exdzIZ+wcPO4igKmRq3L/wwpqCq2yxwuYzXUTx58uTJk+d/ZSfIL9Vv WzlYkDsjTXH9KAiZoDZzx2KsJ1/8e3aCgKHFhkN9FWMY/Shu3LivEZMf3vnV FnA7Y/vx+L8UHRsjvaVLd7Vhz7pFJ8S0SGi7f3+qpseC9YjUGRWbfvAlbshS CuN20djPiQhXNvIHcutDCoaRM2diOjeHxFTiBYlfLDYUv+p+bJwxihF7MkWl lYSs9p4ypSQOLGdqZmuX0KCvWXHmEYNESIQQmTfIgZLrecWxoDHcqx6Zjuen YN4/vtfYhEB/e8md5VF07ErcFm+oSIHalMg895xA+1jLnm/5DFjsp9/0VqdQ vEPy9PVRAuLlHcW/lzMx+/GroPuaFKwXZnfF85PwnO2XFnGeiS6/jkcRmyno 8s03klhOYl9q1afHdUzs2+EvZmNFIcJMM1HJjURfxdn4y+Es7E16LP3FmYL/ I/+4f6Uk7NNZf+ZZsZFsI/JqIoLCtUdVIZd1ucu76z7D8Tavo3jy5MmTJ8// jo5ZPosxGedgHavJM6l4FH3Ws7Y+T3kNrzWzRQ8kEKiPeXS58wQd9uOCJ4W3 tmCd4Pzy0g4C+zcNv06/xcDu7T+cLk934Mptr4NPj5Cwae2Yau5n4dQ9lfrd ZkOoenF6u9QjEtcUws4Y8HMgM2W6/avhKBrvZZXH13N76aWt3VQAB4sKWa6a QTQc+/CqXWQGhb5/tQLBIJAgYNug6kfHnlZNg0xJClWWOU2vwgk0iA6f7F3H gFTeC13+1RTmDswSuj9G4KT2ZqH9akxsPBVLk7agMP798L/FdiTuRohk9tux EOB8PCn1IIUXT6oUFONImFyLIqOHWNgt4VRd7EChjZCOEnlA4k+RHC1amY2O dyqrY09S+LPvywqNBhIP3Y0FNS6zMdcpgRAPoLB9ck2vsziFOvtz/Y4bOAjN WC82P4nCRYk1uHyUQpxPukbGHN7/6/HkyZMnT57/kxRLiv6+RJDApHKz1z1B GhpCaEHBT94i0nHL4j05BJpOeh/78ZGO1ykh5rKvW1G61kTuLkWAUla5pzGT iRf6fyKGbnShte2B6pAXicjoy679q9mQi179OkJmGLc2bwi9Wkkiiq9gS/Ae Dg5/ZmvtkqJh5senFZFjJDTpfslJnRxYLLBWa3MbQ7HhZ5Uv0hTmpeXri1wj ILvxcdZmOwbuWhxLjFCj8JN1eZZpH7fvsBGf5zMRkPSreKEJhX8LpkRyDElc yOiuEpRmwcE52uimM4VR19va5SUklPn9Dr6zYGP1sV/tRWcouB3f+cWHu/7L LWavX7xjI0rr7KfHvhQuL9R5myFAYbVMSI6aBAf5h7u2WIZQWON88v3PlRSW fjCsfX6GgzaW7MZb17jddU5mW7EXhWrNVi9rHV5H8eTJkydPnjy/IO+S/RsX CQJHakZYYsY0lE77yAakvYOsWf8a12IC71uWBGwTZ0B0Ywv9XksbjOYPHpnB R2LblqY3yruZqJi/Kzf9fTeeXl0ROjuchGF6ierESTYMH92lnygZxna9S87Z LST4Bedor03g4MFcdYflhTS0ewvv+j/au/dvrrM9juO6uFSIpkU3mS5C95t7 ekU3KmJKRZGKQk3NEfUtilKRQQwKKd8U0SmULlNDKnflHFJfJbrwvX8/nz3d NU0yzh9w1llnrXNO01nvnx4/7F/2/u259t5r7z0feGwJGjZmhjGHD1fNx44Z J4X2h+bMCHMGjY0pfn6POOxLExWLNOXQmOJ7Ps6Ooeh7t2kZI3gEHV7u6Xhd jpgpiX4nVjJYrlu68ewhHucnPa0aXq/AwZVzZ+vuYMgcW5xc8BuP4rVbtrh+ UEKS42Ab1tNL4qVPLmWbMZyf3XJ3W7AK4eGS8c5xDPYva40KXf7xz15aav19 FQwzr/+y5BjD2M7iaJedPeOVWtm6oI4iSZIkSfKfuzBAuKHLiINVl3vN7VAx 4vwCXeeOr8Q4U6VFcAUHL9PcriIXGa5I7ydPrXiIOs7txze6PEbtytaPSpbj m8v3PxVUtiA0535AVDIPabhV39OnlGgVDryRN78dJwtyE4o6eOTaLp+f0aCC 9o5ErWJPCYzzpr9v1GTQL53uN8qTQ2SjvaKxRIpFn19letswqLrv5ngO5uFz 9822u6flcBXsmDK6p3tSVD9Dey2P0f3vfDDYqMAMxbBPZpsYVjfoOPjf5vHS fU2M1F+Jg1tHGHsdYojstNSaa9XTa7neo8LSVLCavnxOTSpD9cWQhKS/MMzW SXMdO5XD61MGve2EDMKzHlXa6Qz37qToiI5SR5EkSZIk+e9bHu+5xftbDgd2 XKgbGylG8LBpZZ1hlchYoLnHp4aDcdu9+498ZCiqt7M8pymCg2526epBPMqG TV0cmC3HRs6m0UntCVRnOrkjR3kkLVOtN7ughFtpwyLhhnZYL1R2rJPxaNz4 8YeEpypcKjyS8HmPBGHuFhNfDWCwHW1SfjmAw/GR+gEeEik2C2ua8+0YRME3 grSMeNypdNBZd0MO5/Shof3de3poprp6w/c8DrhMCNsbp0C+HJEWQT39dPZ2 lvIeD7+tRkOfRimRY/bUQhbLcC41NCPUiSFDQz3dslKFtnd5s16mMVw8+vv1 vXsYEiYntJkvpY4iSZIkSfI/Z++6qvct43v6ZlxId98CMeIW+eSKxFVo3tei P7KJg5Oh78PH8TLo2jclHr4lwltH7aM1I3kEiUKiyx7JIWhacbj74RN0Rfz0 xPs0j9Y6m8exbUo4mbrE7X7RjpMRTcNfvuXR4qC7r1qfwzW7iHLbPlLM+/iT INSQ4RBLyLJJ4TDZVb8seoUMG0wcBLHODELBwhcCdx4bfBtmVTsqsCmrsv9S bwZnv5lhEzJ5mGadrBykrsSN8patfXYyuI/UM3Dp4rHmUbrXz71UeNU/xzgm nWFmd/W5kgiGReUaJZ+XU0eRJEmSJPnf91Waw4ZJMzns31X+ba1IjJA7ZpIo kxpcW+Au7fuMQ+ffzqtJb8uwpX2OJeKbcbeXLM9uIo+EuriDid8o8PhAbdry 0lZ4iHOO5xfwWLdgh6atlgrTPG0M9rl1oC2+It61F8PzxYcLD8zhsOTkHrv6 cCl8t/kPnTKGQfu0Ya+YWxySkhsdqmpl6FOS1GK8gsEkKyBffR+PonvWF0Nv KrB/cNpftQIZ/j6ktHVXDY/DYh8nd4ESXO4NG1UUQ+q2c/P0JzM4LjtVmxhJ 7x6QJEmSJPnljLxaq2HkxeFB0OaVheESBEanrDk4ux6Hbdfb5A/kETm6K/nE UTm2X0gXdzS2gH3XfaHSm4e/wGBIokiBEVapjsEWz3GEuwi9Vh4yk5bummIV Euo9jG7qSiBW/JjaMpXB3ykob8pbDh+33xw52k0O07eitkCPnl7qk/rRYy8P STs+CK4pMLF2/ZGkGIbAEXGzToOhzETfb16BCnVKb4VQyKDvuL05PoPBzNQs pyyD9qNIkiRJkvzzOXnMpTkX13Do3K449j5agrKUE1b2x+phkVu0J2IQj2tX Fmarn5YjZIDx9cLeTzDY+d0ye18eRZYWrP2ZAkdT0oWXXJ7DcLOm6OZTHpfU srapSlWomFmxc5i5BFN2CbU7ZzBMXRO2+FU3h1ymFnx1qxxNAxbPL13FMGzm EitZLI8lm7iF5o8U6JejsU0tjuGNl8GCzCUMfQtfX+zdQPtRJEmSJEl+PY58 PuP3oN0c2tY+6HjbTwrV3P4+0roG9FvYeMvXhse9Ooemfi4KPAiN+mFnVhty r3c0akfy2J0aa2i4SgnbqgHnVx96gQLXmoTqvgy/pVeqnXHhIIy0Gf7rSSmC uweFw5PhWlKrY1Mcj+AhfUabtylw4rhbhjCcYX3Ru+qoQQzN7vYDpdbUUSRJ kiRJfv0WnfJuzrrCIdPtU8kzbRkEvSdZOlQ+QGSbe7FJKA9b7cAJ4slKBJiV WE0f/gKFmW8mji3hkddrgsjMTgU3R5Nxnx50QOC1Pzd+LsPGoN63HtnyWLMj MoDXVMA1vyj0ygkGX4+7gQePMAzUm6ens5fO9UiSJEmS/P91VbsitvsXDtci tqwtM5PBWjk4qX36Q+i9Nv30fDcPiYtuftw8JRYgURm97AUaulY9nXaHx6Ct zje0vlOhZlNaU5ieGJH+lf0KFjG4+a89U+XBI/yeet/fXBRffH0kSZIkSZL/ ay8/rm4L8uIhV3U9aa9VYOKKX413DX6OmIdnrXcaMHzU1H0hSOSQ/DmjomKJ DEWt/RdY+zGYRNx643SVh9ZiPUc1Z+UXXwdJkiRJkuSfxSu+hTtv3uaR/NA8 b7mbCi3tJ5J0tMWoYQKxYQzDKee14c32DL4+E2LT8ul+FEmSJEmS5L8yJSlk 6wEVj14hQf6TmQpDDctrsnMlX3xeJEmSJEmSX6t/AM6byDU= "], {{0, 0}, {100, 100}}, {0, 1}], Frame->True, FrameLabel->{None, None}, FrameTicks->{{{{99.5, FormBox["1", TraditionalForm]}, {80.5, FormBox["20", TraditionalForm]}, {60.5, FormBox["40", TraditionalForm]}, {40.5, FormBox["60", TraditionalForm]}, {20.5, FormBox["80", TraditionalForm]}, {0.5, FormBox["100", TraditionalForm]}}, {{99.5, FormBox["1", TraditionalForm]}, {80.5, FormBox["20", TraditionalForm]}, {60.5, FormBox["40", TraditionalForm]}, {40.5, FormBox["60", TraditionalForm]}, {20.5, FormBox["80", TraditionalForm]}, {0.5, FormBox["100", TraditionalForm]}}}, {{{0.5, FormBox["1", TraditionalForm]}, {19.5, FormBox["20", TraditionalForm]}, {39.5, FormBox["40", TraditionalForm]}, {59.5, FormBox["60", TraditionalForm]}, {79.5, FormBox["80", TraditionalForm]}, {99.5, FormBox["100", TraditionalForm]}}, {{0.5, FormBox["1", TraditionalForm]}, {19.5, FormBox["20", TraditionalForm]}, {39.5, FormBox["40", TraditionalForm]}, {59.5, FormBox["60", TraditionalForm]}, {79.5, FormBox["80", TraditionalForm]}, {99.5, FormBox["100", TraditionalForm]}}}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->200, Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, PlotLabel->FormBox[ "\"A matrix is lower diagonal, hence invertible\"", TraditionalForm]]], "Output", CellChangeTimes->{ 3.75088328534692*^9, {3.750909762864023*^9, 3.750909774882522*^9}, 3.750993287854231*^9, 3.7817973085370197`*^9, 3.781838197953251*^9, 3.782571987195036*^9, 3.782576611611291*^9, 3.782576761449769*^9, 3.782577826814996*^9, 3.7825779209298773`*^9, 3.782579331387961*^9, 3.78257986089073*^9, {3.782580299827407*^9, 3.78258030549994*^9}, 3.7826518720653267`*^9, 3.792910873244578*^9, 3.8143475515686398`*^9, 3.814347705270123*^9, 3.814436551827957*^9, 3.8144366416254463`*^9, 3.814496714487667*^9}, TextAlignment->Center, CellLabel-> "Out[395]=",ExpressionUUID->"82440a44-f053-48e9-a217-4a41714fcec1"] }, Open ]], Cell[TextData[{ "Hence, the weights are given by ", Cell[BoxData[ RowBox[{ StyleBox["w", FontWeight->"Bold"], StyleBox[" ", FontWeight->"Bold"], StyleBox["=", FontWeight->"Bold"], StyleBox[" ", FontWeight->"Bold"], RowBox[{ SuperscriptBox[ StyleBox["A", FontWeight->"Bold"], RowBox[{"-", "1", " "}]], StyleBox["y", FontWeight->"Bold"]}]}]],ExpressionUUID-> "c2ab4530-4686-4d6d-9065-0fcad3f5887f"], ":" }], "Item", CellChangeTimes->CompressedData[" 1:eJwlz1tIUwEABuCTlUrZ8oqRRNPVpg/OFbnUdJ5T2MLrHOVDisxiRJvgdENF 0VNeUrAHLcFIMvEWZlFOKbGMiaYhYaZlJuXdnJ15mY5DiVjnnw8/38vPD7/v tQyl2oEgiBAusGf2baDfIkP1dnmK4cTFBSnU6QZCIN+vKQISqjESki+Gl9aW GCpe22yFz7rULKwuLdiGDkXLpNDMUO9MhynotblIw+jxuCK4Vml4KuK8Hacy QuWIbgRmDUzOwH/t180wiJRtw/iaBcKfk9AXO0LxUH0s/Lj1ORm2rHvooW9x Ww5U9GUaa38zlGQv2wGzl8diHjMMNZ0+EgcVG8L+Fc5B266j4Y+uWjnZ2MMa eJ5losQWbl+6I4cuX/sdfVYYampwj5PdzAQBnCtLs1tlPekP+XSI3W/MlYM9 nA1JUh78k9opgtpCT38YIe/MK11lqLtNrfnQIHd131lnqEYxjw/dl6MU0DnF UwlraitzYJcmNxdOSugfhJWhbFGuMzBl6Pu+UxtcX0PyYAOPfwyGNcYEwLnh C4Hwfqb8DBS+CqiACXdWq2Be6GgLtM2XtcFutawbblkLTZAfP/0JvvQpH4cb bIQZljpHrsITqbZN2CJXs/Chl8npNGeuwPUANBwN/hXMGSoSWKDQpnGTcrKJ 3h5wPlEXCLOOzEpgdb9RC+veX06HKoOiAN4LomkoMw+Kz3J2Fi2FwonnJZFw fb+UhA/Yn9Pw7xveDDTQAmcZftap3KCKbvaG4fxLvtCx5IYEfunV291R5pEw 9eZiEiw/1JoBO6ZoGt7qq4hsF1soF9OHGGhLe51g5Jys3dUh7Hg93D4ntpvf nizo4Bx40iuCEz05WdFaC5W9QOjhf1RJ6CE= "],ExpressionUUID->"df52489e-7229-4ad1-9332-aba5a9552af9"], Cell[BoxData[ RowBox[{" ", RowBox[{ StyleBox["w", FontWeight->"Bold"], StyleBox[" ", FontWeight->"Bold"], StyleBox["=", FontWeight->"Bold"], StyleBox[" ", FontWeight->"Bold"], RowBox[{ SuperscriptBox[ StyleBox["A", FontWeight->"Bold"], RowBox[{"-", "1", " "}]], StyleBox["y", FontWeight->"Bold"]}]}]}]], "DisplayFormulaNumbered", CellChangeTimes->{ 3.814347536457491*^9, {3.814347720657057*^9, 3.814347724651567*^9}}, TextAlignment->Center,ExpressionUUID->"451c93f9-6092-4725-8ac9-433b67f33073"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"w", " ", "=", RowBox[{ RowBox[{"Inverse", "[", "A", "]"}], ".", "y"}]}], ";", RowBox[{"ListPlot", "[", RowBox[{"w", ",", " ", RowBox[{"PlotLabel", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input", CellChangeTimes->{ 3.782579236798409*^9, {3.814347767010215*^9, 3.814347903206234*^9}}, CellLabel-> "In[396]:=",ExpressionUUID->"81247ace-cefb-4d39-8f5e-ddecbbb13705"], Cell[BoxData[ GraphicsBox[{{}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJw11AtQVGUYBuAVqTAuKjFKQLleWAhBFiRAA3y5CMtlYdkbC4TJzQBDVgZi Q2SXO+mCyyJYDA4MZqIuE9NggxPahqylQOJgkEPUNoOChCPNSFACRrPfOTNn znzn+d//P+c7l+1pecJMMxaLlbG2/380bfMHtm+NbYsd3AM6gYwd2SveKmu9 qbTA5qPpSU8WI6jehJOV37/9Ml1M4+1Qu7Euscv/CLk9LDzdrxqFx8idIE4u zZK4ycnZEAydbTNYF5LvgNH6O47D0yLyXdDNLkZMRheRc2A3MtfT8ehjclfw GpZCQ9aXkLthQOYwqF1Wkrtj6IjOUllxknwPWjeOBP0jZ+bnontLqaXjBmZ9 L/z4pWI27toJcm+UP+/euagtJ98Lf3n4HxO91eQ+EBzziCk4WUv+LspPVagb A2rJfaEPjBz1XWHcD1t4Fj/PKj8l94fv159077OpJN+HztF2mxZXZv390DcF JaYZo8jfQ+9DXkjCNTnVATCW3V5evZVD4wOh6b1+45YhnTwImm/9xqb2p5Mf gLy6njNckkEO6Kc2X6rMTTO5ChAEur76l42CPBjhb4w7LjlryIPRd1ea+IF7 M3kI8rUt5st3mshDkJMV5WJ4v4k8FBZa6eRiP5MPhZXz707T5jXkYYDV1ixP jyryMMwtFN8sWGD6cRD2tuv7x8YryQ+CvWrl8iSzmjwcU7/1BjUYa8jDcTg2 NfRM6WHyCOh164q0TUpTrYpATB/frF2ion7woBg8c+pzPs2n4uEXp3Op98/W kUdC1euc0Hq8njwSQ/YTQb5auh5WFPz3et8dzc4nj0Jrhfb+i7ky8mi0+xWn VE6oyaMxU7Pb5pCvmjwG7LgQhZBTTh4DbjFnUJSZTc4H1/OFy79XGsn5KBDO 3LDdeZs8FlFeD0ZkhlHyWNj9wC59hT1KHgczvkHULuknjwMrV3x11VxG/RFA /9NTH/PmPFMNAYwPbJMLPZl+CtA9PH3vWQf1Sy8Ab/iR/PpwG+XjIetstp8q bjc54sF+s2qqoquD1ovHQMR5eVLJRcrHY8YxxXLA4zLlhfgiT/msZ1xHeSHU G8xihx53UV6IKYu/W+z8yPVCBLy+7vSmCiYvQgbfJlh5keaHCP4L0QbOOLO+ CLqUkPqI3RcoL4L4tRO6Sw0XKC/Grsfbircld1BeDM18pDruYTvlxdDVcWXR p+n+9GJ89GtjYXIVOUsC9wAfL0U2c/8S9BStWnzFZvISsN7ytL5Z00Z5CTob S7wmU5n+SWFMMrfGN+SQovfP4w5HLZm8FLXn1O9cWWmlvBQzMZmX3QIbKJ8A hM7zBPX0viEBmmVNx1JuGeUTwOLm5nFbwii/Vh8qzXF6zvwfZRjRNox9OKQy jYcM3Kbzd+pS6HmrZNC8rPxsOpdcvza+UBjmIGW+n0To/RT59/qU+A9QC9LW "]]}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6]}, {}}, { {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0., 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotLabel->FormBox["\"Weights w\"", TraditionalForm], PlotRange->{{0., 100.}, {-4021.443085027359, 4178.1325099257465`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.7825788351862803`*^9, 3.7825792382813387`*^9, 3.782579314345294*^9, 3.782579348796084*^9, 3.782651878190381*^9, 3.7929108812566023`*^9, 3.8143477479774647`*^9, 3.814347790857636*^9, 3.8143479047175627`*^9, 3.814436649692198*^9, 3.8144967535509644`*^9}, TextAlignment->Center, CellLabel-> "Out[396]=",ExpressionUUID->"b8cabf56-6cd1-4266-9315-b27f15f5a542"] }, Open ]], Cell[TextData[{ StyleBox[" In summary, we have calculated the exact values, without \ training. Here are the resulting \[OpenCurlyDoubleQuote]Basis functions\ \[CloseCurlyDoubleQuote] defined by the \[OpenCurlyDoubleQuote]middle points\ \[CloseCurlyDoubleQuote] ", FontSlant->"Plain"], Cell[BoxData[ FormBox[ SubscriptBox["b", "j"], TraditionalForm]],ExpressionUUID-> "85420507-d7e9-4b19-be17-5aa7f0945e76"] }], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, { 3.750228610184701*^9, 3.7502286246362343`*^9}, {3.7502286862899218`*^9, 3.750228723944645*^9}, {3.75023582436089*^9, 3.750235825460896*^9}, { 3.7508844568369217`*^9, 3.750884474621216*^9}, 3.7508848262157393`*^9, { 3.782577226320676*^9, 3.78257724307976*^9}, {3.782577293972322*^9, 3.782577300204616*^9}, {3.782579468917673*^9, 3.782579477754689*^9}, { 3.782580082056828*^9, 3.7825800920678797`*^9}},ExpressionUUID->"3f5f5d8c-0f7b-4f72-9848-\ c143eb949673"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Show", "[", RowBox[{"{", RowBox[{ RowBox[{"Plot", "[", "\[NonBreakingSpace]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Max", "[", " ", RowBox[{ RowBox[{"x", " ", "-", " ", RowBox[{"b", "[", RowBox[{"[", "j", "]"}], "]"}]}], ",", "0"}], "]"}], ",", RowBox[{"{", RowBox[{"j", ",", "1", ",", "100"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", " ", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "4"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"{", RowBox[{"Blue", ",", "Thin"}], "}"}], "]"}]}], ",", RowBox[{ "PlotLabel", "\[Rule]", "\"\\""}], ",", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}], ",", " ", RowBox[{"Plot", "[", "\[NonBreakingSpace]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Max", "[", " ", RowBox[{ RowBox[{"x", " ", "-", " ", RowBox[{"b", "[", RowBox[{"[", "j", "]"}], "]"}]}], ",", "0"}], "]"}], ",", RowBox[{"{", RowBox[{"j", ",", "k", ",", RowBox[{"k", "+", "5"}]}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", " ", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "4"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"{", "Red", "}"}], "]"}]}]}], "]"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"k", ",", "1", ",", RowBox[{ RowBox[{"Length", "[", "w", "]"}], "-", "5"}], ",", "1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.75093526778718*^9, 3.750935332077402*^9}, 3.750935454790184*^9, {3.750935622688136*^9, 3.750935627272753*^9}, 3.7509357327081413`*^9, {3.7509357935994377`*^9, 3.750935888225081*^9}, { 3.75094729138198*^9, 3.750947368428591*^9}, {3.782576831306595*^9, 3.782576906911984*^9}, {3.7825770051441107`*^9, 3.782577008527898*^9}, { 3.782577067222948*^9, 3.7825770843227043`*^9}, {3.782577122614357*^9, 3.782577196466856*^9}, {3.7825772581172647`*^9, 3.7825772802269707`*^9}, { 3.782577312294393*^9, 3.78257739308927*^9}, {3.782577439181361*^9, 3.782577440931645*^9}, {3.7825784039637823`*^9, 3.782578433211637*^9}, { 3.792910901641076*^9, 3.7929109106852503`*^9}}, CellLabel-> "In[397]:=",ExpressionUUID->"f1e8b595-338c-4aca-af2e-da8eff40926b"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`k$$ = 26, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`k$$], 1, 95, 1}}, Typeset`size$$ = { 900., {302., 309.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`k$$ = 1}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Show[{ Plot[ Table[ Max[$CellContext`x - Part[$CellContext`b, $CellContext`j], 0], {$CellContext`j, 1, 100}], {$CellContext`x, -3, 3}, PlotRange -> {0, 4}, PlotStyle -> Directive[{Blue, Thin}], PlotLabel -> "Ramp[ x - \!\(\*SubscriptBox[\(b\), \(j\)]\)]", ImageSize -> 600], Plot[ Table[ Max[$CellContext`x - Part[$CellContext`b, $CellContext`j], 0], {$CellContext`j, $CellContext`k$$, $CellContext`k$$ + 5}], {$CellContext`x, -3, 3}, PlotRange -> {0, 4}, PlotStyle -> Directive[{Red}]]}], "Specifications" :> {{$CellContext`k$$, 1, 95, 1}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{966., {364., 372.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.7509352991168203`*^9, 3.7509353154687347`*^9}, 3.750935458260768*^9, 3.750935630727169*^9, 3.750935736705921*^9, { 3.750935861397438*^9, 3.750935893242928*^9}, {3.750947333303542*^9, 3.750947369478428*^9}, 3.750993395885523*^9, 3.78179731851614*^9, 3.781838225543324*^9, 3.782572012847281*^9, 3.782576804690052*^9, 3.782576917751466*^9, 3.782577010991103*^9, 3.782577086703293*^9, { 3.782577145252595*^9, 3.78257719708639*^9}, 3.7825773167872*^9, 3.782577403412098*^9, 3.782577441543885*^9, 3.782577933653077*^9, 3.7825784365234547`*^9, 3.782579521042019*^9, 3.782651884218123*^9, { 3.7929108875110607`*^9, 3.792910912158847*^9}, 3.793009260607389*^9, 3.8143479696294413`*^9, 3.814436657850305*^9, 3.814496788628817*^9}, TextAlignment->Center, CellLabel-> "Out[397]=",ExpressionUUID->"b3c30f06-fe04-4504-a936-4083ded90725"] }, Open ]], Cell[BoxData[" "], "Input", CellChangeTimes->{ 3.750935909616127*^9, {3.7509359509401627`*^9, 3.750935953055952*^9}},ExpressionUUID->"96fc08d3-7547-4693-aa06-\ b55c285b968f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", "\[NonBreakingSpace]", RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"j", "=", "1"}], RowBox[{"Length", "[", "w", "]"}]], RowBox[{"Max", "[", " ", RowBox[{ RowBox[{"x", " ", "-", " ", RowBox[{"b", "[", RowBox[{"[", "j", "]"}], "]"}]}], ",", "0"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", " ", RowBox[{ "PlotLabel", "\[Rule]", "\"\\""}], ",", " ", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]], "Input", CellChangeTimes->{{3.750913439290255*^9, 3.750913517830127*^9}, 3.7509135651354437`*^9, {3.750913606935547*^9, 3.750913608542061*^9}, { 3.7825774931996717`*^9, 3.7825775083673067`*^9}, {3.7929109506161947`*^9, 3.792910954293166*^9}}, CellLabel-> "In[398]:=",ExpressionUUID->"07c4e2c8-fe69-422c-a46a-6494e764a470"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwBQQK+/SFib1JlAgAAACMAAAACAAAAY6+Q7///B8AAAACdUG+APhT7GiY7 /AfAAGAnKM8mXj/ERqVcdvgHwADw5GqNJm4/Jt65yezwB8AAtEOMbCZ+P+oM 46PZ4QfAABbzHFwmjj9wajVYs8MHwADISuVTJp4/fiXawGaHB8CAoHbJTyau P5qbI5LNDgfAwIyMu00mvj+f34hvUQkGwBAGcgfpas8/FtBTTykVBcBQf2GF tVbXPxnOJ9drEQXAOI/BRqF01z8czPterg0FwCCfIQiNktc/IcijbjMGBcD4 vuGKZM7XPyzA84099wTAoP5hkBNG2D9CsJPMUdkEwPB9YptxNdk/b5DTSXqd BMCIfGOxLRTbP3KOp9G8mQTAcIzDchky2z90jHtZ/5UEwGCcIzQFUNs/eogj aYSOBMAwvOO23IvbP4aAc4iOfwTA0PtjvIsD3D+ccBPHomEEwCB7ZMfp8tw/ n27nTuVdBMAIi8SI1RDdP6Jsu9YnWgTA8JokSsEu3T+naGPmrFIEwMi65MyY at0/smCzBbdDBMBw+mTSR+LdP7Veh435PwTAWArFkzMA3j+4XFsVPDwEwEAa JVUfHt4/vVgDJcE0BMAYOuXX9lneP8hQU0TLJQTAwHll3aXR3j8qmBKlvCEE wLA+a9ca8t4/jN/RBa4dBMCgA3HRjxLfP+4mkWafGQTAkMh2ywQz3z9QblDH kBUEwICNfMV5U98/srUPKIIRBMBwUoK/7nPfPxvMyDdvEQTAKJ+5QYZ03z9/ /gpM "]], LineBox[CompressedData[" 1:eJwB4QEe/iFib1JlAgAAAB0AAAACAAAAeRqKA5kJBMDA8qm0kNLfP9iLTUpW BQTAaG45JF4L4D860wyrRwEEwFgzPx7TK+A/nBrMCzn9A8BI+EQYSEzgP2Cp Ss0b9QPAKIJQDDKN4D/oxkdQ4eQDwOiVZ/QFD+E/Sg4HsdLgA8DYWm3uei/h P6xVxhHE3APAyB9z6O9P4T9w5ETTptQDwKipftzZkOE/+AFCVmzEA8BovZXE rRLiPwg9PFz3owPA6OTDlFUW4z9IKSV0IyIDwOiCfNX0JOc/XAfuJFoeA8BI kjVPP0PnP3DlttWQGgPAqKHuyIlh5z+XoUg3/hIDwHDAYLwenuc/5hls+tgD A8D4/USjSBfoP4QKs4CO5QLACHkNcZwJ6T+Y6HsxxeECwGiIxurmJ+k/rMZE 4vvdAsDIl39kMUbpP9OC1kNp1gLAkLbxV8aC6T8i+/kGRMcCwBj01T7w++k/ wetAjfmoAsAgb54MRO7qP9TJCT4wpQLAiH5Xho4M6z/op9LuZqECwOiNEADZ Kus/EGRkUNSZAsCorILzbWfrPyRCLQELlgLACLw7bbiF6z84IPaxQZICwGjL 9OYCpOs/YNyHE6+KAsAo6mbal+DrP/Fh5TCchwLAoL167y756z+A+ulI "]], LineBox[CompressedData[" 1:eJwBEQLu/SFib1JlAgAAACAAAAACAAAAT7Cm/MV/AsD0re35jEfsP/7Mzplk bALAwFUMnB0w7T8Sq5dKm2gCwNDsoVKNXe0/Jolg+9FkAsDggzcJ/YrtP01F 8lw/XQLADLJidtzl7T+cvRUgGk4CwFgOuVCbm+4/Oq5cps8vAsB447KCjAPw P63VEDC1KwLAxvZ5SCsc8D8g/cS5micCwBQKQQ7KNPA/BkwtzWUfAsCwMM+Z B2bwP9Lp/fP7DgLA6H3rsILI8D9qJZ9BKO4BwFgYJN94jfE/mpzh3ICsAcA4 TZU7ZRfzP/qKZhMyKQHA+LZ39D0r9j+uhG/FKiUBwMDcQchpQ/Y/Yn54dyMh AcCIAgyclVv2P8pxitsUGQHAGE6gQ+2L9j+aWK6j9wgBwDjlyJKc7PY/OSb2 M73oAMB+Exox+633P3jBhVRIqADABHC8bbgw+T8su44GQaQAwMyVhkHkSPk/ 4LSXuDmgAMCUu1AVEGH5P0ioqRwrmADAJAflvGeR+T8Xj83kDYgAwEqeDQwX 8vk/tlwVddNnAMCQzF6qdbP6P/X3pJVeJwDAFikB5zI2/D9aiLeXnCMAwLjG kdq+TPw/wBjKmdofAMBUZCLOSmP8P4w5751WGADAjJ9DtWKQ/D8iezmmTgkA wAgWhoOS6vw/oPybbX3W/7/0Agsg8p79P06L01BRlf+/6lZkdnZi/j8V4P0X "]], LineBox[CompressedData[" 1:eJwBcQGO/iFib1JlAgAAABYAAAACAAAACihW6KSF/79YMhvkUZn+P+5KOLg1 T/+/yKaSpA5z/z+EjILALUD/v3CgaYMur/8/sg8X0R0i/7/cyYsgtxMAQA4W QPL95f6/JL053vaLAEDEIpI0vm3+v7ijlVl2fAFATtaN6pdl/r+kPJ7twowB QNiJiaBxXf6/kNWmgQ+dAUDs8IAMJU3+v2gHuKmovQFAE79v5Iss/r8aa9r5 2v4BQGJbTZRZ6/2/fDIfmj+BAkAAlAj09Gj9v0DBqNoIhgNAikcEqs5g/b8s WrFuVZYDQBT7/1+oWP2/GPO5AqKmA0AoYvfLW0j9v/Akyyo7xwNATzDmo8In /b+iiO16bQgEQJ7Mw1OQ5vy/BFAyG9KKBEA7BX+zK2T8v8reu1ubjwVAKOaN CZBc/L/wHJ6v0p4FQBbHnF/0VPy/FFuAAwquBUDwiLoLvUX8v2DXRKt4zAVA 2teGqUM3/L+MOaxva+kFQEy0tLs= "]], LineBox[{{-1.5460215538910438`, 3.953166203922709}, {-1.5370666902702261`, 4.015850249268432}, {-1.535091006994477, 4.0296800321986765`}, {-1.5311396404429787`, 4.057339598059165}, {-1.5232369073399816`, 4.112658729780144}, {-1.507431441133988, 4.2232969932221}, {-1.501706151430294, 4.263374021147957}}], LineBox[{{-1.3048076557318082`, 6.0432336595994816`}, {-1.292617664336173, 6.189513556347103}, {-1.290619398026862, 6.213492752058835}, {-1.28662286540824, 6.261451143482302}, {-1.2845329558851268`, 6.286530057759658}}], LineBox[{{-1.1865302728417069`, 7.614343547299457}, {-1.10625584917083, 8.818459902362608}}], LineBox[{{-1.1024293185585852`, 8.877771126852405}, {-1.0027517919696338`, 10.472611552275628`}}], LineBox[{{-0.9989252613573889, 10.535749307377667`}, {-0.9139900981976614, 11.979647081093033`}}], LineBox[{{-0.9101635675854165, 12.046611366807321`}, {-0.8261356872186861, 13.55911321340847}}], LineBox[{{-0.8223091566064412, 13.629904029735}, {-0.7185811204852859, 15.60073671603695}}], LineBox[{{-0.714754589873041, 15.675354062975725`}, {-0.6473809980022975, 17.022825900390593`}}], LineBox[{{-0.6435544673900526, 17.101269777941614`}, {-0.6174233821693478, 17.65002256757642}}], LineBox[{{-0.6135968515571029, 17.73229297573968}, {-0.5453664094730724, 19.233362701588355`}}], LineBox[{{-0.18609815956065434`, 29.122236450445264`}, {-0.18074212243000748`, 29.309697750017907`}}], LineBox[{{-0.17691559181776256`, 29.445539586752606`}, {-0.1697896610474517, 29.7020730944838}}], LineBox[{{-0.16596313043520677`, 29.841741461830743`}, {-0.1599364587378538, 30.0647283146328}}], LineBox[{{-0.1561099281256089, 30.208223212591978`}, {-0.1368393085884117, 30.940506755005483`}}], LineBox[{{-0.13301277797616678`, 31.087828183576907`}, {-0.08121016079152997, 33.10813025377772}}], LineBox[{{-0.07738363017928508, 33.25927821296142}, {-0.026635344230216466`, 35.28920965092415}}], LineBox[{{-0.02280881361797157, 35.444184140720076`}, {-0.0009482467423779906, 36.3404673826194}}], LineBox[{{0.0028782838698669074`, 36.49926840302755}, { 0.03395999392175136, 37.80470022520672}}], LineBox[{{0.03778652453399626, 37.967327776227116`}, { 0.07681143580868793, 39.64539896103888}}], LineBox[{{0.08063796642093282, 39.811853042671544`}, { 0.09419200372045783, 40.40823068385064}}], LineBox[{{0.09801853433270272, 40.578511296095535`}, { 0.10824859297507591`, 41.038863935002325`}}], LineBox[{{0.1120751235873208, 41.21297107785946}, { 0.13057197831293382`, 42.06382639523764}}], LineBox[{{0.13439850892517874`, 42.24176006870704}, { 0.1504226638673165, 42.99489535098752}}], LineBox[{{0.15424919447956142`, 43.176655555069175`}, { 0.18894048267808822`, 44.84183738859844}}], LineBox[{{0.19276701329033313`, 45.027424123292306`}, { 0.2249721865431737, 46.60547761268149}}], LineBox[{{0.2287987171554186, 46.794890877987605`}, { 0.24078842255972407`, 47.39437614820292}}], LineBox[{{0.244614953171969, 47.58761594412128}, {0.2715349577235917, 48.96053617625404}}], LineBox[{{0.2753614883358366, 49.157602502784634`}, {0.294595799828109, 50.157786700382815`}}], LineBox[{{0.29842233044035393`, 50.35867955752568}, { 0.3288453616546984, 51.971100211885904`}}], LineBox[{{0.3326718922669433, 52.175819599641024`}, { 0.39842253741539246`, 55.726354437657285`}}], LineBox[{{0.4022490680276374, 55.93490035602464}, { 0.43830848893785557`, 57.91816850608662}}], LineBox[{{0.4421350195501005, 58.13054095506624}, { 0.44641436341464613`, 58.37018421148079}}], LineBox[{{0.45024089402689105`, 58.58638319107263}, { 0.45570909797051756`, 58.89807081585932}}], LineBox[{{0.4595356285827625, 59.1180963260634}, {0.46102697565082584`, 59.204594456011094`}}], LineBox[{{0.46485350626307076`, 59.428446496827426`}, { 0.47248362742666855`, 59.87862364547968}}], LineBox[{{-1.7596657314782411`, 2.7561938373356605`}, {-1.755881369402147, 2.775115647716132}, {-1.7521664954483844`, 2.793690017484944}, {-1.7447367475408595`, 2.8308387570225686`}, {-1.7150177559107593`, 2.9794337151730694`}, {-1.6747730325421055`, 3.1806573320163385`}}], LineBox[{{-1.6709465019298606`, 3.2017032503836855`}, {-1.6519379789285407`, 3.315754388391605}, {-1.6482961852065225`, 3.3376051507237143`}, {-1.641012597762486, 3.3813066753879326`}, {-1.6264454228744132`, 3.46870972471637}, {-1.5973110730982674`, 3.643515823373245}, {-1.5954901762372582`, 3.6544412045392995`}, {-1.593669279376249, 3.665366585705355}, {-1.590027485654231, 3.687217348037464}, {-1.5827438982101945`, 3.7309188727016824`}, {-1.5681767233221215`, 3.81832192203012}, {-1.5498480845032887`, 3.928293754943117}}], LineBox[{{-1.4978796208180492`, 4.292073000739794}, {-1.4366180232628096`, 4.7821657811817095`}}], LineBox[{{-1.2383956175109243`, 6.886315456624292}, {-1.1903568034539518`, 7.5588588534219046`}}], LineBox[{{-0.3728612957475822, 23.459017099066696`}, {-0.33582896110183635`, 24.495922469147583`}}], LineBox[{{-0.19613809078820094`, 28.778965523402572`}, {-0.18992469017289926`, 28.990221144322827`}}], LineBox[{{0.5355345210753581, 63.816551299813824`}, { 0.5425395918619988, 64.2718809009455}}], LineBox[{{-1.4327914926505647`, 4.814691291385792}, {-1.4089116841088836`, 5.0296095682609225`}, {-1.4052247243197415`, 5.0627922063632}, {-1.3978508047414575`, 5.129157482567756}, {-1.3831029655848899`, 5.261888034976866}, {-1.3596586141296525`, 5.472887198074002}}], LineBox[{{-1.280706425272882, 6.3343616904127185`}, {-1.262643669696507, 6.5691775129055925`}, {-1.2422221481231692`, 6.834657293358985}}], LineBox[{{-0.4020299288712612, 22.66955073942124}, {-0.3766878263598271, 23.353787507229963`}}], LineBox[{{-0.21034997081353551`, 28.308060217260397`}, {-0.19996462140044585`, 28.650776747892362`}}], LineBox[{{0.5151203861377316, 62.50813339849962}, {0.5317079904631132, 63.56974007532403}}], LineBox[{{-1.3247312679727228`, 5.822160659643298}, {-1.3086341863440532`, 5.9992285575586655`}}], LineBox[{{0.6436987795278745, 71.10787018231011}, {0.6614846987240272, 72.35288452604071}}], LineBox[{{-0.4181850281645236, 22.247604892490305`}, {-0.4058564594835061, 22.568147678196752`}}], LineBox[{{-0.2339183780088698, 27.551957921703575`}, {-0.21417650142578043`, 28.18369797236245}}], LineBox[{{0.4985707768005375, 61.463594744950264`}, { 0.5112938555254867, 62.265148704622064`}}], LineBox[{{-1.3558320835174076`, 5.509239238890327}, {-1.3499203274826126`, 5.568356799238277}, {-1.3462333676934708`, 5.605226397129696}, {-1.338859448115187, 5.678965592912533}, {-1.3285577985849677`, 5.781982088214727}}], LineBox[{{0.6107404696586918, 68.8318335360303}, {0.6398722489156295, 70.84192630475904}}], LineBox[{{0.7027292005436521, 75.32907879281518}, {0.7337658112477954, 77.6257879849217}}], LineBox[{{-0.44411004884838456`, 21.59756611008765}, {-0.4220115587767685, 22.15002836187805}}], LineBox[{{-0.2678454554734919, 26.498305254994175`}, {-0.23774490862111472`, 27.43142220741787}}], LineBox[{{0.4917720843568402, 61.040162548134916`}, { 0.4947442461882926, 61.224436581684955`}}], LineBox[{{0.5957810585524944, 67.81268031550277}, {0.6069139390464469, 68.56971618909155}}], LineBox[{{0.6857131599486328, 74.08499456407262}, {0.6989026699314072, 75.04782879281518}}], LineBox[{{0.8325453773319442, 85.10740731182192}, {0.9072312533663701, 90.85821976647276}}], LineBox[{{-0.47750389767373913`, 20.79420047297302}, {-0.4479365794606295, 21.503816110087648`}}], LineBox[{{-0.2967933127919732, 25.627956270133605`}, {-0.27167198608573684`, 26.381596071320708`}}], LineBox[{{0.4894538628180404, 60.89683776896198}, {0.4894538628180404, 60.89683776896198}}], LineBox[{{0.5708317108740142, 66.13916075573849}, {0.5919545279402495, 67.55438949917627}}], LineBox[{{0.6757371341698876, 73.36480744269686}, {0.6818866293363879, 73.80757109468483}}], LineBox[{{0.7613067720490608, 79.69136004501671}, {0.8287188467196993, 84.81467771998517}}], LineBox[{{0.9292295040007272, 92.57408331595259}, {0.9404716398334902, 93.46221204674085}}], LineBox[{{-0.5415398788608274, 19.319459640363863`}, {-0.48133042828598405`, 20.70427700358526}}], LineBox[{{-0.33200243048959144`, 24.60497859159656}, {-0.3006198434042181, 25.51507361707239}}], LineBox[{{0.47631015803891347`, 60.10630221690826}, { 0.48562733220579546`, 60.66533266692118}}], LineBox[{{0.5463661224742438, 64.52251865604754}, {0.5670051802617693, 65.88469647002422}}], LineBox[{{0.6653112293362721, 72.62265493420401}, {0.6719106035576426, 73.09121050392137}}], LineBox[{{0.7375923418600403, 77.91086451553396}, {0.7574802414368159, 79.40245698379215}}], LineBox[{{0.911057783978615, 91.15477588892172}, {0.9254029733884823, 92.27370066289137}}], LineBox[{{0.9442981704457352, 93.7664212304143}, {0.9795853759349538, 96.58939766955183}}]}, Annotation[#, "Charting`Private`Tag$437584#1"]& ], {}}, {{}, {}}, {{}, {}}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->600, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotLabel->FormBox[ "\"Cumulative sum of the basis functions\"", TraditionalForm], PlotRange->{{-3, 3}, {0., 96.89743338383754}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.750913507352461*^9, 3.750913522167482*^9}, 3.750913568778157*^9, 3.7509136112562933`*^9, 3.750993420868778*^9, 3.78179733388693*^9, 3.7817994219311247`*^9, 3.781838246634365*^9, 3.78257203148066*^9, 3.782577512915667*^9, 3.782577956789283*^9, 3.782579515888445*^9, 3.782651916167124*^9, {3.792910930105967*^9, 3.792910955036531*^9}, 3.814347995788505*^9, 3.814436670623288*^9, 3.814496812087126*^9}, TextAlignment->Center, CellLabel-> "Out[398]=",ExpressionUUID->"09b6a778-fcd8-40a2-bc2b-39f95bdeb746"] }, Open ]], Cell[TextData[StyleBox["There is no generalization as the values jump up and \ down depending on how far the point for projected to the x-axis.", FontSlant->"Plain"]], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, { 3.750228610184701*^9, 3.7502286246362343`*^9}, {3.7502286862899218`*^9, 3.750228723944645*^9}, {3.75023582436089*^9, 3.750235825460896*^9}, { 3.7508844568369217`*^9, 3.750884474621216*^9}, 3.7508848262157393`*^9, { 3.782572152417184*^9, 3.782572177789865*^9}, {3.7825775474647284`*^9, 3.782577572650179*^9}},ExpressionUUID->"ea836ad6-61a4-4313-8a72-\ 67e292aa60ed"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", "\[NonBreakingSpace]", RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"j", "=", "1"}], RowBox[{"Length", "[", "w", "]"}]], RowBox[{ RowBox[{"w", "[", RowBox[{"[", "j", "]"}], "]"}], " ", RowBox[{"Ramp", "[", " ", RowBox[{"x", " ", "-", " ", RowBox[{"b", "[", RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", " ", RowBox[{ "PlotLabel", "\[Rule]", "\"\<\!\(\*UnderoverscriptBox[\"\[Sum]\", RowBox[{\"j\", \"=\", \"1\"}], \ RowBox[{\"Length\", \"[\", StyleBox[\"w\",FontWeight->\"Plain\"], \ \"]\"}]]\)\!\(\*SubscriptBox[\(w\), \(j\)]\)Ramp[x - \ \!\(\*SubscriptBox[\(b\), \(j\)]\)]\>\""}], ",", " ", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]], "Input", CellChangeTimes->{{3.750935212019006*^9, 3.7509352130383253`*^9}, { 3.750993461778866*^9, 3.750993466500527*^9}, {3.782572202883924*^9, 3.7825723197974567`*^9}, {3.782572354754442*^9, 3.782572358445438*^9}, 3.782572505855893*^9, {3.79291094294044*^9, 3.792910945703733*^9}}, CellLabel-> "In[399]:=",ExpressionUUID->"e7f51b56-0a12-4556-b68c-57e1cdc0908f"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwBsQFO/iFib1JlAgAAABoAAAACAAAAY6+Q7///B8DjVHM3jKG/PhT7GiY7 /AfAXP9+fPIDnT/ERqVcdvgHwE+UZjmzA60/Jt65yezwB8DvWtqXkwO9P+oM 46PZ4QfAPz4Ux4MDzT9wajVYs8MHwN0wsd57A90/fiXawGaHB8CxqX/qdwPt P5qbI5LNDgfAG+Zm8HUD/T+f34hvUQkGwFYEQt7VOw5AFtBTTykVBcAgyRuU kXUWQBnOJ9drEQXANi18slySFkAczPterg0FwEuR3NAnrxZAIcijbjMGBcB+ WZ0NvugWQCzA84099wTA3ekeh+pbF0BCsJPMUdkEwJkKInpDQhhAb5DTSXqd BMALTChg9Q4aQHKOp9G8mQTAIbCIfsArGkB0jHtZ/5UEwD4U6ZyLSBpAeogj aYSOBMBq3KnZIYIaQIaAc4iOfwTAwGwrU071GkCccBPHomEEwH2NLkan2xtA yFBTRMslBMD3zjQsWagdQCqYEqW8IQTADgJrDJXHHUCM39EFrh0EwCU1oezQ 5h1AUG5Qx5AVBMBUmw2tSCUeQBvMyDdvEQTAzvTtWRZFHkDgdLy+ "]], LineBox[CompressedData[" 1:eJwB8QEO/iFib1JlAgAAAB4AAAACAAAAeRqKA5kJBMB1IAKuMXoeQDrTDKtH AQTARiHNc+SqHkCcGswLOf0DwHAMdlGlwh5AYKlKzRv1A8DG4scMJ/IeQOjG R1Dh5APAco9rgypRH0AIPTxc96MDwBAh/S6cZiBAaoT7vOifA8ClltGdfHIg QMzLuh3amwPAOwymDF1+IECQWjnfvJMDwGX3TuodliBAGHg2YoKDA8C7zaCl n8UgQCizMGgNYwPAZnpEHKMkIUBIKSV0IyIDwL3Tiwmq4iFAXAfuJFoeA8At efuQv+0hQHDlttWQGgPAnx5rGNX4IUCXoUg3/hIDwIRpSicADyJA5hls+tgD A8BJ/whFVjsiQIQKs4CO5QLA1iqGgAKUIkCY6HsxxeECwEfQ9QcYnyJArMZE 4vvdAsC3dWWPLaoiQNOC1kNp1gLAnMBEnljAIkAi+/kGRMcCwGJWA7yu7CJA wetAjfmoAsDsgYD3WkUjQNTJCT4wpQLAXyfwfnBQI0Dop9LuZqECwNDMXwaG WyNAEGRkUNSZAsCxFz8VsXEjQCRCLQELlgLAI72unMZ8I0A4IPaxQZICwJNi HiTchyNATP6+YniOAsAFCI6r8ZIjQGDchxOvigLAda39MgeeI0DxYeUwnIcC wB2Id7QGpyNA7j/UNA== "]], LineBox[CompressedData[" 1:eJwB4QIe/SFib1JlAgAAAC0AAAACAAAAT7Cm/MV/AsA5QX07Ao8jQK9Uq9aJ ewLAZR7PSKdoI0DCMnSHwHcCwBn5xWlcRiNA1hA9OPdzAsDX07yKESQjQP7M zplkbALAVImqzHvfIkASq5dKm2gCwBJkoe0wvSJAJolg+9FkAsDRPpgO5poi QE1F8lw/XQLARfSFUFBWIkCcvRUgGk4CwDRfYdQkzSFAOq5cps8vAsAVNRjc zbogQK3VEDC1KwLAXECsAKSVIEAg/cS5micCwKJLQCV6cCBABkwtzWUfAsAv YmhuJiYgQNLp/fP7DgLAlR5xAf4iH0BqJZ9BKO4BwALTsUpg0BxAmpzh3ICs AcDcOzPdJCsYQPqKZhMyKQHAHBtsBFzBDUCuhG/FKiUBwHCDhp1qLw1AYn54 dyMhAcDE66A2eZ0MQMpxitsUGQHAcLzVaJZ5C0CaWK6j9wgBwMRdP83QMQlA OSb2M73oAMBIoBKWRaIEQHjBhVRIqADA6EpyT14G9z8su44GQaQAwJAbp4F7 4vU/4LSXuDmgAMA47NuzmL70P0ioqRwrmADAkI1FGNN28j8Xj83kDYgAwNCf McKPzus/tlwVddNnAMDgU/3KxSDTP/X3pJVeJwDAYEHn0/br6r9aiLeXnCMA wJDBqWOADO2/wBjKmdofAMAQQWzzCS3vv4w5751WGADAIKB4iQ638b8iezmm TgkAwOCf/agh+PW/iAtMqIwFAMCg395wZgj3v+6bXqrKAQDAcB/AOKsY+L9y eQddjfT/v0ifgsg0Ofq/oPybbX3W/7+4ngfoR3r+v2wdwXH5zv+/iN7or4yK /783PuZ1dcf/vzgP5btoTQDAzn8wfm24/78YT8aDrV0BwJqgVYLpsP+/+O62 58/lAcBlwXqGZan/v/SOp0vybQLAMOKfiuGh/7/oLpivFPYCwPwCxY5dmv+/ 1M6IEzd+A8BOi9NQUZX/vyg2JE+m2QPAeeBhJw== "]], LineBox[CompressedData[" 1:eJwBUQKu/SFib1JlAgAAACQAAAACAAAACihW6KSF/79FSv9A9rUDwCqGWZ9N fP+/uUFqpjniAsD1pn6jyXT/v+iunqDdNwLAwMejp0Vt/78YHNOagY0BwFcJ 7q89Xv+/mfY7j8k4AMAiKhO0uVb/v5nH4BLbHP+/7ko4uDVP/78rokkHI8j9 v4SMgsAtQP+/8lYb8LIe+7+yDxfRHSL/v+TAvsHSy/W/DhZA8v3l/r+gKQvK JEzmv8QikjS+bf6/iIfZqNxK5D9O1o3ql2X+vxgnigPJLec/2ImJoHFd/r+Y xjpetRDqP+zwgAwlTf6/wAWcE47W7z8Tv2/kiyz+v0BCL78fsfU/YltNlFnr /b9U4PiUaJ4AQACUCPT0aP2/xF67/xkqDECKRwSqzmD9v7CGZxbV4gxAFPv/ X6hY/b+YrhMtkJsNQChi98tbSP2/XP5rWgYND0BPMOajwif9vwBPjlr59xBA nszDU5Dm/L+g7j615doTQCiAvwlq3vy/kgKVQEM3FECyM7u/Q9b8v4YW68ug kxRAxZqyK/fF/L90PpfiW0wVQOxooQNepfy/So7vD9K9FkB2HJ25N538vzqi RZsvGhdAANCYbxGV/L8ytpsmjXYXQBQ3kNvEhPy/Et5HPUgvGEA7BX+zK2T8 v+gtoGq+oBlAKOaNCZBc/L/ArOPP+PYZQBbHnF/0VPy/mCsnNTNNGkADqKu1 WE38v3CqapptoxpA8Ii6C71F/L9MKa7/p/kaQN5pyWEhPvy/HKjxZOJPG0Da 14apQzf8v9y8XwG0nRtA5h4xLQ== "]], LineBox[CompressedData[" 1:eJwBEQLu/SFib1JlAgAAACAAAAACAAAAOngyZjK8+r/+qVWGRzESwBYaz9yC svq/ooF634wmEcAE+90y56r6v4ZqwC8JVRDA3rz73q+b+r84eJigA2QNwJRA NzdBffq//r7HIubXBsADxu/dy3X6v1rFfgodPQXAckuohFZu+r+oyzXyU6ID wFFWGdJrX/q/ftijwcFsAMAObPtslkH6v+zj/8A6A/S/iJe/ousF+r8A2T4O W6XWP/cceEl2/vm/EFND6NG94T9mojDwAPf5v+A5Z0n2KOg/Ra2hPRbo+b8w g9eFn3/yPwLDg9hAyvm/UFAfSOhV/z987kcOlo75vzB1V+Y8gQxA63MAtSCH +b/YbqD+BRwOQFr5uFurf/m/oGjpFs+2D0A5BCqpwHD5v9itvaMwdhFA9hkM ROtS+b8goU/UwqsUQGWfxOp1S/m/+B10YCd5FUDUJH2RAET5v8yamOyLRhZA sy/u3hU1+b9klOEEVeEXQHBF0HlAF/m/pIdzNecWG0Dfyoggyw/5v3wEmMFL 5BtATlBBx1UI+b9UgbxNsLEcQC1bshRr+fi/7HoFZnlMHkCc4Gq79fH4v7z3 KfLdGR9ADGYjYoDq+L98dE5+QucfQOpwlK+V2/i/FrdLywXBIEBZ9kxWINT4 v371XRG4JyFAyHsF/arM+L/sM3BXao4hQKBbS4EtzPi/fvGeJiqVIUCGNg4f "]], LineBox[{{-1.5460215538910438`, 8.717986304018213}, {-1.5426841672679936`, 8.222411214029075}, {-1.5390423735459755`, 7.681634116450381}, {-1.5370666902702261`, 7.388261029134922}, {-1.535091006994477, 7.094887941819488}, {-1.5311396404429787`, 6.508141767188648}, {-1.5232369073399816`, 5.334649417926882}, {-1.5212612240642325`, 5.04127633061146}, {-1.5192855407884833`, 4.747903243296034}, {-1.5153341742369848`, 4.161157068665149}, {-1.507431441133988, 2.987664719403421}, {-1.5054557578582388`, 2.694291632087994}, {-1.5034800745824897`, 2.4009185447725674`}, {-1.501706151430294, 2.1375052142008535`}}], LineBox[CompressedData[" 1:eJwBwQE+/iFib1JlAgAAABsAAAACAAAAPL2uxbbs9r9s2wFC33srQAa2h5Pt 6va/Pgi8iHZQK0A0zhbs1eL2v80c4V3EiypAYualRL7a9r9XMQYzEscpQJD+ NJ2m0va/30UrCGACKUC9FsT1jsr2v09aUN2tPShAGEfipl+69r9Mg5qHSbQm QM+nHgkBmva/WNUu3IChI0Bg7cABdJL2v7snyif46SJA8jJj+uaK9r8pemVz bzIiQBS+p+vMe/a/7R6cCl7DIEBY1DDOmF32v7zQEnJ2yhtA6RnTxgtW9r9+ dUkJZVsaQHpfdb9+Tva/NhqAoFPsGECd6rmwZD/2v+Bj7c4wDhZA4gBDkzAh 9r/w9scr61EQQHNG5YujGfa/UDf9hbPFDUAEjIeEFhL2v6CAarSQ5wpAJxfM dfwC9r8gFEURSysFQLhcbm5v+/W/eF2yPyhNAkBKohBn4vP1v7BOP9wK3v4/ bC1VWMjk9b9QdPSVf2XzP/1y91A73fW/4A6e5XNS6z+OuJlJrtX1v0Bopj7R s98/IP47QiHO9b+AcCFkdYXBP7FD3jqUxvW/gPkJtbdczL+slRZkKcH1v8B9 Z8T3o96/zh3jtA== "]], LineBox[{{-1.3048076557318082`, 1.4450881753866573`}, {-1.301989850223768, 2.1781202128853616`}, {-1.3001463703291969`, 2.657688380152174}, {-1.298302890434626, 3.1372565474189384`}, {-1.294615930645484, 4.096392881952609}, {-1.292617664336173, 4.61622763278957}, {-1.290619398026862, 5.1360623836265535`}, {-1.288621131717551, 5.6558971344635385`}, {-1.28662286540824, 6.175731885300573}, {-1.2846245990989287`, 6.695566636137629}, {-1.2845329558851268`, 6.719406965622531}}], LineBox[CompressedData[" 1:eJwBcQGO/iFib1JlAgAAABYAAAACAAAA/BrZKgf88r+WVgnTt9seQDyFptGT 9PK/j2QOgfe7HUCMXR98ZOzyvxCVwe3afxxA3DWYJjXk8r++xXRavkMbQCwO EdEF3PK/OPYnx6EHGkDLvgImp8vyvyVXjqBojxdACiDmz+mq8r/2GFtT9p4S QNycCMvgovK/qGeWh6FoEUCtGSvG15ryv0K20btMMhBAUBNwvMWK8r/8ppBI RosLQJYG+qihavK/4Btr6p/YAUAi7Q2CWSryvwCb/x3Nysi/9GkwfVAi8r+A 40pLs8rfv8XmUnhHGvK/IP7KAwCY6b9o4JduNQryv0AJC2Cmfva/rtMhWxHq 8b+ADyuO+fEEwIBQRFYI4vG/aHK0JaNeB8BRzWZR/9nxv1jVPb1MywnA9Mar R+3J8b/ImlDsn6QOwMZDzkLkwfG/tP7swaSIEMCYwPA927nxv7yvsY35vhHA pihTVTmz8b8gCFQIIb8SwFlEwIA= "]], LineBox[CompressedData[" 1:eJwBYQGe/iFib1JlAgAAABUAAAACAAAAYsXV7Iyj8b/Sz+f3DokSwAw3WC/A ofG/i1TDoiE3EsDes3oqt5nxvx1l6itcyRDAgq2/IKWJ8b8fDnF8otsLwMig SQ2BafG/qJSpxXZtAMBUh13mOCnxv5B8lZ+Cu+k/bFSFmKio8L98o4HBxxMa QKH+ujMqofC/0Gdi3eZoG0DWqPDOq5nwvwgsQ/kFvhxAQP1bBa+K8L8EtQQx RGgfQBSmMnK1bPC/NuNDUGBeIkBJUGgNN2Xwv2xFNN7vCCNAfvqdqLhd8L+k pyRsf7MjQOhOCd+7TvC/+msFiJ4IJUC9999LwjDwv7T0xr/csidA8qEV50Mp 8L/iVrdNbF0oQCdMS4LFIfC/CLmn2/sHKUBc9oAdRxrwv0wbmGmLsilAkaC2 uMgS8L+IfYj3Gl0qQMZK7FNKC/C/rN94haoHK0BUPYh2RQvwvwgYKT8ZCCtA Ecirtw== "]], LineBox[CompressedData[" 1:eJwBkQFu/iFib1JlAgAAABgAAAACAAAAILQVHDL37796jo7BjLoqQDbnhYGh 2u+/JnFVeCToKECgO/G3pMvvv/JHVVtt8ydAdOTHJKut778m9VQh/wkmQBw2 df63ce+/wk9UrSI3IkCGiuA0u2Lvv34mVJBrQiFA8N5La75T778S/VNztE0g QMSHItjENe+/zFSncozIHEBt2c+x0fnuv1oKporTIhVAvnwqZeuB7r/w043q hl33PyjRlZvucu6/oBQZBZxv7z+SJQHS8WPuv6B+FjUqJOA/Zs7XPvhF7r8A XN3VcuXcvw8ghRgFCu6/kEC+KiDoAsB6dPBOCPvtv4Dlvp78ugbA5MhbhQvs 7b8Qi78S2Y0KwLhxMvIRzu2/wGpg/cgZEcBgw9/LHpLtvzi1YeWBvxjARz34 Zd2B7b9Y76OdWNIawC63EACcce2/YCnmVS/lHMAVMSmaWmHtv0BjKA4G+B7A /KpBNBlR7b+YTjVjboUgwOMkWs7XQO2/xGtWv9mOIcCeDpQpaD/tv2TUM6NM piHAe5zL0A== "]], LineBox[CompressedData[" 1:eJwB0QEu/iFib1JlAgAAABwAAAACAAAAp27aSltQ6r9e9TZPFjAzQE6G2BjW ROq/NnH6uz+iMkA1APGylDTqv5rLSHwc2jFAHHoJTVMk6r/9JZc8+RExQOpt OoHQA+q/WrVnemUDL0DR51Ibj/Ppv0lqBPsecy1AuGFrtU3j6b8BH6F72OIr QIZVnOnKwum/gIjafEvCKEAiPf5RxYHpv45bTX8xgSJA0BE9LJly6b9yPJQI lgshQH7mewZtY+m/yDq2I/UrH0Daj/m6FEXpv6C+0UiHVRlAk+L0I2QI6b9g jBEmV1ELQASI6/UCj+i/YFUSsRdiA8CyXCrQ1n/ovxDS9ouFOAnAYDFpqqpw 6L/ATdtm8w4PwLza5l5SUui/OCNSjuddFcB1LeLHoRXov9SNDaJhhSDA5tLY mUCc57/8hdZXPTIswJSnF3QUjee/aKWPztinLcBCfFZO6H3nv2jESEV0HS/A niXUApBf579IgV2ZVQQxwEz6Et1jUOe/tBC6VCO/McD6zlG3N0Hnv0ygFhDx eTLAV3jPa98i579gv8+GjO8zwAZNDkazE+e/2E4sQlqqNMC0IU0ghwTnv1De iP0nZTXAHjyA1Z3+5r8E05iv7601wNnT4rw= "]], LineBox[CompressedData[" 1:eJwBQQG+/iFib1JlAgAAABMAAAACAAAAlnWFBEXf5r+ORBtZCbA1wGx0SInW x+a/kpJ9rK+SNMDIHcY9fqnmv70dFiklITPAdvIEGFKa5r98Y2LnX2gywCTH Q/Ili+a/FKmupZqvMcCAcMGmzWzmv3g0RyIQPjDAOMO8Dx0w5r8klvA29rUq wKlos+G7tuW/oOFpN0RTHsDUYp8fS6blv7huV7hqMhvAAF2LXdqV5b/o+0Q5 kREYwFZRY9n4dOW/qBYgO97PEcACOhPRNTPlv+AvWfvgMfW/LTT/DsUi5b8A yx7+9Vzhv1gu60xUEuW/ADDT6Venzj+uIsPIcvHkv0D8zfW22/w/2RyvBgLh 5L8g5At5jq8EQAQXm0SR0OS/0Mgwd0HxCkAvEYeCIMDkv5DWqjp6mRBAPhjP Wli35L/QmEudQkUSQGdungs= "]], LineBox[CompressedData[" 1:eJwBQQG+/iFib1JlAgAAABMAAAACAAAA7LhL3ZWi479AOaC47NEVwDWoHt0y mOO//AR7rrO4E8Bgogobwofjv1kY0PddZhDAtpbiluBm4798fvQUZYMDwGJ/ ko4dJeO/EJiLgSI97D+6UPJ9l6Hiv1TYiAVSGh5A5UreuyaR4r8+4hneU7Yg QBBFyvm1gOK/kFhvuX5fIkBmOaJ11F/ivwxFGnDUsSVAEiJSbREe4r8sHnDd f1YsQD0cPqugDeK/rJTFuKr/LUBoFirpL/3hvwQLG5TVqC9AvgoCZU7c4b+u +2KllX0xQOkE7qLdy+G/1LYNEytSMkAU/9ngbLvhvwZyuIDAJjNAavOxXIua 4b9S6A1c6880QJk28TtniuG/0BWE66GgNUDIeTAbQ3rhvyxD+npYcTZA5MKg QaRz4b8GxunE88Y2QH3+nYA= "]], LineBox[{{-0.44411004884838456`, 5.439682099748737}, {-0.44371626533482145`, 5.362905148714351}, {-0.441745913190131, 4.97874069052091}, {-0.4397755610454405, 4.594576232327666}, {-0.43780520890075003`, 4.210411774134153}, {-0.4358348567560596, 3.8262473159407406`}, {-0.4318941524666786, 3.057918399553955}, {-0.42401274388791677`, 1.5212605667803984`}, {-0.4221745951244046, 1.162872130623807}, {-0.4220115587767685, 1.1310845284308169`}}], LineBox[{{-0.33200243048959144`, -1.3065406447948746`}, \ {-0.3284290081852821, -1.0557950830424678`}, {-0.3265908594217699, \ -0.9268129463004595}, {-0.32475271065825767`, -0.7978308095585134}, \ {-0.32107641313123325`, -0.5398665360744666}, {-0.31923826436772107`, \ -0.41088439933224485`}, {-0.31740011560420883`, -0.2819022625902421}, \ {-0.3137238180771844, -0.023937989106202373`}, {-0.30637122302313563`, 0.4919905578618593}, {-0.3043782878448833, 0.6318339931605088}, {-0.302385352666631, 0.771677428459042}, {-0.3006198434042181, 0.8955624815211687}}], LineBox[CompressedData[" 1:eJwBQQG+/iFib1JlAgAAABMAAAACAAAASaTd4GnPs78gAhJqWnMnQMquzfhz GrO/KsBkV9+VJUCYoJYSgqCyv+xP3xocVCRAZpJfLJAmsr8k4VneWBIjQAN2 8V+sMrG/fwJPZdKOIEB3eiqOyZWuv7yJcuaKDxdATu7w1q+mrb9s26eOp5gU QCZitx+Wt6y/wCzdNsQhEkDVSUSxYtmqvzifjw77ZwpAMxle1Pscp79AtuhA gcPqPwqNJB3iLaa/ACVNCpoxzD/iAOtlyD6lv0BjhHdoVdm/keh395Rgo7+A jDbcdAz6v2hcPkB7caK/oKGwHQH0AcBA0ASJYYKhvxD/Rc3H4QbA3m8jNVxI n7+4WjiWql4QwI1XsMYoap2/+AkD7o3VEsA8Pz1Y9Yubv7C4zUVxTBXA8cGL sUtGm78YiYweWagVwKm7l5c= "]], LineBox[{{0.03778652453399626, -8.436709364940214}, { 0.04059400586385607, -7.362282139924172}, { 0.042418197545057976`, -6.6641613064618985`}, { 0.04424238922625988, -5.966040472999753}, { 0.04606658090746179, -5.2679196395377765`}, { 0.0497149642698656, -3.8716779726134547`}, { 0.05701173099467323, -1.0791946387652445`}, { 0.05899070909061524, -0.3218368172273749}, {0.06096968718655726, 0.4355210043103419}, {0.06492764337844129, 1.950236647385708}, { 0.0669066214743833, 2.707594468923734}, {0.0688855995703253, 3.4649522904612162`}, {0.07284355576220933, 4.979667933536842}, { 0.07482253385815134, 5.737025755074491}, {0.07680151195409335, 6.494383576612311}, {0.07681143580868793, 6.498181450329323}}], LineBox[{{0.15424919447956142`, -1.6310921064343755`}, { 0.15596063579177383`, -0.866196553569532}, {0.15991859198365788`, 0.9027353215727585}, {0.16783450436742592`, 4.440599071856317}, { 0.16981348246336792`, 5.325065009427522}, {0.17179246055930994`, 6.209530946998186}, {0.17575041675119396`, 7.978462822139864}, { 0.183666329134962, 11.516326572424209`}, {0.18551310384972575`, 12.341706768862196`}, {0.1873598785644895, 13.167086965300616`}, { 0.18894048267808822`, 13.873507365874751`}}], LineBox[{{0.29842233044035393`, 0.25160628757781023`}, { 0.30185991087984193`, -1.3391529759696503`}, { 0.30386147200934577`, -2.265386402172264}, { 0.30586303313884966`, -3.1916198283744697`}, { 0.30986615539785733`, -5.044086680780132}, { 0.3118677165273612, -5.970320106982394}, { 0.31386927765686506`, -6.896553533185562}, { 0.3178723999158728, -8.749020385590454}, { 0.31987396104537663`, -9.67525381179272}, { 0.32187552217488047`, -10.601487237996023`}, { 0.32387708330438436`, -11.527720664198391`}, { 0.3258786444338882, -12.453954090401211`}, { 0.32788020556339204`, -13.380187516603613`}, { 0.3288453616546984, -13.826818808595284`}}], LineBox[{{0.4022490680276374, 16.495030591855144`}, { 0.40393952848453846`, 15.747658082319656`}, {0.4059410896140423, 14.862744295524863`}, {0.4079426507435462, 13.977830508728825`}, { 0.40994421187305, 13.09291672193388}, {0.41394733413205775`, 11.323089148342524`}, {0.4159488952615616, 10.43817536154645}, { 0.41795045639106543`, 9.553261574751136}, {0.42195357865007316`, 7.78343400116054}, {0.42995982316808856`, 4.243778853977858}, { 0.4319248441817203, 3.3750198834549643`}, {0.433889865195352, 2.506260912932568}, {0.4358548862089837, 1.6375019424103243`}, { 0.43781990722261543`, 0.7687429718872849}, {0.43830848893785557`, 0.5527352320196002}}], LineBox[{{0.5463661224742438, -1.2172331152464906`}, { 0.5478610839859914, -2.7374131269102504`}, { 0.5498261049996231, -4.735582072364149}, { 0.5517911260132549, -6.7337510178172515`}, { 0.5557211680405183, -10.730088908723564`}, { 0.5575539856729718, -12.59382433467736}, { 0.5593868033054252, -14.457559760630364`}, { 0.5612196209378787, -16.321295186584162`}, { 0.5630524385703322, -18.185030612536934`}, { 0.5648852562027856, -20.048766038489937`}, { 0.5667180738352391, -21.912501464443046`}, { 0.5670051802617693, -22.204451088163644`}}], LineBox[{{0.7613067720490608, 3.5892974017587616`}, { 0.7624636786412493, 2.191024954121561}, { 0.7644512826884429, -0.21125366955042502`}, { 0.76842649078283, -5.015810916897909}, { 0.7704140948300235, -7.418089540573096}, { 0.7724016988772171, -9.820368164244513}, { 0.7763769069716042, -14.624925411591683`}, { 0.7843273231603785, -24.234039906284778`}, { 0.8002281555379268, -43.45226889567242}, { 0.8020835562039421, -45.69476249725844}, { 0.8039389568699573, -47.93725609884413}, { 0.8039484742238016, -47.948759061783974`}}], LineBox[{{0.9110577839786151, 11.853810036833186`}, { 0.9134075961648597, 8.914913076588656}, {0.915262996830875, 6.594373839745499}, {0.9189737981629056, 1.9532953660626262`}, { 0.9207926587130487, -0.3215433522058717}, { 0.9226115192631918, -2.5963820704734033`}, { 0.9244303798133351, -4.871220788742143}, { 0.9254029733884823, -6.087638134046962}}], LineBox[{{1.0272595175109152`, 12.08232259290494}, { 1.0299242917216378`, 9.267201319093054}, {1.031743152271781, 7.345720313985014}, {1.0353808733720673`, 3.502758303767699}, { 1.0373545203369505`, 1.4177578052351727`}, { 1.039328167301834, -0.6672426933013078}, { 1.0413018142667172`, -2.7522431918360795`}, { 1.0419700448347569`, -3.4581754544396404`}}], LineBox[CompressedData[" 1:eJwBQQG+/iFib1JlAgAAABMAAAACAAAAIFZn9+cg8j/m0jjbk1MiQH4CB3of JfI/XogdYYtGIEC3stn+NC3yP+jerlQEsBhA8GKsg0o18j96miLn8dIQQCkT fwhgPfI/CLks877rAUBiw1GNdUXyP0AVosDQjNE/1SP3lqBV8j/AwByer0IN wJ6ljL1MlvI/ehbcznpiM8B0KEyi153yP6SEPGIJODXASasLh2Kl8j+w9Jz1 lw03wPSwilB4tPI/TNZdHLW4OsDKM0o1A7zyP4RIvq9DjjzAoLYJGo7D8j/M uB5D0mM+wEu8iOOj0vI/PM3vtHcHQcAgP0jILtryP/IEoP4+8kHA9sEHrbnh 8j+WPFBIBt1CwMxEx5FE6fI//HUAks3HQ8Cix4Z2z/DyP0ivsNuUskTAmYv1 XM708j90Fg3d9C5FwHbEnn0= "]], LineBox[CompressedData[" 1:eJwBgQF+/iFib1JlAgAAABcAAAACAAAA3e5yxXoE8z+OYttT9SpFwPjShAn7 DvM/SIxdp7veQ8DOVUTuhRbzPxB+mUAb8ELAo9gD0xAe8z90cNXZegFCwE7e gpwmLfM/blRNDDokQMCk6YAvUkvzP8Q5euJw0zjAUQB9VamH8z8wtXLs1NIj wCaDPDo0j/M/WHpiUVMYIMD8Bfwev5bzP3CKpGyjuxjAqAt76NSl8z9AR8cA OqMDwP4WeXsAxPM/YBce2G8CFECqLXWhVwD0P2hmSGKi6jNAgLA0huIH9D+4 g9Av48c1QFUz9GptD/Q/IKBY/SOlN0AAOXM0gx70P8DUaJilXztAV0Rxx648 9D/ko0RnVGpBQCzHMKw5RPQ/ELEIzvRYQkACSvCQxEv0P8S+zDSVR0NArk9v Wtpa9D/E2lQC1iRFQITSLj9lYvQ/EOkYaXYTRkBZVe4j8Gn0P1j23M8WAkdA BFtt7QV59D/gEmWdV99IQMGphk6CgPQ/OKnG0izMSUA+Aq91 "]], LineBox[{{1.4034793389755158`, 1.6814689663469542`}, { 1.4053091583837565`, 2.2019027151383668`}, {1.4073053883822015`, 2.769666646850067}, {1.4091694149994685`, 3.299829544839243}, { 1.4110334416167352`, 3.829992442829594}, {1.4147614948512688`, 4.890318238810112}, {1.4222176013203363`, 7.010969830775025}, { 1.424081627937603, 7.541132728761205}, {1.4259456545548699`, 8.071295626752416}, {1.4296737077894037`, 9.131621422732984}, { 1.4315377344066706`, 9.661784320722766}, {1.4334017610239373`, 10.191947218715576`}, {1.435265787641204, 10.722110116703739`}, { 1.437129814258471, 11.25227301469949}, {1.4376110796798165`, 11.38915360863173}}], LineBox[{{1.489564679455766, 3.652262138951852}, {1.4967786660110098`, 5.377636304526005}, {1.4986426926282768`, 5.823456842830067}, { 1.5005067192455435`, 6.2692773811357}, {1.504234772480077, 7.16091845773848}, {1.5116908789491443`, 8.944200610951652}, { 1.5135549055664113`, 9.390021149256595}, {1.515418932183678, 9.835841687567193}, {1.5191469854182116`, 10.727482764168823`}, { 1.5210110120354785`, 11.17330330247381}, {1.5228750386527454`, 11.61912384077237}, {1.5247390652700124`, 12.06494437907747}, { 1.526603091887279, 12.510764917386647`}, {1.5274386527309862`, 12.71060658362846}}], LineBox[CompressedData[" 1:eJwBwQE+/iFib1JlAgAAABsAAAACAAAAuo/lZZxX+T96Fk1YBY3kvyDyyeT7 Y/k/QPOHy7ZwxD9SEPYmeGv5P8TlQb1iouQ/tUxOq3B6+T/sRAFpZtf5P3zF /rNhmPk/jLfgPuhxDEAKt1/FQ9T5P5yG0Ckpvx1AJpoh6AdM+j98ZkifyWUu QJkld3gmVPo/tG5UuTZzL0AMscwIRVz6P0QxsOlRQDBA88d3KYJs+j9cOrwD v00xQMD1zWr8jPo/HD7UN5loM0BbUXrt8M36PzpVBKBNnjdAztzPfQ/W+j8S UgotBCU4QEJoJQ4u3vo/bFEQurqrOEAof9Aua+76PxZXHNQnuTlA9qwmcOUO +z+mXTQIAtQ7QGk4fAAEF/s/wGQ6lbhaPEDcw9GQIh/7P2BiQCJv4TxAw9p8 sV8v+z8GbEw83O49QJAI0/LZT/s/fDUyONsEQEADlCiD+Ff7P5g7tX42SEBA dh9+Exdg+z8/NzjFkYtAQOqq06M1aPs/iji7C+3OQEBdNik0VHD7P/c8PlJI EkFA0MF+xHJ4+z8OO8GYo1VBQERN1FSRgPs/zzxE3/6YQUCQjMYOjIL7P7Z+ 9Y1qqUFAAe/LeQ== "]], LineBox[CompressedData[" 1:eJwBQQK+/SFib1JlAgAAACMAAAACAAAA1O9DdziS+z/VzPkfMKtBQJ7v1AXt mPs/K4MrDxR1QUAReyqWC6H7P5c8rLaOM0FA+JHVtkix+z+Xqq0FhLBAQMW/ K/jC0fs/nh5hR91UP0A4S4GI4dn7P3CIYpbS0T5ArNbWGADi+z/89WPlx04+ QJLtgTk98vs/cddmg7JIPUBgG9h6txL8P/uabL+HPDtA+naE/atT/D9EHXg3 MiQ3QArVxu0/W/w/C7ZS2eSpNkAaMwne02L8P/5LLXuXLzZAOe+Nvvtx/D/g feK+/Do1QHhnl39LkPw/ENVMRsdRM0D2V6oB68z8P/AXQ6q4/i5ABrbs8X7U /D/sSfjtHQouQBYUL+IS3Pw/PG2tMYMVLUA10LPCOuv8PxjWF7lNLCtAdEi9 g4oJ/T/AfezH4lknQPI40AUqRv0/oNkryxlqH0AClxL2vU39P3g2llLkgB1A EvVU5lFV/T+YiQDarpcbQDGx2cZ5ZP0/4E7V6EPFF0BwKeOHyYL9P+CufgZu IBBAgIcleF2K/T/ALtIbcW4MQJDlZ2jxkf0/4OKmKgacCECvoexIGaH9P0B4 UEgw9wBA7hn2CWm//T8AjDI6SNjKP/53OPr8xv0/AGhBbDMn0b8O1nrqkM79 P4C5zXpF3ee/HjS92iTW/T9AUr2feJPzvy2S/8q43f0/AMQTgk44+7888EG7 TOX9P6BFNTKSbgHATE6Eq+Ds/T9AlmAj/UAFwJ5JQr+87v0/wMcPyBkxBsCN Yxs8 "]], LineBox[{{1.8746120026287874`, -2.7562226556025196`}, { 1.8777317276366459`, -1.9216702921623092`}, { 1.881431866706559, -0.9318523440806494}, {1.8888321448463852`, 1.0477835520952148`}, {1.8908370007960817`, 1.5840991782942329`}, { 1.8928418567457785`, 2.120414804504552}, {1.8968515686451717`, 3.193046056913417}, {1.8988564245948685`, 3.729361683119757}, { 1.900861280544565, 4.265677309331963}, {1.9022982853518395`, 4.6500880362895085`}}], LineBox[CompressedData[" 1:eJwBkQFu/iFib1JlAgAAABgAAAACAAAA0L4urfHQ/j91gYQkJTTiP/QRHLCu 1P4/yP8ONliU6T9G3Yfu5Nz+P2AkgKYN5PQ/l6jzLBvl/j+2KPkx7/38P+hz X2tR7f4/hJC4XuiLAkCLCjfovf3+P6hNMerJpQpA3NWiJvQF/z+YSu2vurIO QC6hDmUqDv8/yubUutVfEUDQN+bhlh7/P+oakYDGbBVAFmWV228//z/UrQkM qIYdQGcwARqmR/8/SNHnbiCNH0C4+2xY3E//P8bl4mjMySBAW5JE1Uhg/z+6 H8HLRNAiQKC/884hgf8/mFB9kTXdJkArGlLC08L/P/be9RwX9y5AoGeH1Bsj AEBGcfMZbZU3QAh7aMsjJwBAri9uba4UOEBwjknCKysAQNDp6MDvkzhAP7UL sDszAEAWYt5ncpI5QN4CkItbQwBAukzJtXePO0AcnphCm2MAQCwzn1GCiT9A mNSpsBqkAEAmeaXEy75DQJBBzIwZJQFAijtR/OCyS0CTIDOjDM0BQFZt75Xo BlNAclm6Lg== "]], LineBox[CompressedData[" 1:eJwBkQFu/iFib1JlAgAAABgAAAACAAAAlnQJQZcn/L/APTt0DvMaQJTtBLqy H/y/1jkiy7ztGUCBzhMQFxj8v2KV5JLX8RhAXJAxvN8I/L+YTGkiDfoWQBIU bRRx6vu/D7tyQXgKE0AA9Xtq1eL7v7wWNQmTDhJA7dWKwDnb+79IcvfQrRIR QMiXqGwCzPu/DFP4wMY1DkB9G+TEk637v6gvC/+cVgZA6CJbdbZw+7/QpMPs JWHqP9YDassaafu/UILWKvyB4j/D5Hghf2H7v4C90tGkRdU/nqaWzUdS+78A nsNrBG7Ev1Mq0iXZM/u/cLpSERRM8r9AC+F7PSz7v0BMSfKoO/a/Luzv0aEk +7+Q3T/TPSv6vwiuDX5qFfu/lICWyjMFAcC+MUnW+/b6v7Cjg4xd5AjArBJY LGDv+r9M7P78J9wKwJnzZoLE5/q/NDV6bfLTDMCG1HXYKOD6vxR+9d28yw7A dLWELo3Y+r9cYzinw2EQwGGWk4Tx0Pq/0Ad236hdEcB+26/O3sv6vyQdEeSf BRLAunbP4Q== "]], LineBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAaiIMn1D3979iuxHb3LUBQCKYFSn6 9fe/P4dJUdszAkBQsKSB4u33v34gJcwILgVArODCMrPd978IU9zBYyILQNr4 UYub1fe/a+y3PJEcDkAHEeHjg833v/vCyVtfixBAYkH/lFS9979qXKXWjIUT QBmiO/f1nPe/NI9czOd5GUBGuspP3pT3vwpcyon+9hpAdNJZqMaM97+oKDhH FXQcQNACeFmXfPe/7sETwkJuH0CGY7S7OFz3v2x65dtOsSJAtHtDFCFU97+/ YJw62m8jQOKT0mwJTPe/FEdTmWUuJEA9xPAd2jv3v9ATwVZ8qyVA9CQtgHsb 978qrZzRqaUoQCI9vNhjE/e/fpNTMDVkKUBQVUsxTAv3v9B5Co/AIipAfm3a iTQD978mYMHtS+EqQIAgLC5j/Pa/bkJyTdSBK0B4QKFu "]], LineBox[{{-1.3558320835174076`, -0.5096736353223233}, \ {-1.3536072872717546`, -0.11301154394422985`}, {-1.3517638073771836`, 0.21566511209687578`}, {-1.3499203274826126`, 0.5443417681379747}, {-1.3462333676934708`, 1.201695080220146}, {-1.3443898877988998`, 1.5303717362612304`}, {-1.342546407904329, 1.859048392302296}, {-1.338859448115187, 2.516401704384494}, {-1.337015968220616, 2.8450783604255783`}, {-1.335172488326045, 3.173755016466684}, {-1.3333290084314742`, 3.5024316725077504`}, {-1.3314855285369032`, 3.831108328548863}, {-1.3296420486423322`, 4.159784984589976}, {-1.3285577985849677`, 4.353097471596961}}], LineBox[{{-1.2383956175109243`, -3.0080679968636965`}, \ {-1.236666207675463, -2.626602457692086}, {-1.234667941366152, \ -2.185833751825212}, {-1.2306714087475301`, -1.3042963400913994`}, \ {-1.2286731424382191`, -0.8635276342245009}, {-1.2266748761289081`, \ -0.42275892835758366`}, {-1.222678343510286, 0.4587784833762516}, {-1.2146852782730417`, 2.2218533068439097`}, {-1.2126870119637307`, 2.662622012710795}, {-1.2106887456544195`, 3.1033907185777707`}, {-1.2066922130357973`, 3.9849281303116317`}, {-1.1986991477985531`, 5.748002953779281}, {-1.196700881489242, 6.188771659646214}, {-1.194702615179931, 6.629540365513115}, {-1.19270434887062, 7.070309071380013}, {-1.190706082561309, 7.511077777246914}, {-1.1903568034539518`, 7.588120211190198}}], LineBox[CompressedData[" 1:eJwBgQF+/iFib1JlAgAAABcAAAACAAAAFkiZWA8g7b8uSpZU5F8hwJiSo5wT EO2/V+usyh0TIMB/DLw20v/sv6YwkK5ZgR3AZobU0JDv7L9GisbHd9wawDR6 BQUOz+y/7j0z+rOSFcDQYWdtCI7sv/BJGb5Y/gXAt9t/B8d97L8Q/oXwlLQA wJ5VmKGFbey/gGPlRaLV9r9sScnVAk3svwAWg/kw6bq/CDErPv0L7L9gGIGu xU8EQEEA7w7yieu/pL2NDfJOH0AoegepsHnrv8qxK/rp+SBAEPQfQ29p67/M hJDtWkwiQN7nUHfsSOu/HCta1DzxJEB6z7Lf5gfrv2x37aEAOypAYUnLeaX3 6r9gSlKVcY0rQEjD4xNk5+q/hB23iOLfLEAWtxRI4cbqv7zDgG/EhC9A/TAt 4p+26r9ky3KxmmswQOSqRXxepuq/9jQlK9MUMUCynnaw24XqvxIIih5EZzJA mRiPSpp16r+YcTyYfBAzQC811Ru0b+q/alwgtuVNM0Dg38Aq "]], LineBox[CompressedData[" 1:eJwBQQG+/iFib1JlAgAAABMAAAACAAAAXPylcEtU4b/ZcTOzncw2QFRD7rjW SeG/hNYsnTFJNkCChi2Ysjnhv+xwHD9QfjVA4AysVmoZ4b9mpfuCjegzQA5Q 6zVGCeG/mj/rJKwdM0A9kyoVIvngv/jZ2sbKUjJAmhmp09nY4L+GDroKCL0w QFUmplBJmOC/du/wJAUjK0CEaeUvJYjgv/Ij0GhCjSlAsqwkDwF44L+SWK+s f/cnQBAzo824V+C/csFtNPrLJEDLP6BKKBfgvygo1Yfe6RxA+oLfKQQH4L9g kZMPWb4ZQFGMPRLA7d+/CPpRl9OSFkAMmTqPL63fv9DMzqbIOxBAgbI0iQ4s 379Ah0Mulm3sP944s0fGC9+/AJK2YVOLuD88vzEGfuvevwDh1VXBSua/3LUD JB7O3r/AYEx6Fa/2v7dTmLI= "]], LineBox[{{-0.3728612957475822, 1.9868303333788804`}, {-0.3707064297460628, 1.7971793726117897`}, {-0.3688682809825506, 1.6354028729187764`}, {-0.36519198345552617`, 1.3118498735326671`}, {-0.363353834692014, 1.1500733738398772`}, {-0.36151568592850175`, 0.9882968741469771}, {-0.35783938840147733`, 0.6647438747609535}, {-0.35048679334742855`, 0.01763787598931188}, {-0.3486486445839163, -0.14413862370372854`}, \ {-0.34681049582040413`, -0.30591512339663396`}, {-0.34313419829337977`, \ -0.6294681227824714}, {-0.3412960495298676, -0.7912446224754772}, \ {-0.33945790076635535`, -0.9530211221685025}, {-0.3376197520028431, \ -1.1147976218615145`}, {-0.33582896110183635`, -1.2724061296153142`}}], LineBox[{{-0.2678454554734919, -1.2387765420432162`}, \ {-0.2665125194580894, -1.1318361597713116`}, {-0.2645195842798371, \ -0.9719445765720287}, {-0.2625266491015848, -0.8120529933730245}, \ {-0.2585407787450802, -0.49226982697480515`}, {-0.2565478435668279, \ -0.33237824377560754`}, {-0.2545549083885756, -0.1724866605769484}, \ {-0.250569038032071, 0.14729650582169596`}, {-0.24857610285381865`, 0.3071880890203631}, {-0.24658316767556634`, 0.4670796722196524}, {-0.2425972973190617, 0.78686283861758}, {-0.2406043621408094, 0.9467544218169159}, {-0.2386114269625571, 1.1066460050162394`}, {-0.23774490862111472`, 1.1761660732027002`}}], LineBox[{{-0.13301277797616678`, -5.88700751951561}, \ {-0.1304443448910626, -5.013974949404715}, {-0.1267228812969145, \ -3.749017359107355}, {-0.11927995410861832`, -1.2191021785122054`}, \ {-0.11741922231154428`, -0.5866233833632943}, {-0.11555849051447023`, 0.0458554117851282}, {-0.11183702692032213`, 1.3108130020827886`}, {-0.10439409973202593`, 3.8407281826775588`}, {-0.10253336793495188`, 4.473206977826287}, {-0.10067263613787783`, 5.105685772974994}, {-0.09695117254372974, 6.370643363272524}, {-0.08950824535543356, 8.900558543867213}, {-0.08764751355835951, 9.53303733901609}, {-0.08578678176128546, 10.165516134164811`}, {-0.08392604996421141, 10.797994929313589`}, {-0.08206531816713737, 11.43047372446226}, {-0.08121016079152997, 11.7211490960755}}], LineBox[{{-0.02280881361797157, -5.423580458979911}, \ {-0.01960431961580686, -4.356668260306308}, {-0.015955936253403045`, \ -3.141966434633277}, {-0.014131744572201139`, -2.534615521796722}, \ {-0.012307552890999232`, -1.927264608960181}, {-0.008659169528595417, \ -0.712562783287428}, {-0.00683497784739351, -0.10521187045104874`}, \ {-0.005010786166191603, 0.5021390423855561}, {-0.0031865944849896956`, 1.10948995522204}, {-0.0013624028037877885`, 1.7168408680584388`}, {-0.0009482467423779788, 1.8547310166354833`}}], LineBox[{{0.11207512358732082`, -2.414274221396669}, { 0.11242311768104957`, -2.3252107729324676`}, { 0.11440209577699158`, -1.8187234019205043`}, { 0.11638107387293359`, -1.3122360309090175`}, { 0.12033903006481761`, -0.2992612888858268}, {0.12231800816075962`, 0.20722608212542237`}, {0.12429698625670163`, 0.7137134531369842}, { 0.12627596435264365`, 1.2202008241487752`}, {0.12825494244858565`, 1.7266881951603406`}, {0.13023392054452765`, 2.2331755661720933`}, { 0.13057197831293382`, 2.3196959732044995`}}], LineBox[CompressedData[" 1:eJwBQQG+/iFib1JlAgAAABMAAAACAAAA729lDH9K1T+8GKA+XKkrwEJUq7le XtU/7D/PHkCLKsBFOpHhKX/VP1ZlUkYksyjASCB3CfWf1T/RidVtCNsmwE/s QlmL4dU/BtTbvNAqI8BchNr4t2TWP9zQ0LXClBfAdrQJOBFr1z+gfPNH67P3 P3ma71/ci9c/6CbtBWU6A0B8gNWHp6zXP6CV4GfUmgpAg0yh1z3u1z94t+OV 2a0UQJDkOHdqcdg/TEflLFy3IUCUyh6fNZLYP3ghYgV4jyNAl7AExwCz2D+w /N7dk2clQJ580BaX9Ng/SLPYjssXKUChYrY+YhXZP0CNVWfn7ypApEicZi02 2T/IaNI/A8gsQKgugo74Vtk/yENPGB+gLkCrFGi2w3fZPzYPZngdPDBAhA8M PsF/2T98mvCUoXUwQFm1lS4= "]], LineBox[{{0.4917720843568402, 1.0887485545046012`}, { 0.49284049560430343`, 0.9911645133880036}, {0.4947442461882926, 0.8172842068074075}}], LineBox[{{0.6107404696586918, -12.56950038807647}, { 0.6125385146465753, -10.232268095409571`}, { 0.6143713322790287, -7.849835739152413}, { 0.6162041499114822, -5.467403382896606}, { 0.6180369675439357, -3.0849710266391988`}, {0.6217026028088426, 1.6798936858744575`}, {0.6235354204412961, 4.062326042130735}, { 0.6253682380737495, 6.444758398387435}, {0.6290338733386563, 11.209623110900708`}, {0.6308666909711098, 13.59205546715743}, { 0.6326995086035632, 15.974487823414243`}, {0.6345323262360166, 18.356920179670944`}, {0.6363651438684701, 20.73935253592788}, { 0.6381979615009236, 23.121784892184607`}, {0.6398722489156297, 25.298147908253554`}}], LineBox[{{0.7375923418600403, -28.154267800351946`}, { 0.7386124300749266, -26.560769466064713`}, { 0.7406000341221202, -23.455897071495208`}, { 0.7445752422165073, -17.246152282353695`}, { 0.7465628462637008, -14.141279887784364`}, { 0.7485504503108944, -11.036407493213574`}, { 0.7525256584052815, -4.826662704073058}, { 0.7545132624524751, -1.7217903095040654`}, {0.7565008664996686, 1.3830820850676275`}, {0.7574802414368159, 2.9129814684864357`}}], LineBox[{{0.857441854593431, -47.948759061783974`}, { 0.8596009768504163, -45.35145298346718}, { 0.8614563775164316, -43.119507380588914`}, { 0.8633117781824469, -40.887561777710076`}, { 0.8670225795144775, -36.42367057195388}, { 0.8744441821785386, -27.495888160441993`}, { 0.8762995828445539, -25.263942557563155`}, { 0.8781549835105691, -23.031996954684587`}, { 0.8818657848425997, -18.568105748930094`}, { 0.8892873875066609, -9.6403233374173}, { 0.8911427881726762, -7.408377734537623}, { 0.8929981888386915, -5.176432131659226}, { 0.8967089901707221, -0.7125409259044488}, {0.8985643908367374, 1.519404676975057}, {0.9004197915027528, 3.7513502798518346`}, { 0.9041305928347833, 8.215241485608516}, {0.9059859935007986, 10.447187088486885`}, {0.9072312533663702, 11.945166652854027`}}], LineBox[{{0.944298170445735, 8.321719560453989}, {0.9462567064150529, 6.1762836403464245`}, {0.948075566965196, 4.183852140966081}, { 0.9498944275153391, 2.1914206415849904`}, {0.9517132880654824, 0.19898914220183883`}, {0.9553510091657686, -3.78587385656186}, { 0.9626264513663412, -11.755599854091294`}, { 0.9644453119164843, -13.748031353472896`}, { 0.9662641724666274, -15.740462852855003`}, { 0.9699018935669138, -19.725325851618507`}, { 0.9717207541170569, -21.7177573510006}, { 0.9735396146672002, -23.710188850382963`}, { 0.9771773357674864, -27.695051849147575`}, { 0.9789961963176296, -29.68748334852947}, { 0.9795853759349537, -30.332887433112774`}}], LineBox[{{1.0762923370306883`, 24.798475870336194`}, { 1.0768274596346157`, 24.240623234184273`}, {1.078801106599499, 22.183143034110312`}, {1.0827484005292656`, 18.06818263396437}, { 1.0847220474941488`, 16.010702433891872`}, {1.0866956944590322`, 13.95322223381952}, {1.0906429883887987`, 9.838261833670934}, { 1.0985375762483316`, 1.6083410333784443`}, { 1.1005112232132148`, -0.44913916669234766`}, { 1.102484870178098, -2.5066193667666994`}, { 1.1044585171429813`, -4.564099566842636}, { 1.1064321641078645`, -6.6215797669144365`}, { 1.1081702081832516`, -8.433449536731985}}], LineBox[CompressedData[" 1:eJwBgQF+/iFib1JlAgAAABcAAAACAAAABQ0Ety6Q9D/oaj68ActJQEkrKIaN kfQ/NzKKwXKfSUBgGxG5upn0Pw2kFWKLm0hAdwv66+eh9D/nE6ECpJdHQI77 4h4VqvQ/SIcso7yTRkC927SEb7r0P3FnQ+Tti0RA1Mudt5zC9D+D1s6EBohD QOy7hurJyvQ/8UhaJR+EQkAanFhQJNv0P50rcWZQfEBAdlz8G9n79D9C3T3R Zdk4QI1M5U4GBPU/ZsNUEpfRNkCkPM6BMwz1P1ija1PIyTRA0xyg540c9T9k ZZnVKrowQDDdQ7NCPfU/yNnps981IUDpXYtKrH71P/AVUHUYjh7AAE50fdmG 9T/wOnq4qVYjwBg+XbAGj/U/UHtMNkdmJ8BGHi8WYZ/1PyDt8DGChS/AXQ4Y SY6n9T9ImeHXj8oxwHT+AHy7r/U/aLLKll7SM8CL7umu6Lf1P2DTs1Ut2jXA ot7S4RXA9T9Q8ZwU/OE3wPAhwyqNwPU/EPyxXpv/N8An3Lot "]], LineBox[{{1.4414376102920614`, 11.40263636389222}, { 1.4445859207275382`, 10.529386011851656`}, {1.4464499473448051`, 10.012358884728158`}, {1.448313973962072, 9.495331757607481}, { 1.4520420271966057`, 8.46127750336366}, {1.4539060538138724`, 7.94425037624651}, {1.4557700804311393`, 7.427223249124804}, { 1.4594981336656732`, 6.3931689948872865`}, {1.4669542401347404`, 4.325060486400226}, {1.4688182667520073`, 3.8080333592774807`}, { 1.470682293369274, 3.2910062321597913`}, {1.4725463199865407`, 2.773979105037501}, {1.4744103466038077`, 2.2569519779207816`}, { 1.4762743732210746`, 1.7399248507952798`}, {1.4774720216060901`, 1.4077317919252685`}}], LineBox[{{-1.280706425272882, 6.735669567469985}, {-1.2786298001709957`, 6.213101481758826}, {-1.2766315338616847`, 5.710251834487739}, {-1.2746332675523735`, 5.207402187216606}, {-1.2706367349337513`, 4.201702892674348}, {-1.262643669696507, 2.190304303589965}, {-1.2606454033871959`, 1.6874546563187973`}, {-1.258647137077885, 1.1846050090477274`}, {-1.254650604459263, 0.17890571450550752`}, {-1.252652338149952, -0.32394393276554645`}, \ {-1.2506540718406407`, -0.8267935800367106}, {-1.2466575392220185`, \ -1.8324928745789357`}, {-1.2446592729127075`, -2.3353425218500306`}, \ {-1.2426610066033965`, -2.8381921691210863`}, {-1.2422221481231692`, \ -2.948627815739364}}], LineBox[{{-0.4020299288712612, -1.2820742331709667`}, \ {-0.40011680996225807`, -1.0408025473426128`}, {-0.3982786611987459, \ -0.808985670258185}, {-0.39460236367172147`, -0.3453519160895149}, \ {-0.39276421490820923`, -0.11353503900507667`}, {-0.39092606614469705`, 0.11828183807932247`}, {-0.3872497686176727, 0.5819155922480923}, {-0.3854116198541605, 0.8137324693323169}, {-0.38357347109064827`, 1.045549346416779}, {-0.37989717356362385`, 1.509183100585492}, {-0.37805902480011166`, 1.7409999776697997`}, {-0.3766878263598271, 1.913927733355031}}], LineBox[{{-0.2967933127919732, 0.8697309829247424}, {-0.2964065471318741, 0.8373699718876133}, {-0.29441361195362176`, 0.670619394074883}, {-0.29042774159711715`, 0.33711823844927724`}, {-0.2884348064188649, 0.17036766063655007`}, {-0.28644187124061254`, 0.0036170828237771513`}, {-0.28245600088410794`, \ -0.3298840728018688}, {-0.2804630657058556, -0.49663465061466283`}, \ {-0.2784701305276033, -0.6633852284276598}, {-0.27448426017109867`, \ -0.9968863840530267}, {-0.27249132499284634`, -1.1636369618660414`}, \ {-0.27167198608573684`, -1.2321917436150036`}}], LineBox[{{-0.1561099281256089, 1.8663935730431724`}, {-0.15277312645595115`, 0.542670274516535}, {-0.14905166286180307`, -0.9336500321381607}, \ {-0.14719093106472902`, -1.6718101854650929`}, {-0.145330199267655, \ -2.409970338792247}, {-0.14346946747058095`, -3.148130492119451}, \ {-0.1416087356735069, -3.886290645446497}, {-0.13974800387643285`, \ -4.62445079877342}, {-0.1378872720793588, -5.362610952100631}, \ {-0.1368393085884117, -5.778342489754436}}], LineBox[{{0.08063796642093282, 6.500729947759354}, { 0.08075946814597737, 6.45439290135517}, {0.08273844624191938, 5.699671107647067}, {0.08471742433786139, 4.944949313938735}, { 0.08867538052974541, 3.4355057265218436`}, {0.09065435862568742, 2.6807839328135756`}, {0.09263333672162943, 1.9260621391051735`}, { 0.09419200372045783, 1.3316341585419238`}}], LineBox[{{0.19276701329033313`, 13.77259990462335}, { 0.19474697742354452`, 12.783268054938155`}, {0.198440526853072, 10.937706295649596`}, {0.20028730156783575`, 10.014925416005212`}, { 0.2021340762825995, 9.09214453636115}, {0.20582762571212698`, 7.246582777073067}, {0.21321472457118198`, 3.5554592584960503`}, { 0.21506149928594576`, 2.632678378851814}, {0.2169082740007095, 1.7098974992077203`}, {0.21875504871547324`, 0.7871166195632782}, { 0.220601823430237, -0.13566426008097565`}, { 0.22244859814500073`, -1.0584451397250092`}, { 0.22429537285976447`, -1.9812260193692275`}, { 0.2249721865431737, -2.3194105965882947`}}], LineBox[{{0.5708317108740142, -22.201211733840175`}, { 0.5740493443650527, -18.923852212586244`}, { 0.5777149796299597, -15.190175064351507`}, { 0.5850462501597735, -7.7228207678824035`}, { 0.586879067792227, -5.855982193764298}, { 0.5887118854246804, -3.9891436196476775`}, { 0.5905447030571339, -2.122305045530034}, { 0.5919545279402495, -0.6863108538838745}}], LineBox[{{0.7027292005436521, 24.984270465716513`}, { 0.7028355572254426, 24.803100989891806`}, {0.7048231612726361, 21.417388147838903`}, {0.7068107653198297, 18.03167530578364}, { 0.7087983693670232, 14.645962463729187`}, {0.7127735774614103, 7.874536779621515}, {0.7207239936501846, -5.668314588596132}, { 0.7227115976973781, -9.054027430650876}, { 0.7246992017445717, -12.439740272706572`}, { 0.7266868057917653, -15.825453114759924`}, { 0.7286744098389588, -19.211165956814227`}, { 0.7306620138861524, -22.596878798869454`}, { 0.7326496179333459, -25.982591640924227`}, { 0.7337658112477954, -27.88393111760726}}], LineBox[{{1.0457965754470018`, -3.4546583857619995`}, { 1.0472227551613669`, -1.945391661810099}, {1.04919640212625, 0.14323690226177632`}, {1.0511700490911333`, 2.2318654663345807`}, { 1.0531436960560165`, 4.320494030408636}, {1.0551173430208998`, 6.409122594480873}, {1.0590646369506664`, 10.586379722627058`}, { 1.0669592248101996`, 18.940893978915412`}, {1.0689328717750828`, 21.029522542988992`}, {1.070906518739966, 23.118151107061507`}, { 1.0724658064184434`, 24.768280457861188`}}], LineBox[CompressedData[" 1:eJwBYQGe/iFib1JlAgAAABUAAAACAAAA5ma/6w+A+D8nMEg2lkspQHyGymXo ivg/ipU9ErjaJ0CupPanZJL4P4xs3J8i3CZA4MIi6uCZ+D+rO3stjd0lQET/ em7ZqPg/WeG4SGLgI0B2HaewVbD4P1y5V9bM4SJAqDvT8tG3+D+8iPZjN+Mh QAt4K3fKxvg/JGpo/hjMH0DS8Nt/u+T4P0jkXmtt1xdABA8Iwjfs+D+KnpyG QtoVQDYtNAS08/g/jjDaoRfdE0CZaYyIrAL5P3A2q7CDxQ9Ayoe4yigK+T84 TibnLcsLQPyl5AylEfk/yMChHdjQB0Bg4jyRnSD5P5B4MBVZuP8/kgBp0xko +T9g+SaCrcP3P8QelRWWL/k/AEM73gOe7z/2PMFXEjf5P8D1T3BZad8/J1vt mY4++T8AABP1NlV6v1h5GdwKRvk/YH79kwEe4L92LGj970f5P4AFJAk8JeS/ beenDg== "]], LineBox[{{1.9061248159640845`, 4.67353279461756}, {1.906875848393655, 4.481828375330854}, {1.9088807043433516`, 3.970079840294383}, { 1.912890416242745, 2.946582770237363}, {1.9148952721924415`, 2.434834235202871}, {1.9169001281421383`, 1.923085700171134}, { 1.9189049840918349`, 1.4113371651469446`}, {1.9209098400415314`, 0.8995886301110563}, {1.9221852000534652`, 0.5740472275749209}}], LineBox[{{-1.3247312679727228`, 4.334406065810392}, {-1.3222681290640483`, 3.871186194495343}, {-1.3204246491694773`, 3.5244998925057414`}, {-1.3167376893803355`, 2.8311272885265852`}, {-1.3148942094857645`, 2.484440986536984}, {-1.3130507295911937`, 2.1377546845474242`}, {-1.3112072496966227`, 1.7910683825578202`}, {-1.3093637698020517`, 1.444382080568234}, {-1.3086341863440532`, 1.3071760324896964`}}], LineBox[{{-0.47750389767373913`, -1.728933714005835}, \ {-0.4772122517945594, -1.6590655326600776`}, {-0.4752418996498689, \ -1.1870378758754807`}, {-0.471301195360488, -0.24298256230584592`}, \ {-0.46933084321579754`, 0.2290450944789999}, {-0.46736049107110705`, 0.7010727512636183}, {-0.46341978678172613`, 1.6451280648332247`}, {-0.4555383782029643, 3.5332386919722385`}, {-0.45356802605827384`, 4.005266348756894}, {-0.45159767391358335`, 4.477294005541868}, {-0.44962732176889286`, 4.949321662326515}, {-0.4479365794606295, 5.354364553845677}}], LineBox[{{-0.21034997081353551`, 0.35395001319594266`}, {-0.20871739928877245`, 0.8726842606798748}, {-0.20672446411052015`, 1.5059206698014536`}, {-0.20473152893226781`, 2.1391570789231755`}, {-0.2027385937540155, 2.772393488044704}, {-0.2007456585757632, 3.405629897166386}, {-0.19996462140044585`, 3.6537971138855863`}}], LineBox[{{0.002878283869866919, 1.8526362002027625`}, { 0.005934363921019839, 0.8317912376054983}, {0.007758555602221747, 0.2224430342218815}, {0.009582747283423653, -0.3869051691618406}, { 0.013231130645827467`, -1.6056015759289313`}, { 0.015055322327029375`, -2.2149497793126045`}, { 0.016879514008231282`, -2.8242979826964802`}, { 0.020527897370635095`, -4.042994389463756}, { 0.027824664095442722`, -6.480387202998564}, { 0.02964885577664463, -7.089735406382072}, { 0.031473047457846536`, -7.699083609765925}, { 0.033297239139048446`, -8.30843181314961}, { 0.03395999392175136, -8.52981668201242}}], LineBox[{{0.5151203861377316, 1.2135522055624848`}, { 0.5164207477678839, 1.5483048231207903`}, {0.5183857687815157, 2.0541609731464225`}, {0.5203507897951474, 2.5600171231728504`}, { 0.5242808318224108, 3.571729423224967}, {0.5262458528360425, 4.0775855732508255`}, {0.5282108738496742, 4.583441723276742}, { 0.530175894863306, 5.089297873302601}, {0.5317079904631132, 5.483705859891545}}], LineBox[{{0.6436987795278746, 25.010338780050454`}, { 0.6455292320307374, 22.35562905058015}, {0.6473620496631909, 19.697489167895803`}, {0.6510276849280978, 14.38120940252849}, { 0.6528605025605513, 11.723069519843662`}, {0.6546933201930047, 9.064929637159771}, {0.6583589554579116, 3.7486498717916845`}, { 0.660191773090365, 1.0905099891087175`}, { 0.6614846987240272, -0.7846232109048543}}], LineBox[{{0.9834119065471986, -30.398323841850594`}, { 0.9862716385182022, -27.363499150740648`}, { 0.9880904990683455, -25.433275282480654`}, { 0.9917282201686317, -21.57282754595542}, { 0.9935470807187748, -19.6426036776953}, { 0.995365941268918, -17.71237980943611}, { 0.9990036623692043, -13.851932072911886`}, { 1.006279104569777, -6.131036599868345}, { 1.0080979651199202`, -4.20081273160821}, { 1.0099168256700632`, -2.2705888633444573`}, {1.0135545467703495`, 1.5898588731768655`}, {1.0153734073204927`, 3.520082741437946}, { 1.0171922678706358`, 5.450306609698075}, {1.020829988970922, 9.310754346221799}, {1.0226488495210653`, 11.240978214482354`}, { 1.0234329868986702`, 12.073125946825712`}}], LineBox[{{1.3633361579926033`, -23.96139302665546}, { 1.3653845584148545`, -21.838138713844423`}, { 1.3673807884132996`, -19.768961268100767`}, { 1.3693770184117446`, -17.699783822370893`}, { 1.37137324841019, -15.63060637662786}, { 1.37536570840708, -11.492251485155407`}, { 1.3773619384055251`, -9.423074039418488}, { 1.3793581684039702`, -7.35389659367835}, { 1.3833506284008603`, -3.215541702204426}, { 1.3853468583993054`, -1.146364256466704}, {1.3873430883977504`, 0.9228131892701867}, {1.3893393183961957`, 2.991990635005287}, { 1.3913355483946408`, 5.061168080743947}, {1.3918226288471662`, 5.566047722574041}}], LineBox[{{-0.4181850281645236, 0.48786009044599055`}, {-0.41482200007035575`, 0.012934992326185724`}, {-0.4129838513068435, -0.24664743084291696`}, \ {-0.4093075537798191, -0.7658122771811502}, {-0.4074694050163069, \ -1.025394700350025}, {-0.4058564594835061, -1.2531740390822232`}}], LineBox[{{-0.16596313043520677`, -2.742303845238846}, \ {-0.16393751723839545`, -1.372912681447139}, {-0.1620767854413214, \ -0.11498758246459051`}, {-0.16021605364424735`, 1.1429375165179678`}, {-0.1599364587378538, 1.3319542522202639`}}], LineBox[{{0.4421350195501005, -0.027813220635722224`}, { 0.4437149702635106, 0.19129193001752087`}, {0.4456799912771423, 0.4637980414889973}, {0.44641436341464613`, 0.5656396473427141}}], LineBox[{{0.6857131599486328, -0.5746461126924789}, { 0.6869347248478941, 1.75625375818956}, {0.6889223288950876, 5.548852923221457}, {0.6909099329422812, 9.341452088253767}, { 0.6928975369894748, 13.13405125328405}, {0.6948851410366683, 16.926650418315035`}, {0.6968727450838619, 20.719249583347803`}, { 0.6988603491310554, 24.51184874837883}, {0.6989026699314072, 24.59260217223226}}], LineBox[{{0.9292295040007272, -6.081059041064456}, { 0.9317058220139077, -2.9754267036460558`}, { 0.9335246825640509, -0.6943335194455145}, {0.935343543114194, 1.586759664753714}, {0.9371624036643371, 3.867852848957977}, { 0.9389812642144802, 6.1489460331570704`}, {0.9404716398334901, 8.018075398878288}}], LineBox[{{-0.2339183780088698, 1.2011072949013426`}, {-0.23263262142780017`, 1.114713132964447}, {-0.23063968624954784`, 0.9808013435515445}, {-0.22665381589304323`, 0.712977764726386}, {-0.22466088071479093`, 0.579065975313316}, {-0.22266794553653863`, 0.44515418590100997`}, {-0.2206750103582863, 0.31124239648855223`}, {-0.218682075180034, 0.17733060707535797`}, {-0.2166891400017817, 0.043418817662746356`}, {-0.21469620482352936`, \ -0.09049297174972004}, {-0.21417650142578043`, -0.1254135314928968}}], LineBox[{{0.13439850892517874`, 2.298964705218915}, { 0.1361708548323537, 1.826157164286337}, {0.1381498329282957, 1.2982264915472799`}, {0.14012881102423771`, 0.7702958188077944}, { 0.14408676721612174`, -0.28556552667063695`}, { 0.14606574531206376`, -0.813496199409923}, { 0.14804472340800579`, -1.3414268721491105`}, { 0.15002370150394778`, -1.8693575448882989`}, { 0.1504226638673165, -1.9757884696786956`}}], LineBox[{{0.24461495317196902`, 3.8783030885830736`}, { 0.24645666943692945`, 3.5398937092825333`}, {0.25015021886645694`, 2.8612160032523146`}, {0.25753731772551197`, 1.5038605911915788`}, { 0.2593840924402757, 1.1645217381762123`}, {0.2612308671550395, 0.8251828851608511}, {0.264924416584567, 0.14650517913029582`}, { 0.26677119129933075`, -0.1928336738849783}, { 0.2686179660140945, -0.53217252690024}, { 0.27046474072885823`, -0.871511379914832}, { 0.27153495772359176`, -1.068160275185452}}], LineBox[{{0.4985707768005375, 0.6516083147297369}, {0.4987355586451985, 0.6523897742974665}, {0.5007005796588302, 0.6617086678653166}, { 0.5026656006724619, 0.6710275614314614}, {0.5046306216860936, 0.6803464549983309}, {0.5085606637133571, 0.6989842421326669}, { 0.5105256847269888, 0.7083031356992522}, {0.5112938555254867, 0.7119461002589671}}], LineBox[{{1.1119967387954965`, -8.472883368335557}, { 1.1123531050025144`, -8.108725015315523}, { 1.1143267519673976`, -6.091923158073985}, { 1.1163003989322808`, -4.075121300833146}, { 1.1182740458971643`, -2.058319443594563}, {1.1222213398269307`, 1.9752842708864762`}, {1.124194986791814, 3.992086128127248}, { 1.1261686337566972`, 6.008887985367288}, {1.1281422807215804`, 8.02568984260715}, {1.1292071898052916`, 9.113883757745285}}], LineBox[{{1.481298552218335, 1.4134796024170546`}, { 1.4837304796901418`, 2.095331988109384}, {1.4855945063074087`, 2.617959003396309}, {1.485738148843521, 2.6582328220312545`}}], LineBox[{{-0.6435544673900526, 4.574948938392378}, {-0.6424323251339867, 4.141942126776572}, {-0.6404254328734241, 3.3675322742774934`}, {-0.6384185406128615, 2.5931224217787348`}, {-0.6364116483522989, 1.818712569279663}, {-0.6344047560917363, 1.0443027167807273`}, {-0.6303909715706111, -0.5045169882171603}, \ {-0.6283840793100485, -1.2789268407160108`}, {-0.6263771870494859, \ -2.0533366932150887`}, {-0.6243702947889233, -2.8277465457140103`}, \ {-0.6223634025283606, -3.6021563982130047`}, {-0.620356510267798, \ -4.376566250711914}, {-0.6183496180072354, -5.150976103210834}, \ {-0.6174233821693478, -5.508387496285195}}], LineBox[{{0.09801853433270272, 0.12477717338889127`}, { 0.09857027100945547, -0.012833934495860566`}, { 0.10054924910539748`, -0.506419696937986}, { 0.10450720529728151`, -1.4935912218213188`}, { 0.10648618339322352`, -1.987176984263279}, { 0.10824859297507593`, -2.4267474266939377`}}], LineBox[{{0.5957810585524944, -0.8246806934933106}, { 0.5978759735869477, -3.1099887320592625`}, { 0.5997087912194011, -5.109379065215778}, { 0.6015416088518546, -7.108769398373418}, { 0.603374426484308, -9.10815973153095}, { 0.6052072441167614, -11.107550064688354`}, { 0.6069139390464469, -12.969355234847349`}}], LineBox[{{-0.19613809078820094`, 2.8922962773133105`}, {-0.19476685304100627`, 1.9108305302884419`}, {-0.19277391786275397`, 0.48438379083923166`}, {-0.19078098268450167`, -0.9420629486101486}, \ {-0.18992469017289926`, -1.5549557684661979`}}], LineBox[{{0.2753614883358367, -1.207597701447789}, { 0.2778518395879132, -0.9314987939471784}, { 0.27969861430267695`, -0.7267515797861708}, { 0.2815453890174407, -0.5220043656250635}, { 0.28339216373220444`, -0.3172571514636653}, {0.2870857131617319, 0.092237276858528}, {0.28893248787649567`, 0.2969844910195354}, { 0.2907792625912594, 0.5017317051808838}, {0.29262603730602316`, 0.7064789193424144}, {0.2944728120207869, 0.9112261335033969}, { 0.294595799828109, 0.9248614788024145}}], LineBox[{{0.5355345210753581, 5.049257840649806}, {0.5360709579042011, 4.789353177664562}, {0.5380359789178328, 3.837296762359454}, { 0.5400009999314646, 2.8852403470545163`}, {0.5419660209450963, 1.9331839317491806`}, {0.5425395918619988, 1.6552877325325923`}}], LineBox[{{-0.17691559181776256`, 2.211739231182909}, {-0.17510190802083975`, 0.958203158094955}, {-0.1732411762237657, -0.3278503612288519}, \ {-0.17138044442669165`, -1.6139038805525683`}, {-0.1697896610474517, \ -2.7133812832450186`}}], LineBox[{{0.6757371341698876, 11.249240327349424`}, { 0.6769967046119263, 8.83178087504945}, {0.6789843086591199, 5.017026232553189}, {0.6809719127063134, 1.2022715900573822`}, { 0.6818866293363879, -0.5533192762764294}}], LineBox[{{0.45024089402689105`, 0.7075856903501254}, { 0.45157505431803746`, 0.6215483524486605}, {0.4535400753316692, 0.49482806399834733`}, {0.4555050963453009, 0.36810777554856644`}, { 0.4557090979705176, 0.3549521173577479}}], LineBox[{{0.2287987171554186, -2.3675136550808453`}, { 0.23168247171881945`, -0.9990863621859907}, {0.23537602114834696`, 0.7536126750922776}, {0.23722279586311074`, 1.6299621937319912`}, { 0.23906957057787448`, 2.5063117123709304`}, {0.2407884225597241, 3.3219580902777412`}}], LineBox[{{0.4804963403124696, -47.948759061783974`}, { 0.4810503695225131, -42.350018202851516`}, { 0.48301539053614484`, -22.492503042563612`}, { 0.48498041154977656`, -2.634987882275908}, {0.48562733220579546`, 3.90246726211285}}], LineBox[{{-0.18609815956065434`, -1.5786999330926843`}, \ {-0.18480217714974476`, -0.6671818298303727}, {-0.18280924197149245`, 0.7345320193027103}, {-0.18081630679324012`, 2.1362458684354984`}, {-0.18074212243000748`, 2.1884228034746958`}}], LineBox[{{0.6653112293362721, -0.16801985421819143`}, { 0.6675230436201788, 3.7525989269085294`}, {0.6693558612526322, 7.0014156492078286`}, {0.6711886788850857, 10.250232371506947`}, { 0.6719106035576426, 11.529901939778274`}}], LineBox[{{1.3956491594594111`, 5.9825063428266505`}, { 1.3973242383899762`, 4.610828482890819}, {1.3993204683884213`, 2.9761685022403164`}, {1.3996528083632709`, 2.7040240813733316`}}], LineBox[{{0.46485350626307076`, -12.817821700443702`}, { 0.4653302014134594, -17.65145815286926}, { 0.4672952224270911, -37.57655534240307}, { 0.4683181332853106, -47.948759061783974`}}], LineBox[{{0.4894538628180404, 5.101911267691271}, {0.4894538628180404, 5.101911267691271}}], LineBox[{{0.45953562858276253`, 2.5164985706374545`}, { 0.46102697565082584`, 4.2975491818179545`}}]}, Annotation[#, "Charting`Private`Tag$438028#1"]& ], {}}, {{}, {}}, {{}, {}}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->600, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotLabel->FormBox[ "\"\\!\\(\\*UnderoverscriptBox[\\\"\[Sum]\\\", RowBox[{\\\"j\\\", \ \\\"=\\\", \\\"1\\\"}], RowBox[{\\\"Length\\\", \\\"[\\\", \ StyleBox[\\\"w\\\",FontWeight->\\\"Plain\\\"], \ \\\"]\\\"}]]\\)\\!\\(\\*SubscriptBox[\\(w\\), \\(j\\)]\\)Ramp[x - \ \\!\\(\\*SubscriptBox[\\(b\\), \\(j\\)]\\)]\"", TraditionalForm], PlotRange->{{-3, 3}, {-47.948759061783974`, 76.10794590360214}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.782572252875873*^9, {3.782572290432263*^9, 3.7825723086895*^9}, 3.7825723595631323`*^9, 3.78257752998069*^9, 3.782577965913066*^9, 3.782579510659724*^9, 3.7826519229261513`*^9, {3.792910940278576*^9, 3.79291094682279*^9}, 3.8143480063305893`*^9, 3.814363341491478*^9, 3.814436708368341*^9, 3.814496853425839*^9}, CellLabel-> "Out[399]=",ExpressionUUID->"84f8bdd8-6591-4961-8440-f642724d34ee"] }, Open ]], Cell[TextData[StyleBox[" So, we have calculated the exact values, without \ training. The list looks perfect. The neural network results come first, then \ the annotation.", FontSlant->"Plain"]], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, { 3.750228610184701*^9, 3.7502286246362343`*^9}, {3.7502286862899218`*^9, 3.750228723944645*^9}, {3.75023582436089*^9, 3.750235825460896*^9}, { 3.7508844568369217`*^9, 3.750884474621216*^9}, 3.7508848262157393`*^9, { 3.7509359974013844`*^9, 3.750936008451459*^9}, {3.782578017496894*^9, 3.782578042672681*^9}},ExpressionUUID->"6b1ba97f-f5ec-41bf-934d-\ 3b30bcf0b604"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"c", "[", RowBox[{"{", RowBox[{"x1_", ",", "x2_"}], "}"}], "]"}], " ", ":=", " ", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"j", "=", "1"}], RowBox[{"Length", "[", "w", "]"}]], RowBox[{ RowBox[{"w", "[", RowBox[{"[", "j", "]"}], "]"}], RowBox[{"Ramp", "[", " ", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ".", RowBox[{"{", RowBox[{"x1", ",", "x2"}], "}"}]}], " ", "-", " ", RowBox[{"b", "[", RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}]}]}], ";", RowBox[{ RowBox[{ RowBox[{"c", "[", "#", " ", "]"}], " ", "&"}], " ", "/@", " ", "\[DoubleStruckCapitalD]"}]}]], "Input", CellChangeTimes->{{3.750913632567284*^9, 3.750913659428646*^9}, { 3.782577651083312*^9, 3.782577677834599*^9}, {3.782577711715455*^9, 3.782577722814337*^9}, {3.782577997685472*^9, 3.7825780003344316`*^9}}, CellLabel-> "In[400]:=",ExpressionUUID->"3dab0c9e-d1b2-4ff4-949d-65bbb8988bd6"], Cell[BoxData[ RowBox[{"{", RowBox[{ "6.796555739345161`", ",", "8.205609191046053`", ",", "4.765388068025791`", ",", "6.604675372830972`", ",", "5.86293206131122`", ",", "4.075829802816468`", ",", "2.3612888038036406`", ",", "2.4976797816635647`", ",", "2.1226583824354286`", ",", "1.8755665788867022`", ",", "1.7211203107329043`", ",", "2.017693720308384`", ",", "2.187580308009464`", ",", "1.4940328200577184`", ",", "3.4464306190335847`", ",", "4.952193861692351`", ",", "1.0775334514443102`", ",", "3.9393662831704965`", ",", "1.015705955629798`", ",", "0.7604957586481191`", ",", "0.8051442817845871`", ",", "1.3150396609006663`", ",", "1.9369532291597409`", ",", "0.26918328529344127`", ",", "1.3010561553385447`", ",", "0.3647488448492343`", ",", "0.16279181645369256`", ",", "0.7647767767701605`", ",", "0.31767674585603256`", ",", "0.18065480193571903`", ",", "0.11595502140008396`", ",", "0.3131633752691618`", ",", "2.4278739505861693`", ",", "0.13074612966917787`", ",", "0.07777389854804628`", ",", "0.13766130829415335`", ",", "0.04638105805406134`", ",", "1.1120093041495647`", ",", "0.016862231671089134`", ",", "0.0957026892616426`", ",", "0.008262744178464843`", ",", "0.00009576493450769163`", ",", "1.33587969621448`", ",", "1.356395884346119`", ",", "0.10858307986689886`", ",", "0.18732610953783535`", ",", "0.07631608437347559`", ",", "1.8068907047851077`", ",", "0.2820373918586405`", ",", "0.10303785149118472`", ",", "2.631877229328559`", ",", "1.0248975304114945`", ",", "0.6691520224445551`", ",", "0.60030246744763`", ",", "1.2751945834527731`", ",", "0.19880267080857106`", ",", "0.536999837322724`", ",", "5.887848451653303`", ",", "0.6846903321272881`", ",", "0.31067132146333165`", ",", "1.732937668452692`", ",", "1.258974373840472`", ",", "0.674542036317672`", ",", "3.243951592022469`", ",", "0.8338847166458612`", ",", "0.5067214442326498`", ",", "0.5477752503125473`", ",", "0.4970296360564046`", ",", "3.476766569503866`", ",", "0.6636731215466014`", ",", "1.6021087136448173`", ",", "0.49985815951345103`", ",", "0.4724146390297008`", ",", "3.4518002176376896`", ",", "0.5822056471235726`", ",", "1.7859469832278752`", ",", "1.4003131141723202`", ",", "0.8903948211117623`", ",", "0.9161593926253992`", ",", "2.118517843474322`", ",", "1.0398847203581454`", ",", "1.09905594180222`", ",", "1.1105029530335386`", ",", "1.4935141211725664`", ",", "1.2578147648995248`", ",", "1.5054835430340674`", ",", "2.2558019954757356`", ",", "2.0141779584430566`", ",", "2.546764793181751`", ",", "3.597258530909146`", ",", "1.9917147110346054`", ",", "2.2380364759433107`", ",", "2.2527772640361134`", ",", "3.998131008792554`", ",", "2.7361118755751512`", ",", "2.64153235616984`", ",", "3.5460552893829345`", ",", "3.7908945886925274`", ",", "3.8536965514944983`", ",", "3.813715874054691`"}], "}"}]], "Output", CellChangeTimes->{ 3.750913662316695*^9, 3.750993499936648*^9, 3.781797350846939*^9, 3.781838279049089*^9, 3.782572069230461*^9, 3.782572383030019*^9, { 3.78257766214014*^9, 3.7825776922835093`*^9}, 3.782577723389847*^9, { 3.782577987607085*^9, 3.782578005663097*^9}, 3.7825795011470137`*^9, 3.782579571404808*^9, 3.782651937669055*^9, 3.792910974045093*^9, 3.814363019076315*^9, 3.814436727136848*^9, 3.814496890741095*^9}, CellLabel-> "Out[400]=",ExpressionUUID->"7f52e1e2-77ac-4375-9eee-0c8e58cc37f7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["y"], "Input", CellChangeTimes->{3.750993508975068*^9}, CellLabel-> "In[401]:=",ExpressionUUID->"4b1b5a3c-9c0e-4369-9e55-2358090f336f"], Cell[BoxData[ RowBox[{"{", RowBox[{ "6.7965557393452425`", ",", "8.20560919104595`", ",", "4.765388068026213`", ",", "6.604675372830124`", ",", "5.862932061311178`", ",", "4.075829802817046`", ",", "2.3612888038039777`", ",", "2.4976797816616236`", ",", "2.1226583824347647`", ",", "1.8755665788868465`", ",", "1.7211203107319777`", ",", "2.0176937203077565`", ",", "2.1875803080074667`", ",", "1.4940328200538784`", ",", "3.446430619031501`", ",", "4.9521938616928605`", ",", "1.0775334514434505`", ",", "3.9393662831679888`", ",", "1.0157059556309584`", ",", "0.7604957586465662`", ",", "0.8051442817882`", ",", "1.3150396608960697`", ",", "1.9369532291582428`", ",", "0.26918328529259994`", ",", "1.3010561553403475`", ",", "0.36474884484534037`", ",", "0.16279181645145732`", ",", "0.7647767767699026`", ",", "0.3176767458524502`", ",", "0.1806548019361814`", ",", "0.11595502139743316`", ",", "0.3131633752651715`", ",", "2.4278739505811826`", ",", "0.13074612965915858`", ",", "0.0777738985380306`", ",", "0.13766130828783488`", ",", "0.04638105804196039`", ",", "1.112009304136168`", ",", "0.016862231661922175`", ",", "0.09570268925419764`", ",", "0.008262744169240695`", ",", "0.00009576493343653943`", ",", "1.3358796962167496`", ",", "1.356395884328153`", ",", "0.10858307984825483`", ",", "0.1873261095219062`", ",", "0.0763160843490467`", ",", "1.8068907047781897`", ",", "0.28203739184374144`", ",", "0.10303785147290974`", ",", "2.631877229313778`", ",", "1.0248975304112622`", ",", "0.6691520224374254`", ",", "0.6003024674264495`", ",", "1.2751945834393892`", ",", "0.19880267078497857`", ",", "0.5369998373078597`", ",", "5.887848451640124`", ",", "0.6846903321181641`", ",", "0.3106713214538718`", ",", "1.7329376684445916`", ",", "1.2589743738326074`", ",", "0.6745420363093921`", ",", "3.243951592007377`", ",", "0.8338847166410188`", ",", "0.5067214442079837`", ",", "0.5477752502904076`", ",", "0.4970296360351974`", ",", "3.476766569479014`", ",", "0.6636731215138012`", ",", "1.6021087136088816`", ",", "0.49985815948649337`", ",", "0.4724146389915234`", ",", "3.4518002175943354`", ",", "0.5822056470638303`", ",", "1.7859469831655905`", ",", "1.4003131140748937`", ",", "0.8903948210049459`", ",", "0.9161593925082121`", ",", "2.118517843383687`", ",", "1.0398847202458634`", ",", "1.0990559416925705`", ",", "1.110502952915166`", ",", "1.4935141210299527`", ",", "1.2578147647450801`", ",", "1.505483542881926`", ",", "2.2558019953202963`", ",", "2.0141779582532555`", ",", "2.5467647929765`", ",", "3.5972585306623404`", ",", "1.9917147108140967`", ",", "2.238036475704667`", ",", "2.2527772637951764`", ",", "3.9981310085462667`", ",", "2.7361118753122717`", ",", "2.6415323559012442`", ",", "3.5460552890648973`", ",", "3.7908945883847522`", ",", "3.8536965511846537`", ",", "3.813715873746776`"}], "}"}]], "Output", CellChangeTimes->{3.75099350978653*^9, 3.781797354175235*^9, 3.781838281276698*^9, 3.782572075513533*^9, 3.782572385387168*^9, 3.782577666384523*^9, 3.782577697668028*^9, 3.782577757204832*^9, 3.7825779904445143`*^9, 3.7825791234987307`*^9, 3.782579503998672*^9, 3.782579577719014*^9, 3.782651942737522*^9, 3.792910980286364*^9, 3.814436730881617*^9, 3.8144968979119062`*^9}, CellLabel-> "Out[401]=",ExpressionUUID->"2ccbd760-337a-46cc-8a93-24bef2515ff0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot3D", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}], " ", ",", RowBox[{"c", "[", "#", " ", "]"}]}], "}"}], " ", "&"}], " ", "/@", " ", "\[DoubleStruckCapitalD]"}], ",", " ", RowBox[{"Mesh", "\[Rule]", "All"}], ",", " ", RowBox[{ "PlotLabel", "\[Rule]", "\"\\""}], ",", " ", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]], "Input", CellLabel-> "In[402]:=",ExpressionUUID->"ba4ce80c-d4a8-4789-8fe0-96b4dd304fd7"], Cell[BoxData[ Graphics3DBox[{GraphicsComplex3DBox[CompressedData[" 1:eJwN1Pkj1PkfwPEPcjV2tKvcZ2xqs5QUXxuvj9YtlSsURsq5iZI7V6FyhRKV VStJSk2RM96TppSIsAmDcUw7isxgzIwZ49sPjz/g+ctTJyDCNVAcw7ATP0j8 EJLLucePXUdxtDfxp4rR0XB9x4FHRmq4gbdvEfGuBIWQo9p48A4Xpd0ou2UT qo0rNBmWuJ0Qo2x+Ydo65/4OYmpeTb2UV8B3WXXJHHQVIjOdkrainlVElfSR 3PGXKm5BoE5kywmRzsPuCuemFSgR84qpiFLCz9lrumUk8pF4p7fvh6FF9Kh8 1q3SeQOeRhDYbvuJh+y/Zkv7BA/ARkFgwLcpcfx66U2SHpuLNH1HS0/b0NEk VnAZBBL4r1b4NQ6Xg/ru19N8jMZRiVaoi4kAw1mZEe/JCRyUZlLIPHL4I9Td pqm4iougr5pw2pC/hOxi8htULR+Cu/XpqOeXBbBGubIYP7iEXuyr/lCjPQkJ uaybe/Uw/E+xuJS2XUtIt/sXM4NKJjza2a76W6oYbhlY+nL03CI6wi02FDk0 A/2NOyfvPy6s7boqpGUtoM5qETHShAuHogNNHQsJuGxzkc3MexY6qym6rRi4 BuTHvkxCjwL+vHkl6Wv0d0Rl5256lDKMsM4TDVct2CC6Zbwud+YbIkX9G52Z KYS4aIe4vgvy+GfppIDzn5iozm/7hG7hNFDSfabccRbQHlyK9ZdmoNHDlhed vSYBS07fJfBgggpFNZxrN40idzgLI92m4VDkMKv11QzYxsVq5qpPIcvMecnr bvMIN5SRDl7PgcXcMv3Xh8dRzbl7t5Q+L6HUZZeH7asiqD8UlfxaagzV3o9X LzvShQ69br243/wjSDW6QsaGEfSnZHuN6iIL2a/z3Kf9cQl2GEdX7Xs+jDR2 eM6OsEaQeRDvMsFrELwOtkdtWfuMxq8fdjKdaUL4B1qLzycqFDl0hsfwPyGb dTTtivQZxFop+/WneCYs0FrPOFD7kUZ8woUigzHEenL5c6/7ADzQt2U3x/ah X0hF70W8fvBaUHR5ptUBqeFpZk3yvUh0qSR9Lrob4SGNkeZPWsEw9fiKBN6F 7n14OP3iLB0i014Hjq0fAMnwKcMxxU7EM9bQCmrgoau30393OCmBpyjGGt8p fYtKZTdd2HOjH7SFqdKOLyhAqS5VnE7vQMnd9nanhzsRLoeSV5m1IME6ZPtp 3xt0LEmpopk/AHd0MymTZS8hrWObnXoDFekFvSesGbUjbHWVuA/dh4K6cp5y 6yt0TeLTx3EyCzU2llt3drLhEseue+BmK/KPcpv/bPEYsJh9ezysCyCPeJWX tXoPGQcFJ5++1Q9YaTqZl9IIBp4Bjn/fSEC1e9ZP8Hc3AHbOgEKcTYX39O+D tXgaBK2QpSoDzwKGqcjVqKqAxmP/o9O7ydD+JLGKGLuANqiFHX9F4oDqdr5N vXIjDO+uHn5TuICUdVq2d9Vy4LvPTOSaWhOoePgGb948gKoC5t6qdLXAaK+V nq4TgpBT4kXnCocBO6Pg7LzSAVKCsBWBdTu0ytYqRtt+QKm8rFNRl2th2PZ4 T2ozFTqtroVRvTmQz7czl5oRgpUoo81BpwvyDW/8o8UeA1yu8MoXuT6Qy1BL oi92Q+uZ2m8rWl0I/zvYkezfDOe/JSjMKPYC7/c9hs8q+LAhXLlyE1ESlxH/ iR450weGmX0lu4TfUTpjbnElkAU/y/REFqzvh1023qMQwARyVF7q01AGtDlK SbU4DQKeU61NmGIg/wcGGTW7p+DoMWnl+IURWFzIVyx4wEKUsykRxsFLkG9W V14fRIOGl9I+iVsqwT++9ZHvmXdwsuKbsqKQBuvd2e6nIiZhxTrEXtVoAk6M GGTYF4+CcZN1aBBRgvKlTKS3NVcJH5m3I3tWj8Lge0QznGegOB6hVsBkgIZL 5sRT4jiYiBVsDcr5CJgfiSs72Q/Kjn4Kst7jUPy4IYues4hwA3xIvVkAUvqk S1VHxkG/v2Lt/hYWNHlvPtSutwQmUuquTDU6PG1Q+qRJnUZBJDPDoSIGdM9+ OZrwgg7dseUHQq8KEMn75HTpoix+lFIcQgqbgInGm06imP+Qmao7ZvTkK4Q6 ex1nh09AuWyN/kaPUTSpz5iSN6VD3x9qmaaCSbhgqqlt7E5DlI8my6SLEyDs CL9cLzUF76K51CHLz+iaK3bCo2cc3MziBw+ypiAFvv4VpClE2Ku21bBeAk6W MXpeu5kBtH+l/kjKGEM4TSasZy8DiOcoUqGuDNDZHqWwaspGd0bU0N5yPsg9 s9LK6GaAGzOSOLztLWCseYWa1XHw/W3s/AiHAYk9O52W8+6i1B3Gpev3jkHd XGPBwekv8MTs4rE/IgTAKm885fA3AZd+3qtF3MmE1XjCHr3YZoTpt70I/2cS uPdBZSiECQ3sp2OFeWxkX/WvnsVVIQzGdyaZU2bBfECc3F7BRFiiV9Pj4GWw HeCu7YyYg+C6R0zfhR8fSKq000ieBX5T8e6lmTlQtewpaXHtRP4r91N/d5mD ooc+BRuDvkO3rFnOXMWProaaxKYFDLeW5uUG7maBaXlzQ9GXVsDeKG/zu8uC rIiC4xY3WcBNvNKopv0KpVowH7cUseHNnu1FeDcLbg/nHd5bUI/84XpbGZUN NgNfyuWvseGkBtmpWXvix1e3bohgcIGtztRtY7PBxcLVc5tGKOp9vkIS114C gkFoQCC+ANvvRhv5ztIQnUOaiVbkwckDa2iqcRH26+b70qO/AXal8usEQRz3 Dcm26fbkwP6aAr958XGk/czPQ1YDwzss4+L4ZstwUEzl67EtMwi74mj2hrQO T81WzznvvwyiLvGipJQl0FOWSzTqkMPbIxRzNOOXoUVbnp1d8hLJPK2x3DC2 BjWMoZ6YYi64NFDv/M+oF7GiBNUp/4nhKjs9sAeIC+WhlxLfZnTBVNXPimRJ cXxjjaau4QgXtv5qXqnkwkFlKqBuIJTHo1onnWw28SEk2ang3SQdZDyTb+dN SeJtojAluyw+bLYKzM4v6Ec7bto3jOhI4veSbp9KylqFe9Xi+9PrBgF74LzX 1U8Op8UFxFUFiEA2yGxgNmEEhei9zaK4EfEKPLq4IkcEvsoiQrHxKOqUyB7x GyDi9UNhRwol1yD7wEyu53Q3OhIyHJt0noj/H3tozV0= "], { {RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[GrayLevel[0.2]], Specularity[ GrayLevel[1], 3], StyleBox[GraphicsGroup3DBox[Polygon3DBox[CompressedData[" 1:eJwVw2fbqQAAANDXyojIyMgoVPZIkhWRZITsJDK+v//v/rp773meg79/92/r z8/Pn39t/zssVsAyoVk7YPUHHD6n1+KygTYX7EaQeNLr9NijgMcJgk4b6HK7 LEDIC/lsTrcLCLYCHhDyQF6fw+aGwUYr6Hf4wpFQyOcFEHcMhfyhCATC4RAU 9EcgNGzHo1g4nYARvy+EROMxCI4iQCaRiuLk9/2h0iiciCHJRCqXSSWSbJIk k3E0HY5l0DAWiZLxHJGpYYVsPk3kqgSFZmKJYoEiy0wjguWxdAHLU9k0m0pW mHIuVcVqzRJFVPBxPlsok3iJqJdorlSkAv4gXinTpXqxVmBYssrSRLVe4oqF LMVWU8FIYxloVel6s41xtWKzNmg3sA5TwXtjtj8adios02/zDXY0aXbb3eag M5zz7a586QpMB7f3ugO5L4wEaTSsjPuM0OBbC3E1kib0RJyKkwUnaruH0JnP 1sPpRBI5eiFzG1Faz3ayeunNxvO1Ig84SZyOZ8PVZqsuVoowzxBoi18+VWPW e6znQ0k5KpJw2O65QW2hyoZ6Uta7zfG8Pe+3m/OF724Pq52mHPanx26mrg76 +Xo4qdJxw19ue/20P+vX89E0dO3x0e/m9ahdNfO25O/6Vdys7lfzabyeF/Vt fo6K9jG11+1pfo3n7fI138ZJ/76Mvy9rcBQ= "]]], Lighting->{{"Ambient", RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, { "Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{0, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, VertexNormals->CompressedData[" 1:eJwNlnk8FPgfxm25GknaCuPI+StWhSKEjyPpYkvOUsmxTSuJokIiV2mjkiuK HIVWaVk33xw5xjHDMBjGzBgz5saWKNfPH+//nj+f1/N+NHyCnP03iImJ+a2z cR0pxm2y75oIHFTcXB+Jt4FpCDVgrrwTws/5e1Yr8uF54FappQAaBM4cNos2 wUNMQmLMyKAIZivm0vukWtF3QvZKdkwP+PneRg8P0AGrqx9a0siDAEy0WIJt N/RaJo63evHgddShD4lyDMRNqXRbK+yEpFuBVu+uckDeixCltjAJBtjQw9EP iVA2Mf9UfUwIxxsX3lkF9KA3z7aKAtUH4Egawo3WCeEv3erDr8WJYBAnMWYS 1A8RV0dGO+Z5UEdou1JOo4AeJDObModgs798jp+BED5ekQiM6O1CsYqipkAy GTDtNX1/aYlgn2FKRcRiMWgzTmBaHYbgdfpGo8JMPmhciCWotZDRaYyJGklu GByNWOr6x3mg2WqwYEWgoakmSpgmux9kIlAMiAtA1/+VQ1xBM/KtaPivqoAK LqVbZnZ7T4K6vb05LoqDJLUi01jpA+BrLfFPQRkJNpneLDrXIERVn3Xwc6Z4 +E69fBMu8WAbx37PkzdDMOusHVm9kwpFP4Zqul6TwILCsRXbJkQvlb7pRO4f gO+5IQ7V1tPQbcqovBXLQDMbZ5drUilwSkrDRpHHhlWpIxYWHymIMXu/a5XL ALHcFDY9cRwOXc9t/3sfF8ERoZej4xh8vF2X9/dvTPg8FdNa6scG3yCfByvs EZC9SdN/WT8COa4liod7+fDfflWeKpEEYQSFAotL0/Am1bOJqdwH04bPNC3j p+CXm19uTdcMgmSVmZy4Cx/yS549kN9KgQebIDyjbRJmeDs+dDUz4E2zzW4H xiQ8slHJeHCKBfGZrz75XY1D/LyL6ScY05CVrP+3Po4EVLGmzN+duZBnJmEf tkIHn83RnerkXqAlBj5WW2HBz/QtAUvibEDTmtmdD+kQwe/WyNemoAOt7+x+ /MoBK+wW22YrKhT7NE5Vy45Ck6zaRYUULij0aX5wPdsDws3Hj0wuT6NBf6X0 1Xkm8GdcQxeYDeCk/cvI0jURKNtlGk+HDUD+xCruSzIJOjgs54hDFBSTKeZz KYYPZZvpEcfyeuCUjVOEEnkCHvbNF5er8OHJczomc5QI/rP4IKbZJOLPRV54 yePAtaXRu5c39kGF4/VTgykEeFVdb7JPQQThCYb8lYs16/kd3k89BHBvTemK qTwVUj1YMvnFJHA6Xr4q59iGqt9+zRJJiqCYqfs4RbUGjtrHuVMGaegp94Fo Yr2vyg3bfXrk2pBsQlFijFk/ItruIqTgRPA1XM/ibUELsilpmCbQSiH/tX+7 3asZCOss7yP7PUPcUh+V7weE8O+ZhTINHQq0PwmqVyc2ozC1dk+xcCH0RQqw 8XbD8HNOwnjgbBVqghDVczGT0Cfz1WLlGxeWKQ/jU38hon/9nh3TqKWjDV7H 8fI7ePAyGUySh1sRL07JeiBnCDadD5W/+68Qhpvj9mXIlEP54reOiAAhcovA UzeOjYB581vco5p+pH270WjPHjYimmNttzqz4IIydkwAVLTUtvsDO3IEBLUD +Z8/ccHvaPz70JAa5FpRmM5sEaH8a50eOUlEKF48GdMQ2Iv+YTm+UD3EB+5E 5lMPhwm4mGc3kmbRiXD4RUvI56ENqQ2dA+/Xd+rqcY3vgwRELsx0KVblwGnb TXuv3WGCHNGMds6TjCojsE+sNvLhOq28rE2aArisSa8/MiaRoXmW3I/mChTo tBf7VMgF7qETKR7iTPR7qpYp5hETNVxk77VupoO3u6aR4Y3PaHdgmov1ggjc zJI2+Xd0A0v3p9DrxDhaPqg7X9I6DScVn99xUKLDsTdRUbjTk8h3tCiBqEtB O471zgUjNtgq5HF6bcjozlo2VktaAP8Tu5dY5DsExJRywx9WVNTsrdOxfZiL Ckv/yBBNDMPDDWu1b3EMhOJP3J/KnoJFOWV5njEDxIfaviwkd6B6Sq4zV1sE tyrTPFvn+8FnDnP/1jAdyUm7eqZMs8HljPRVd28q7DW9fHnLlkmUM2td4TXO gMWsX8cmbjNha9J7yzInFhq/O2fmSqFBbFLWIHQxYHTN2VChkI3YTS+WMdZk YJHshzTLmYBxCkv9/HUMjdNVaiSe8YHGHNaLSyNC2kJTwGwaG1k4qrksGdEh 8v2drzbVNGjgqOSWKdDRmeWmY8RGDuTeaBOn1I3AjGTYiWhpLmLInlUOuEFC 9L9k242uMADflWGdGMxFO09uc0lqKYGC35UYsu5MWI2jU1y8BlH0spUUX12I sFVBVKl5IuTqY48yxfkoonbJfcq7Hpa/lfQKeuhwNDFnsPItHeV9epGeqs2F PeHhG/xxQ8AvjrrVOcBCI+dDoy90MIFoZn/jq8QoaBlIO9ACeajN8vzOeEsS GMa67Y9NmIA3Eef/dJvjI/cqtdrF7jZwWHU/R75ChU0zX4bm9k8hNePlorB+ NmxLutbil0qCei1cUYuyAJWe7svKvt2BgkSzB9/CONjNMJwkGQIUZdyl6EJo hbyEzptWdaPg4NrtgL8nQDL8cL0kTin4Gu7679DcOISXW4aeEeMhmfq6BdMX Y4BxII167RqF6l1J22wThOj6XIh+XGUQlDsTPP78MAKShJ9nDGb5SA9Hf8l0 H4BKvZLDk1ajsFP67so7Nw6KQ4/9vX9loC173umcfT8MBjV2MRpJAvRqCt1L fk4CTMh84drZIcjplkvKiOKhmdJLaNlnAnYZk90KlUggJesqv+4pVLx6/WMP dgoZWQ74srv6ASMb2GEzLkQHvYJ61L/XQdHKc5nVtSG4cADufcELUTveXLZm Rztk7NJ8vz19EHSCKXKPNERo7ajkYQXFBqSNLbus6T0Ix4KCyeW1LJQA50+b 6LGhsSBY9fNvBNgePfFHvbkAkZa8HDxth1ERRrZ1RY8EukseYgsqImQQnHwp d3cHmF98Isk4OQDn45tw4xgRqu77U2exqgfh6clCs9r1f8FpjG0xESHT9H0H K3B4eE0d/3QziAhM+btUpqMQJRcFPKr8QQIJLdo33n4iPDb+1sr+IkIng/cK WkorYJLCyg5Z98H/AYKDA0s= "]], {}, {}}, Axes->True, AxesLabel->{None, None, None}, BoxRatios->{1, 1, 0.4}, DisplayFunction->Identity, FaceGridsStyle->Automatic, ImageSize->600, Method->{"DefaultBoundaryStyle" -> Directive[ GrayLevel[0.3]], "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" -> "Globe"}, PlotLabel->FormBox[ "\"The result with the trained data points\"", TraditionalForm], PlotRange->{Full, Full, All}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic, Automatic}, ViewPoint->{2.902419139901904, -0.7521961438053548, 1.5684910256598399`}, ViewVertical->{-0.4487077203830953, 0.11628789664723027`, 0.8860804177736743}]], "Output", CellChangeTimes->{3.8144367632569237`*^9, 3.814495701482174*^9, 3.81449691350147*^9}, CellLabel-> "Out[402]=",ExpressionUUID->"d79b85e7-2205-4033-87fd-e39b7e4060f2"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["", "SlideShowNavigationBar", CellTags-> "SlideShowHeader",ExpressionUUID->"9f466dfb-f4ec-4c9f-8e6b-171a43f48dc9"], Cell[CellGroupData[{ Cell["\<\ Hence; There is no generalization (even interpolation) in some zero error \ solutions.\ \>", "Section", CellChangeTimes->{{3.792911013876834*^9, 3.792911020378512*^9}, { 3.792911327121614*^9, 3.792911384516658*^9}},ExpressionUUID->"b01f3e8a-c77c-4d08-bd0a-\ d1c197418bd1"], Cell[CellGroupData[{ Cell[TextData[StyleBox["See the data:", FontSlant->"Plain"]], "Subsection", CellChangeTimes->{{3.744002663399671*^9, 3.744002696764913*^9}, { 3.744002902088481*^9, 3.744002905941862*^9}, 3.744010525517058*^9, 3.745480091273404*^9, {3.745588739210264*^9, 3.745588741285788*^9}, { 3.745590699642372*^9, 3.745590703264373*^9}, {3.746291860142119*^9, 3.746291861190962*^9}, {3.746292028069665*^9, 3.746292054923457*^9}, { 3.746546106955564*^9, 3.746546110999503*^9}, {3.7468490368241587`*^9, 3.746849041420682*^9}, {3.747411897438089*^9, 3.747411901496002*^9}, { 3.747412461272674*^9, 3.747412490036854*^9}, {3.747584004609747*^9, 3.747584006696958*^9}, {3.747709115881094*^9, 3.7477091475197687`*^9}, { 3.747710619791629*^9, 3.747710627094282*^9}, 3.7477106575929003`*^9, 3.747710697743372*^9, {3.7484873581016483`*^9, 3.748487365674474*^9}, { 3.748505877235465*^9, 3.748505906480434*^9}, {3.748506002231324*^9, 3.7485060104975977`*^9}, {3.7485407111189327`*^9, 3.7485407208364697`*^9}, {3.748540943386221*^9, 3.748540957347314*^9}, { 3.748543294073736*^9, 3.748543300651854*^9}, {3.74958599168602*^9, 3.749585992538477*^9}, 3.749586033525942*^9, {3.749615078009986*^9, 3.7496150786951323`*^9}, {3.7496954807027082`*^9, 3.749695481608212*^9}, { 3.749696350605179*^9, 3.7496963659731903`*^9}, {3.749748113795589*^9, 3.749748114698409*^9}, {3.750228840936438*^9, 3.750228849455237*^9}, { 3.750228908648554*^9, 3.750228913013723*^9}, {3.7502336291765842`*^9, 3.7502336321601477`*^9}, {3.750325106050521*^9, 3.750325167097307*^9}, { 3.750856673894622*^9, 3.750856701314238*^9}, 3.7508567373576317`*^9, { 3.782576474653338*^9, 3.782576479615649*^9}, {3.7825796148208323`*^9, 3.782579624767108*^9}, {3.7929113458365517`*^9, 3.792911390363769*^9}},ExpressionUUID->"57a9fe53-5def-4873-b68b-\ dc8ad3d55ddd"], Cell[TextData[StyleBox["The full plot of the neural network function looks \ bad.", FontSlant->"Plain"]], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, { 3.750228610184701*^9, 3.7502286246362343`*^9}, {3.7502286862899218`*^9, 3.750228723944645*^9}, {3.75023582436089*^9, 3.750235825460896*^9}, { 3.7508844568369217`*^9, 3.750884474621216*^9}, 3.7508848262157393`*^9, { 3.750936018313963*^9, 3.7509360329248962`*^9}, {3.782579648248378*^9, 3.7825796672662687`*^9}},ExpressionUUID->"271e85d5-1907-4773-95db-\ 55b91f24dd2a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", " ", RowBox[{ RowBox[{"{", RowBox[{"plot", ",", RowBox[{"Plot3D", "[", "\[NonBreakingSpace]", RowBox[{ RowBox[{"{", RowBox[{"c", "[", RowBox[{"{", RowBox[{"x", ",", "y"}], "}"}], "]"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]}], "}"}], ",", " ", RowBox[{"ImageSize", "\[Rule]", " ", "600"}]}], "]"}]], "Input", CellChangeTimes->{{3.750913682836164*^9, 3.750913730993003*^9}, { 3.7509137905625143`*^9, 3.7509138186833973`*^9}, {3.750913871640225*^9, 3.750913874458106*^9}, {3.750914024255906*^9, 3.75091403203152*^9}, { 3.750914084013558*^9, 3.7509140852316723`*^9}, {3.750914127185155*^9, 3.75091413033455*^9}, {3.7929110293239803`*^9, 3.792911035171389*^9}}, CellLabel-> "In[403]:=",ExpressionUUID->"6ed0261f-ec8e-40a0-90db-c56d52e60527"], Cell[BoxData[ Graphics3DBox[{{GraphicsComplex3DBox[CompressedData[" 1:eJwN0fkjlHkcAGBGZmLa0a5yn1G2zVII28rnZUNIrSsdbjk3R1m5chXKGWqW StpEh1JTjnHEd9JsChNhnYNxTI2QGUzjGGP3h+cveDR9w538cWJiYmf+J/G/ oBx++Ur0JprdYSNvujgLGVNbjz7VV8Z0T3qQSfclaMRspbpjfwuQzc2S21bB GphsvV6R8xlx2o5XJk1zLu/B8fmbydcyspihRcfmY05CZKpZ1EzuXEfSOHfJ vX8oYQeJ9PGsLUKk+YRR5lC/CsHiJy6URcpjFw+rOafFryBc20mPD4OLyKR8 1vmBw1Yshbhmvfu7ZXT4SxbBPbAXiCJ/35lJHPZX8S0vbZ4AqXmMFJ+zYqHO +bwMWJPAdlpgN/gCPup+WMt01x9DrxWDHY3WxDBueng7JY6PUowKOKeOfwTz UqaiE04E3RXEc3orS8jmQh5VyfwJEIzORdZkrMEG7dpibP8SemVZ8aFSYwL4 V7i3zLTFsN/EY5KaDZeQFuMHU90HHFDWaFH6KVkcM/cvfj1ycRGdEhTqiWwb wOmyCz/3swA2DK8LmZkLqK1CRIowEoDQ19/EroCISTWQrabbuehPNdFdOf8N +Erx4BA7ZbGahtWEL1FfEZ2Xs/1p0hBiNZyhXj/IA9Ftg0050zPIK/LfqPR0 IQR72cZ0X5bBBggJvpf6OKjac8+4VsEU/HTTfdIF4wLz8dVobwIbjRw3v+Jw YgLcbVIN11w5oEhTChXYTKGIvQ7CCOcpCJsf4ja9mQbrmGi1HJVJZJ4+L/mX 8zzyGyEQAqX5sJhTovPP8TFUebH8tvzAEtrJdHzSsi6C2t8jE//Bj6Kqh7Eq Jac6kEpm05UjBz4Cvs4J0rYOo98kWyqVFrloQ8vNUuPjEuw1iHpkWTOEVPe6 zQ5zh5GJiyCDeKIfThxridy1MYDG/jpubzJdj55cH25076MD2bYt9MJKH7La xNQoS51GI7ySnd/FcmCB2XTelt6DVGPjLpN1R9FQ1dWBLpdeeKxjzWuI7kY/ eJHbRcs9EGIo7/hSvRWSQ1NM62W6kOhqUepcFAOpJdZEHHjeBHrJfqsSWAcq //Bk6tWfLCgPovuPSveCZOik3qhcG1o2UFUPoC6j2sjUn23PSmBJctEGfxe/ Q8VS2y8b3+wBqbh4gt0rGtAqiuWmUltRIuOwzbmhNiQnVZ24zqkCCe7v1n2W b5FPgnxZw0ov+FRcok2UvIaU1t02KlQ60g5oJ27ot6B/vCdJlugh5FeXLis0 vUE3JPo+jlG4iMi4d6itjQdX+TaM3ltNyDvSeX7g4DOY1VYydj2UD7mk68uZ 6+XIICAw8dztHgg7e5GynFQHum6+dnduxqEqY+nxlf1U+P7kMCLNJkM762t/ FZYCAasU/AP/PyFg3ZdQqaQIqs+8T0/tp0DL8/hHpOgFtG4Z4vfGiw9Ke1as ahXqYGh/xdDbggW0mV2/p6OKD1/dpyM2lOtB0dUjcMeOXtQ7MfBOsaMRRros tLXsEQSF4cgXC4ZAlyLt4LDaCvi1kNW1Qy3QJFUlF2X9AfmoRIRFZlTBkLVf Z3IDHdosboTQT/KBmWRzAD8tBAtRWrOtZgfk6d28p84bhe7FnGuftnTDljTl BNYiA5rOV82sqncghzRnO4p3A1yaiZOdluuC5Z+N9V6WrcCWGfkH20mS2Gbc d6yI6W7QS+8uMhR+RWHjc4ur/lz4fnNnRL50DxhanRwBXw70xeQkvwhmQ7Md Ht9o3w9YdoUGcZKNdGi70yr3T8JpH4JC7MIwLC7kyeU/5qIjGYnhBoFLkGda XVobwATqa4J7/K4HQEihPPU4/x7Ols0oyAmZIO3CcwkLnwDhLwGHlfTH4cyw btrhwhEwqD8UHECSoHHPiLR/zJHHhudtKG4VI9Dfjph682x0nipdtcZhg6pj +vgL0hgYief/GJD9EZzo7gKpiR5QsPOUlTo5BoXPqJms7EWE7sCgSsMa4HW8 rj46NQY6PWUbD3dxwbNT8/cW7SUwwqs4cZRZ8IIq36dGn0LbzEz0BslsYMx+ Oh33igWM6NKjwdfX0N3eP6aKF6Ww07TCIK+QcRivu2UvuvAZDYQ7i+k//wLB Dif8eKHjUCpVqbPNdQTh6eOTMiYs6P5VOd1kbQIum6hpGLgw0bu3+755XRkH YWtoRi1+Et5HCeiD5gPIInHVz7VzDJxNY/uPcSchCb78EaAmRIGcpvWQLiJG 2axfU7WDDcx/8b8mpI0ig1ObQjrN2EC6SMMHO7FBc0+k7LoJD0X4KSKz0v+f X1qopzHY4MyJIA3tfgf4KxzZyvUx8Php9NIwnw3xnfvsv+XeR+IvdYqlzUah eq4u/9jUJ3huesXn1/A1KNxJDbO9Q8QINV3qpH0cWI8lGmtHNyBxXs2r0HsT IHgIioNBHKDyXowW5PLQNe+P2gevC6E/ti3hAG0WDvTiKC1lHER671j/LPAb WPcKNvaFz0Fg9VOOx0IbEn4otFFNnIWV+sL9S9NzoGTeWdTo1IZMxwqTf3ac A/IT9/xtAV+BIWWaPVfGQ2duVcTXL4hhhwjLOf77uWBS2kAlf2oCKun73Z73 uZAZnu938BYXBPHX6pQ13qD0atazRjIP3hrvIWMMLtwdyj1ull+LeCq5zSV0 Hlj1fiqVucGDs6oU+waNceQhrr41nC0AngpHq5nHA8eDTm67VYNRuwLXC6ex BETdYF9/bAH23I/S95hlIu8U1+kouWU4e3QDTdYtwhGtPA9W1Aw0m9z7Mk7E YR5BWVYMNz4cqcz3nMeNoRLdE65SqmJYq3lMzIrpNzgmrvjFZ9c0Kkr5zfSt 1yYsOUsl+5L3NxB14MgJSUtgckciXr91C9YSLpetFvsNGjVkeFlFrxEjo8R8 6+gGVLIHOy8UCsCRSv/7F/0u9AFbrEj6LI4p7nMVe4wEUBp8Nf5dWgeQfaTk KJI4bFulmpbesAB+3HnggbwjH2H3jVV0hTJYZNOEvdX2FQhKtM9/P8GCuqNR d3MnJbFmUYi8TeYK7LDwz8rL70FFXkAd1pTEyhPuhiVkrkN5Be5IanU/pDZa mjl5bsGYMb4xj3xFIBVg2jsbN4z25jdl0pxJWBkWVViWLQIPBRGx0GAEeXom D3v2krDawZBTBZIbkHV0OsdtioE+93RGJ1wiYf8BovjUaw== "], { {RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[GrayLevel[0.2]], Specularity[ GrayLevel[1], 3], StyleBox[GraphicsGroup3DBox[Polygon3DBox[CompressedData[" 1:eJwVw2fbqQAAANDXyojIyMgoVPZIkhWRZITsJDK+v//v/rp773meg79/92/r z8/Pn39t/zssVsAyoVk7YPUHHD6n1+KygTYX7EaQeNLr9NijgMcJgk4b6HK7 LEDIC/lsTrcLCLYCHhDyQF6fw+aGwUYr6Hf4wpFQyOcFEHcMhfyhCATC4RAU 9EcgNGzHo1g4nYARvy+EROMxCI4iQCaRiuLk9/2h0iiciCHJRCqXSSWSbJIk k3E0HY5l0DAWiZLxHJGpYYVsPk3kqgSFZmKJYoEiy0wjguWxdAHLU9k0m0pW mHIuVcVqzRJFVPBxPlsok3iJqJdorlSkAv4gXinTpXqxVmBYssrSRLVe4oqF LMVWU8FIYxloVel6s41xtWKzNmg3sA5TwXtjtj8adios02/zDXY0aXbb3eag M5zz7a586QpMB7f3ugO5L4wEaTSsjPuM0OBbC3E1kib0RJyKkwUnaruH0JnP 1sPpRBI5eiFzG1Faz3ayeunNxvO1Ig84SZyOZ8PVZqsuVoowzxBoi18+VWPW e6znQ0k5KpJw2O65QW2hyoZ6Uta7zfG8Pe+3m/OF724Pq52mHPanx26mrg76 +Xo4qdJxw19ue/20P+vX89E0dO3x0e/m9ahdNfO25O/6Vdys7lfzabyeF/Vt fo6K9jG11+1pfo3n7fI138ZJ/76Mvy9rcBQ= "]]], Lighting->{{"Ambient", RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, { "Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{0, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, VertexNormals->CompressedData[" 1:eJwNlfk7FAgYgNlEqU2yIqWQtnKVIxH5ZFdKqZQkq9yaFqt1dcmRJGyOch9l 0eHIKnYd4YtRjmiGYYxhmDGMOcyUZcgK64f3L3jf53nVPQLOen8nISHhtcKq FYxY16meyyII2uF4Pk6qBVT8GL5TFW2gcsn7YrWyAOw9N8os+I6AvtjMNNK4 A4zux0bRekXwoG0q/ZMMES+35izmRHWCdMR1fGDIBC0lnZDiBj5oq0ZK3Lf6 CBoQO0R04YNh+MHyWDkWfrpT5bhc1Aa3/PwtXlzlwpcrpPDtc6NwSiHELPIB GcJGxMlqg0I4Wjr3wsK3Ey893ijyV+sBgz+QMFAnBML5arMnUmRoy1o9aBzQ DV4etIFWMR/0R1quVIzQ4fTpRHZjZh+Uxcnneu0XguQXKf/bXe0oHyFs9KdS 4TK55tMfO0VAzE6uvP31JSw9tZUl2vTBmdJVBkWZAijbG03a3kxFSfqB7RS5 fgg2HVfTOc6H8rz9cxakEQzsp4dqcLrBMhejQGoSgmZzbe4VNqH90fp//ylk gHnchs+73UaB9ov1IUI4F7frhaWNp/eA3LvVbwpfUWCtRtAz53ohZpF3dUyZ dMBasXsQuPLBmmi95+GffZCnohlWvZkBm+KpNe1PKKDfyLWS2CREJf2ZXWH7 eiBYKtCm2nICHu0ZrQqOZuHOss/fah7TodZf7YgynwOBcjbm5n/RMSE1on2J x4KMvIccZuwQtPvkfyjT42Fxq8DFzm4QImZr88u02ZBvdZdY4sWB2FKPu4sc Gvxnw9TJfkuDZz8WK5t1CaBFV5WvSqbA5FrlQnPXCaidcWpkb/0EY4vJGodj xsCT8SF4oqYXQoJM5aQcBPAqP+Wu/EY6HFaCWxkto1CNiuXtTSwoGDqy24Y1 CjnVqhl3T47DoFfCa6+r99DC4VK6LWsCjBX0ynQIFGjsasg8fZYHtM2rrUMX mUCtfdimRu0CD4FfwvbFcaiR3eC7IMWBrx9/zGl7wASvfST1Ak06GhoV/TSv wIWiTUpWTRYM4OrWj1V/PwDRbVsvKyXxwKVuT/n5c51Qeur4z6PfJvBCsnL6 kpgNFQpBIXPserh6T4K24LfSdWzWgYnQFV+BUlffJ1LA9sXM2dsH6eik9M3d NUoAs7clwo7ld8Jg0MnbW6jD0Kk787JimwD+VmXLZg6Q4cmtngC26SiOLYde yuZz4SSBe9N91ScoI/qd7E0igZmgzlhPSQSxfoaCxcs1AIab3ZKdJgFYyldM 5BlQKTGxruAlBfTsi5fk7Fqwomw6SyQtAp7Z/oQk1RrYYR53gd47gkKvKNHw Sq8k0nqPTrkW/G08JzbKtBtDp9VISQQRRH/WNX9e2Iyu2a8mSCMl0B/v/eGn vM9QJdTuonql4I0Ct22zhkJ4dlWyXH0XHWyaTr5VIzehR9H7ixK3hNCXLFaJ +akf2KpzRj3n/sET6iGqzlGjIKk/Zb44w4Nlp5iYx5JkNHZ+dEy9lomux453 yCvyIdjI2jixn4iZhB8se3L74M/1ofI3/xbCBu04vYx1FXB9fKb1tq8Q2152 MFYN0iCP9owQV9ONB9QaDfbs4WDw2y1WG8+OQ27ktsFJYGBdlWY5J4wGVh96 Ct695sEvVeGlIYE1mFFZlM5uFqGCdLtTbjwZVodZRtX7d2FRhV2q6kEB6BJy k51shmGRZEFLM2/DVd7zh6GAjxLr69t6SpmwptBOfbaXhMKaLIeXqlzovCOj 63eDDXfjD4w4X6RiDFXlocUqAfwsX/mqZQ0dJkyYLj4Zo0gNy5Gbb6rEwQU9 lWQhD8Kf2iQ5SbHRf0zTRDaOjZ2tE7qWTUyIKthioH/tHcaXpzlYzolgY0/8 Wu/WjwDly0IX2yF0KdkrLiZOQMJS4g2bLUzYRrkTTjgzipt8iu+T99Kxg9s5 9TtyIEOUye06QsVE0zyVnWsm4YVUeOwzzz7gqxfrz1swsGTt7tYf+nn4JZWQ IRruhxTWUu1zAgsr19tFjOWMwRMtZXn+ARbMf8T3c4mtyNyUf5anKQKz0bSL RHE3tFCkI4L7meh+4sLFpAkONLyRvXrBjQE/Rni4b9gwil53odJliAV/1ykM Dl9ng2hr2eFXp8Yx7wTP9Dx9BHxicnuhnQWRLaf0lYo46Kqd+U3Wkgpb6o73 aVSw4Wa13+N304P4ZvOOmtUpAmh3HtC6l0YGLXGt75c0Dood1R0WDJgQ9zZy +kj1CJSTFZ++UmKidmDzMXIDF7I3tEvR62jgKRloG7mGh2/anbf6XqOgWEf+ g8EVFhxkPLKM/Z2HvSnz5+Kbi0HM38H6/gIbmj1pdAeXXuwxsZQRqAkxb+Ea Q0ZMhu18haNsKQH6/KfoNOb2Ftb9Utk12cmEO/VpvVXPmXjeLzP9sSYPSJvD v/Mm9MFM3fXgtp5xlBm5FXmplQ3ZX09cm149AELB0tERfz4GQsjmmMMUcDb2 2Rd9fxj0qhx/dZwSYKbi0dqvH1sgysDTmXqFARsD3vVN7RvDql8lnod2cyAv K6DZ6zEFpJW9njVvncSS7xhZOddb0WNh0eg5DIFYj3lKmjWJZ/6lKjuQiBDf 2BVkUTcAQS/bbDruTKL1fJJWPLcEqn33/ntwaghuBpuG2EvwsSuZOGeSOggd WwcHXHYMANrHbrK6L8RdH/307lUFwH+VQ06/ltOAIpi13/9FgNwngmz2hR44 dOiN2ajFAPRFBi++cOQi43WSt5sCC/O8ynedK+0HDaMjUerxk3g6pfVO4iMK XB5eKFo+t/LNyvXxGeF8LMi6gt88huFhM92xaAsFZKXt5Vc+he6pgX91qoyh olK/J6e9G6ZsfVuPDAlR5lF0p9psHSx/y163tNwH04TDd953CDEh++j3NYof wOrs3tIf0nvB1nBALk5dhJI3FcyUlOtR53Slu4ZbL+x08KdW1I5jadnlM8Za HNAJvKH6TpsE2+SGfN4emsTUAk+bi1b9qOGsQFzUooC1nJPE3DYRkvenuj7d 3QrZeSnSrBM9cHOsgTAkK8KEZL9dX//pxPbCR0LTWjIU5jdENxuLsN9Ez6iS 0AHH5UdeBwWQYbfJDQbbToic1N/iquYpEFPGmuHvI4MmbZrIeS/C5HHdyeaS SmgI4+YErvzgf06YAzI= "]], {}, {}}, {GraphicsComplex3DBox[CompressedData[" 1:eJx0XXVcVssWxfba3YGBGIjdMZ+B3Y3XulfF7u68dnddu1sszIPYjaiIoHRL d3zwPd7lrPHH3sz75/u95b5r1t5nZs+eOIdqf88YMD6nmZlZbEMzs1wZv9V+ 9r5pMpk0/L6a+dc/6w4laXZzrx+8My1V4gaz0KdXugSJiJPz7Gp2j5G4+Ye0 zT0SI8T4/+x/SbzQie2fbGKrGTLtfSU+c3on321GS0OfnDkb56zyWauu42H/ rihXqOJ1cfFC+N46x/oKcx0/t+riw1zf08TzhKfJVis/Cc/hnk3m+pm0jpMK BDZrFyKOPrs3d09TX1Fvy+LIOXEmrcOOwje/BTV11PUItFu18dvnDUPaOi4/ Xftp8fIxAu02q/X61+v4AgaHuklXeuRPlPbrdjs3avHJ3KD/f4m3fPLTskyH JsBlnGjc8EvjBpzGDTiNG3DEDX4Bh1/QCZzqvFiw5MppHglMJ3CqEzjVCZzq BE51Aqc6gVOdaJ/qBE514pfqBE51Aqc6gVOdwKlOtEN1Aqc6gVOd+KU6gVOd wKlO4NnH01cRT19FPH0V8fRVxNNXEU9fRTx9FTpdFDpdFDpdFDpdFDpdFDpd FDpdmE4z/X9UJ3CqEzjVCZzqBE51Aqc6gSviKRTxFIp4CkU8hSKeQhFPoYin UPRPhU5fhU5fhU5fhU5fhU5fhU5fphP/nWK8M53AFeOd6QSuGO9MJ3BF/lTE M0YRzxhFPGMU8YxRxDNGEc8YplPP/0wncMV8xHQCV8xHTCdwxXzEdOq6mE7g ivmd6QSumN+ZTuCK+Z3pxL8r6jemE7iifmM6gSvqN5FK6repVSt+KGg0CVq/ wZ7Wb+Dvmn39JhT1m0D9Ruo0GZ9ntVfU8riTpuH3Vv2xOfp3ziPjBhxxy+/o U2hXzWSJ156z9aH5+fKGaj5rWh35J07WsabntWrXLV3WUDHeL9bP113iNbvu MAvdkcNwceipax1snkg8eknjY7t9TNr9aJsXXeIdZf25rVPHuZfbrBCWWwzd RlxPE0/1dh2jvdbYboyROHiAw0/ohL/Qj1/oBw9w8OD/9xraObbbrjhmD5za Z9bnkcweOLXPHF+BzB44tc98/h7M3k7HqX1mP3Vi9uE6rrAXCnuh0MPsdT3M XveL2QNXxJPZA1c8L2YPnNrrv8weOOzJeBGK8SIU40XyA0c/peMowW5r8oBY k6DjqM8j9z96/jQJjCOMl1yNeyyZmmYSGC/5t/TcVHpaoBwHT9q9CCjVuryh dRvL+j/jIrF+FKdn55o4e5GVIxkvLD/AP/hL9Mt+hfyJ/w75E3kSOPIkdD47 aX72TQbP5dMh7TdZl5d5HvbIb+U8zzZ60TdZjvdhd4qlWT7NK9uV/YW0C5zO I8DBDx6Ma8oDnPIApzwY75QHOOUBTnmQBygP8Ozn8UDGg7xBeYBnX195MB7k E8oDPPv6x0nFIxQ8ijrKSSj8YjzAFX4xHuQfRZwV9VIg40FeUjx3xgNc0Q8Z D3BFP2Q8yGOKccF4gIOH5AGZ98h4Z/zAKT9w8KMeQzuox7LOI6ls3sc+CcXD dV0Ut9PruOztfRW4C8OxrlTYCwU/w3U9CvsYhqMOz54nVeIknrK+jT/qY9zp 56pNmNPT1H+PUbsVV93y8m1//XmHiL0fynp322XUxq389Dp3SCvHFhW6D6zZ PUXix5OPFQrLY20w6jzXClwNyJ8zSWsan5Xn+/jFL0ymRMYDnPLEnij2TpsR y3gqp/24fGdaLOMBTnmmzQ4cF34/nPE4/ReHcMYDnPIkHr/U6M99/ownc3z5 Mx7g4EGc8UvjnPkcXRkPcKqnSdQ12zuT7JmezHFmz3iAU54nvUsenzbyraA8 mePyraA8wCnPx+4rmnskejGezDzmxXiAU57R8xd/WGEewnjwS3mA0ziHn3I3 21g9WtA4a92KmO+qGc14gFOei4UWVnC5Fc94lty41MrjTjzjAU55xs8r3bRi 1xTGg/+O8uAXPLo+DeNuQ+y6cnesohBHiZdb13HxjpHlDPr/l+M0/97NHS42 aiJ5dH7JAxzjkfLDHvzAYQ+c+MX6IXD4BZ3AoRM4+Kl+Pc5MP/IA1Q97qh/2 VD/sFc+X6QdO9YOf6scv1Y/8Q/Xj36l+2FP9sFf0c6YfONUPfqpfb4fpR96j +mFP9cOe6oe9Yrwz/cCpfvBT/Wif6ke+pfrxS/XDnurHvyvyHtMv40T0g5/q 1/Mw0488T/XDnuqHPdUPe0X+Z/qBU/3gp/p1XFD9mF+ofthT/bCn+mGvmAcF 1Q+c6gc/1a8/F6Yf8xrVD3uqH/ZUP+wV9QDTD5zqBz/Vr48Lph/tU/2wp/ph T/XDXlEXMf3AqX6ZD4h+PS8x/ZjHqX7YU/2wp/phr6gPmX7gVD/4qX59XmD6 UT9Q/bCn+mFP9cNeUScz/cCpfvBT/fq8zPSjHaof9lQ/7Kl+2CvWC0w/cKpf zhtEP/5dUUcxPcAV6yCmR/ZfvV2sf1GP0fUv8KzrdF9ZX1F74NQe9Qa1B07t Mb9Te+DUHvNp9vsM/swe81f2+ySuzB7zRfb7PPbMHvk5+/2ct4LaIx9mv9/i xezx/LPfDwlh9hjv1B44tcf4ovbAqT36HbUHDvuY1YFTp3mka/j17uvXtMO2 3/ut2OfEvg3qb9gf+WN6/5GdEmV/At7vD8OdiMU55TgCTvMA9mPp+II9zQOw B34k7HK/3pa35L5uA28b99UP8xsS3o38ud/qh3j8uebw9k9MWp1aiW1aLK4g xyn4MU7NX76ssPtyuOhjNfuKR4pJu1vj6MBaEyvK8Qt7On6B03wCPXRcI36K 58L6LdYLiufO7BFXRb9i9qiHFf2W2eM5KMaFatwp9offqsa1Yv/WnvVz1DOK vMHsUT8o8hKzx3ytyHvMHvOjIq+yfVHsl2J8Ace+XNb9UpnnGT9w8GOe0Pun uLXfZFl+X1kDGe8C452MX4HxS+Yj2S7GF86DKo2Ze67+tBhB5imph4w7OT+O +/P56mEb4iRPs2dvS9cc281Axp2cN0l8ZF7COTv+HefswJHHgGM/GjjOrWCP cxlqD5za4/yF2gOn9jhnofbAqT3OU6g9cGqPcxNqD1xhLxT2QqGH2QNX+Mvs gSviyeyBK54XswdO7THuFP1B2mO8YDxhvCC/499xbotxhH/HOEI+BY/jjjs5 55QqaahfOGphxdfpcr6os9illqlTvNyfB3/Wc+cQOY+ABzjqPYpjvqA49FIc 8wXFUe9RHL8UR71HccwXFEe9R3HMFxRHvafAhYKH4ZgvFDoZjvlCEQeGY75Q xJnhmC8Uz5HhyP8URx4FTvqzzP/ol8AxX5B6T6DeI/lWjiNS78l1U+iRyyOK PQzXcrdLy5ffM13smed19e34ko5kXDD94AFO6kO5/sL4BY7xS+o0uu6T4xf+ Yv6QuD6/FPrS43OtjHEl68zkKfmGP00XRCfth3Jc0/UgcMxr+O/hB63D5TxO zk+B0/NT4LROAE7rf+hR9AeN9gfYoz8QPfJ8H/GBH/T5yvtXOk70y7rx0PxT pWbVeyvtf1S4+qxvjVuyzoN9t+4FnhyYl9txtfmgF6s2+osKK0f4WKWatD+s nZdYFmpF4yDrzzKR93ZOeZ8o34/oVjy+mmFmBdqv2H0w1CG4x4J8ijhlraNi JJ41PrjXlMB4kLcpD3DKg3+nPBiXlEfuRxIejG/Kg+dGeWS+zFaPL+PBOKY8 cr8zWx4XxoN5gfIApzw4f6c8mC8oD3CFHkF50B8pD3BFfBgP5hfKA1zxvBgP 5h3KA1zRfxgP5iPKA1zRnxkP5inKAxw8yDvy3oief0jdxe7LYd1E28U8QNuV +996u6R+k/YYD2gX892e//77MK1Awwo77kwzieAPS0fOGJPPMeVW/5hL5/zl PV6rs2ff+i4raJj4+FXN971uSf6r5W0Dr04zN5x94lx5b4H38t6dllRgyLE3 +eg8wvYVgWMeITwaeEjelvP4H/7fGgy8F69h/XW50t6ds2v7a2R/Rs7jJG+z eRk45mXk7fHtLue8m2gSyNvYt1k38WLNyr4mUVvft0HeBs+la6a1/fq2MmB/ BvHE/gzyNnDPIkFF25UrS/dh2Lwv7yXq/Yr0E5ZPgNN+gnpb0Z+ZPX4V44jZ o95WjF9mj3pbkTeYPeptRb5i9qi3FXmS2aPeVuRnNu5QbyvmBWaP8aGYj5g9 6m3FPMjsUW8r5l9mj3GpmPelPeoG5C3cs0I/w3hF/8zsT0Gax1f77jW7p2tL N/54XfxQdUfMK7BH/QMcdQLFMb4pjvFNcYxvimOepTjmTYrjl+KY1yiOeYri mHcojnkEOPIz8gDyM+yRJygP8jxwxBfPB/kTOH6B47kCx3xEeAS1Bw579BO0 i35C+o+8pwd+xIHyAwc/5jXMX5jXUK9jvwvrDrQLnLaL/oZ25X1ufR+M8gCn POiflAf7Y5QHOOVBf6Y82DejPMApD/o/5cF+GuUBTnkwXhQ8QsHDni/Gl8Iv xgOc8qC/K+LMeIBTHoxfxXNnPMApD8Y75cE+nqIfMh7kB8U4ZTjGEXCMN7nP TOoE4MjziCPqCuQNzEOwp/UbcLq/jfUg/M06XyfQfUV5nzn7eyAJjB/zEuUH TvmBZ39PJobxI69QfuCUH3j294h+KfT7KvT7KvT7KvT7KvhdFPwuCn4XBb8L 48c6lPIDp/zAKT9whX6h0C8U+hX3oFzY+QvWrYr4K/h9Ffy+jB/rWUX/YfzA Ff1HoT9GoT9GoT9GoT+G8WP9qxi/jB+4YvxKfpJ/GA9wRZ6RPPmv5h/wvdhH uW4ylTBcsx2Yz+Dk0OXUnWmJ2vJq/g9NplTNpfDZK7NKV5PrJqxrkA9hj19q D73UPm+/CxunecQwe6xrqD3qOGqPdQ21z2zXj9ljXUPtM3m+MHusa6h9Jn6S 2WNdQ+0z57uPgtpjXUPtM+sfH2aP50ztm//3nEOZPdY11N41vkMnjzvRzB7r Gmq/a5TXiJrdE5g9+he17/Ny6fxpHinSHjjqTODYV8W4wf7zujx/VDrfMFrO p6+3P6ipXWxuIPUtq8PR3yiOfkVx9B+Ko59QHP2B4njuFMfzzb7eCGE4nhfF 8VyAk7ixc3zEk97DAU7v2wCn99mA03wCnN6Hkfca9P2WrOv0ZKYHePb3wJMV 972TFfe9kxX3vZOZHqxfqB7g2d9rjWN6gGd/fzWO6QFO9WAdRPUAz/6eeaTi Pnmk4j55pOI+eSTTg/UU1QM8+3vLgUwP8OzntUCmBzjVg3UZ1QM8+3vsHor7 6h6KOtNDcV/dg+nB+o7qAZ79vXQnpgd49nWFE9MDXKFHKPQo7sk7Ke7DOynq HCfFfXgnoXheTA9wxfNieoArnhfTA1zRn5ke4Ir+rLhvH6io0wIV9+0DmR6s fxXjnekBrhjvivfmIpke4Ip8yPQAV+RDxX3+OMV9/jjFff44pgfrccV8wfQA V8wXivcBk5ke4FQP5lnFfMr0AFfMp0wPcMV8ys4v5HdXyLk8cNQJ0Il9BnqO I9+PJuc4wOl7gnLfMdv3XBIYv3zPmvADp/zAs38PKIbxA6f8wCm/PB/I9j2p X4wfOOUHTvnl/bJs9fsq9Psq9Psq9Psq+F0U/C4KfhcFvwvjxz4D5ZfvsxN+ 4JQfuEI/O2cErtAvFPrZexzYZ1DEX8Hvq+D3ZfzYZ1D0H8YPXNF/FPpjFPpj FPpjFPpjFO+pJTB++d2A7Mcv4wdO+bH/oMg/jB+4Iv+o8iG7twYc+fDglf4r 5mwOEzmKryq015iqmble1SralXfU9zsE9j1yX7hrd2xyWwPwy0t65tpVM03i 4Dkxwn7FzJvJkueAjnc57xfTc3LGup/w6+tixm8+rXRDjzvJDMe6meJRJa6G dNuVxPQExJays6wWz/RsEF2+53SLYXr0dT3jH5d7YZldNeMZjn0bije9WMzZ ZIpleuptXtDLc1sU06P/Mj36vgTjP3/Y3dhtVxTDsS9E8ej/1scREke7Xp1v ja+bHCTbBV7tR5lePnZ+TI++r8L4cR5Lcew7UTxz/R7A4vM2MGZcwws/ZXyA Dyzt0Ojo2i+sf+r7Qryf/NfPfzIc+1oUzxx/31l8HqxPMZZ1fCHjAD19d5cc /sHjBNOj72sx/sw88ILh2DejeGbee8D0tF3qc+yv0w8EfV4bGzY5fLGws6DP S+cXCn6GY19OoV9QPWk5pn9o2/i7oPG5P+nLygn1fASNjx5/xq/Hn+HY91M8 X6ZnnsusQ9cfBbD4NG5T9FZy31AWH71/Mn69fzIc+4qK/s/0hJ26/L6jbwTT MzDvmVib+9FMjz5+Gb8+fhmOfUtFfhB0fN24P2fl5Fxxgo6vojM6Ft7eK4E9 Lz2/MX49vzEc+6KK/MniM7VG8UM39yax+Lz95lXLzTOFxUfP/4xfz/8Mx76r Yn5heupuuXrTaJnG2sWvYh5kOObh7PsJn7+wrsq+n4cr8pi/Is+4KvKMvSLP vFXkAS/FOA1RjFPeD7FPS3Gs84CT/XCN7pPjng9wzNOwN7S10coHl5U47IFj voR9v6lNItoVqSJx+X6KjmN+gv2eSRH52thWcUReBj6mQMqAAYZ8htydZ3kM P+Qg9+fDEirZTVgXL+/3oD/gHHy7g+d7N1sveb/6xKd/HeZdfyDrsRHP+x68 Z5Mu5xec32Ofe8+Xubk7DWwocfADR/+GzvnXfthOr1pGxh84fS6IG3Byj0jq R7uoK6ke2AMnz53xo/9Tftyfofywp/ywp/wYR5Qf9Tjlhz3lhz3lx3ik/Kjr KT/sKT/sKT/GNeXH+oDyw57yw57yIz9QftzPofywp/ywp/zIM5Qf93YoP+wp P+wpP/IV5ce/U37YU37YU37kPcqPez6UH/aUH/aUH/mT8uP+D+WHPeWHPeVH Hqb8+KX8sKf8+Hfwk3Nwud4k9zBZu7Cn7cKetgt7Ol/o+UqenyJvA0feJvlc 0HwOe+RzkuclTu41Mb+wLqd+4f4kxcFD/QUP/EU+h07kc5LnJQ6d2P+kOoGj 3azv6yXL/bGs/T9Zkd+SGY/8njPhAZ79OIpjPPI7z4QHePb5MJLxyO8/Ex7g 2eeNQMaD8y/KAzz7/OnBeHBuRXmAZ58nnVQ8QsGjyLdOQuEX4wGu8IvxyO9O Zx9nRX4OZDzye9TZP3fGA1zRDxkPcEU/ZDw4B1GMC8YDHDxzbL1OPO53UNaZ dW4MnP/4ZIS8j4t9OfCT+lYo6luhqG8F6ljsB8Ee972xXwN73J9HnpT5Ss+T JJ9If5EnYY88SfKMjIPcfzMsM1SbZZLrLOQx8CjqVbaOgF90XkCcMS80rPTa pqO9n7bmrm3+i2kmrUPZzldSPyVoJA7yPQLgqLeBgx866XoEOJ4LdAKnOsGv 4JHrF+iBX9Dz9/v51j/9XuB9JW267/yzjVvZi6YRRftf9wkQ3SzanFifgXd/ PTTlfIsqhl2fc4we+yperlNW/dFv1MtnTRw73155t9XCJInPu/ux66kDFlS/ rOtQx+P8C/vJ0I99Xdpvsa8LnNyPYus+2FMc7dO4AQd/1vtLCUwnfqlO7PdS nfh3qgf2FMd6hOoETnXiPI7qxD4w1YlxT3XCnuqBPcWxrqE6gVOdONejOrE/ THWi/1KdsKd6YE9x5EuqE3j28fRlOrFvTHVi35jqhD3VA3vWb/V1FtUJPHud Lkwn9pOpTuwnU52wp3pgT3Gs16hO4FQnziupTuwzU53YZ6Y6YZ+9ngcMx7qP 6gSuiKegOrH/THVi/5nqhH32/fA7wzFPUp3AFf2T6cS+NNWJfWmqE/bZ558A hmMdSnUCV4x3phP71VQn9qupTthTPbDPfnyFM53AFfmT6cQ+NtWJfWyqE/ZU D+wpjnqH6gSumI+YTuxvU53Y36Y6YU/1wD77vJrIdAKnOnG+THWiLqA6sR9O dcKe6oE9xbH+pTqBgx/1Leor1LeoY+X6mqz3gaNe3XYyrkvAtFfyu1vDWlns ibKrJNfXsEdd6vjj1/qzC+R3ikSDUWL/lZFp8vxY/j0sXWfzTaNcU0aelPYn 1zz0mFCpulzvA6f1Ic7ZaRxwLq+IP5sXsE+jiCezx3k6G3f6vyv6J+PBPrCi vzF7nJtTe5yzK8Yv48H+sGI8Mnucj1N79C9FfmM82DdW5Ctmj36avU4/1i7s s5+n/BkPcGqP8+7s7b+wdmFPebDPrJjvmD3GX/bz+EnWLuyzrx/sFTz2Cp0v WD7BebeivmJ5DPvSinqJ52f9nDr7utqHtQv77Os6L4V+L2aP82hqj/NrRX3O eLCPrai3mT3Onak9zqkV6xfGg/1txXqE2eN8mdrjPFqxvmM82PdWrNf4c9Hn B2qPc2fF+pfxYN9bsZ6V9lnfe0pm912BY75G3Yl1evbfH0hQfK8gRvF9g18K e18F7sJwrCMU9uz7A6iTFXoU9jGK7y0kMBx1DnASZ3muQd4L0yguvw9Angtw +j411teUR34fgPAApzxY/1Ie+X0AwgOc8mB9Snnk9wEID3DKg/Uj5ZHfByA8 wCkP1ncKHna/ETjlwXNW+MV4gFMerI8UcWY8wCkP1i+K5854gFMerC8U/ZDx AKf1PPb9FPWqhnrVp9uY4G7/vx+o42PqCa+qK8rT8yx2LgycnhvK7/qS9yVR DyMfBlVd3zYhwFWLiNuacPr/3y+KLDgwtEqAIPvqAvvq5H6FwP0K8h6lwHuU ZF9UYF8U+Q566XeuUIdj3QF71LfUHv5Re9Sl1B51L7VHPUnt8UvtUQdSe9SZ 1B71G7VHfUjtUXdRe9R11B71ErVHPUbtUedQe9RR1B71CbVH/UPtUVdQe9Qt 1B71ALVHvUHtMY9Te9QJsMc8Lc8R9O94YF7HPjy+V4P9XNzbofeXgCvOuzV6 3i3HdfbrYg3rYsPzQx9z/ogQORMLpU7P4LlVvuDD4b3rObatO+/Tt7hIkXoy ukXDjPEy93X+d18XWzmS82tNsY7WsI6GX9j/h1/YFwZOz62AU3+Bwy/o77Zt ho/F3WSmX7QeVCUoY/xS/eCBfnyXuDm+P0z+Hi7qBPq8cF5A/QJO/QJO/QJO /dps4fLyRwYOv9rofq3+dCf30f+/D/4iq1/goX7J7yQTv1C3UL/wS/0CTv0C Tv0CTv1yftj06u4MHH411v3a/Kmx64WMfJj0Jqtf4KF+OeJ7ztn+/eIQ5hf8 oH7hl/oFnPoFnPpV97x1nb1mwcyvMmZJJ8tm5G3qF3ioX9Cf/d999mJ+4fyC +gWc+gWc+gWc+jX2StCvPA4/mV/tRy72KpAxv1C/wEP9kt/HzvbvZb9lfuG8 g/oFnPoFnPoFnPoVVsq/wNOfL5hfHUJK+B/sas/8Ag/1y07Xn/3fDbcX1C+c j1C/gFO/gFO/gFO/vP4qsrbgpAeC+tX2k4/7kulvBfULPNSvcF1/9n+v3JX5 hfMU6hdw6hdw6hdw6tfENou6Tqjxnfn1wia2TiMzb+YXeKhf0J/930n3Z37h /IX6BZz6BZz6BZzljRmJrjYZOBtfZa1HPs2of6hf4KF+ye+3E7+wTqF+4byG +gWc+gWc+gWc+nXc0LiAm3sE82v43KavLmbUadQv8FC/5HfmiV9Yr1C/cL5D /QJO/QJO/QJO/Sq08U6V2xk4rTdK//zkE5tRT9J6AzzUL+iHX9CPcx+qHzjV D5zqB071v4oe2DJ9Z5KgdYWzzYzUtv//jhypK8BD9cvv8xP9OA+i9/Nxz0dx b5/5Cx7qL3D4S74jKuj9H/ADR3zAg/jgHs4/xRI3VU8zCdzDCdy3t8fOJg9F x++dzvgkmsSK858HXGh/Q0M81wyP7t81gwfxbN3Gsv7PjHii/j89O9fE2Yus HHGfB9+n+rBlcuNX/avI8ynooXGWf0dAjzPu+YCn7/NGw1JHWxjIeZmcB1dY bzgS2ytY1v8bZ69r0nN7XUdyLibntaz7xvzeDvbBsr8vEam4txCouLfgwXDs IylwxX0DD8U5fiDDsQ+j8EtxTyCZ4bgXR+8t4/yO3lvGPgMdp7Cn6zjYAyf9 RKP3h2EPnOQHpkee52efN5ge2FM9sKd6YE/14LyP6sE+iSIPMz2wp3pgT/XA nurBOSDVI/djsp/vmB7YUz2wp3pgT/XI9oke7PMo6gqmB/ZUD+ypHthTPTg3 pHqwj6So35ge2FM9sKd6YE/1yHgTPdinUtTJTA/sqR78O9UDe6oH54xUD/bB FOsR9p4C7Kke2FM9sKd6cP5I9WCfTbHuY3pgT/XAnuqBPdWDc0mqB/t4ivU1 0wN7qgf2VA/sqR6cV1I92CdU7GMwPbCnemBP9cCe6sE5JtWDfUjFfhHTA3uq B/ZUD+ypHpmfiB7scyr25Zge2FM9+KV6YA8c9SHmNVo34r4xxTHv0H1U2FP9 wGmdPC/Y1dIhA0ddR3RqVCfOYagezDtUj7yfQvQAp3rur2hVZEYGTvXAnurB /WGqB/MO1QN7qgc41WMqcyTO4m400wN7qgf3hKkezDtUD+ypHuBUz9oRabfv ZeBUD+ypHtwHpnow71A9sKd6gFM9RTY7rba08GF6YE/14N4v1YN5h+qBPRuP Ok71NJxT9FjdHM5MD+ypHtzvpXow71A9sKd6gFM9gcsatfkgTgqqB/ZUD+7x Uj2Yd6ge2FM9wKmeyy4e9avs/ML0wJ7qwX1dqgfzDtUDe6oHONXz7n7tHtUy cKoH9lQP7uVSPZh3qB7YUz3AqZ4uW8Yuu7kzjOmBPdWD+7dUD+Ydqgf2VA9w qsfTuq9b9Qyc6oE91YN7top5hOmBPauXdJzqObA/LHpKBk71wF4xr7F25XdE SLvAabtDzDYVvJ2B03Zhj3bl32/W1/X4O1M4j8R5N767S84x5d998DnQ7mhk q3htr+uLiNMZfInHbi5ueje//K6g/D6D/l1B6GzSf26HHNNNMv/8XG6x8v84 9iUWzjZbapOBE52C6sQ5LHQCxz0E4OS8Ve4TEh7pL+ZFrK9xngsc61yKY71J caz7KI7nTHGsgyiO509xrAsojvqc4qiTKY56leKoGymO/gUczwv3K+jzQj9C nHGejn9X/N0x5i/OnYFjHMm/z072D1E30n0/2GetV+X5PtODek8RB42+jwl7 ug+JujSrHnkPgbWLuk7xXFi7sKftov6k7eL8V3FfgrWLeNN2YU/bxX9H28X5 puJeB2sXfLRd2NN2UU/SdnH+qLh/wtrFOSZtF/a0XdSNtF2cbyruyajGNWsX 9rRd1Ie0XZw/Ku7zsHGNc0DaLuxpu6gDabs4X1PcO2Lt4pyOtgt72i7qPdou zr8U96NYuzhHo+3CnraLuo62i/MpxT0u1i7OuWi7sKfton6j7eL8SHHfjLWL cyjaLuxpu6jTaLs491Hci2Pt4vyItgt72i7qMeBkfpH1APk7YvKeFbnvx3Si LqI6cf6imF/Y+RR4FO+bSxx5B++/4/uf5D19uY4j79HLdRk5F2N5AN8DAZ52 oVDvoc+S5N/rvL58Sq/k6xVlHBBX+Ev+foqGv58StOpZvkQzP3mv0rFzoz7B Lxo4kr/vJu9vkL/LxnDUiRTHfUiK494jxXG/keK4x0hx3FekOO4lUhz3DymO e4YUx31CiqNepX//Tr7nTv7+nXyPT8fxnHDuRusrxJPW7fL9dMKDczrKg/hT Hvn+OOHBuR7lwfOiPPL9bsKDc0DKg+dLeeT714QH54aUB/2B8sj3o7PnYesO 9B/KI99fzt4vxoP+Rnnk+8XZx5nxoH9SHvn+b/bPnfGgP1Me+X5u9v2Q8aD/ Ux75/izp5/K9GB03NNlk3sdN/p1ireavnk9fLnSQdSfyHvJw5vwUqNld7uXR bVe6dmf+0/fbytZ3JOfycr1J7lew9QJw5E9yX4LxYN2nuGfCePR7I4wH60TF PRzGo9+rYTyYTxT3lBiPfu+I8WAdqrjHxXj0e1mMB+stxT03xqPfW2M8WOcq 7gEKyqPf6xOUB+tixT1JxqPfe2Q8WEcr7pEyHv1eKOPBultxz5bx6PdmGQ/W 6Yp7yIxHv1fMeFB3KO5pMx793rXkwb4Q6g3sC5F75tIe9Yr8u8D635XLmt+S NbrPg/kROPYFsO52sK17y/H47++xI2/gu0xV//MnRDM/c2PWNA+jNrRRYq3R RywN2I9C/Yb9KIxD+ffQv9bwHt6xuIHkPaYT8ybFoYvimNcojnmK4ph3KI55 hOKYFyiOPE9x5G3g2O/A/sPlqEYTu3/LJesc4KhzYC/zN7EHTu1lnUvsgVN7 rNOpPXBqj/U1tQdO7bEupvbAqT3Ws9QeOLXHOpTaA6f2WD9Se+DUHus+ag+c 2mP/DfYYp6jzMU4xbmGP99EwHrH/hvGIcST/brU+jtz/s4/Q9uW9Vc3jjkmY 7Xl6sPhUVy34du/Gg4LjpP3oBc6b334uYQC+ZtzOyp8y6gTgo3L7jTqz+YfM P6kn6p2dGJ8unjlW3NbU/bv8vlZ050Nr6h0wStxt2bvoxoEmAXxerxcz+xi/ SfuhozuN7v8mSnQu2TnKa9RXyV/C0GrtJU83seeNX6n7nT4B1/rXuWFWKbCn 2F//ZrMHDT6AR3jPel3E/8MNicP+QNDE3QUn2GtOHa401Gxfy/pneN3lTVud /ymATz5sXWV4ikkAjzIPGvd4xVO5XrvinCeslldRA/D+IZ2nbUg3CeCF8kyv nSPFRdyMfHml/y+Ttqr7d+8zRZ5owOFXbI9MfMKFyW1q1fsqzgbmK2qWaNJu 12rdc32BJK2Qa96iFY59l/YBzwq3/O6SLlYuyjG00VRv+b5e7bYe/b7uKONI cA34niHCd2pJH2lv1nPZxJoLa1FcA4516Jt95fvaJpm0MYUmjahuVsqx9so5 Ddcs8ZM8N5/sXhLUPL/E39XuN/Baikkb8KVvwBaLEobRTokjt7UOEFvafVxw JM2k/f3v7K2/dltLHDwH7jXZPtHV2jDq0zO3q5uCRCV/f0NUhp5kp5ZzW24q 7ghc/r3ROyUsf6wr7ljE0qf9nbLhEr8Xfci8eZtyji8bLx6bu3aESFzbv0yc 0aQNKXHe6Yl1DccJD54t/DQhSq6va0dUvX52i5OoPXCU8fHN3/jWQpdazG9R w0BwDfjhhRP8Ap2ipX7D4EdLlxeyoLgGvG27pjtPG2Nk/0lvv2P9oN01HGuO 75Hzca8E2W7HmrWqrS5UjuIa8LGbywZvv5Qo+a+fnl/h/OWKBuCIg/OJCaWO lS1jMKSujN2VkCZ1egcM3+y5M17g+9vTi5jSLSJMAt/f7jLix8sbn01yvDRc cD5gq1e6trSC1kUUSJXj1CgGTnoZnMuxw73VHw9GR0vcwdj8aIXLOR3d5/z8 Y15YqOTZsNLn8IT5VgZbW/sG46N8JD7AavEVl0UNDZu+HP27X1GTXK9sqZ/c eej54hLHe/cUx3v3FB+n70tlb++rwF0YjvfuFfZCwc9wXY/CPobheO+e4jh3 A77tVtLr5iGpMk+O/vFovItPCcM/I7/dPPsoRuLN3uzfc3p2aUPh9t0iv1j4 SXxHdI0Sj0r9EuUj81RPNP8l+0/Vxm+fNwxp64h2gaPdRL/DVuXCUjX8rtyy YnnDDiUNdTrU6HPLMUY7VmLUqi4BqdqfO/+ttD24tKHkuYTwy1Z+2qKEmT8X e6Vq12Mn7UjI7S3Gf3TaklT5lwjqYnl8795UDe0WnhMy40fnVHH2dEtjviup 2ruz+YwjBwrD1iofHDx/pWqfbjc8ttc2UfNver23U6vf7fpdcJyQNiBRtltC b/fR1s9PG/VO1JyTsrZbx3Pjul65EmW7hfR2w9oc9n1cIVGzPp7Z7ja93TK9 d//T62WMlr9Z1nbxS9vNYdH8YvD9GNbutHlhU3PNimHtNvyc9mrehhjZLvy1 f/XrW97JYcxfj+sFJ7mOCGPtblrYqJroH8baHVv+6Nm5j36xOAd/cRxlG/aL xbl94vXTc238ZLsX6ma2+7e9c7POLf20QVaH/mu3lN4ufnfEZ203vOvYOb4H fFm7s3Otq/fypS9rd33PMN9nHb4wf90rWuUZZ/lF+ov2Wl9aMK9ZsS+yXTu9 3dCwfiuPB7uwdpPG7oua1OWzbBfP98DGyS/zbTomny/8vRLx169kv3+lvzLO a82jis06wuL8QExqsyZyDXu+hmrlOt84v50930Ep6SFr+jkLGufca7WX/pOd BY3z6UNzhpZc7SxonGOHHep1/sInQdsN9Rn0w7PnJ0H788k+rWt/6eUjqL8L d1fYn3u4j6D+vj4a53l4vI+Av4hzZNp6W7tkH0HjPLnj+BOr3vgIGucK5vP+ tJsVKug4imgx+M2+5aGC9mcxs0EJ602hrF380nZ9Sh7/UjIylLX7MmloV+Ob aNaufe5Xy/d8ihY0X/0wv119zLdoQfPVdOf00TbVYlicL80Oz/X5jxgW59V/ xY+xGZnA4hy5ZvyBn2MTZJzR7v6NA9pemJTA2q3X6siibTcTWLuTPDZVrnQk QbYL/sthOe1rJaSw5zgoJnJwTGqKoP026ESr3d9sUhm/eefaLcZbp0r+0vea O8S2StTMJ1kWbHbZJJ7NHlW+lZuFoYRt29V3M+wLNvnwpNxFkxjUuWz35H7C YPum6qpagwK1ZW+DTgzKna7tOdr/6JUa1o5m9Wp3770kSPtSdnG1CTPTtJVN /83178gGjsdd3iX9FRcpcl/Vcl18mKbVnF/ectRBK0f7M6veH6oW9fsey898 3hWHF3OMn+EcdfJ6mtjtU39EyUdpmqHubruSHWPEQx3Xf7WV/rv+wzGvYb2F eQ3tdrOpHjqmbrJsFzwlFu3o+CYDBw/w9LxNvtlW+Y077b/Y/Eu+ZG3XiiWv 816L0zqXNvU/rlWS/Nt+rHUueyCO8Q8pFlt7VQZO+Tsd3fuo2JY4xu9axvPa o0pRjN95TtCdD3miGP/Bc4OLtswbJXkQt7VTorpuj42UcQN/8xGrrEJKBTH+ umX2tC4YFCj5wdN12cxfPzNwGv8DB2+XSvsQyPQvL7015oq3B+Mfv9G+SMxa D8Z/eOiUmfvXeUh+4A12xjt9HeTB9FcIsC5XssFTxh/zblG/wwucGP/kSb9K Bi52Yvzzf5gc/i77G3fU+a+PeXir2dgnYgPhD184a+mVCk6Cxv+U+388gsZ/ Sma7gurv+/mzQUtxF1S/3eirNZcM8RBUvx4HQfXrcRNUf4UHpz9Hnwhk+uvm 2PX848dApl9/jky//tyZ/j1bvPKufRHJ9OOX6tf7oaD9R++3gvaffA0KV948 L47xF3LJVWbxljimXx9Hgo4vfdxJHDyvWp9o8LRKMuPRxzvj0fMD41l7qn33 QjfSGA9+aTz1PCbjQPKVrMM9KvRO2logWa6n3oWFWO2cW8nwdGXZNQedU2V+ s6/yvdDRCULi2JeiOM49KV5NP8ekOM4lKW6nnzNSHOeGClwoeBiOczqFTobj HE0RB4YjzsDLp20MP9M9Sp6zVTn68q/RSy0MG++teToqY/4Cbtb91cmIPxs4 wh7rVmoPnNpjPUvtgVN7O32dm72eX8w+Sl//Zs/vq7B3Udi7MPuDpUvM/bhg /0Nqv83YOi1nztL3svfXRSj4Rfb2vgp7X2avx4HZA1fEX8Efw+yxTlc8X4We VIWeVGlf5NsKvx6uwaLk01dzp94zalMDF41IdLByvDmhx9xNRULFtOrvStrk S5Pri9nmZh+TvgaL1+m1OhgnG7XaN2JLacetZP22Kinh6cYFaXLdMfh7Jn9j 23p/1rBM0irtXPwf/y2d/9o965TUuUmS/1P5TP6HuzZa3nRL1IY9jM7C/3K7 7UVDQBLjnx+1tYP7nljGH9dvp7e9byzjz1E3rPDkLrGSH/V8IcuHOxIHxMn1 GvjnFfXpWz1PBOOf7hy09fPxCMk/R49Pg43/BneYGK7tIfE5uLRdxIhVkVJ/ YT3+nQxnK+3w9tccgzLj37dwJv++05eHd1gawPjv3P379rVO/oy/+qWcD96M CJT8eL5Hf7q6pC74Jp8v9Of607/PqGtujH/1u76527R3lfyIz4ib24vOmunO 4rPcbe2NkQ9uyfhAv6Gww4mgA/cY/55enyJunb/G+P3Mmw442MdR8kP/Cufa cQebvhFU/+WvhY1fnr8ULD4xzXdWPP9OUP7cFncXX+v0TFD9j4puGjNrrJeg z/fF1qX+Raw8GX/NbRvKHuzjLWj8Jzf7VMM4+Yeg/RO/lH94uUVnDrYOFrR/ Guye9qg3J0TQ/mk9tYZNseFBUr/sP4NGbp6eFiXQf8AfEmcbtvdalOR31vld K5oee/aMFkkPsvI7V2nQtr+IYvGp/jjl9N3t8Uz/6ZGJebw6xLP4dF51xM3S M57Ff8v6d4MPfYpj/J61Djw2q54i+fvp/WdP7J6qtb8kS34XXX//8FYxM2em iNOPsurvFjVpht/YZMlf3mecofX4aK1V8yfa8f5GrdjjuVXbOqdpHeq2CL3p 6a09uv7xW0R1o7av7TBtb95GhkbNQl36OHpph/zTz41YbdR2NIyyXVKphOTx WBXTeGn+FMkDfPn7GmeHaomMf5TRrOeb78mSv6hd2JfBU10155krJo6qn6KZ HSm2ufjwJQL2Obo1fnxmR6K0t9b1/Fzy17aSUYnaTF1PHz0+noa0deaPU+T4 ymHWJkfTjHi2X1zJduDMFO1I/lH3m9tb0fX17/yTNW4ajZt5+cHlm8yPZ/4+ GbduS5H6sczfU7vHNlrVNZ75WzK/b5/Sh+OZvzZee06PSI+R9vV0f6uUfDb3 zchYrZvuL/JJNbfR077VS5D+mun+rii+QhTwjNfGEH/1/Qrmr94Pmb/jr981 hfhFMX8LJX0K2NQsXOIGXX9g3RdlW96O0h4Sf4ce69zsXf5o6S/sS4VHlLZ0 C5P26Q0y/W06oPednPvDtVdXIv/zF+Nr3xGngdsORjN/tfM+Fk96RjN/9X0h 5q8+rpm/fbY3fdfhVDDzd1+t/fZJxfyZv4PW9jf+tAlm/raa1qdF3vBg9nwP V7zlu+emn3y+abq/D1aWWDNztr/WkPir/zJ/i6/cUC5qdoj0l+y/Sb9InmT+ nl8S22h0mqf0q5yOt7jokP7O7au28lHW/vxgfP1d+zt6sv68poVl/uAdXuz5 2uyJGZWnylcZn/p6f7479tqxh4ddNXPSn93bFO2QFOIt/TWZWv/n7/6rvQNG 9vHWOhN/9X1O6ReZd+Rzh187bqTumzfxtfQL+PLW5Zw6L7sscej/958ZQwNj XrLn26DO2E7rt79h/mqbgp7mO3dW2uP5TooI9B/T44Z8vsjnGy70b3Gg9Efp 705jpr82q3u+sj73Tlube2SW/qzvJ7P+rM/jMg7w69/aXlPODrwjqL9tW4w/ kjj7vaDPd8nKxNBn7e8JPN9iur9/tSpWck2eW8LMvESW/lxnbLTHuuAP0t5K f769ni0YXi78rShGnm/bWXZDnGLOCNqf/7JZUWLi5WuCjl99315Qf/W6SFB/ S02blqOI5zfpF/p5t6qDKvRb5S1ofi66psmJrwfcBO3PNjda1funxzdBn6/+ K/B8jfrzrfbcrbtbVW/Rj4zf3g873Fia76v0d4f+fB+tfT7xRntX0S3PyCz9 WT8fEXT86nUmm8fzbohucrBkgKD56nHUtt6+Z0KYv+m7vuRKmxnA/K108dur L6/9Bc1X91JnVe6SK1TaY/zm3FNy2eTOIQLjF+ujI9c8Nvc778eeb+f9/waF dvIXNF/p51CCjl+9bpfPHX4ts7WaUK9lBPNX/2X+zhlXtMX2vRHM3x1LShjt IsLZ8z1gN6R22O5o+XxRbzxobDlsedNogXoDz7f0qjKa77sw5u+9iW4Vlk0M Z/7q533MX30dxPxdvLfJ+1FXY5m/37rnHL4mMZ75G1fB4naxn7HM3zVnz+5f ujGWPd/+H2M7NKuVIGh9teDws1kvX8RLf/F8bS7UXnQ/KYb5W/HfP86t7xLL xq9+rsrGr76uZP25abpz4DlDEvN3h/2xOe82pjB/r69x+mA7I0nqL677ayja +cbziknCbEfxLP4Wabnzz+UOKdI+SR+/q/P8vbmYbYoYo49f5Ksm4sWuXJsT mb9f85xzdHZLZP7q59fSX7JOZ8832m66WbSLkfk1PWx08Mkcacyv1AU+b4pc NUq/8Fy0xWMv96psZDp3TO/sXn6KkfVD/Xyf9UN9v+L3eVbrpUtOFTWJvKOH hTzuYBQx7wIefH1Y3DDl1cqobxZ+2q+hwRZ3dhu1MT03PPMp+kvgnslu/R4d 7pngnsMeHYdO8DSM7FFoWo4kxoP3aygPcMozd92VmBozYhkP3h+hPFV0nPLM amNuf/teOOPB+yOUBzjlSZ4UsLzGXn/Gg/dHKA9wypOv0eD91X1cGQ/eH6E8 wCnPuJbLnyaNtmc8eH+E8gCnPBfqWE3p9fdbQXn078QKyoP3SijPk7sFj/RI 8WI8eH+E8gCnPMOuGFbdrRbCePD+COUBTnkmau3ca9aIZjx4f4TyAAfPkxeZ PBa1PWKn3Y4X/YybsvAs1t8foTxLdZzy+O5YWPhu1xTGo3/Hm/HgfRPw1In8 WMCth0m7VybtQ86p6Vri7KHGpjnTtFNx7Xv2XZ6i/XM+am7Hs+la/sljWuYo kc/Rc8CI/EaHRC18b+56s6qbtN6HW7dpNqCUIV8X45CUDHzf6IMbuu1N16oc +BS7NgNvUe/90rWmeO2KMd/1MjVNWrnWlr6F3XMZ2vSd/uPBrlitxNcFR2ab mTTz3eGrJhi+COS9PaHbez0/lC7XHf18Bt/M3TRAi+sa2aunVYb9ku3JQz/G y3xYbvzRcSUz9CMf3r1UwOz4Sy95/81tt4fblC8lDA75Rf5Bxxy0PuVzTXA2 mDTn1pfEtvUVZL2978Kh45P6mWR/djzQr2n1jnGib9DsgBz50rWJ7++nvyzT Uc5TXpef97vqaGLri/y2+TZaJfze18X5Uf+ax5a9TDbJ80o8x82nyh/c2SNF UzxHNu5w7xg6h905XdsyQ6fZX6u+3ZybrFW62+/RuLIdZR52ab10RTeHeDau 9f7G+PX+xvg7Jvk9muwbx/jLuHiON1lEM37c/1eMC8a/dnuX09X6RUl+xOeG y+oDUy1DWHzwHoFi/DL+Xb0HlL6xJIjxt8nRbbx7Tm/Gj/cRFHmG8RuSrJ+1 u/qDxcdca/rKfNFbFh98N1uRDxn/qYuzHzR+84zxLyw87Y9+je1ZXsL7EYq8 LSj/3ObR1a12aILy9w50nujw1ZXx4z0LxfzC+LdFNZrRoL67oPE/1vnUhOnb /Vkew/sainmQ8T98/Tm0TptApr9UGc9DZrfCmX6896GYrxl/88NFqjwcHcn4 n88pNKH71FjGj/dHFHUF4x+i/1L+1T8urNyVnsj48R6Qov5h/MWqduw480uS 5K+r53/9V5jPycz/C3tm5vntE19dnbQnXdxKbPNfnp/RsJ/ls92x2om+c2JG 304XK48XP/XPDWdx5/ifgYO7xWoba40/W+hOujj/asH3kz2KG6br9jZ3bIMW 5zAJ71OZ9vBL2HQ95LHDyPzS60Pp1+ZZOX+Wy8j/X+blW/jPpnRx3P7Rheue 8drD9Rerjr3qoJ1qOnBV+XnpwrtXiz27W1Sg9aSMA9ZllRo0bjXLLl3iF5t2 XiIy6uFj3W7f3pfTJIYVd7108LaVjNv79V5/3rNLk3EjeV7Ww7hfjfN93K/G PQGc79P7wzjfpzjeU87+HnKg4n61h+IetZMKV9yL9lDcfw5kON6rVfjFcJzv A0cdMvJv646e1Y2yDgH+vnWO5TdzpEkc9+Hxnhbuw99tM6xAqR6xct6P8+kZ tiG0mOG17fKHX76EaLdXdd9g2dqoNWu94o9Fy+tKvOyEspdsTqQwfOj7xak5 o5MZnlzu8nTPc4kMv2ffrUq1YUkSx/ro5cb8Pa4eTNGwPnqj249IX7TTWCRB a054joz76XNvVLzkgX3b60UG7y0dK+2Bm7pfyu32/DeOdv+oNqXh+HwJst1X uv2/e38suLk0WkttlZXHM1W8mvkuiunJud13/oG84UzPeqeKrpUnRLB2+zq8 L1NpXjTzF79Uf6daNiP7zg1m+PpH5zrl9fWT+FsdLx7tfXJzxwBtHGm31rEx KWeeh7B2+2/otLHjdW/Gf+hCqUGLj3ky/upu382DF3+V/LC3Fr28Ytq4MX+v vLd4WfKEN2t3lkf1YU+sP7B2bQu397h0+RXDj16o9rnytgsMLzJruF+rt3dZ ux5Rl/rmjXnP2tV5hIKH4bpOhus6BW03cWBa3B+rLsr1PombUMSN8evPheH6 c2Htzuxd+ozNwa+C+qv3E6HoJ0yP/sva1fsha7f+wud5mkX7yXbJuBCKcSF5 yLgTinHH2j3d3azVy9LhzF89DzD9eh5guJ5nhCLPCJqvtm+tfMeqcizzV897 QpH3GK7nVYbreZW12yvh/sd51xJlu2ReEIp5QeJtB2+/3WSOUQvverzAqBtG EXFqSeRfCeUMWM/+NfLHuAPFMuYffT1L1rkSJ+tWgXXrz57r5q/PwP86fMs8 Y50rzm++Z9XAI5fcr+tdsd3W0pVMcr+OzDvSX/TPxRUDW0wONbL++eXjrWfb mpjk82pmvapZo4z4OH2Kedj2fboIu5YefPZ4cUNr3d+Df4zqOOxhupbzdKa/ hIfl85LNy5XutSZd5vN5H9f/d98J82nLq2P/u+9U2Tr3vEr5Q+W9btRL1T4+ 21+v8++/h7j6fNLPoK7C0Ha1aWbnrvI9NZGcfrRisTFGDe894b1yvPeE99SA 4z011IeHkktbmrmns/oQ9rTuBQ6dpF1N0a5G2+1e6K69+490tl6DPdqd3Gz+ 7K/tXMUah94zP+c0aXZOM6NGxFV0rG1bJSVht5voN2TS2+3dTdr16E+VHp2v YbjxZ0Kt/h1dRcKQY0Nq3U7XLnZsPKzrnIqORL+Mc1P9uZs3da90NCRdMzuc +dy/r3/4fEVGP9wbZev1ameK1jJPk3md3HIZPv6ssikpo27v/692JC1nita5 fvz97xl1O+rzY/PflP9neopG6/NNvR++bzQjRUN9jrhh/4HGraWOI25uuh78 BufO1LMzffKA/68j4izuDnGYGa/Vq3v7sGWGnuUHM/WUL13frO2PeO30kEVZ 9Hzwr3IrOAOnerBfQfUAhx7Ep1LVqpebT4uW8YGeVo/Kt5vhGSX13NbjY3Fm e2BM92gtmMSnxNJVh471iGZ6sI9B9QCnel5NzWXhcTtE6jlWbMp/eja8T+rS 60CwFvDtRpb4dFnvf3DgjBAZnxsWmXoaFX+V48rMEG3M2eZZ9GDfg+oBTvX0 OPwquttObxafPNeWWM4N8pTxQf8Zc+6C3ZMe3rL/QI+D2PqhQi9vpgf7JFQP cKpnrGWLFHf79yw+dhcLrT7W9rWMD/RcGvrg/cMD71h/TinSY1r1o+/Y88J+ C9UzTsepHu9Fzj3uLrskqJ7Q5o/2Drh0R1A9Xx00Y4PAa2z9O99j7fKDztcE 1YN9GKoHONVjbf+xr4fDV6bnRpR/weTYb0xP3kOF7UJtXAV9XsMnddnXopOr oM8L+zZUD3CqZ8vF6h4mM39B+8+w6fXvbasSIGj/WXK0g936rv5MT828o9Lr d/FnerDPQ/UAp3ryLR1ZZJdFONPzUUwMM+8UwfREz1h6sPzUcPa8KjkdaOQ4 OZw9L+wLUT3AaT58VOudeQmLWEHz4YkNn7Z/vxnL9Oi/TM/b15MaX+gay/Rg f4nqwf4Sjc/i7ZNa/3k3UcanWmzmfFHrfa5ltbokidYdov+bL5B/WuVMNh11 TxQ0P69rnK9XzPdEpsdN33eietx1HHrI+l1g/Q6dzZLyDjrd3cieY7nhhZ5O cTMKmrfrzt5XPniqUSBvY5+qw+HT49tk4Ningk7sL1Gd2C+CTstn3eeV3SW/ xyXGNPDdmnuBq8A+D/Rjn2f2FEf3ZafDtIM+z0scGWcSOz5c3+fQq7Aj8MXL pxf+NP83fqPQH7Fjvsu/SyWMm4zFy52s77j3T6vIT8tSZB3lZirxNn9iXsdX pz/Ns8qoM4Hnn+AbM/VFmnbs58Ihhz6HSJ3P57ayaTOmruFsS8sVm755S/u1 pfe22nm5oaH/3g3mp+cZ5fspdnU3/XroXk7Wt7XudLea7mbUUN9inNZO3DR8 iINR5nn029S6B89euGuUeZjEX1PEn+VhnP8i/r6jMvchP0w9sDZX1yRtwfiW /+1DQuek3pdLWHRJYjqnbws3FK6VJHWiPy94nbpljEUSqzf0/szmC70/M516 f5Y6sV+6qmzq5Pu3YjXsl0LnNf8iyR43Y5lO/FKdD8aMmlM2A6c69TzAdOL8 WpEHWDyvNH9w0rdzBIunX6LvY4tOEVInnqPd9vEVE3JGaHS/d4/PqptHckSw +VfPn0wnzsEV+ZPpbDl+5Yx+5gFM55Ra5zfvrhLA4jnnfN3gsZ7+LJ5bqnRd WeCnP6uj9HmH1S04Z1fMO0znCsvNC5cmfmM6Iy+4X88Z903qRHwS3bwmnZrz TcYH8eyzrNyhqJnfWH2lz9dMJ87xFfM109mzxJBuY+7dYTrjKu6ps+jSHRbP RlbnCxsv3JLtrtDjGfpj84eGx25pO0j/1Osc9txxT0BR5zCdl9s6nj/Q7LWg Or+3qNZyS9vXgup81aDsix7t3gial6ruPDP+esc3bD7V60M2f+F+gqI+FFSn zZOv96P8PJnOn+3XrZ4c5Ml0fmi96vXrCV5M59Ip3Q4unezF6iK9rmZ1Ee45 KOpqprO8/Zkdm/YFM53BUcvmdj0QLNh4t00tu8AtmJ3vtMjntcI5Y76iOvX1 CNOJexSK9Yig+XOEddRf235GCZo/6//14/NUzygWz3rmh8+sTY8StH9WDdhi 28gUJWj/1Ndx7LnjnoZiHcfi+c/FrUu+zYhn8Qx5vSj89sx4Qce75fKW2vsd 8YKO95KD685ZvDOe9U99/ct04n6IYv3LdHYqWW+vec4UqdNT13mqcdl8pgw8 /5aszz0o8KtbmRop8rkjnvvuvNzyNAOn8dT3DZhO3D9R7BtInfhODs7F8J0c 7Gt5HnesXbRuitzXKvRkeIuni4O0juc77nTanK5FOR1185/cwBH7MC/7Xh+y aWaK3Iex0Pdhdoe/vdHlboq2kOzDtI7I0e5n9RS5DzNR5ykQVKJdB894rcvT TJ56Os+PtdYH0momaDVjMnmu6zxL/xlXY8+OeG1Qh0yeKTpPv+XzaiT1jNb6 OWXlMa+0c/mtXdGMx7HSyz96pkdJHvhVq971kqPmhEi/wPPKLui1q1ko4yk4 caB3LrdgyWPTOJOnw5/zvN/28dauV571H09dnafv3sv7Ov/w1i5HZ+WxrN9o uJ+dF+NpYBl6K/D8O8ljpfNMLPpy62vPD5oZ0TO71IKgZW3eMJ57i3OP2XDm mgAP/Pr4fYfR+P6soH59/Dv4zd4rtwR4Junxwa/hedb41HmcL69/9a+M5/SD Bt83zv0mqJ5DofPClnbyF9SvDdfbN899x09Qv7pec6n6zdOf8RR9eL1q0Ynh jCfH6kWT9rmHMZ7HKwsPnJQrQtDnvu3lvAv9usQKPPf6Os+jOsP77DHFiLio rDwV6tR8mrY7lulZ2aDk04NuiSzOi3clTvi5M1HGB+Pi284nP7rUShIYF7Xf 753c51SY/I7fuFKTSuQMLST52x64/sN3slHyY/+zeeqeVbVqZuCkX+1JGZWw 3cHI/NX3UaW/p/X9+Tpx1YIrjzRqBrJvj1+6n/9WDPwzueRvHO/jY98S7+MT fkH5c1wo7DbnpVFQHqwTwYM8tkNfvyCP4ftsWO/g+2wk7wlqDxz20Dlt89oP X94kSp3AOxpmPq7bLEni0Il1N3Te1S722xMaKr/jGjd+wLCV/1pJ/biHAD2I Q8DmE43yhsWzOBf6drvD9VW/cfDg3gJ4oLNujdzlHtlGs+fYf3q52hMioxgP 7jlQHp+5741B20IYT72CCZXa3g9mPPjuAfVr4qldrwdP9mZ+TZ4z//PAel6M B/coKM/nrqNti5R9L+2h03Q8h/uoZ6+lTsIjKE/rpAYfQsKusPOpV90/B3w+ fFso/GI8sSfaHH+S15Xx/DUvdHT5698YD+510DjPOjksV6ylP+tv1Qs19Dtq /I2T5854Qubsbv5Pr3A2vg7/nFymUbUIpgf3RijPjepBtza3jGV6Nn1zOe1z Mpbx678sDnp+kDj2efC9COzznCuV52+xzk1+H/J84GCvjn7VDWVbJt5N35ss v4todnV7SJVmBQ3gwXckwAN7+X0JYo/vSFB7+X0JYo/vSFB7fF8xe35fBb+v wt5FYe/C7PE9RmoPXMEvFPxCoV9h78vs8R0JRXwU/DEK/hhmj+9IKJ6vQk8q s5ffl9DtcY+61aU3qTV6GeU9anzXa+fw6BbL2xs1fNdr9ekeg9Iz7Fe3HeTY 9Vaq9qmqTanX/UsZShnr3mjTJVYrUGeg8583M8alT32HnY+LG45+H3bldYFQ 8XqezaazN35/1/GObWa7dkPq+7rfS9QaJ7/P0q5b9MAqzS4nyna3bchs1z/y ztn0aolas849/mu3hN7uYMfbd0pk4EtJu4ULn585surv9zLg75Pv21/ttIxl /lbZeCd3WPlY5u8fU8pvvb09RvqLdg8MLffv620xrN3+pwsMLbU1hrWb19d/ 5M664azdJ4bGrjZFw5m/39omBbql/GL+PvgZnzdH8i/Wbp0F7ov3xf9i7e4u drGuKY+/bLeM3m6vGYknb4b6aReJv7WaPLrZxdWX+duh0IPP07/4snbtzxzr mvuTL2u3zXLPiO9OX5m/V9os8uq45Svz92eTPDkmjf0s/S2OOM8z63Bv9GfN QW/3mN7uwvOva/sP+8zare7epdPl95dYu++eV3oVW+4ia9enSPL57qd3sjiH 1L1yvveknczfG8MMFsbUHazdntvLP/x59L2g7U4u5e9esNAHQds1KxH41sv6 k6Dt2jiHbt7e+JNYSvwd92+10+Na/f6uI9rt3qzDye5bvFm7u1xj6+w95y1o f75dwrp8zoc+gj7fQ60aJn9/5CNYvzre85/OT3xYu1repV89roewdguetx5p +S6EtdvQf2KvPd6hrN1iBadYTfUNZe0enbXOwTUglLVbfuqfue9Ojmbtag+b vhqxMJq1+8n9k9idM0a2W1Jvt3OES4MVuWLEINLuphPe85rmiWHtfv2SVNks LZ61u9jCxedMgQTW7tZOM2x/7Elg/qYNmdn91d4E5m+3Asu3L9ufwNrd325f i+7bU1i7LbfNSI04ksLa7XG50BwLy1TZLsbRPa3w2OK1U4UDaTf3nIoXXtT5 /b1H3Ov4bJpRY081k8C9DrQbnVCodMsGv7/3+Kvhr+VmGXm8yfnHU8zumcSK gPOFx2a0W1h/T3DL90qrz2npmtn1zPe1W2ld/72/wFWrie+N3458cW3MDUHW F5qi7mL4wcy6jtXnFpl1I6u3R2TWpQy/lFn3Mjw5s65mdd3UzLpd0Dq8fua6 gNWH+rqD8ejrGom3a5/sUSdjHu/7IO/NVQ5pmnm5A80OtnAVYzt/PH+6e5SW VDA597x7adquaS8MS5dayPePcA8c7x9h3geOeR/8OwZMOtiyVjLjb3fqz1/1 LJMZP/bNKD9w8LfV+V1D3q6I3B2nrayQlX9l68effPfEMX6sByk/cKq/4ipr u7M5opj+55/MHQ7mjGL8WCdSfuCU/2HD6gfvewYy/pIuedud8A5k/Fg/Un7g ND6bHn9422+uh4zP3zp/ixwHSlZZ6KHtIfxYV1J+3MOn+lu1sH8zbIgT07// YefhsSOdmH6sNyk/cKr/dJFWOaPaOAn6fLtuPDt7cFMnoeAXCn5B9Rvq7ppQ aYKHoPq3B72q2nesB+PH+lQRH0H1HwzMNcHcLVDQ+Btsqj5t5RooaPyxblU8 X8ZfyKH9IXtjJOO/WWZ4wtuUSMaP9ayif7L4PH320O7kjjgWn3Jz35S6tj2O xQfrXMX4Yvwr6g9f+at6suSH/s8/JlgnVUtm+rGPpMgPLD5t9iUebHo7jfWf bTZ5unW4lcb043uMivwm+XFvQf4dPHJvATi9twAc9xayfn8yVX6vEvxYX1N+ 4JQfOOUHTvmxHqf8wCk/cMoPnPJj/Z59fH4xfvydz+zj80uh31eh31eh31eh 31fB76Lgd1Hwuyj4XRg/thMoP3DKD5zyA1foZ/dqgCv0C4V+oYi/gt9Xwe+r 4Pdl/NjfUPQfxq/3H8YPe0X/V+iPUeiPUeiPYfzYP1GMX8YPXDF+GT/2WxT5 h/EDV+Qfye9trLx2jJWf1qjl7U71u2XUdRNLXlq48vf38DsPyW9u3Pb7u6Cw n/exbF3/20nSHt973xA+Oe9NYxKzd7BbXOxwjThm/2Ht+7BJk+OYvTH1Xvip 6pHMvnrLMWc7XI9k9mvrrrhfPD2A2V+2s5hzbXMgs69gv6GIyf47s59Y9+uK 1h/cmf2jtr2OTz73iNnHFNEaWxV4wuyXWz5fuvvxc0HjGdTc6lClDU8Ftb/Y 3K3m9No/mf1fjzffbFz4h7T30e3fh521ee0QJLztsuq5cN1sa716QYy/mtfM h1emRwmqv+iTyt6ellHM3rtrEdcEs3im512dB8mW9+OY/cHrlyLF7mRmv3HX sJKzev3+rmNJ09XKxqhorUO5Bb6ez1O12sNWjLrmkdMxX66Bb0ZE+GjDnz2Z UOFwqtb+bK5LFfc0NMydffz69I+p4uiWBxsntDVqBi/r73MXC8McHd9QbG7z usFG7WJAJg5+/7HnB99fmiz5gW+89v3V3iaJEi98uaWvXYZ+l/SwI3lMKdrM skWC68/3Fq9b7Rl9MwNfUHDWRtt9ydpKn9obysV7Ceg0Fo11j++fLHXm1/Fj f9bs8yl/omal4+TvIMh+QuIjcayjJz2Zn7Zq4m8c/lqPOHMhz7EU6S/wDm5h xo6xyQz3q1FlZpWLiQz/eM61ks/gJBY3q9QCbWeFxrG4ve7S9lqvEzESL6LH rfS+vmseTk3Q+pXOjJuTHrfbJz/PKJY7XnNMzho3cW7wk8taHIubb8y6phvm x7C46X+fgsVN74cSP67H7dqw734tXeNY3ObE5tvxsFCC9Bf9av2Mvn7JY+JZ v6r1YOWQr2VjmX1R0SrXgaex0h7xmbxrWvXaw6JY3Co+bFcvX5UwFrfh9e0n zXGPlnF7qsctuVXzIS9nZaxrw7PGbW17h3Nj60exuPUq9bnZ8le/WNz0vyci 40DGu8SxHxgb2eZNZKffOPy9uWny/DmLo1l8Xue1f339QxTrV19Pv1hUrmA4 w69ebvH5378jWH+bOPB48cebg2R8Suj4xdCcSXOTfbXjJG7tNtY5PmhHKIvb 8pONFhkfB8m4IT7bLzWr1Kx5kIwP8M8dD+QMO+UrcfL3X1jc9LzK4jajSLu/ eo8NYv0tsdOhe4OcQ1gcyrWtM+bjwmCGj/m8ucu6QD+Gt/YwHivYPkDiiM+P XG8fDv3wQ8YH8RzVeMfG5xc+s/72/G7EVKcpPjJuyG8VToZv/tL0J8tvDW7F f7Kp8UP2N+D3fe8fvZnuInHy93rYONXnL5bfIhblHjF/2Q8WtxWzR69zuuTN 89vXH7aLz3sy3DXXyVrBa75KfDbmhZJrv8c0dtOMHln724snFy/bFXjOxmli wvlGJQrsk3jQpcy4hb2bMGfMNmfNu3/WuNmmR/YY8+25jBv61frqZt863noq +xXiZkg+lz/oxjoZN/L3lVjc9DqB9bdcVyv/OjXxGYtb2bW7ej2p9IHlq/vj PgReevxKjl/gRfKNzVHF9QLDBzu1etfq3F2W36zyrzI8K6oJGrflJf/stCbY WeKBetwajfnZUFw+LFYOzho3s+0JuT7NeyRo3IbW+BWfx9NR0HFafWxD6727 Pwma3/S/hyXoONXrMUHj5r7/vc/pOo6C5jc9DkIRB0Hznh5noYizoHGL8987 v3Rhdxa35n8Gf/l8wEfQcdp+0Rrb4FxfBM1vTl3mnDtw9rug88KRplP+snRw F3Re0H8FzW/63y9jcdPrXkHHqef0Ed8SRv7GybgTinEnMO7IuBaKcS3ovBD3 9J+ISvUCWdyuWNXIb/colMWt9Dbj6HW1/ATNbx/mxq3zTAxg/e3FlCi/MysD BR2ny79sTYso8UvQcar/vTkWN319weIWmD/k6NaBgSxuep5ncdDzPMP1eYTh +jwi6Lxgt9ex2rW+kYLOC/qvoHXvttEtdpfrGSZQ96K/de/S4P7MSpGCzqet 2tUr2/JMJIubccC4A44VY1jc9L8PyOKmr+NY3Ea413CpujCSxU2vK1gc9LqC jUe9bmHjV69bWH+bfnPZRfPWcYLWIR8m9GphsyZB0DpkTblWY7/ejWH9zbPg 7fmrzOMEnU+H5WtiETAuTtD59O6DHPZ/XE1gcdP/niOLm75eZvktdPC1nLZ9 4ljc9DqWxUevY1l89DqZ2et1MstvdSpVfDbpXRKL20bnkH7bSqeyuIlVrkur 9EhkcTs0d8CON/ZJbJyWmunc3joxifW3OTWPvR1gSGVx0//+Joubvi/B+tuZ x70qnfROYnHT102sv+nrJobr6zKe3zLXZay/Ba51+Gk/Ko3lseSQOfsm/Ehl 8Rn8M/JCSZs0Fh8Xt2nDFmxMY/Oj/vdPBa0r9P0cFoexlqHNfs1OY/Ojvu5m /URfd0u/sO+0S78vin0nfIeBfh8V9vjeKbWn30GFPd4Xo/b0e6ewx/tZ1J5+ 1xT2eE+K2tPvl2bdx3Nl9vQ7pVn3Fe2ZPf0eadZ9vLeC2uO9HmqP92ioPf2+ KOzxPgu1p98RhT3eK6H29HuhsF+iv99B7ZeQ74LCHt/5pPYtyfc/jSPWdrvs YtKCznfbae2fppnfchDbc5u02WcnHEhumah1rDKgXAFrk+Ze+viW1pEWhtiU TvX//17JprnT/p56z6Qtvt1zlvWAUvL+jKlQjd5T09LkvR3cT4go4vjs5Pp0 ec/n8NqwocbrCVpqv4Bvle+atPRiG0tXcLYwtNS/uzJmrNXMIRl4P/27Kxtv 3Lx852qCNvVq+LB8ZU1a3Z7/+HkdsDAMqTxth/u1BO1CnX+OvDuerj2unnxi 3y0LQ/5w+9X/f4/4XjPDlzbpaVpLi0WmOm655N8VDWh//O2MDSb592qBp7+w KjLFOv3330fW72lM/llt5EpjmoZ7KY0C+l/4/9+NWjncrPigGibN+ubi2eOX Wsi8dOydzYxcRdPlOuhAiVMPjmfYG0+On2RIz4jbydSjXzPs6/6zL+xaRl7q V6lajXo7TdqYqebzqpr9rh+s5xY5dbJ2ulyPF+t2PD5kbKDWq3yhQ1My4l9o 1fix/55q4Ijvo1YuZ/O52rXf30c9vn5Qa5+/A7U8eX/MLlXZpF0x/do5bVMD R+S9uwt3xLXPeO7IeycvdZpYucNjbUi+AUW/njNpziccvHMX/aXd0b+b+rxL o3tHDpm0PW0yv5t6Srd/OMy32IEmJq3hqUz7pcNrr+kpXMWyb0WDDtw0aqfn ++/s8eb3ewGtM98LkN9FQV49UeDbZXO339+ZQR7umBpvdd/z9/455mvLuqXK vk35ja82Hq+b1iFWVH5W2ybVzKQtbLxkfni1NvI7rvuqDI9zy4gPvuP6qfL5 e1EZ9nnvfJ/gc9eoWV99c9XMoo1jofybOv3/u38bh7k8HX0nVftSvXWxif// HqPtiYk7dyWLxbWfezY7YdKC25qOiOl/GCbr+MEWMzq0aG3SrGpm4sjz9Q9H j6hy0cTW3SHPOj7t04jjqYZNZbb8k67ReQHffcW4XqLH+cn02e/7VkvSlpM4 L898v0PGmeSB399tLtguZVF6rHj09rZ3umeKVmrpEtOuuU1kfLr1btvngEUS i8/7yKYXy9RMlPEh+UrqRH/Im/frzbzbY2V/wPtHjzPfZ5HvH5H8JnVO1nWa jS338navBK020bnF/2jTvrtj/0fXmcdT+bz/X9pTkla0iKSkVFJpGy1Kadde WoSytCiVtJH2FVG0Wlq0KBVZ66ZIVCL7vu/bOY7DcY7j/Ly/7pl+5vrwj8fj +bge17mu1yz3zNwzc4M4B12+5/zbpQHEie9poeO8M+fQjFMttSRO6vwOOd9E 9dskzn1snEuE9v7WYVzmin3nOL2apWf2l64Dcb6c11jbR1IN4sT3t+A47dk4 R1rM6FaZUsI0nuisJ3teCehJ34trwcYppxquvmxtFVNxvHOcE8f/kLbPLQFx zrAKDTueVQTixPe60Hqu1OI98N+dTvTE54/UO85nkfNr1HMW1M+H6xwaAycV gvpp8lLxyR+bdBDnAW2xbJxVMogT3wNDx3liWlPquJ2BoNyTOs6jgXLH98bQ cRpKXT+vL5sI4ixTcCt64xNI4pRh45zd5+SVFRquzFMqTnwPDB3n2MmcPTP3 xiM6TouO83eIjpO+7xeX+5ShG8c0p3kjuty5s723N+jFI1pPK/m6z+fGJyFa T3w/DB3nmdAD9xj7fESX+9qO84aILnf63mAcp5v+7hXdL6SAOPehpW6PLPJB nC+zpsn/DS4EceJ7Y+g4Z7/ltnELK0Cc7PlKECd9/zDulxY1WmbcMS9GdL80 iWss/u+eDzrOcW+s9U1zqkCc+D4Zup9PR8MUFnXnorNUnKM7zpOCOOl7jK3Z OENinsmMv16DRpzqHOe6PSs9Wto4IM64L0bzTkk1gDjx/TM4zjNsnC5+H6df d+ejL3ad42TPz4I46fuQsZ4ehofH5KQ3AD1l4yvfL3LhgzgvqnM3Rrs2kTjx OeLp+dLcIWMECJ8jpuZNoD6sHrRuZYq6kNQHfO7yfsc5YnLukppnIbofMAoc oKtm2YzofiB2+uWf11WFIP7FzrcODVATkfjF7Pic/Y84HzvG59S4muz7xefo xy9+VJInFpNz9NT4FuHxLTXfJDoY3T0UG6xdyhTza/vPk25DyobnuD/d+EwQ mr58hGkZo6j6bMaW+23ounFkcE8/LfL+epPC8r5X1drI+2vbA2+Exu3j1fFv Z7RkjpSgqivLe668qxXZY8O8pQrt41XPSV6nUKAE7Q4sipTK5zPjWtxNbO1C GJsZYyuj+7X70ffQ6LFJSQ8tW+wgr/WF8fMQvv/j2Ia8Tr4cZSlXwezYxrcv 2faFuX9epvjiNAmayj07cummekbwYq6OnV8Io23EkTg/l6Al35v3ddusqBdv Zl0htSQNn+dCKydoVAQvUoqk5tdg3YMdf4LyHTjq9fqDrSJSvnj8GbfwqVt+ UBvC48/91Vf/r3y3ZU+62j6vQdH3Zv5f+fq8sZ2XvYhH4lEMlpLrVz0nEo8n VyQYe/iebkN4PPn41ayYu+4t6GZDs1B4S4JMVby9dSX99JL8Y02WnypnXMR/ Z1VMamH2l3yUERtrRWKe6qYz+olnI+AKmh49NvXmEJ7I8ohL/FSFqv++C9/Z /prlMf2B17OBn9m3JZ9Tnb4C7vWpWvao7FdEc72z1bXGa7MBd3WeqhH1qwxw WRMrYyNuPeDfFIx+NFxrBPzceU7h3FEthON7KfH9ivheSmyvW31TdOGdmNjb j+yYVzbmLJsvO0yC8gZ0zCv991cZ/jc/PWS/Sv1+iARtkZ+7TpTZnZ5vIjzf pOanCM9P8freQt3LlukvJGR9L9OdGeTbPk+cujv8k1K7/7LitzZe7fNEzMsk dhbrVP/xo+y9UpaXd/7qq9eGZvzpuFeqe/KAbWva89L/oen7q719GcT2HGfZ nhfmSfd6n/Ea/4/j9cApN+eVPmjvZ/B6YDh7/hHv5xRUdJx/xPdW4fuv8L1V feuvpk1MEKGL9SNCw7QkKEswNrL+FpjXkPUulwT+0lXt/dg28UavsXwJs0Gl 76Qr5Wp6QUU9w0a0xzl9m6Gu03gJI/eqfcZpohWJ7/fGv4vv98b7uxpZjvd3 4f4N29PrIfR9of1KHmiOqBExY0Pv3Dk5W8zwb507O3XhYD3qd5kufpfse0yf HL+ye3v8B48EjUai9vhLl2SEmWpFUvGA9Sv6/k98Dxje74rvATt0IuLef/d4 3B1u8nHVeBGz5URo3Nzsf/XN8egr1RgnIVkPwZwbWX7eSVYI1klEv3zCGqxa yDoJdZ6FrNtoTJit89/5l2ubUlaNVRcxG/twJl7//86h9J7RJ2iHXQtDn0MR NB7e4NLuH59DwfYznqu83sr/Z/9So+M59aZG+sP4JiGzQfN+p/WZhTtvN459 2ELWZ/D5nQDbC4tnWbaQc2G4vPA8ly4vXZbj8sJ6Zr6N9uzh1gT0jOk3oN9p Lh/oqb1lhcWc0/94b1bP+aY9vV9mNjI/xnXWkz2XRPJd169Dz9g/M2dktP8u 9yK/k56rflo+GFzWyNDP9zc2Ju9XtvvHz3fif/5FF7m9fKBnvZOZR+7eJqDn FT43K6MvH+jJlymfWJfeCPTE83FaT/y9GFrP0UvVHcK7NQA9e/kc4kzfxQV6 2tW/WcOt5ID6eV607/LuZRxQP9nzZUDP/vs8FW9LNwA9XU1+O8YbcYCe3D4x 97q3+6f1ZFLKT8Qm/rPHun3o8eOsWxIXrB/+vLEh6vYJDlg/1PVdLvdMn0PW D7GeeN2A1hNzWs9vYYN/l+RVAT09jjz1T/asBHraDxhjvfZdBdDTRc09e4pl OdCTPScI2vvL2YJuNwqqQHt/w9uVKO1UTuzxvUPuCmtabS3KyT1j2L5PhltE 6+kKoGfdrI3xd89WAT3HGhxcczO+HOjZbLulNti8HOiJ1zdoPTGn9VxTmeG5 PqwQ6DnG28J+4bECoKe03Q+b00PzgZ5T/QLX6l7PAXqy5z2Bntr7Pie0hBcC PfcvWTGnMCIH6LnIeYJrzNUcoOe4AYHyqQF5oL3b3VG812NbIWnvmK+6Yz67 yTCXcNzepZfNtTW8kAPaO16HofXEnNYzQGveb4dJSUDPJwvCR35e9BvoOfbV s2EBHnFAT6d+Z1MmXogGerLndkF73/Wxx6w/U5JAe5de/PLFyfJooOfjLLPN ixyjiZ5DWPv1Kae37Pnzg8mi9OxxgYktsUwEesYWFPr69vwO9FQ3uK60+ng0 0BN/14nWE69H0XoennHvjm6WC6L1bBgZGTllgT+i9Tw667r1NF4QovXcPveA YLRsJKL1ZM9fI7p+mpzo3bz+mQvC9ROfT0/peWHF440MekXpqWN18VivQZGI 1nNIcU5FwsVgROvpX7enuqX4EaKfR+NMBq1fofAZ0c+jcPGu90KlSETride1 aD0xp/WcNOydJNY8Gejp/PzmgipOKtAz8rBHFCcmHejpofemSHttFtCTPUeP 6Pp51rXM/eTeZITrJ9bT9Omwluujs4CeN7fM9n6xLovoie1fZb9R9tDIIPZY tywlzZ6m6imI7j/tRS3C47czgZ7R3mrM2M1ZQE+8/kbriTmt57Ud8tpN6UVA zy9PHdf3HlUC9Mzo29vtWu9SRI+XvnOdx71ZWYbweIm6D4Hki/UMVZzStjqt CNHt3U/1u1aGdhlYDylMS+tuvqoM0c/39chlcZ5uKaL7T5MPiTpLZhcjur3P ag0OWFVTiuj2vtnnt7zq2jKgJ14npPXEnNaz15RV5ldaq4GeM45HXPRcWAv0 NMpeGDtSsw7UT91vPzcvsKkH9ZO91wLUz8k1+6cVCquBnmP4Unstt9QDPY39 Bs0StPun9fwh9+v44Z11iH6+ZwfIWKTtqCH1kIzzfzcU58vVEz3x8z3laJ+l Qbb1iH6+4/VMWs9oltN6Rki+rbzp3AD0TPM9lTNUmwf03LdpwZnNfjyg5+YV TvoVKxqBnuz9JEDPlLx1H0JvNwA9lxePMjy7oBHoWTFvvI6+YSPQc4xN942O UTygJ/sftPdBoXdlQhUbQXv38fGO8F3ZCOonXnel9cSc1tN+/x7zNJVm2H/2 V2jaGdMM9FRhsu96zREAPYd8VN41LVcA9GTvmQF63lxW/1O6/XdpPfuuDDeN TRQQ++fKHfPNZPv1Ma7t/r2KX3eab2Zmeh2MNxIAPYtfRu4Tr28Gev4aO0NN 2l8A9Nwug9Jq8gRAT7wOTOuJ70XHelLrUeQ7KdR8H9Hz/dlJbefGBImA/quO fRrot7kV6J+tfjKg8lcr6G+TlL7Y2R8SI3p+yt4vBMYDC11vlBoGihA9Xo0J 3HJWbq+Y2ON72vUeXVscclhM7mnH9ncWLbgyuKwV6P9Efqfj0lIR6B96eyct MERi0N8q2ObU69iIgf54HZvWH9/3Tp/747L643N/fkLHYRdMysg9h7veHunv 4qgVWXpHPw2t/8LkN+/aGdcgQc6HvvbrV17LTFtVntPq3kLWb4eEnvOcMENG L0nyZvWmt03k3vX4Yaa3Q2+r6RkLkYtnggj5lnWXNPIkSCrnxfmSy4jWB4xv 82t8svQPi8n4lip3Mn6m6gkZh1PlTtYlqHpC/FD6k/EtpTMYx+J7DrHOVLtj 6HpyYUbtxEN5AvKdEao/AXmx/Q/Ji+pPGHrdle1/iB+qXZN5JdV+QV74Hng6 L7Z/BnnF/lwjN35lI8iLfe6AvNjnFMiLfe6AvNjnFMiL7f9BXnhfXxf9PMiL fY6TvPB3Rh5XmdaGHq0n32GhxicgL3Y8A/JixycgL3Y8A+ohO04A9RDvP+xi PADyYsd7IC8NBY0w9TVlIC92HAvyYse9oH2x41jQvthxL8iLHU+CvPA+yS7G jSQval5A7g3D9XDl0rwBkzZmwfbVMd8BebHzI1Be7HwHlBc7PwL1kJ13gHqI 93N2Mb8geVHzRzIfx3mFLE1aPWBEJMiLnReDvNh5NMiLnReDvNh5NMiLnZ+C vPC+0y7moSAvdp2BzIvJd4WsFc7OtY9GdD1k108QnRe73oLovNj1E/Aeil1v QXQ9ZNcxEF0P2fUK8DzF+2np9sWuR4HxwCmf82qLLuUgurzYdTaQF7suB/Ji 19lAXuy6HMiLXe8CeeF9vF2sa4G82HVLRPcbE9tE+h/3lYPyYtdjQV7s+i3I i12PBXmx67eIrofsuiii6yHeb9zF+ifIi13fBuU11P5BhMpSDigvdt0e5MWu 84O82HV7kBe7zg/yYtfPQV54X3QX6+QgL/Y9CCivW4mz06wyGkF5se93QF7s +yBE9/Ps+x1E9/Ps+yCQF/ueBeSF92938T4F5MW+LwPlddMwrT7QsgWUF/se EOTFvjcE5cW+BwTlxb43BHmx7+NAXnifeRfv3UheeD8Gngfh/Rim0XVr9fqI GOtxR4o0k0VM5KDhWg3WPSIPFW98vbWminnmpjxvHSNBK59VHPa209R73DrX u2dVFZP6RblSf5QEHTYaNVjppSb5zhEer+LvHOF5FuZ4noX3C6nMVh34/R6f fHcAf1fU9M9F/ume7f06+13RuSzf9DsxeF9ZBSOkeHjzpL6vnfIJn8LyCS+t 9Qcci2duPO1s7zZbLHtiTiCi7Q24MzS+bk5HtL1k+UaDo4kliP7d40rOp3ry awnHeR07bpb+8waP7IPSc9+p81998NPJ1o1okzAOd7sfHNZeH3oYzWjQXNSI VnjeFF4SSBhT/+5pSiMW6S3QnHCc017fHj22OX37v+977qpQ3bRhCPnuOdYT fw8Lczx+pvlIdvxJczyuozke/9Acjx9ojp+/NMfPNZrj/p/muP+kOe5/aI7b Nc1xu8Ac3/dO9lGw973j+9vxfgB8fzv+Tof3mqMNu4LayPeYprPnEcxf//px 6U4bM449j+DDL53+3z6rST/f1MZItzFSA3r3bcjjM1fS67M+vAph0hw0MnrJ tzGJ0+f4aRgq6m1g91OtcIpq2nCxjXGu6dhPdb3l9bLiiyFMudqQpJwGCbMl /kDDa1klvVczlpxCaRVo0efh45YEtjFbBqW99gzSjNR47vj7/lgOwvNBjz29 C5S2yUVS3xkB8fst0no3v5uQxI/3gTQuKrkk29ZC9oHgvA6ZDEw5fbiF5HVv 2Gb13J1lzN7G+/sf9BQyoYfzIh5N0Iq8wOarOOLml8/nWph5bL4b2XydFcfl yvBaGOW6jnz19qWNlGvPK/XA4u3FY4XML26A7ZMXmpF+I+b/+S8vHS238TOW C5mpmceGKLbnhfPF9Rzni8sRvzfH5Uh9F4Z8LwnrUJ/p4t54kA900M1aeiDG ig90eN9iE6ad10h0eMDq4HddvHr9UT4zz6azDrvf1T+1rW0EOiS/v/Tt624+ 0cHTukOHr72fL7x/m8/UXPjQSQf77039q9vzonXA7ZrWAb/XxjpQ3/Eh35nC OkyzaTz1OocDdDhr89LodCYH6NDsnOJVZcghOtxndahW2a3Tt5DDDKF0eLp0 /fVJ2zlEhy2sDsOWV748mcBhInkdOixk68OOh30mrBNzmD4NnevDF+OtPO/2 vGgdcD9G64DfR9Ptmv3uEmgX1XJvo6PdKogOgawOlwaNsDW/VcFIUTqcWHtQ dvHRcqLDE9wubC/OcnhUwdixOlxkdUgItyiOdilnCqZ16PDlROP/6bDu4T3l PXYVjN66rZ3aBfsftIs+VSc+vm/Pi9YB99u0Dvg9Ml0f2O9kgfpQcbZMxawg D9QHJYcwR7/kPFAfpNrMP+15lAN0SNd375PDzSM6XGJ1CEgx3m2WlcM0sjpE sTq8dQ/NevQij/FidcDtYsnMWckik3zQLpxHzHcYI1UAdMDPKVoH/P6X1oH9 rhnQoTm40M5xShzQYWfY1Zl9hsYBHTQ/FT2x94sGOiTqoyWH1sUBHZz2JvIc VWKIDvi5MP7ElYqGiB/kuYDbxfJBTplvteNBu9g3su8MnYM/gQ74uUzrgN/b 0jqw36FDtA7xSoP9bsV+QnS7EA/7puko/ITodmEyZtC2h8kMwjo8ZnVQlNoy 6KPjJ/SC0uFTtM6Hm/lfEK2D9aOYH69fBSNah0kWiWXanwMRrQNnffQ0dYMP iNYBnz+ldcDvW+nnBfvdQEQ/L/It7OX6iNKBDgH7n7+P7p0BdPhR1XJaZkEW 0KHR56eGS2U60QH3D0pDuif37paFcP+Anxcr+r3Y8kc7A9HPi0sfJu62sUtH dLt4FVw2fUp7XrQOeNxF64Dfk9L1gf3OI6kP+DymeS+7ucNUStEUql0k9pS9 YTuhFNHtIvN7MPfe4jJEtwuuj9ePbQqliG4XF7dHjBymVkbqA+4nu5+6lX9y QSnC/aQHq0PoqzXF8QUlKPFiZx0MJ79dObE9L1oHPM6kdcDvPcHzouO7nIh+ XuSlfzjot7QO0f2DfroB02tVHdBhjUfDOI399aA+7LfNFtXMryP1AT83mzWb 1/gtr0f4uRnB6nByZZx8/73t/o06dFjEtotrjteGGfesQ314ndtFdFvFufD2 vGgd8Lia1gGfN6HrA/sf9A+vUprWPgriAR12piw8+SuEB3QoDhymuXNpI9Ch XuX6PfSeR3S4zOowV+KxcNSsRpRBtYuY1m6qf77xSLvA/YPjy6KnzW480D+M rHDJfN6eF60D/q4f1oH6vi3I12y+m2XZMgHIV2F+vutQQwHI13tUoP6LDAGi x0v+1ye8v7JYgPB46Sqbb9O+mdvN4wSohMrXwezJvBGbBCTf+2z9dx3o8EVP XYAmXOlc/7PWavHqJc0gX/zdQDpf9rvDIN8xz6dd0MpqJflKpMb5PGrnfW+Y d7t9pw09v7Jp0sgz/3RIfXb6zc7cVqDD9kvrdnEsxUSHh6wOZo0x8UmprWgj q8NK7sp1O/+rP6J5W6Y7t6H976Y9adn+r3/4kJhs+267mPQPWJ85CfM27alo Bf2kod2ojKuhraCfdAv91V/XtZXoc5Qxk36lXcqML1u/M1koYbx6zOWuvcZn 1rPndJ5vl9OztxIzBQYd53Qe3vOfGGtUxhjpqsr2yG5l0g2mn3ygOCVy5KCO vCY9t+Azq1uZrdW5/5cXPo9Tq7Yz6XioiMHncdTY8zjDR+Xu5ZqIGb8lHedx 5rHncbJCuj8oq25l5E53nMd5yJ4HjxcozRs9p5U5/LTjPDiXPY+zqW3AKrVY ERMd23EeB59zme3kFSjPbSXnpjGvVrgtc077H8f5VjQcGT8tU0DyfcTmez/x YmOYgYCRWt6RryKb7+H5v7KPRzQzu6l8tT9HBk9Wbyb5qrL5bgtEK/wSBcwN Kl/lteaOj7YKSL7P2Hxlnc+qpL5oJuffG9l8Pd0Pa+fMaGZsf3TO10Gx+4O4 nQKQ7/T3XK6OdzPId/K11P4VSxtB+ebsq8iy+cQj5avE5huUMuXrZA0eY0Dl a7tB9XGJWwPJdwyb72NDn6m7FjQymlS+ZuU/9m2I5ZF88Xn/DeqFfW4M5YF8 czWTFe74NIB8o9+bOTr84oF87Qw2ZNTI8kC+RYsOl823qAf56re5n19nUEfy Hc3my09XWRenVcvcofNNl+k7q2cNyDc6pu8UzS31IF8j8aaHwyzrSL7ebL5a Zy7nXexVy0j5dOTLZ/NdeMVKyk25hhGw9RnfDyDr6vznoG0duR/AGufLHDiz rKWGqeG1/R/H5+wO2Oh8fL2kjMHn7HC+fzS3r2FUS0G+Z3tVjJolUwLy7dYr KfVpQRFDn6czbEwQemqXMfg83QI23/xJIy0u6Jcykex5usdsvqGvV77mFRYz yuz9Dzw235+fpv7u1lrESLHli/PyiNz4MGdNKckL69BaO31FUEox0QHnW4r4 kul6WSDfd5/0Zm9rSyf5jmHz7W+5LXX571TmKZWvnIWmvppdMsj3nf6E2wNH Z5F857P5JgR+tSpZmMHstutcvk6Bqpyv9qmkfHF9fhFfrZ3/NhnU55V5On/d NmWA+txLlzN56e5UUJ+zjraZzclhQH/VfY3msvSUT6S/wuXLnT3+xKSxb0D5 DjCxrh7AcSX5qrD5iq7F+7wxYpgJSzrne2rZjKFSxcEg31c3Dq9qvPGS5IvL 1/2USfqb7XdJ+eJy3FAr9S5KJwTcd9EQkDJXNtQP5FslU+M56Wk0otvvjtEb J+aqxyFcvqPYfL2Dx9aLr/5GYVS+v3O+XFZVTEJ0/7xT6tKpIxXR6AaV7yiV dV9/eP1AOF8vNt/3KrdDZbQSkBdVn7VPSTwsihORFFW+Kn8s+ftO/EB0+fop NM3vaZpAOK7P5X5W2nMe5CC6PitOVxbJ5+aBfHei7u8GXS4A+eYgxWbf94Xg POwo39lPjT/nILr9irQfx17xzEO4/eLyHXf/8diNAQWILt9Bt8MkS+8Wgnwd +k3ak3Ehj+SFyz1nc8j5O58LEC53XL5lzzgrtY6Ug/K9WBUfoHSnguSrzOab JregyPd1JUql8t0waKPGzLQqRNfnXqqbey50KkcTqP75RHXfe5tsKhDdPz+w ytxQnlKJ6PZ7dTd/emZYFbKl6nPEpsS9beYViO6fjSbygtSKKhHux9ax+b4L Hxq525CDCpZ15HufzVecK92Qls1BYipfNZuIfkr7uSDffdzYKaZiLqKfR/OF Bg8rjTgIP49w+R7fqWLWGM8h5Yvv57k6ul90xGkuwvfz4HylFEZ8DKrngnwV 3S4a/ojhILr97hPfbdzuxEV0+7Uc9zHzZW4jovur8KVeMsoH+YgeXxVnbh1n KuQjenw1dpuZgf/tJlCfW0zKgqaXNYL6PC2WOTvfmI/o59Hiyy9yew5sQvh5 hMeTYY5Bv9ocm1A09fxNaVUxG7SFD/JVNp8h+2xoE2i/E26u5TUcagHt9/i7 +WoWUkJSn3G+TxY1z/e/IQT55n+VNmkaKwLl+/Gn059Tdi2kfPF59jotY49L 9S3kPDsuXynOkubV3kJSvg1svnZV68uWDRGhGipfV7PIs9uqWkC+BQlJ6nUv hCRffI74ybqLxaYrWhn6fPHEe9lr+rgIAS+rKI9TCmkmPMxKKAhr1+1Xwh29 iSoipmD11ulz7vGZw64duplf3uCY3+5HHD/t/3R7/eHb9i1nQpgLR39lRwwX MftV9mf0m6ekR+VL7pui4mfo+K2nLJjJtPFBnJMcVgT8VeOBOOXMm8YX3G4i cR5k43w1OnjfXQmf4bFxBrBx/uin9fXoxSamZmxHnFQ9JOMiql6BOANivEYe t+aCOPOmbJs8WL0WxGkk3jLgnpgL9KwLUli96gCX6PmOjbO/j4ufBo/LCMZ2 1pPtH4CebHsHcVaF9uq1LbASxLnfeIzQQbqE8HA2Tp2JJ8ofpFUxXms64rRm 49x/X7C/z6dKJo6N8wMbp++RilHfoqqYCjZOqt8m4xCqHybjSRzPsYqff2Nv F4A4i4bH3cwNTwV6RmyeF9j3QyHRE8fJ+fFZ57hLAYkT66nh7V819VEh0ZN6 npI4qecjGRfheITbl5xNe/MbxPn2xYM5ce6vQZxX+3eXrldMAnGW5Mr0c/74 G8Rp/qT04HxuIomTGucwXlS5s+MWUO7OHfGAewYEHfETHorL3Xzisk3Frihy Zec4S5+ckSm2f43iqHZ0YLbUyUNn3VENpSc7/iTPa2o8Cfqrko7yBXGy9QGB dqRbEb/1RDLCeh5g46zeVBrrEJKKsqg4jz3vuVPGOxnEyc4LQJzsOB/Eua+j vYA42fYF4lSpezsCFRSROC3ZOGtOT773V6oEPaHaUcDT+UXD+UWoguqX2Pka eT5S8y9E10+2/wFxsv0ViNODqTRM6lGD6Pq5d/X+eFO1WlLu/rgdHbcb+kqh BnEoPdl5NKLbOzsvRnR7Z/tzECfb/4M4rxq4Mu/dGkicFljP20lnReN46CBV 7om+W8eNftJAyp1a30B4fYNarwDlzj4fQZzs8xTEqf9eK1M4vhno+Upw0GNJ cDPR8y0b543+zfP3TWtGPdjnJrXuBOJk15G6eu6DeLop/m5YHCoi8Zix8Zjs 6f/h5vJW1BDXEc8zNp4Vx9w2B3wToVY2HmrdD+F1P2odj8SzdEdO7PtkCfl+ 5dQTfqU389uYifV/+mWskDCyf/eaWh4SMM1HNrfOkBYz1D4ZBu+TwfvEfmTo HVo3so3sE3uyvcjLwZ3HqBVYRF4+LWH0HJPKDaxi0KMsFfvUpTwG/b02PWen hDG4pGZp82gQ+U439o+/0y2t6dmUey0DjXZaaWIsFjOCE0eZb2qqeuffz3TZ +7YODZdVSBjjJGEyNjo6M9qjI3uw9qaK7wyGWLUwpnYd9tjP0/eDtH5mNBI/ 3VheZmA79PxSDqNJ2e+K9G+22V9O7DH/nVt6hbmcQ3h3ln85VrBk5plo5rRd Zz4qsd8V+aGR6DTlv63fqVf+RlmI9t+8ya6PxeoywK0mfJwrOlIPOK/1ePB3 w0bCqfJFdPlK/HcFhWa2IFy+2I+/2ZCkgXkC4qe5uOM+lo0elqHzdNqQw42O +1io/VHkfRD2Y5HwvmrLYTHxo8H+7sFL07m3QoSM8tGO3z3C3p+jEP/E4c1k MeOc0HF/Dua79kjv2/tAALivwHSVYt9GwBPG3N7nU1sH+LbVG2bIxZUCHtMy XbrVIBPw9dv5B3dKwgGf4nHY3dP1O6J5j/rJ02xccwEX/Uj6GV9bDrjuqkvn plzlAM4LUvU8ocQH/MPoqA+R/i2E4/LF91Hj8r1iVpX1JEnCPDeLWr83q5WJ DN779rqGhMH733D7wvvfsP+TZw8OSDouIfnuck/88N8+z8q9ygPM3rbPL8ym pnrZaerhc1su7O/ic1v4XqNPoU1/hi5rZfC9RtS+O/K7NuzvRgxN4l0uETIr 2d89kTJ4xNp2ewXzXzLJbkImOt/+1/6TmsT/UC3LvZvbOfaP47z6bp2DnlkL iRPzKaLzPKWRzYQfZ/1/eS8++9ZQwGRQ/oVrt376FdgM4sf7x2jdpP21sxas byK64fh3iac0XJVuAvFv/f5ruWw7p+NPXBpo3vy3EcR/1LU08+/VBsLtWP9S y3ebmYXygP8FFeEPnVR4IH6874vWf/GSu5F8hkv0x/p4u7lk6B3mAn0eGmtN jTnEBfEPzhu26q0eB8RvbeTsMLi+mnCsz43Ii/dmr64D8feSzOt1TLkWxI/3 a9H6Dwnmrtq6vYroj+NP3Fxxpj68EsQfU6k6WRBWSfzvZuP8UNVgHr+jnPlB xc9z3LjKMb4IxD+0foXp84mlIP5bk6WTi0TFIH68z4qO/0HpJ8XYmYUg/k2X /FcY3ysA8a8YUdlidrcA6H9w+uF9hw/nkDhxXi27dWbkGSaTvHD8C+Yqm0zo lwHinxxyC3m/TQXx43sz6PhXTxAkWIxLBPX/SnK8sebP38D/DqVQxTWxv0H8 fcbwu3msjgb1J7FAlP1wkjOo/1P3vKob2CMY+Fd89eNH2aTXIH68r4mOXyq1 OjxFzZv0q9j/tjjHCJuRr1EX/hEdf8r4pviAxZGIjr+kJMjDcmkSouvPoqF3 U/Xk4oB/Vh9Ex4/3I9Hx3x7FE+cdSEG0/oo5PR9/eJMK/LPlC+Lf9onzs9Uy C9H1p+yb+7nY2EJE15+b/npJS5LygH+2foL48T4iOn60e8YHx+3FIH4nZv75 amEx8M+2LxD/C01tT7ltZUB/9j/QX29C9oMZNyuAf7Z/APHj/T90/J+mHSod 7FAD4m91tgs6M6YW+Gf7N0T3P4ptB375nK1HdP9j9bEn71ifBhB/duu1fcUZ HOCf7Z9B/Ox+YBC/Z7eN/Y3+NoD6P+f91sbeKjzgn32+gPhj96Wcu7+uEcSv MdK3P3O/CcR/z2yCo6YVH/hnn48gfnx+n45/vWWD2kPTZqA/X6F5wLrAZuCf fb6D+J0SbTyLiwUg/uILeuP7TBYhevxglBBz/5i4BdH9Mzs+If6pcRoZh+Pv Pnj7BYVfvipG+LsPeJ6Fz8vjeRYeh7P/yTicui8R4fsS8bxs1OQbllfvSxCe lxnzivtu7itiNL2Ozw13bUM3ar3DM8f1iKTOjyB6nCCbfBuVNonQSqqefDjv pn5/aSvQmR0HAp2R7sCPmsfFRGf8HfP+UxWdPx2QkO+Yf7T8aBWcWcCE9Z78 TcFRgsYt37+iMnYqyff0ARPlx44Scj8kNU9hsD64PqQmWKiNVJeQ5wUuX4MR 9Z5Xm8Xk+ULdq8ngezVxXrbFszmncv+Nb/E8CI/D8TwI8yz2PALN8fdfaI73 q9Mc79+mOd7PTHO8v5fmeL8rzfH+T5rj/ZA0x/sDaY7P3dAcn7vBHNdzdr8Z WU/A5fu1R0yvjfVCUL6eWr+f8HxaSPni+WbseYcTZ0IlZL65na3nba0hF9Jc hEz/uo56jttF/8O+G/tcayHrFTtY+4TqF2/vLm9Fv9h2Ycbaf7X7nGu6Tozs WHscP75vhF4PkZZTjlZiBKTd4X6goxwbwXqLkcX3FWNzeWC9Bc87aP/revea xzQ3MrT/jnKsB/4nd1tvEuBeB/zjeQHt/87j/SrHzTjAf0d9KyP+8bw+TGu4 1mibUjKvx/7xuB37x3r6W90dtO15OWNH+e/Yh58N/F+KCGke7pkB/ONxNe1/ 34zgiNvdc4H/jnbxFfhfY95fPwGFAv/4XADtX0rV6U2abUxX/sF6yzt5s1d7 GmIRrT8el9L+ffUT9UrmfEFd6IPo+Bdp+s3duCgP0fHjcSNdvusDXx7PTc8E 9ZMtX+D/frlsUoR+BfCPx3V0/M9f365zkCsD8bP1E+hzOWfcefUgDtAHj7vo +IefiR87WKe+q/YF/C/R//rg8DI+8I/HRbR/gxfnX/3VbCT+qf6K2Juz9ux/ pEf1JwdmZY49IiUk/QneH2sXc89QPauVwftj6535I7xMyxjfvckDJl5qYw7H brjJDdSKHGnosXRd+3PnzI+ovr97tTEj+r/+Nqf9uSPVrcPPtx3CaXnLBIwb 6wfvj7WuVc2eYyhg8P7Yzs+RRvJcwPH0bNwxwj2IR+LBft5euBTFDeEBP7if of04Dzsnvre0jvhZxfopm/V3zbpVdcwWyg/uT7AfnNco/SXxPVVKSV7Yz2Hz eyOZCaXAjynbb9DxrC2Xn1IuTAfx1E4M/bu1Twbwg/sHOp5jg46Nlon9BOLp PlL2fWrrp678IDqesZ8D5n+bEofoeLJnmTbmDo5DXeQF/JzotrrnpYI84Cfn y4vdg5PzgB/crmk/s/4W6qS6VQA/JQG3ipVuVQA/uP3S+qStuxX4MYeD6Hqo FWUqszmTg7qohyAe97BJCa0H+Yiuh1UTpdW82ucL2A/+3dWqceX63YTgd5+6 PllQ2T4+x/YtcqJQm8A6hO+VejjzyZojIcrkfm8OO97D59Dx9zJc3u2VNTzQ Rr6Xgdc/2fvYyfonHs9fazzZo98DEfmOW3N24V1Bu/25ctRcpyFmdDhXlVda aOj5etx3yMyoZK5IfRGE/WpluGrdDx4o1NDjm3es3zK6Bw9MWdGKRlzoWL9V 1XriMCE6nxlSYjMo2ESCEn/PfK5/Rl6vavn+vGD/OnTcJEbKarME+Rl4jatM HxUpX3vVI8q+nklwHW5eMEaCpv+4O/1jvAo1rmsB40P8voDm+P55zLFu2B7r hucXg536ua8KbibzCzweQ25KVjclfDIew/zSpLPrlhzgEo77z3sXow41BVUy uP/EXDnw0jxTlwLAH17TUjP4+BvwHrV1j6VPvyb9MI7T2cEo7GlIKokT20e4 mDqXSJUg2s/MvU++HVerBX62KB441UONR/xg3fb2sBvmOo4PdPZ7kNVq4Mrp Yr5Q3sW8ILeL8f/3Lsb54V2M5zO7GLeXAt5xP1sd4DNeySVKJP/OATU2qPca eE7IiF39ZY7ulTBnNw4fu3Bu78i1i3+Ns2mvh7jdDYiUv+MSo6KH79/D7Qjf v0dxci9f5/GPCMyjE67nVEX2aSbzaMwvXl8+VPFtE0PzeJU3okSlBsLxd15G 246KHji4msHfecH2z3yKnM/UFQL7XT5rwtPuJAH7HvKRpkEvL4F4zvo+GHSk 7S/g2r595v30LUK0f3/bxYeMf1ST785gPlgVJZ043kB4Nm9gwn+6JZ0MSuLc a2EKR3+8q9yuG+ZzeskaaL8XIJoPGTQi5EVPPrDf6mf/eOdRDuC658L6Tvpa Dvil7ZI30+bmEp7F8oU2g28qlsQwwRSf+/LduR07PqNgys+Cm3suzfXKBHEq eFg1vWssBfyWxfOJixTqAXd6dHhK1ehGwsuzvT7pLZcwhyN793M62cQoDLrz Vj7sH/+02ZKjW84lvILlwlxP/8KXVcwKyt6h/y77NRcLgZ9Bxw1u2UclAv7q 99/zj+w9EO0//o/PgoTEZLSC4lt0b6xv6V+M6N/92y/24vVpNcCPap1Djuzr BuAnf9Pops3zmwnH+hyPKVvya3UzKS9sP1+m9vzpSy3A/kFYTspmoZDoqRva fa6tgYTxtVVcf09dxDgEiq1z3P/5Gdpf98zOqY0M7Sd0x/JJThENDF0u75bO itWYV090w/bN5ZtVbTfUwDiPtd7xGF4G/DsMG8Up1CoG9jeWOUX1L8sk9rge yl2LPvlkWAqpnzieQ64zrb2PfiHxYPsxR+pmvE9/SOyx/+etf4bZbYkBusWG jzd6eSoR0fHoeefa7ObnAHtjrYQcc5NCUG9H+Ey0XvSkHNH6JEv1lWu5VAXs v+t+WFO1hwPsx1d6e8ekckE8Dj5rLLQbG0E8RetQuOz+JlDuyyINY47kCUi5 tyU/ODiivV/S99oTLO/RzFzpedXhlIKEkbA8Ln+PyaD3QrSf5djeZ8PUJbMK W4g95pdnRT+K68kD/M6jVX26ldcA/+q/5FMPfi1m9lN8L//d4tC5qYRLpXTw 1jt/K5+7vWAMKP9Cr+PyY/wTEP27H05mNGf+KQB8kuHgSdaNlYBvkFXXOneD C/iAE9EGP0Y3AW496U5qzT4B4OXVrhp1q/lABw0nvtyzCA7gOTMC6oI3VBCO 8y36XnXccHceyPfXsirl1VN+AD8Krd228GNDQDxtY49HjD2VgWj9DxYdG6Rq UgrKt+JjwJKgS3XAz9uv/HDfVB7h+J4o/J0dfE8Uvn/p8Z2kM7r7heT+JWyP xw/YnuIIc3x/1MrWg/fOC9sQvj/KS0fB5EOViGkZ4an97EH7/LpHj71V8oMJ vznbTGHQ3/ZxOMufsLyyRvu5jpIENXfvzPUCRAo7+goZmv/5EyuJRQJg77Rs p9TgE3xij383Ni+yLK6Ew9C/O7xm6f1uzyqA/4U6IxLypPIB9x6n/8f2UBzw f3DRStEL/U+IzvfWRwOzW1npIN85k/LNMgeVgvjftyp4Ws2sQ7T/Efs0ys76 84ifXjbKSm6VIuZV5ODlBhoCxqBK0rukVl6vN8trNh/XktzjMWYsx/Z7895P spapI/aY8/ufEGSWlQA/Ocftrt2+kE78YP5pjYzzm9pAwKUel144ohSPaF5v U+GXuykf0fFY93vXu1tiBaLjqam1fbRcyAH85Sb5YNcbfMKxblMu3L1Rc0UI dIv7Mq1W/oQYlHu4669dvk1iYG+cJ/571l8EyutQv7276yaL/tWHEdllV9rj OTLBf+bhu80o6J6pvE2NPOFldXZxlspNDM0nXcp+N/YWF/CMOac13zdXAr7b YmHL6OQCwH13KY7QDksAPNVjcfKm3S9APD2G5elp6aQCfibnZfJEphjwOv+S XhHFNYAHMgNHqffgAZ6Qc+qbW34L4an6if+NKZif786tmP6zlbFbeAjp548g PMz7rPQFnzaE+dYoa79g21Zm/ShTDcfNAubw2uvSOqX/+BeTXfU+3BaEOfaz rfbdsV1bWxHtf5zp6vRNQyTgdw+KAj4POC9k6N+9G/hdbnYMj/xuRmgHHxm9 vi7XrI6xf9aZ+zYMDzdcWEo48VMZOvCobgbw8+2M/LM5UcHAj6iXif3r9z8Q 7We25Lmq0DsP0ToMXierf/tYBaL9y58aFyH3mwP8SAujUrfu4hP7vDDdPXbt Onz5vdHJ3r6Zuesu8+VNzj8ubRZiMa2iAfCrAh2vxNc1gA9WF1kvuFxMeC7L p792OLolJoXxofiYRVv2exX6Ar5eJ/VDgecf5EP5/zmas6ufTCGi/RtwNO48 1KpCtJ+8gul7h7/iAj/3lyee3j2vifjB9eHJxhE9vJ6LQH3Y9dbZ5KxfM9Ft /bPEgcPb7f1CdJJ3VAvQK2+tUFHBP3v+fvdHO2SbGNr+7U6O5tmfjQxtrysl cBp8mkvsjVj7Rv76wTq6HOYxZS+eEpTillxJ7Dew9paKVrz0VeWMK2uP60PZ VXtv6XcFpL5h+xqX3Q7X1+cQe+xfZ2pbSNTEBBD/gLxU7QT5aBB/4KbANSN9 XiI6/oJ9Qz3tz0Wix1Q8/BQrzr4zqYiOp3KT1MfCK1mIjmdLxeFJS4uLEZ1v TWtY/+4WZcD+d+jrnRm9a4G9SQIfud+sB/a++jwDnWE8EH/tGo/QwVsbSfyY 9znQY7fjDBHhuP5UikoNhsVKSP+TxnLnZcMjuGfEyJrqf9r6ljtH14tBv6Tn vfzEKeMWwvF6IB6P4fVAipN1ws7vp5rI+7XO78UaAO8YH1Z3YV/UBf8LuBT7 14U96sI/4Gw8Xdg3AM7mS/j0qee889r1mfhhaE+7881MYErTkOiWXoQfWG5X PYXTALhxVJDvz/AawqexvLHe/rDuvWLmPGXfNM/BfnVpCvCT92eD19rCp8AP MyjtaePWP4j2w9t4eMdAUQGi/exVf33be0wV4IdbjxQq+HABn2gmJzKZ0US4 493WrDdnhcyRC+Y5L7IETMUS+VUq43sT/kkp7utOg0bAG802r59kXQ/4ObeR YzyXlRHuwHKZS9/SByzNYgIo+4s3ZsU84zHA3v3cmqpjHtGItg8zebR9l3sO on83+XzfwoWHygEfr6HSr2o5B/ACV0ZVO6eR8HlSzuHRvdvHS2t7O/RLbWbk QmR8K2/0ILys3MI8ahGP8Dks39/m4cnZXcu4UbxOc6f5znklhGM/6Z+Wmnto pRE/c1lu+eRK2xPtd8xals9n+dTRy3/vjvmFfgR3tq8fcdO8amMBWkv5Ma+K 9TxtX4loP03GjuaX13CJH8Ty0O+jHRIL+WgJy6PuvZqZ0ruFGbPy5DfB2vZx 91DJOi9mpF4ky/naKzZNErTPo1mO7f0flh+yvSZC1hQ3Kc5++e5LE/Dz1H6B s7lmA3OF4n9VF9XOmVHN0P53r+8d5jewiKH9p3TzHDA5LYlwhuWlBhNmpX0+ jZ5S9n2WrGeUIv6COE/xiuW9zhchOk5h9Oil019UIzrO2T/fzCsyawDcXspg 7aj7YhK/TP0Q5ZH9Whj1JuFr71t8ZmXSVINEh3/c8qax65ZWDuDblztwR6dU AB5Tf+20wq58wL97amhWTYoHfMoWx4WffwUimksEqZ+MTqcD3vz7mWxEUQng Fk8KFq7uXQe4TcjNORx3HuGGq1U5W9r5jWOT1Adva2F+XAq6p2//j6OjOv23 OYoRzS/082iQqxcAHvLH9cCz9vZK800BU9+cjW8G9vIKCTGxO1oBX5r3Q29H jRj4sZ099XKdnITwFSy/r97D82y8BNVQ9hJzvtGOGj7ws7Bt85zB27iAy006 ttDtdiXgN7bOkZW2KgDcVLnNilH4DfgT90AntSJ/kJevTs0wi55pgK+uCfiy VL0E8KjP1dwMw1rAHy6746ozm4doHWonCj/O8m2fZ1P2WlE77tfJNUM9tzAO z842AH4of3FCSEY10LlpQN8H4wOLiH/Mu598+GfCmGTwu9FM1ribkdeAf+6v 1eIxR5NAXpxZRdNU8goB39F3lFmgdDXglrWTVvoObgB8/KY4s5pnTYAXfjE/ pzNbBP0rRRc46AhgOX4YHzvLlwf41zvy23PH1gG+/mu6uqG4BOj2pVC30uZ9 OtBnkEhOZqZ3EPBj+cMk1j8qDsSp2Ft9hWhiPuDdN67OuB1aAfi8O9E9B9Vz ABeI9ozZ5sgH9eeDqWS272AhaEeHfj9cX/OsDfgZcWGPMC62lcSP79XH65P4 Xv3O31VpAhyPY2luxo5j/7d9URf8L+B4HNuFPerCP+BsPF3YNwCOx7E0x+9n aY7nBTTH+xBojvcp0RzvO/rf8ZR1oXN2F3p+7Yp3oU92FzqUAY73yXSRF+B4 H0UXunXxvUUx+a5N5++MtACO9aQ51pPmWE+a431WNMd6dsFRF34Ax3p2ESfg WM8udAAc64l590F7xfNe1jB9U47+ln3Txvx4eT+hZ4ZsZOXgDj53zDO9KpNW JuP+g068wDLtY4yCkPByljt+6q3undjMOLNcivXvIq17//RlPrPDr8N/BWv/ fZXlgC0LeIwbay/N2qd6PnDQ5nOYC2w82L9cvGf5qC21xD+2n2XS+jslpoLY Y366ZWfgde0S4CdqjJPOxUX5xA+Ox3C1gTRvVBqIR1ms+DiqIQ74j9vvnmf7 /C3hWE8bFy9jWRSEflDcr1rf/XXFL8JxPH3jcsXlHumIzmvPyhsjPu8sQPTv jgqaOL0XtwTRv5s5KtZwjVMl+F2XS6ZmHkPrCMd+/JodGI4RF9H6HH+zZuXQ RzxE6/N39+hM3TI+cqP41KG1Zju1BIDfjAtvOG8nJBzXB/sz1869iGpFuD5Y P99+6oBfDaN5xqnPgWoRc2HgdKsLbrKRViw/MqSsTnVrM7Ob4p9eG6RmfW8g HPtpuLjphKpFDfGD+alApSUuS4qBf5nvUWPbUArw7znta+CDA08It2R52rmJ r1esT0Q5sp3td7n8uRK8qhDR8aSb9ItYfqQK0fGMv+/TfOAnF9HxFEvrDQo2 bkJ0PI+tcjWkOELg/+q09e4uM9pAXr9/BJ4y8GkBecnvHm4iGcgHfFPzSYNP ZziAzxoVapyVVg64w73WDc6muYCrVQ7ITZ/5HXCL0LD8wk8RIK/V60zzco5n gryUhNY+UgWlQDfnny9SXXvUA90urra54DqkEfjRC5Z9nP1cAPy0jnkTPE5X DPxo2A9u+2TcRvzg+qyUwY3RLROT+sx5t3yW2tMaxlZ/otXw4jZUoX07uEhr APG/Lb1qtWSgmJQLbnc5J/tfPn1ZTPoNUr4HV+l8OiMguuH2+E7u0AFtvoD0 V6Se9AxQOlDNI/a4vZv5JRlVmTSS/hzbr5mj1sPgQx2xx/GsObffdpF3PYgn a39VYtDNUmCf6T95YcDpMmKP28W3KbvmLvubweB2ge2/hZQqzQvIAv63aj03 uj4ujKF1njShwFIrIZL0w9hee8oI1e4OsYjW5+0oGROF6G+I1qdXWDeBWt88 RMffe+qp4dMm5SA6Hvu3c7XUJlYgWs9TFoIvGnPKEa2nAM19n/2cA/zbPVI4 uVOLQ/zj+hDolxE/TpeP6Powo1ew64uoRhDP4UHHSw78bAH+OQc3vOEYtQD/ IddDs1W3SkA/IFYZ+TXruxDUkzMx84WbF4hIPcHliMLO+rnMaCLliHVet8Or QPZNE6mH+HcvrSu8ZeDDJb+L7d150rExCg3A/l7S5aq2MVWgXbgO+7mtRbYa 1JPRUquCrUUFoB6O0ndW31dVCOzdwgzkLLf/AfmuLn9V8fJ6EmgXdZrXGuyz nwKdDW03h655dxmUy62K79F3SlKAvdtOvZLHvZKBPaP/eGjO3WJgz0htf1b4 ogiU48zhmQYHw2tAPZn11z3j6K9q4H9LY98FUpwG4D99XUVPJ7sG4F/e+MXm 5eebiX8yTgi7OOZXv2ZE14eEmCU2rkNayfOO6Kmqqjv0kYjY4/7wgaJM0EaB hMH9Id43jsfneN845nh8TnM8Pqc5Hp/THJ+fojken3fBURd+AMfj8y7iBByP z2mOx+c0x+NzzJ/PVj93Lb2AzHcuDHXXdXkzlXCsJ82xnjTHetIc60lzPH+k OdazC4668AM41rOLOAHHenahA+BYT8zxeVu8joHP22KO1zFojtcxaI7fx/1v +6Iu+F/AX+vMdQ0INY3owh514R9w/D6ui/gBx+sY/9uPiHCRVtXf1ZH5zIt7 v2c4/mxjtvjXbz01Ul5vik4Hnzt1qtJsXSFzeCqnEz8X69qt/jmfcE2WR+3k lz8bwmXkKC5b8+5haI9KwsXs7+L/U9nfnczaO46rzNhQF88oU/Z2m3tUlC/7 iGj7Jx+P7x6tlI6wPeb6k47vHfuhhHAcT0RrwN2PabUIx6PF8uHl/BKfMzy0 n/KTuuZOW/VAAfHDZ+MpDJ06QsenFfVh48E689j7o7DO0cnjhHu/5zMN87MN uknamJBqm9t7g+T1Ylg+M3W+Voi1kPFiOba3t/YaeiiLT+y/s5zp3r1VzaBd 55rOfvrN/BkdalVJ/GDubOrsor6sAHDTlZtObrz2i3Dsv6Jh4ouygQGI9v9q jJ7c6FVpiPazunDb3LGGJYB//eB+8OOhWkT7H7WoIlFlBY/4xzzz1cUqq5xm wrEOboNVewQdbEW0Dnev9o/ICWplaD9Zyod87qgKAB8ZknRlhQsP6Bb1eH+e dFst0Mfw9+TXhzNLAH/VXFofYZEOeN36KDWT84FQ54f9woaviwf6jObaLw6w yQe87wrBBsvcCqAbc1NhSZsUF5TL6aZPxsvu8IH9zF0bTjirCYGeDbFc58zg NqIn5tHFR6UPZYlB/exzKq1CzaAF1M+V8rp/coIaGdrP7ZcPgu6ockC9fenY OstdpRzob7LbqW+v1mxQD3n2Sku/mX0D5VgX/+fSRc0ooIP5ldyJ+/KzgJ6v 3Sf+0HcrA1x5n6koPaQe0XkZPlwzPOhgIwI69Kyd2ibVAvxEH7i2YtkdMfBj pvXs2AoXEdDn5ffeO7pJmoA+9caWi0KsG6A+VZ7r8gKrQb2qHbFr9ErnIsA5 twzSjqb/BXyGg7GwNs4R6Fz9yacpJSwJ6FmveeNta7cikK9p2/fCW+OrQb71 5Q7XnNUaQL16vXb008zgJqCneWj4Z5UVIuKn5cmB8zOj8pkLN1U3fiuRoKke x67O1ZbXu3xx6aOwE2nk+S61Si/m3e73CHP8fKc5fr7T3JR9vv9v+6Iu+F/A X8xYfb/2ncGnLuxRF/4BZ+Ppwr4BcPx8pzl+vmM+3WjtglarNKYIdf9c3tSG pCKm3St+fhRZq5mN+88+5J32zOT2cWbkqoXX+rbbYy5YenfktfZxJs1RnkB6 oRSH8AMs71396W99+zjTYX5ne2VtwYLwg9nAz17lnu8nG34F/JRamZLSsq+I 5m+C9je+t84GfKXmocnVWWWAR4pf7j7TPs6k+cN9DXG928eZNN+WeLt4bfs4 E/OVt6ekbrROY06/28k/f7yVkbKLnzN82ynCo5ZGZeuWNBO+iuU981S/ctbx GKnGuE78TlX/dWvO1RKO/YxR+Dvq87YS4mc1y/F/qYwfnfwce18cFnMjgPjB dqMPnKwvNfyFaPvPmgrvrs8qQHQ8M9uMikbtqAQ8bV9svy16XET7v5NoOs77 Lx/4X6MrvaDKVEjsH34YzIu2TWM0920Z0/NXu24h8WevP3qFHrPcpi2sZ4Su gHGI6eD3WR7hPqrmyAse4xDWwbGflq1Sz4w06oifByy/fCXGJqpnKeNwr4N7 sVzq4NAzO7+mM1K+ne2faZ7bVlESROwxv/Tu9ZOUJ3EIc/y7QfaGn2QV8hH+ XcxTbu2+pfC+gvAnLFcP+F2QWsVBUl86x1Mxwko4+ky7bmw83ix/6thnyP6B QuQQ3sHHSO00L2/nlhyumu6lNuRgMczWsPWfbn8+XHUtOC8EuimuqLG7x+ED 3bYXrt61eieXoePU5ppc7+dRyeA4sZ+fYyZssTtaAPws1g264zH3N0PrcHR6 RknkNn+gz7yXck6nG1MJxzqojP9mmzi6hOjwiOW3m8UvTBbXIim3zn7Omz48 INTmIbrc5/3Wvbz4ezOiy12ik+51Y0sr8Z9pfbL2z3+6WdxvsZsqYRyu13f/ HP4KmU4aa6h9PI2Jtw56dblezDgUR7mPvPkW7WG5nOdwLaNYCXJI7eCT924I Tj+WxsgYBAbseyZiHPasNV/g4o+msHx1/rB7owc3Mw7TOnPX4yfPpDo0AP5W KSR2RG414DNXnHG7FFJEOP5dJ+6FrxXqyeB3p/ytdLyecR34Md5g3m+3ZRKi /fiIDsz+mlmIsB/MFX/7WW1oqwJ82R+bNUcHNSD6d3vNHmgR4dtE/Gux/KvX m/M9Z7Y/d1AH1/P7UdCvndsdHctJNm5hpKa4j8g3fo0Ws/xTvwtp1342tj9P Ozi2l/Ipi1ioyyH2S1huf8R1KXdVOeNwsrP92EXvxn9Zn0PsF7J894KjDtqD oxmHxZ3tT/S2Wzn0XCTC9pg/f/6+/7srWYDHP70TWrm/DPAFxxNqTt2sR3Sc xb495HpvbUQ4Tpzvw/4+E9dWCxDOdwHL1x5Diz3PiJHDwg7uFrFX6friNNRn 0ZBrogYJs5+3OaR5jVLk/YkRtrf10tC2uHEKSVFiNNXZZ1P2s3/8T3K/F5Em IgbzBywfbHXg5onEJsb+Zmf7zdKJR6csaCD2niyfqW0WGL+5mlF06Wz/dY+G 42ztIob+XVfl/AcrR/0Ffo5OWWhYWm2GaD+Gav2ntdr+RbT9qJJIQ7ldRcD+ bpDorI9TNcj34mKlrYobGgj3YPmSNyFH9pY1oQu3O3PJkE033tiJCH/IcuMi PfsTiW2M8s3O8Tw56bt7ygIh0QH7KZLrtaz0NZ/BfnA8E/32T36owAX6ZJ29 q/5cthLw6G3BFeop+YC/PeTUo/ewn0DPPW/+ODsJPgB9et16uUK/dzrQ56TH 7YwZfiWA11nEy8T+qgU88NH5J2/seIAf7qUcyu8nADprHvr8d8GjVqLnOVTl OndBGhIPCvEtUW9lrsRdPFBQ8Y8vfKl47YF7M+HnWX5Z78zh9d15TGJ8Bz/L 8lvvGH/5ohrGleLD8y7YO3wuBnyegtutnGmphDuwPOsDTy9K/wUzjuWOLFfY +vZ0RmQC0vjZOc5v+8zX/0gpQHT8c3S9L25rqUR0/Bt7HtzRdIuLcPyXWN7/ oMxxNLYJFbDcieW/0/xuX/koRHPY310w+N6qAe3tfbi2a8S8w2JGPkCladTO f3xHfKMPL1cAuNeezVdfGTYCHsc9mv/1SD3hiOXrlHXfTF1dxkS87Wz/8VEr d55RFvBzkz9g+LQhkcDP2rW5QcPPRiPazwhD04VTr+Qg2l66ucbo1f5yYo/5 /JI7ix8v5QAuWDnNuDyjEfDAoITjU61aCPcctb9C71IG8lmZx/2ySMyYKp9N 3lKsood5ebFexrEAAeAap3y/aI5uBDx/XP8VscPrCfdgublR0jAdXinjTNnn dZ8cq/8oE/j57JR7/uLaz4C3Op2W6VUVg2heW6Jtrb4gF/C6bxsqn30rBzww fpnsSFsO4Ie0S9XNevEBn/zw/MK3Hi2E43sFoxLOpM4OFIF7/nubF4TXj20G 9/wbiBf5PL/dwND3/CtONBwULqwGfrw2y+VNSCsCfjb2f71x8t5kwHff3cS7 5eUC/F/R1TuhpJUEvgswpy6rbkxEIeABzFCVDwVVgLsb+Gn4SDcAvu69/pJq tybC8XcWZBSLjWeoixD+zoKStutbneQKNFxGxWnsVhEzxPPYhOGJkyIx3+5z wSLjexPgj3XL19ye0QB4nPcd6xtLqgFfl7hFVzimCPAP4rn9E5uSAC9ZbXFr mLstormGwbtIuwd/Ab95zPXO6iNFhI9kebdlv78X3K1GGyiu27/HmVDjBsKx H4Gt911pThPwH5i7IMDwvIjwd+GcLTLtPKn/ZV8DHzHT4+m2eZ7f/vFhTyuv Sga2AL5t7srDn840Ev6W5fOeGftnpdUztj4dPIDlsckq9gYfypi1zzr7edIj 8aa1Ujbwb/YtcLXz0yjAT5yfeTak9iui+cQS52dSkdmA31rc/ZJrj3LAHfs9 2eE6hIPo+BccnXc8+3kjwvFj+5bszNvjdFuAn6AlJ14e+Ckm/OeleVMH/lcf Boy66zJDyLi5NOwJj54UGcdy3tNzpw18+IzgVgf/xfLZ84pMJAO5TCRrH89y 4fOrrtaiCmaJc2c/3V8/+hLon0/84N+dLrc2QDkunvwu9rPFaqbuWtePCPvB PHb+N9uQyemAbz/88MDB8BLA/yxM95IqqAXct29fy+XneYDvPvLcyXWIANHx j8xe/Cj7eSvC8ZefMXyyvZ1Pvvty8/szrczhezFqy7MnRVax/MTk/gv2Vzcz sx905uHRB8eN2cojvILlgmCfoW9u1jLWHh28kuWXyvYVKViUMD88O/sZrbFt 58CracQPto8Y6Zr/WhJA7DE/N0sl94j8L0TzLbucqqZMLAD8z9Qvo6JWVRJe xnJVx9N+E3W5aIhH53hyKxW+HvnJR3S+HuuDs8ONhYSPmtLj2Mg+VQivu46Z /jNmauU8wvG6K83xuivN8XvV/21f1AX/CzjeH96FPerCP+D4vWoX8QOO113/ tx8R4Pj9Ps3x+32a4/f7NMfv9/93PGVd6JzdhZ5fu+Jd5JXdhQ5lgOP3+13k BTh+v9+FboTH1x5VHHerBhlLpry56ytiIi3fGvkmDSdcynD3mCPbWgD3uevi umpQM+FxLF9S9LXnxB+NjANlXz650a7HuQZgf+WkWk2+DgfYb77m/+V4ZjWw 9xwr92zysnJij3lWyJHrJYFFgC/2elU8Uz8H+P+dcCjgqXIy8P9WaCEcJ/gG /GSf0kd9OdcA1zJ0/Kt6PxLRXPbEqZFPbZIQ/bsXDD6tmXk3C9F6tt2wW2ia Wwh4CH/odv9DZYiO8+jOj7ZN3arB706PXXsLudWD320e3my0ZHAD8G/0K6Zg /45G4P+Dg9uBm8+agJ/+OnuF7+sEwN66ctrltFkiYP/zkdQQkYOY2P9gefBH 8ezwGjHjZdXB5Y/6D5D7WIcWPfyWP+u2BGlOsNycs1U5UkbecIxKO/f3Pzpc bUIbE9kvff/7nf84d0maONu9BXCdnNklrt35gJ86+iB+uQ2H8L4sdxzauqfb l3JGSraD92O57JXzxnnTc5kb/Tv7mRmvUHc0OQb4X9bs8/nlmc8Ic+yH2Z2X essvE2E/mKd303icKSgFfGWyaZLVqHrATf6ukZYoNwI+Zm6tksFHAaLjzPa9 puOiLybxcFqVhxR9qEMlG4tVtuaJmNaDv4KcVylH1rN8fK1+X7mVzcwMq87c 6oJf/ffQBsD3zBr2RrS6hnDsv8Is285Coxj4L5qw8PpbmRTgZ/WukJU+Ex4C 3jTy1cL7lxIR5nUs5+YP3JC/rxBJWXS2t3i/4rLNjSpEx2MTtSjXMYOL6Hgm axQ0xVs2AftK1zNyQ8RCYn+Rn1ezuF1PGffN3GPhQmZJ729B4fv+8bWaYema E5sAv/dt5Jfiu1zAPwS1Gej0rQJct+TbUN+SAsDlDMddWyz1B3DVaiWZoQbP Ec2NlDN7q8unAu69Rz34mX8x4MO1Tapm/a0BfPn5BFkzUQPg0tVWE97ebCb8 Ass/G/Vd1DymFdmx/PzIR3dG/NfupmqGPlwlYbz+Di9Q3aEcOefkT7+77Tor GDW53OFKmHlbNbXMdJUjPUyK2iLa+cjrk8fmdRMzh3++z3y2+B/fq+Lc2/2Q APBnoQ21hrk8wFO8X/n1vFsH+M7EQ8eO2pQC/ltsceGrZwbg9lZJJ+wWhQI+ 1lnapT83FtG8rarp7auFeYR7srx56adr+/Tb55eU/awbgrzWQA7w09DoLtBf xgf8tbG2/O3MFsKP/5yV4N/OlUrer/GzakP/j64vj6f6+f5Hi5K0lzZJWZJ2 7WWuVlHRro1Ki0obUmlPK8raLiUq7SpZSl6SFi1I9n3fslxcXNzr/u77a2b6 mfPx1308no/zOPec5zlzXjPnNTOvDb7CrKtINcLM852R13A++mK63K72rZhT 3pX20cW0Z8TgIxnXo9T46Mb4sCfPXMSc6+99w0SGShTP/KriZiEWUnwIxkeY nz40aLeAM0ltKx9f/vX9/VdVQM+6wZcv9rxcBPAoD78norg0gHvmbrwY0OMj wBdtvTzvxplPiMV7rgq7uF8hA7F2CptvHPo+qhgROwkeUrRz1VhNPmLtP2Is v+9QqADonxDidzHCqJHiGp5TfEqluOGem7JGC5u5/e4zFKa1dKf45Y6iYtm3 9QCPv20WE6JWA/Cx28/szFb9C/Bgz4VTlohyAX72/MDOdi9/U1wT40aXHbr9 nOyATp1ti6/lfn+Jz4sHuNor32vNV/MA7nUmK/ryu78Al3/i3OKyr4bixJ4v vbWVU2UbEGvnmaNfJ6h5NlP8zp2aKWkj+ch/c5HB65ESLuD+wm3Vwq4R+9Zt zcmU4n+C74/WdW9BOaPfmK6r7hqhnDkg7pY0b/vGJUdzKi2cwc4PEwau6xlR tcx3SrNU/vqmVfZqwdL56s2/350Cu0ZkrxlsYiXFe6ckfdexauRcNdH7sAyF iAosn9IQvCl1ZAMX8LJVPg3LG+2b/io/VcCpMvKDXAYtdHWvAfKXO3tdv7WQ T+UrsfzHxU3rrsiUczK3W+XTsfzzmeLm+7uKOVWttvrnH+U0Rel5VH8GlrdN OOs23DmDGz+mrX7/FV1L/+z9Q/VnYXk9C5XVTeeiOB5jz/1uM0cJ17kDea+8 n3ZLFSMQj/F3Vk1uvu2I34jYk4nlUd8MHyPjNMQb1Vb+2vfRDxYH5VJ54u+j dK2O0xYXIeIvsUfBa3tKVpp0fXm7rb/Kzy2mft9fhYi/5Vg+KijuXIikGgXc axtfhIwnvzCUjlPG/uPD9t6Vda+n9hD5pkflSxsyhFSej+UnXuwWajiyGcV5 t7WH6+loydsnpvY80TK/8F/91KzbLda9LkEl6ybULJPWT+06nR01Uvm0fV+W 3EwXcTLO/m9jvnSN0MB4H/lRuiaLhFycR1vc1NtpkHxwLcWJHuPdGbLHFlVS PaMwnnDTJ6Z0pPQ5dactHuz6a8pLmRSKEz2zgs31R2cFAT0Gu2bqTBoRjVj5 LqYeog9pWYjIj8a43fGzE6rdSpDMpbbydo/MX+un86m8FsZn9xT/cNxTh+45 tZWvOXyr8I+kkco/6GIwtYc6Hzke7H0tyr2JU1WzH9/fqWvEU4zHKx48dlSm nuvZdOT/8JME903eMnFvNRdg1ip/GuOj7Wzd44NLuVPmrfgZjIf4TTfneeRw Mqvb4gpLml+GvPtFcaLHLZ+z4Zk9Raye1XcrbMsDExErr+Xzak8XST6Qv2Zd fu/WiAoqT/z94dNnV/+RtYj4+wzjpxReOZgHNSDVsiNteNCzWXrH30CECA/v nG9+vKlXiwZP9As8t7mFe7i+p89y4cwIlQm3/g+PtO5ye1ZsI2cZUnzv/8c7 Kuw+XTurjuLDML7A59eOJ0/4nEJwW3mVA5u8IseXAPkZyCh+k3IWkPef9jT5 sPdXIH9+0Kmyu8WhiMgT/MrjfpsVP6UgVs+sh58tlM8XItb+14dkrj95Uglw d7+h27yLaxH7v8u7vz9RfEQI9CvZmd4YrygG8iqayZqblUUca+em8OlKyucb AO63yksQU1sDePiTKn7b7VM54H9dl09njnjnA36+7ul5N6Y2geoZivF5a5Ki lq16wP0MbSuvG/B2vWBWLODz9Gwtw9jaHIA3KVkc36xcBniYzF+acsS7GvBZ bVpeHTm+HuABHy91U/zURHGSh9/+aKmvWiVBJA+vzHvePIUn5f/axOu6lmJu xoaXv8a5/8Ovjbl6/G+iEODpUQ0W9+cKAK4XEuj5eksVwKOLjmxW1SsC+H3t ExuGTEoD+E8VtZTsRxzA90xJyzENj0IsrhGel2TinwHwK+Ofeb87XAxwudO1 lg+X8gEeXup6pipHAHD75WO9ptk0Alz3/Y+3pzu1ADzAUHbk2lcSav+dJ1M/ X7vaiFb3SczK1pTOi8x8fKZLFHgEx78U98Z4rv6tp0s61HFb1dri6qkit44H +ACPzwnn230oBnikSpej0RMyAe7eMHKU4e/PFCf2nPdyXig+/QGxdnb/bhri +zgVsXaembKjx9bGQsTq58vfn1M/tArgIVaVM+YNFwDcNtFp5eU3QoDr6I3a mzRfTPGlcnIT5VT+cGqt35vgyu+cVFYcHICePK64OuquMfn+C/fo9JOwDqli 9Ln+U6POqd8oa13WJNt8CTdnp0LR5NmlyDsq1NZTNw+NdravshFIOH3X7m+S i3UjTvhpfeo1sAYR/ZM1ov9G1ynwQrSFzw27NKDhGD/vETdh6m9V1h7UzNhj NWxwTDeRBLH2EHnWHqwfLfzf9iDWHoInTz7fMuKpCm94rsN0r3MCjtgp+ayh pd1vAG9wXX5tfl4axUcudJUpc5Xlvaue/2VBXQT198rcObbPZp5ERE/99suN y2sliNWz9ENaV6NMCSJ6nqzxfak//yMX4mGzwSFbgqqPTrzrkSvhiP4OEw2P WokliOjv4mzk2G9PEfX34+wvhX1nDOQpZz2c8MW4keKmQT3Fmp8684h81H3V h9+ldj7zK9VzHDuQ17UgedyK0DrO5cnwDxfEUnzIVTdrrQLOq/yZyRLNQBqv cTnz086EdeHV/9yYeV0nA4X/GblO76OEG6XRMHOq/SCe6tevgzyeVaClOtbP 05skXPAI7xUaloMjiDz5vsmQTbaPxuypQZbh30b+WhzI7Xpqqfk5W8K9GLi2 6MUeVV5T4LKap48KuAVjv05aWifhdB4+/JF3vBvvlp1v3wOjf1D+Mwa9iDIe EYjOqK78cvpSARp0akOuTrOE6zo27qim4nTe1vWfz5heFKDpuTFzetRL8zDq R7+RFga8/lWhbrt/NdA8N+hVN5y3fxBPMcHwj4akgVtppBKhIbVzXONu+XWf WtDDj3FDryr8onxyQoXVd7/L88Z05x8eHN1C8VH28RqSuXWsPEfkif3bZj+T C26QIGI/4fm85ZORQ/MkSAvzTPwi+p++lJw1MZ5OeSZ5S3gmfhE8S6m4x2zl AbwuL7osT+0ZS3FJb97LtSvkeec7dR3iP76a2hnt8n4k92QKr+O8A+nrboVQ vLx+yPYd5+uQS0jWr5S12ZQ3n993Qg4GvOds1mb7hJvcpHEZ9WqFXfj9Sm7L L7uxmflfyHdtuL15dg8nTn+NdCt7LAvILUQG6jN9LkjxRdFrmvynqvDc/8ia W3yro/97uquJ2deoSRHz3p4Knn5YSPGDwbELfW+o867cFywo3PON5pXpdHVP /vYhvJNjL3rVLi6h+CXr85OMXLQjIjL+Xnh46F+8xpmh6883itEUR7Okpo33 KX7fISx9xxC1CAbnCD5+SPT8Oa/zib9If4D0wfW7nuUBER4Y3hDhjeEfEf4Z HhDhgfGXI/4yfnHEL8L/uZ4NjmrSukH4L7p21dBtUhiakzr3Qa40D0/6/1n+ WO8VR+JC8iTGedfEb8tUeIR/ght/nmDabK7Oy70x27tqeh13NelLpZ/0fxvu vrHXDe7C401yVF2aUkt5GPnX6NPXwyEck4ccycPi01HyDTL51N+IeROWlnwZ F0H0k/8l+sWPFZesiRLS51fAid2LGwMG80reLpm4soTWbWR+KM7px5/eFHfY 6jb0t1Se4GYd880eOGVQPc0+ox9a1rWgqIjBV3TTUmneVs+75TD6hojiKcd/ Vk8sktZnjB9c/GX/UlEyd0xm1faF9RK0xnyu+bLvfDSvzzx+tlki1d+bN/3s 06wU5Pk9v++7ub8pvmzUK5khRUYsjiabppzrUfMRXR/zZvL7cTFU/kaxpUe3 Ha+5SP3n47m10XTcrdM+oTvdPxMRfNftsSrrmiSI4HzV4q3hJz9R/p/HdSrX yO7BI/iy0nl7LrZIEMEVO+3Vkm2KR2+qvj5f9lc6Hhel5jxQ+sgRnNhZa9iK 73i8a6bG6ESKv9WYYXRBQcgpJnXuMehuKv3fbp+7T0uNb0GnjsiumWCVQ8eF 1qx0k0TX/hEMzhHcczXKs+qTS+VljI5bjjysweIcwUlefb820HitUMJtUty5 QU2mb4TWKZvxDkfzqZ43Hz2OFk/pQvGfWiYrXkqfX8sTjAud1XvzzCMbNl6Z UYicZ8ce8pI+H7fcsb7812MsxYmeG6GTXCyTxvLMfkelvHAsRkMKCnh8qT2N kdNspzn2iiA4rcNBvTUzzveKUNLM1QsaQOs5F1p9S3XKTOWIrxPtLTpqVVL5 1b39Iz+OHRGx433U4d87+HS8a1UOC3joHIm0VpiJwt9QHF1WfDrVbuoIHoNz BL99eEd+UWQ1tZ+36sOxE4rqLM4RfNZsXTc/0b95VIue64WVHiMiRm4zlAtf XE//d85IjeFnFJVZnCO4hdOAEpen/56/AX52g/yfDebxmk/VuteLKZ5TuM4p y60OkefRXiVJi3qlBJHn0YyZmmMyBVVU3s+6g6X1EZ0ITWeewYYAMbUzojrb Ye2lGipP9p8QeYKT/ScsTvafsDg59/e/5fPaweMBTvaftCOP2tEPcHLurx37 AU72n7A42X/C8om/9035dL50fcCosApab0O05in7bekT0dU16pNN/r/zlT+d jcbYBxQgghOeWZzwzOLkHsj/LZ/XDh4PcMJzO/KoHf0AJ/dAtmM/wAnPLE54 Jngv4/mLDkvx8jtXVKZI89n520V1/VcF6KhqqNxtKT7UZ5Uel9nCBXQ0150e XIDSh12YVV+YxNX3RPmTg8XcyqpuK8pUCpHIO1fkJpXvxh2zHmPUxOnWqWk+ e1uAirD8bH+f6PKRjVxcdVt5k9XZpgUhdVS+GMufQB0DfP+7F5HR71Ghj25r VAP5qKTt19bJ8Kl8HZZ/3nWRkZ9WKRcoaJXPwPI9M9wb1TKKuJzKtvpnTFNS 7t0xB+if2C/Aefi+dGBPl9tLPCTHfwB5xwLbxU1GkUDef9VMG3ct6XyUkV+x 2e7U0gWRiJU3PTyvw6I/SUD++p+Ah0ZW6Yj193H3zMApVwoQ8ZfIz53p0Tkk rQjoH5w9oOTb6wqgP0QxZrrhf/c6MvKLTB9ffr67lspnYvmB+85OqXQTIB1+ W/mOHxc8qhc3AP2JycNNpv53DyTWL8Dyn0YVRCBXEUqpbSvvyuN2nvrvfkgs n2uwqcTAqRxdixmQY+Au4jaNRtnDTg6MIDj+/jvAh7Z+Vxrg+HvWAMff0QY4 /n43wPF3wwFu0fq9csTi+DvpAMffZwc4/i48wPH36AFOvovdDg7sJN+1b+d/ AU6+I9+OX+3x0B5vwE7ynfR24gJw8l3yduIOcJwnAMd5BXDyPGoHB36R5xTB bzxfdtJGil/kHecNPyDhVJNecIO3D4zQ4M/f+ECa/9c+BuT+TmlBug2u8TKh BSgs+X55ovT5GJRSOcz6rZgT7fSzXHFUJ4LgTfuWdR41opHinzGO5APLs10F XIBFW7zr7DEPx4irAO6+u8b6dkoRwHV1953sbZlOcfK/Dmq1EzJmRwJ71o0Q 3rJaGYlY/HZg9Zt1NumItTPy6aTLKKsIsf/rpTc1x1KWj9j/XfsoofGVhwDo 79fTuk+zeiPQH3e4x5h5IWKqh8wrPuH9mWReQfCruJ6wOKknLE7qCYuTesLi pJ6wOKknLF6B6wmLb8f1hMVJPWFxUk9YPALXExYn9YTFST0heOYJ9VNyGf++ 333YWubY/CWjI3ifb8X+h09aZqsvu1eCAgd2C1snxcn8TWH8INegPf/mb0R+ tYxjt7eSZo7IE/zG9fLq3XsaAJ411jhFLb0G4AucLY6/cSsH+M93WobD9+QD /Fl8+hgVtwSAFx2fMDMG3Qf4eJsed7Vl4xCLKzlFntFUzwX42Q3it6GLygAu 6e8lUA+uBvi7k9OV9i2qB/jBkiTNkPQmig92V/6s9aISqYR8OhdS3cTJeGRc WNxXheJbjDWs9pnXU3wAxp8VXVyu8eu/8xSt+BCMJzQnHXh3sIwz9WyrZ7O2 l57Wslyg/8+ryP46a+MoPgjjAb3GNZ+VeCNVl7Z4F0+toCHTEyg+EON2g42v qOrno4tX2uoXlF/6+HpbOWL1TzbfYq/2uYbqUcZ4xVeJx+41Daine1v5F+Pv PA8sbabyj2ccO+rbQ4LU9ZKT4vNEXM3PwveJYb14SV21O0/4jx+fGr/dM8Qc XzjjU5CySkQixiunrXJS8xdyKQ1t8UlxwQdS+wkonozxmhjdAFX5Ki5O3IoT /fbixmNX8gqpfoJ3NT3hITyaCvDNCWqBJj/CAP44PdX6ns4XxOKRrnl3bc0z KU7sSRmo47A4oRix9jw+OGn9vmN8oMciK842RKkO6FFduPeKrE8j1TM8Nur6 6HnNyBXXzzP+wszihYhH8DRcP1lcBddPFif1k8VJ/WRxUj9ZnMzHWHwrrp8s PhzXTxYn9ZPFSf1k8WO4frL4NFw/CU7uPyd9GHL/ObknkODknkDHBO8tJtK8 JbjzmMZ5a/x7sfqBv9gegGP7AU7mde3w0x6f7fEPeCDzunbiC3Ayr2snfwCO 8w3gOD8pTurAjsTpHy6ZCGkdIPhjKy9fXngtwLPlW/pUrakE+I4pn3I2TCoE eH50z/VXh6YAPPa2VfynZcEAr20IzN9e+g2xeLmKSUryhyyAV+RsGXbCoYTi TzA+NnXpqC4JfGT9jtGjXz5n2fY6oOfJk0sbbgkbKa4ZtejgAHfaV+c2jcu7 3PFQElqwrniWo30Vp2in+DahSYz42gLj0V/VaP3MfNnN33BSC60bRL9FH027 fMcWqv+VYtfaTan0vQknchT1Ur4/htYTMt8m8Zp1RrL/v+9fk/xvbPEe3HOT iCPfsyM4+Z4dub+U2E/uL2X0c2w+nKx5YNEwWkLj0vb7ERL63Ye254Yk9LzP yr92H62l+tX2qpW6lUqQDtrqdnYx4vX1vTssVUmCyO/+Ka9PVjj+G7+kf0Xs 6UfkXpiNyTQTcQXGbeVJX4vI98fyQfM/9vH82cBlTW8rT/pdrH5hxogmwxm1 QD8570bkid3HShQ/djCp4Fj7SX+MlZcbEH/5wOiCduTjgfwQp7Fvw7snAXnS T2P93af/9WD8yBft+BuPWPkzB4+M69v1F/rf8nmItSdl7ECUvD2nnXj9BfLG MiutdzqVAnnSr2PtybX8Gi9eUw3sIX08Nl53fm8tX1BWh/53vJqBvNkMuc6u x5qovELBbR3l8maOb6azpLiPiKu7cvLEeP0+vH6hU0Jqpzdw20uS9E9/bOai rM0GTk9R51kUVMh142o4zeA/nW2MRZzn1pY32/z78VascPXL08rnBg127JC3 WMT1vP/5HE+9CPHUzcqWDfqLDFdo8+8bieh5PaL/2cnpWtPGNVD9W7B+q6VT KkZ9aODOM/o3vS4vvfGugep3Fm78P/2vopyT1oY2AP38/l5KVV41QP/rwht/ crRrqf6VWP/9RcZxxlq1HN+nVf8VrL92fVVYT81aoH/7BnGpUb9ywE9pY73N uAkVlB+i/8tHiz3ddSqofsKP9kS/BS6jKoD+asfIoFB+HrDfTiuMd0exANi/ nK8146h8AdV/Gdvf3HdnH3HHAqD/r3UPeeMbf4D9Tc/lBvePSwT2B87O6B7/ ORHYf1RlY0RiRCLQv1fmTtcnNZ5Av4Gppd/lqc+A/llJujP3FD4F9r9VnRrr +OEptD8+/XNjYxxi9f8c99ti29lfiNW/tKfKiYobvxCrP+D40IFF938hVn/Z O63+Lj65iOV/+9Bxzk/P5SCWf+dVke6/HHOA/vzxZ0KNLucA/RbOFouGfykD +nMqd3Kzn5QC/XKa4s/mL0sRy793UFh55qtSqr8v4WescfjaumqUxvCjvWl5 444d1YCfmaLbIuHOaqC/W1Rzj2m7q4H+h9fLk+9fqKf6if3F36p6v2qsA/YL t07vP0dUR/WT8eu7/Oao0+I6wM82GcfqvwObQXz9JlzWaXJqAvYH/koa53Sl Cdh/5uqUud9dmqh+omf9Le0Fc1UkVE9vkfarmQtqORutp8fWvZM+33LHhLiF 9+KtxvoPTLFdlKAqfQ7faVsfhoxM2NBH7d9z3zvV9Hm0Qhni0kMie4T9w0kd jtky5p2sfwt9zpL6H1IZ5x74WQTqPzl//b/n543trI8E7czbq9pZNxUBnJy/ /t/z+cj2cDDfJuev2/nfdtZfVe2sCwTtrMsaAU7OXxN8dsHsugT1fO6po/Hi Zimf90ST97/p+xcNrOqk1qD6F5xzJ/L84a8nvpbyzMqz59+J/MTQvgN3Svln 5dlz8UT+sMkhyTAZPpBnz8sTebvYNz+eS+PFyrPn6Im8rKh6/NS96UCePV9P 5NVfCz3VDSOBPHvunsiHeNRMHWEQidqRR6z89/K9clOk+dCOPUA+faG17hhp nrTjL5A3Hvh8ByfNn3b4BPLb6mx+aUnzqp14AfnhZr2KD0jzrZ18oPILL5wb jKTr+nU/Ja+2hkrnWRfSTAL+iDmCx8SNUxqzW0xxfvAuk9HV1ZxlRpT+oUwR Z2o2yf/AL7mIolGVnctSc7gk9dwFGW+auWTPd2bbvo/nEXzVoaVH3u4XU3yY 9eTvC8tzub3PM0/sSBNxegUd/ORfjufZWN8L2BvbjDYEKfKvf2rmnhSOTbW1 RzxbjMcVqcU1bhJzvOxWnNhpPWTz6S5qzcBOBa36wOWeTdROIi8eMEGdt78R +HvfYsuNwZoNAO9v6S7ITxEC/S9sNLXGGgmp/u56BlX/8U/WR67VI3p/kPJP 6n/o9vd2Hzo00flDIeanKfJkuatmM/cO89Ng28pPWr1SzRy3Ju4818pPCZY/ eqD3u+BdjVwNlif4kA9zx3gMbwD4VaVX5lZZQorXY/2H5/C2qRgIuStYf9s8 /3cPCXmOdD+y3uKEXBPFSVysJ66cmzigmcaF4CJZPQsb+0aA312yL2nphAaK k7j3PHEuKCBGSONO+A9582kH51IP+DfkTG93lasH8UUvPbo1ZApAHPObok7E e9YAfI1EkHZrgQDor1FwVCoMqQXxJetZEt9VOL4i8dCNtgfqOBM8/yf5P31d XvzCq/U0/wn/g68cSGlsqaP8k3iFdzl4b2+KgMarGOPmKx/2MXSRzr8YPO1B nwUjFgsoTvR/SL1vlPi2FsSXvU+GzEPGTQlfNHl/HYhvcHTQKOdz9SBe82/e W6RdIqDxInhRwe+wTndrAL6yX4nXjlkCEN9mQ42lduJqwL/r6venI/ZVg/g6 LKivfm7EB3FcMtL4e+9O5QCfMublGV/LKljH5qWWTl1SCeJL+g/s+NW/emru 6Gw+Hb8kvier54W2yNXQ+A7F9e2GZkJ4gFU1Z4LrG4mX7L3k8+oL+CCOBsm9 BLJNfwE+277cNNCmiuJDsP49RQpblRdWcpYFbePL3gtE4mvzS3V8eSaf4iQu 9ZsG9pxbWw3qrcP4DuNzV/FB3E2ElguODCwH8Z209mrn2SurKL4A8388qtfO dUll3BCG/2fpM+Mq35WC+Hq+fxUQbV0M4pi0vO/1Uzl5AI9Yb2vca14RiC/f 2jvogVYhiK8F7hex8VVa+2VF1M0SGl8yHk/1Mka7c8voeCT8Bx7fYxgbWEr5 J/LOe23TQnYUg/Eb2yk5Yl9iHohvtP8rdTXjIhDfpr5x48+rFYL4svc7kfju j+48ZsH1EhDfI/yG8tqPZSBeN1x+6Iy/UAzwDI2xfYoFeQB/f2HdnyfjisD4 7VSbNPnbq1zA/2QF2TsbruWA+E5IqGja65UB4yj35mvGoT8A9+hrM61FLw3o F8752lmzS0o74zcPxHdsjwH6W8uywPhV4vVVTA3LBfX596OJA2a75tD6SeKl PsNm6ZLzGTReRM9zy2mD32/+Q/UQeb8XFQXDVqVReVIflC5oNxc3J9P60Hb8 5oHn7yHT67U7CrNAfOWGfQjdfCcXxGvuseG1Mz9nAPzLkyLu8b0/AL9shXgT +qeB+KrMndbJatBvwL8oT/nRqK+/QHzPbeFrXX0YReUNMN4iSuxz/q87t+li 2/je/lK3cEcyB/T3OrXgtIIoqJ34xoP4Hk6Z8/bknGgaX8K/TubrV5fH/wbP R8u12S5PX/wC8d07tjl2mX0UGKcDNugs3n3JDeBWA/ii+gERQL/snj/LlX4E gecve98aiW+/3XMHXZgWDeLb73bH7ner40C87r5eM3CcMArgXsd7Xl91+Cqo 57Yamjsm6XK0njNxQSQuhH93p0XXj+k8RWx8cbwQO05xngAc5wNi4xvTycB5 bt9oxMaX9M/Z+IalmYxzvxuE2PjiuCCW/xevxglsrzxFbHxxvBAbR5wnAMf5 gNjxe+/4ad+POtGIHb/svXmkPr9es2Sbw5sgxMYXxwu1Ey/EPn9xPqB28gGx 4xfXVcD/pgSzxjcvEkF8cb0FccR1HuC4ngP98Q9u6iz4kwXiS953sPG9m7qo pkt1MmLrM66riJ1fGbg2d6x9l4jY+RWut4itz7jOI7Y+43oO4vtu85Rp57Kz QHzZ+w9JfNOE31Cn+mQQX1xvQbxwvQU4rucAx/UcxBfPiwD/vjPLxpU354P4 4vkSlWfmaWgIE188HwP6t/hdWDT5Skk78c0D8TUIN3/Wf2ghGL94XgTGb1fv kLfd5ArA+MXzJSrPzNMQu/7F8zHErn8/d14du9KzBP3v+pwH4pu/ZNgfz2GF IL54vgTihedLAMfzMYDj+RiIL17XAP4HdVe3OKFaAeKL1ztgnOJ1FsDxegro L5+xOdwilQ/ii+fPIL5hLrey/fUrQXzxugbE98y+2pI7GhUgvni9A8YvXmeB 8YvXU1Se9E+GWBmctsngo/P/s7/xF8R33bB1nTXnVYL44vUOiBde7wAcr6dA PcfrKcT2r3BfAvBvUDXO6KJaLYgv7leAOOI+CcBxPwTo9/dtSX62u66d8VsD 4nsjYNeloW9qQXxxXwLwf1R1gNIN9VrKP9OvAPHFfRIaX6YfQscvqc++8YW3 wvbWtVOf/90rS+ZXC72/e20IrAXxxf0KEEfcrwBxxP0Q8FzG/RAwfnFfEfDf 2fTX1t+BDSC+uN8I4oj7nADH/UxYnxW9quvEjSC+5H09G981A7v4bp8vROz6 F/cVAf+yFwI1c4MbKP9Mv5HKM31O9I6JL+5nUnkVrN9spkNgJ9kmtLTgf/av wPgdmbsj6MECIWL7V7jfCOKF+40gvrifidrpZ4Lxi/vngP+PEbtODFooAvHF fXUqz/SNaVyWk77EmQdhL5NFaLxv23kR7rfT8UL6BmFVy/S1DUWI9A2YPjyV Z/q9gM/cRZ3iKlNEYLzg/jzgDffnKT9Zo0XR/aT2nw3I0lqeJuJUXT/obdhf jBg7aX9DX3tq2Zss6Xy73LzkvqyYuzbLlLvaeQKPsYeuj97sMLR1VCpDnL3F s8VD/+HGT40qb8Q1I3e8z9O+YfneRzsQz1mn1Z6OBvo9uhoIuU1Hwv7PHiaf 6Xqc2BPgEBmzdp8Q2IPz7d//dm+1ZxL64t7BqQHYQ/aXEnsIP4rZvnXc21rK D1M/af+f2CMYpP62Z2YttYepb4Cf+Y+1jrwT1gB7yLkAYo8T5qd/hWJIxYJK 7tThVn6Y5zVdzxJ7bLb2mOpytRLwg5+n9H8DsT39Tvfn8n6WA3vIflrWHu/B 8WfXqxUCe/D8ENjT4p7QQby/ENiD52+AH6+X6U4m/vnAHrKPl7VnkedYX/fm ZGoPsx4B+dPDYZJP4o0UYA9eLwB+loTpvzomnwjsIfuH2fxp/JhfExIdRPOH Wf8Cfo6eaiiL0gsF9uD1KcjnWQe2r46seQDsIfuWWX6GWxxZYTUmGrHxwv0W Ot/jYXvunNu3pqjmKwpj8hn3Q2j9McH2XHy8bOqNfrGItYfsl2btObZyomua dB3H2oP7e4jl5/22Me7X52Qhdnzh/hti+Umb2UNfWJoD7CHnXNh4aYpWHD0p XXew9RD3k2ndJvysPLtMlDm/hPLD9HsRmz/kl7WH7A9n7YnZvjD5onSeTOxh 3l/Q5zuxp0j7y4Bpb/nAHvx+AdhzzStyxZWb1cAeck6Qtcc5toD/WzqvY/MZ vy8D8fL1sJhwemEdYvMZv88C8RqeYr4neXQ9sIecJ2LtmT/tjMJg6TyErc/4 /Sxi67OZSMboe2ojyB/8/pT+71JsTxZPfF41vAnYQ/bhE3umh3aYaWsg4cwz g3fnhEq4U4Fiq4yrIq5+e1na3d8S7vsA1+wLIySc0MHihZO2hJuK5c9o9dvb JBJzQ7D8HZvUvgEzGrhxBy+ofLgn4YIcnUsLv6jTfZVRXg9iHii00H1xmUbn 7S5I6rjNtwNVDa62cP5OoTrj0jvwHn176Gt+v56zi7RWFkv120/Kd6qyGsk7 tzH5zcMPNXSf8+Tv1z39rPvR/VFnd9/3uH6jhe6vI/Oi0edabi0LlIA+8BdX j5jbGhLaB85drpt9ZxGfizkc8XxzkITbcvzkh/7H1ameoFMxepfkWqie3d9O 8ZOl86voFcf3uLdIuE1GF6Nye/x7b2sba+ra+VoLfW9L1imvRg/tnCblme0L /dj8rJuzlGcTZn41Ke3lHxnxv30OZH5FeGDnV4/kG4999Wyh+Ofn/qfXxZeg GJkCPWfp/1qmiL7schkdccroSZHaHAEKMryY9OCgmFM9Oq9rVv85//oMu9KP hSm20H4vmedsEvXwGuPWROc5zLyaW8o8p5Smua0/EdIEngt4fxrH1mHPWs9h Wgn/9hf9HuofytevRb6y3dLD9jZxY198fyGjPpPa35hbFrYhX0jtZ/IczNMe eFifKWipA/M0vO4Dz9llsbX6kzXqqf3M/j3wnPXb2NApW78O2F9yY89Hm4w6 YP+sI0t8+ywTAPvJeWS2bgRoJ1retqoG8zrcl6DzOlJXb2xfrVXuUc2xdRXv bwT2lwrWll99yQf2jxkf90jbsBrY33X4pj5Xj1cB+8m5adb+Uod93n6BpWBe gftmYF4R2nxg6IIOZSB/8P5PYP865SMPbs4oAfbnX9k25NO+UmC/o7F6jtza ImA/OQfEPvfzXuvu7u2aA+ZpuK/Lsc818kv4Z/bHAvu/XD5WoKSTBezf80G7 dLxRDrBfW5SwNtcyDdhPzqGz/P91KM6WefGLY5/L+L0DyP9RFtXp50tiKP/M /mFg/7PE7qKEz1+B/dkvuWT7Wz+B/YdfhxcdQRHAfnKuiuU/SqZH4DC3p2De hd+LgXkg51j8Sf7RQ8Tyj/dXg+c4r3uIT/GNUMTar2j6ImFq9kvE2r/dQ6co ZnkUYu0n579Y+zs5NGwweJ+I2PzB723BvGi+Z41ZJ5VEMC/C+8/BvKjD+oKl Zi9TgP3Ve7pt7jY/Cdh/v9wp1ck6A9hPzqmx+bPLI2jzFLkCMM/E+woQu+6+ PTgwz/NNPmLzB+/PB/xf83u2Tv9YIbB/78WI/AELC4D9377KqKZsLAb2k/N0 rP35W6s9v2lUAPvxvhcwT+5bUdlPM6Uc8I/PLwD+98YVX/5zrxLYX7i2uf+T 3RXA/rs/74yarM8H9pNzf2z+CAb13/pcvRbkP96XBeax87M9/Ta01IB5Iz7f AewXmLjlvM6rBfa/6DdYXcWgFti/bvLMuSf+CID95N4JYv+VQGH0lNJm2ic0 z/iwLT63N/UrwOHN8frgBuAX3k8I/JI1mBj+wLUBsc9lfC4G+PUydGxTs60Q +LXrRIjejrQG4Fd/75QNX7c1Ar/I+Uri14INGV9f/aHn8tD4Q/6Fl7Nb2Hky IvPkC9ta59U5f2c1LfdoQSXBrfNqZp5M9/+TeS/Z103mvYS3PeUm15GhiPLG 7INFesx4/BAQm1ypJqK8KX43CIrdWMS5L9ra7UmdGN3cmjSpWWkc3feb+eWF zHvp/5J9v7dPlOYETirkklImXf0xXIJkZuVHX3Ov42z3PGvaaFHElb+SaHiE S1DZxUWdFl8bFyFpnLzz06xwzqFunrKTXAuKGz0kUnV1Gaez8a/F0JshnOtq /96JGhK0WLJk7hX/QbyxYwderx8Vzj14z3exvylBEX1MUlZPLeaYc1U0jqTf skftZ5/58v++O6avND92Z3IJmmia/FQoFKNjpzpN8uk+JoLZ907l43E+qBev Mg2wEiH3Z6354ITzIbqznV1PqZ7Fx1rzYW6SQ/JwKU7OPwYYR58P+//yBPcJ aZ7sXutj6ebeiHZlyjf79ZPGfZbEC+3tyuu4QrdGR6rnphXKXhEu5rY+75A0 WHkOxdM73P+soNNIcXJuon+Ty72Qfk303B+RH36747OPNwVAfpVbzfl9DnVA ftvEHe6H5flUnpzX8NJatUejmk/PaxD5lR4e1WZlRVSenPuLOLnv0bsPJfTc IpF/7/Dq2E2ndKDfdcPOEpOJ2UD/zY+HdMrORgL7jW2KO6yNjwb2zz1rc8+s eyRi5ZUfyLtnn3yLWHnFbS+D/hinA/kpzg2GQx4nA3mRg7vSsZ9FQN79epCp amMBkLdb9UtfqboKsfx03lnt9HpoJWL5setzdkacowDo1x96zVzNpxbon3Rs +MqBQxuBfMu5SUd2TxJSeabOcKTOaFfFKqQY/vtVtVkj0pUTc8w5II6cA7If ssc17WU9p+ZQnmf2WYKyujf6XAtUZ9fpiKzT9UPPxN6Urq/JuAgRTfEe9Ozf ewq8jgbvNYYcnN4NubbQ9xp9Ky7E2yWUcutcuMMKUvl+g7NP7D+ozbNL6KNs Ul7GKU61CAx3aUEp2fY/LY/o8PybTvc/u6WIq8bnps1fWCu6nR4XYcNtk3si rVdNTn8H6Ce1oHsdZ1abONZxa9e+HreNn0vr9nId++fxR8C6G7H795Y/VI1Z Kq3b5Hn09QN6qqwZTv/X9ft19wsfijinxqcL88+FcIE/njkaxkj9+r6n5qnS YBrHioLwPVteimkcn+jOO4qSStCcDwNGzguUyvdKenrzrU7EhCXFGaKrjfQ8 eN/Qkze1dLvxJr6dIzkirTOrvd4vmXVHgt7lHntxaydi1+/0fUrqVgUtfkgD 7Z/0CPQ4s3VlX17DkuD8jUeLOdH7o6flAyTcKXmvUR03jGPPc9H5PNMvQqRf 9PfIxAefZjRQHsyWn5oz8LM6T09Hy+6//901T2GKOK0FNZqXjFgt/d84ybOl q1/Uc8SvwP5bXUJd1Hm8q2aT/+sL7dFeWxSQ0YJOXeuwt396B7bPQ8+vBd1b X7TKoJZbm71jUoyMBPl/O5R637AXj+nz0LwamLuVN+O//SdlLos/32pBPcNt h82KE3PkeRp9b9jIrdL4svNz3J9B7PpIeZv31j5WLaBPiPswoM987fGteztN /p2PI88LwgN5XjB8ciyfhz9G+mZK8Xb45Nrhk2P5xOcBOZbPSxrbHioGtXAs n3icciyfSwbPvtxviIQjfGbi+XbO1udv7UZIOB6z3sfjCKz3f9wbe/CrtC6x 81V83hCsN4eMmzj9wPZ//S6GT7p+fILr1Zu0sEeems3cN1yvsnAf0nfiAHmJ XBPXxbltH/Ld2sSWN7saaR/S26h6dIuU/wO68RXqrk3cuc9bT8Ut68tjzm/S PieJI+lHsXH8YKru6CnF2TgSeTaOLz++/7nDsInGkcwPyfkati/6Xa6T/dLO TTS+zHlSip+82Rr3a0FfnT+NaJLOy460iTt+7w/i7vr6rs3PS0007uQ+CnIe hNxH4Y/5bDgw7IrR1XrOC/NJ+sCl0Ucq3u6vo31gIt/Cn1q4K0VA5b9Pb+Xf MVM3IUNcx/Xobvl//DPnc7k0hn/ST2P5l+Ff2G8UXAf4t8fyLP98U5U3KiF1 gH/iL8t/91s7NnWyraM8M+eF6Xl2Mu76rNK2sXerA+MO76sB/Ccvklvn0FAH +CfnNQj/JP9ndT1jK9ehhuY/4X/M5ow/Vll8wP+ci7d+DF/AB/zH2F5/57G7 GvCPz18D/kk/kOV/3oWy1XLq1YB/Is/yr8s/dTNRKs/yT/xl+V854fuCsFw+ yH98Hhzk/7BC57UTJHyQ/3jfGuCf/LL8k/uK2fyX1Y9+a51bBvK/hH/cduGN EsB/D9Rk8WpHMeBfQ1mgf/V1KeWfOV8P6g/pZ7L895l9y95avRTw3xXLs/w3 KX2VKGuWtlN//lL+SZ5PdFu7rsi7hOY5c94f5P9U+eyTcaklIP/xvlDAfzj/ ypK8B6Xt5H8e4P/SvitncsJyAf+ZeufP7CrOAu+hxqWf2Kx3PoPWf8L/ywWh Sh2u5AD+8f0JgH/Sj2X5v7XbfGGOTA7gXw3Ls/yfnO3887xcTjv5nwf433ty 9lJ/QRbgH9/nAPg/ttvg5rFd2YB/vO8a8G8wbOUgk9M57fAfT/l/jPkcOeuR t9f431wQw3/q1OHTnGdFg/w/vb93/ST7KJD/2QmNez49+AX4x/djAP7xvZGA f1dLd5NpB34A/sl9rSz/GgHzt8Uf+tEO//GA/86hLrHya6Ipz8x9HWDeNczt wbaAOd8B//hcA+VfGfM/a+o2rwbrX9ypD235J+cFCP8PMZ83rYqOHbvohrYy /AsGe4468jQIsfyvT0xJ6qscgVj+Sz99Ptrv9VPE8o/vP0Es/6QfzvLv/u6V UHXOa7AuIPIs/ztHG8WW675GLP/EX7b+Bw0MbjptF4TY+o/vY0Fs/S/LcIoZ fzcQsfUfnxtCLP8nZihHzjv+DLH8k/38hH9ST4K7zhv7bPMful4m/Fc9TguQ EyQjtv7c6Z73e+yqNMTWn93rK/vt4BIB//h+G8A/6eez/Hv2uu/3LDUJ8E/k Wf6/7zG4ZZ6UBPgn/rL5v37niMKoomTE5j++bwes45YeV77F358M1nH4XB7g f+qTkJafKYnt8J+H2Pq/ImmDoWViHmLr/24NfycPlULKP5kvzU8Z7TXKuAh9 Y/gfI5kQPr9jAeAf318E+CfvI1j+eWlO5yzdCgD/S7A8y//aLuYykS4F7fCf h9j81zr/84FgQCFi55/4PiUalxM4/51VFp5SyCxAfkz+43OvYB19TeP6a2HP AtTO/Aex9efHo+vHmxr/gvqT35AXrj63kvJPnhfvH2+PfW9ThYIY/n3jrKqT tSoA//h+KsA/eZ/C8h/09EtI09sKwD+RZ/mPS705aWVgBeCf7P9n8//mGvnU 87MqQf7j+7JA/nvmnn7jJVsJ8h+fKwf8Kwp/FzpOrgD8k/3qhP8HmE+fWTtN F7jUIEOG/5cFSo3pb2pB/t/6YCKruVhA85+sf3PzVvR+q1GL2PUvvn8M8E/u q2T5vxYuY7dAirP8E3mWf99VuybZWNW2k/81IP8d+w4/7xxQC/If34cG8v/9 JjObAR61IP/xvQ2A/49bzzsrjakF/JP3XOz6a+ODztYuwxsQu/7aueRZb/UF QlD/V2tUDtqfJQT1H/+C/Mf3ywH+yXsrlv9Vmt4uLlKc5Z/Is/ybh8svCWtp APwTf1n+Fx4Pv5s4Rwj4x/fdAf4PRTc7b1IXAv7xvSiA/xO/RjxcwzVQ/pl9 a4jsWxuF+92h/cUxclYtqMG6te9N4jJQyc8p5U0ziItG0CKdvSkiMC/q7eKk G7pfDOZFZ+9fmb/QSATrUuu9giAuHvg9ERuXHq4zH6e4iUBcyHslNi6DNR9s 7ySVb6cvBOIiW7Q+VCVRBOZF+J5DUJeatW8+fBwsgnWp9d4eEJfpUz5y95aJ aFyi154IS0go5fpMUe632KEFTZ5xsuuRE9o8sUKywUDdQtqHj+iyJkwuu47r 271f6tSAEIqnxJ7SSBsziMfsZ0NkP5tOpXL6JSkP5L1DSRf1+AEZHdh9gPS9 A3m/4GjXfXOcFCfvF5h9evQ8EYnvg6Z79oapIrDu+BxoeqKnhZiuO1IvhH0+ KbVnsrDzSr9FIm5ap0kH56b8q6s432gfhskrut5h8gSsXwZ1F/QPleLt5AlY v+A8AesXcg9YO3lC1ylvcT5oW18bWGIl4kqYfMDnU8A6sXr7XpnqeBFdJxLe ui5+v/VrnBDwZu+yc8b64AbAG66flDemTtJ1OlP3AG8b/FaL98kIAW9Evp26 B3gj96G1U/cob6S+TZdrlHinNXBsfcPntgBvui1xRY94QsDbovyhRif0BJS3 FMzbB42fqr3Va7mSjq28Mc99jjz3mec75ZN5XgPefGeG5mvsrQW8Efl2nteA N3IvXDvPa7AuJr9s/cHnGQFv9lcn/TJ7UQt4G1YnY7HLtArkm/yxjUru6hU0 35j5Kkfmq8y8lPYxmHkm4O3ng6me74MrAG9Evp15JuCN3I/XzjwT9HOq9x27 OdCqAvCGz/kC3o6v1dkxelol4M1/xJdxKZOKAG/OT9TSJTIFlDdmnUXrGLOe AvlGzsWwvK1OEG0a5VEAeMPrI8AbXh+1058vAvmG10cg345662+/sLAA8IbP vwPeOl+snnSzTyHlrT/mbatf/0YnlTTuCcPb2NexxukhiZQ3pj9A6xjTBwD1 jZzfYXmL6HR2/djMJMAbkW9nXd9OXzcd5Bte14N863yr+/ay+UmAN3wvBOhf 9d2zR1YpK5n2rwhvCZ3OGnqv4gBvOUfiDIOPPwXjFPe16Dhl+lfgeUrOGbG8 GTpNT9A0eQ14I/Lt9KPa6QdGgnzD/SiQb4khnGhc0UvAG74vBfB2Ryt798MV QZQ3Mk7l5j5+dKQ4CrHj1EJzalPa61+I8Mb0Y+n6mum7IpY38v0dlrfpp2Ly dHf9APNV8v2vdvqo7azjIsE6GvdREZtvT9e8/xV24yeYl+J7hEC/yPVV87WD ltGI5c1ynuGM3LAMwJvh7W/VBm45iK1v+D0C5Yd5X4DYcUrObbG8yednJOu1 ZAPecP8f8Ib7/+3M89MBb7j/D3jb9Ojx9o+GOYA3fL8WmM/7H62dYC7OQuxz 4VmteZycQzHg7ZtVB/X0t6WAN/z+i/LGvOcC+UbOl7G8Nc0ZdffViFLAG35v BXjD763aWbcWAd7weyuwPl1woeDmin2lYH2K750DvC110f2p71sCeHPf8uv0 9xV8wNuQYcOeTdlTjdh5L35vi9j1An4/C3gj5+BY3mYoTCwdLsXbed8KeMPv WwFv5F7Zdt63Ina9oP7ApahmUTVi1wv4PkbA27aAYElpPh/wtuTHrtt9igSI nffiX0Tmvcx+A5BveF8B4I2c12N5a7COldstxdvZJwB4w/sEAG/kft129gkg dr0wsN8YmVkZdSDf8D2lgDfVgasGTrKrA7zJ63Z5u+FwI8i3q/y12d/cmkC+ 4X0yiF1n4f0woL6Rc4Usb6/TrYYEGjQB3oh8O/tbAG/knuF29reAfsVdu+8D z+1tAvUN398LeEs/XTPxWJcmyluK+/zQyVOS0LZP5quPhkrQ6j5r9ufEDom4 vsZ4p7tmElpn8KrUu0MLqvRyKVxzUCVi52Q768TZSchiycmd8oEtiPd5P3+D YHDEqWuitGcnmjjRy9Hf7wU3cwHzei9R05CPOI3x8RUd6vlWYq4E4+tr87uu 6drMmb260Ks5TcQpVvq8Tx3ZMSLNJrPrwfIy2g+5eCr39g47Hd78nFVP10rx xsJy5S5jJKhnccl+n8M6vK74OxfT9DrYPOkp5hLwdy42YP0xfx+9uLZIxP2s aNXvK9AzMpbaI/e4e4rNVxHXZdemabK95SOuqMSEZP1t5nL6RVXsfChEXSYH LImc3od3SzTTp1NZGcffvVLR5aUECVYM7TP4sQ67z58j+/yJHlvZLb0P9Kzj iB4iT/ZvsPJBN6KEmif4QJ7sN2Dl682Xhn9ILm5Hfx6Qbxmi2X/N9sx25OOB /BDBFvNtM74AefL+kchfxvK7fHumf3kZhgp0/6d+xOqP/TF9aP+Dqagd+4G8 WXCy/tDsQiBP3kew9vy52Pvgyw5V7dhTA/SPfK6RoNpXQPWLN5w1eBYv4cgv /00Icuko4X7MNlvW92U9d35Nl1ylaglnzu2TjfJR5/WWvBgq4ldz+tMv7Ep+ JOHumZ40e5kuFyHfYcX3DZW53NjLswpvS/XoPezwdLDneLp/nny3iJ4fwfbo fXe3v1LVRO0h9YeMC1J/RumPWBoYUcMV6t37se+iBK13uzPEpaQfr8+j+opn Ovlc9/WX9828IkEBtTtd6zvmoO2xkc7CoX+Rj0LyM9WUf/szrXdHpB33K+cq 9k2bMairiHONCbgWsrh7xPdtViUy85KQJ+6zLdbSLgmeMzjiS4ctxWlzatHK 8MLrTlL8WklD/2F/Z1A9E+Rvq/62awB6UnDfidVzdZXBiTkyQqDH1lvc+WJB DdBD+jCsnvTyJ1sbpTirh/yyekhfgtWDugy+tim4AugR3Tz36O/JfKCHrOtZ PV+n5GyJkeKsHnm3qyWvgxKAnsd43crq8f1uaH44Iwnoydgv6Wlr5Qv0kHUc qyfRe2W+8ZLXQM/LnU+/jQ6ORayebXhdw+qxqeel39v9A7F6cp9uU9/YOxfo IesCVo+GSv8EgXRdwOoxPX7PtGpKGdAjj+e9rJ5LOfPvKEpxoucA1mP5qOJz xPNqtJjRE47ngawe2bU8S2Mpztqj1tMpuyuvHthDvgPI6gn7mHn6hhRn7ck5 rNW4PL4J2EO+u8rqOaR99HaudF5B9DTktz7vztX8lsSslaBTzq3PuxH6L4+O 9azlns3VPd7YKOZk/Db7DD0fg/Lwef8BlxV1jsi0cAb4vH/MvttfX00q5LZt juvR62oLlzPSv3mGax03Hp9LQoYZizYNbeF4/VrPJXWylVXzvRvCLdo388AW lxbum9H7EWXnBtFzAaSOkXMB3o5TLhjFl6CtNV7714vF3IbF+iskjqMjZmof /J0sqEJOLxT7nU9v4by+dPmZaK8TkeMnqop+XonyojS71Ju3cK6G5+Z45A6N GIn9EqZdswjY0cjx7rT6Rb5bR/YPk+/WEX/XjNzXe/zeRuqvEO//H5v7Rs/R tpEzxfv/l38fdlpjZREXucXwYjfrRi7xzjLv5yPGRhB+ngon1n+Va6L8kHNb Z3L1xg9wauTIua3OmB+nzt5rBoobOS/MD+HB/5Jkde/djYCHuPn7mmdJ7Sc8 ZGMetDY4Vj771cgFLGnlYcC0huCWq430vL/MC5dSlcndeISfWdaNi3YkCgA/ 5LuQhB9y/4PX+9/ConQBvf+B8GN9uL+6fp6A8rMS8yPf9GxvZLaAk/duy0+l y9WME/vrQP58O+zTP0YooPmjhPmJvSOjF7erjuu5uC0/FapbZkenCCg/szA/ /TJ/59ZK7beNbpsnVrXlCRYz62ieEH6Ivyw/J7tuGK8ylw/4od89Z/ghv4Qf cn4ksMeRbkJjPj0/QvLH0K3HqiNL+CB/JmkKIydn8QE/3Xp2FJ/dzqf8dMH8 9JtsMfJCCp+7wfAzPiRqxKkFfMrPRMzPOlvdb0+k9gu/t/KTi/l55Wj8ftBj Pqe1uC0/xF/CD6kbJ/SPj3myuZjWDcIP/f47M74WJ4xxery3mI4vwg/5Jfys xvyoLCuw22RXzK1l8+fY2+Wp10vA+PJZ+uvLIf9iOr66YX5e33Dqd8y5hOvI 8FPuvbTvXstiwI/egLEbP0ntZ/kpnbt1ru+YEsAP8ZflZ2DOWcE4+wzAD/le Kps/fp2KXo71zAD5IxQKN11/nkH5WYP5WSpZfsHLN4NbzvDzd3Wd3pWiLMCP cdNIzR/ymZQfMr5sr/hE/YnNAuOr+JZmZPCFDMDPl/m1oybI5FB+yPgqKliu qtY7C4wvsr+XHV9b7VWGDNgSBcYX2Y/K5s+pzznufa9FgfxRf9a5rvBbFMif sJB3+vzAKJA/spaSgD8zoik/4zA/n1+YnV5y/DOn2reVH0XMT+/kNWFm3aM5 S6Y+11VZBGscjwL8zPqdm3Z07w/AT7nDO5tmt6+AH3KfA8uP/Y+fARPGRyCW H7L/k82fDzL9bC2FHGLzZ9uk6Jef3TlE+DHF/EwZtLn/q3ccMmL4iX6fPLXs RRBi8wf/0nPHhJ+7mRrDE7oGI5afwlUX+qn1i0AsP/qlvQtuLnyNWH4SHTa/ viXzDrH8EH/Z8RXSJUNv9uY0xI4vsj+TzR+VfHsHvYVpiM2fH1U74hPHpCE2 f46Vdn8WNzUNsfmT57ZbkCVIBvwcqZypeP9PKmLH1+p13N6b3VIQO74Klkw/ 8HZFGuBHb6N9toLUfpafwg5KfYyiUwA/xF82f34m+sePX1UE8ofst2TzR2Gu 0HaCQRHInw3Re4ccn1lE+SHP94lf9C/Z84oQ+3zfdmv/c9lhhYCfwG+m0y2U ikD+3D9xq8xMu5Dmzx3Mj+Xh5L9WS4uQolFbfvrLCO8PkNrP8mP552PY1EuF gB/iL8vPnEf5nT4dqQL8kP2NbP7Y953k/8mqCuRP0q3Hxj02VYHx9ez6sTDF bVVgfGXsfprjMbcS8KN9y8OqbmIV5acn5kfZJHFo9dJKlMLwk72o9zCJdRXg x+n3xKTHUvvZ5xf5ZZ9fxF+WH/NZLl7axgLAD9l/yOZPY01QxRMDAcgf9SnW H03mCBD7/HIPTD8UO0+A2OfXY5Xarn0CawE/vycXx34aLQD587XnRf+PobWg /jy5rPH4m5EAsfPnM7+DOnpL7WfXEaPf3+41trQW5A+5r4PlZ/ADnSCbXCHg h+wPZPMneP1KeUGaEORPvneP9JsJQsDP0qFH3JSThYCf7RdcR2xYIAT8XPY+ W6oYLgT8OBxRj1RYLAT8bK//FNkrS4jY+TOasVKlWGo/O38uHTF99KGjQsBP KvaX5Sex+/fYMBsx4Ifs02Pz50BUtersPWKaP683LfN+IMWFRSc95MRipNuc b7X9mDqv02fHiv9wsp+Nn/x2s/mxf3x6yT8X5G0XI3a+rXC+/9PNO8WInW+P 5I+Z/SBFRPnsdPzOz75SPXOqufyx0v8tsfjJ72YxLuJg7IVPZlKc/O+0Fxb3 K9ePixiD+V8kr9ZhtYkY7cf898D86+dFpq/IEiEBw/9I880Z6/aLAf/N96un jpfyw/Lv65w0L6K7GPBPvl9P+O9/Kl37+5Yi7vC2HxfvNkk4udTbJTMvjqPn 5ck5d3Jevu37xEbw3v9Ky4e5cuqN9L1/230pAiAff1VVO1SKs/Jkfw4r32+M Q8/9MnwgT/alsPKBF39ULMkoAvJkPwYrf2Lv8IOH9qUDebIPgZUfen3N0IeL I9uTB+9xIl54vLw/PxK1Yw+QX2qPwut2pwN58r6Vlfe6sq735bQiIE/eM7Ly fTddnT9MircTLyD/WdkyLMVNAOTJeyVW/szpTknDpTgrT+6NAftGdqzfaBQs pvJOB+QylXULucD0+oTx+SLu3usPjwOypOt7fN+OQP6WvuJhMTd0W+t9O+Re neDD34PLjEQcuVcn3zlmwOS1RZzmnE/zi940cx1bsgJSvMdGfLjwZJjFixAu Z8jTH15CEbd1yVRPj6mDeIpNrfftyG8I1R29W8wF4Pt2NDcOWfDffTuHbHiz cxeIOK0f3rn/3bfj+3Su5VD9cG684bPZuZ+bufG+ITkde/zlyP05axo1fD7Y ijlyf06H4637b0/bD1LSDmzmXA9V/t/+Wyt8v42Kbf2yXqZirry25f/ut2HG L53/78LySqOm7z31s5nTGdl6Hw7hTWi99n2xiZDypoR5m3FXpPmpUMj9wPcU eWHeGnuM8fYJbeB4s1t5y8W87UpV17kzvIErE7fyFoZ5Uw/s/nrFdiGXs7iV NznM26LawYPzUoTcJp22vL1T8B1xI7CB8uaFebPJVRp5Y1IDt9+vlTce5u2m 66ULtnlCzuR0K29k33JL8TFBjtQesm+Z8LCp29pp3z4LKQ/Mc4fyRu4RWhpx e+VUaT6Se4QIb7MUwny8w2tBvp2YYq5kv0IA8m3WI5ezppq1NN8Iby/2X+y9 0qUG8LbTaP8NhYRawNtlxxOyNxcIKG9amDeJTycFY7VaTudnW96CDx9QMPap obzNwbxlaZbvGW0i4JTPtPLWEeebwuPstOtSe8JwvhHe/O6/Vzk5SQB4I/eQ s7xdW9Myo/JRDeBNdu7snk9NK0G+nb3tULr5TBXNN8Kb7PGCRBXtCspbHuat qEdSdb+mv1wz5u095m3j5wfiMw6VnBUep+RerPtzI2PvWlZx5F6ssZi309Zx Od1UK6Tr61be/DBvjcP8c7uplHM977Ydp/NO3PGPOlpFxynhzfvU2TN3pPaE MeM00WaWgtWcKjBOyXsflrc3mR/nGI4uB7yRX8IbuU+M/N5keHN6+vi+c6cC ylsW5m2/3u1wh8Q8zoXJt6LaXd/5ZoU03whvo60veHWfV0R5G4V5U/K5+vxI cz53D/Pmg3k7s3TPiyONeZzM/ba8/Xi25eDENUWAN42Xi4y7JeVR3ggPG+7L JqcOLaI8MOsvyhvheZrihR4hnfMpz4QvLZ7Liu7DUgBvo6sHdz5qnUZ5I/Vt dGBmluBjIq1vJN+qUyP652/+Q/ON8JY5b9PYD7YplDcZPE536N+Mr9dL4+5h 3rQxb2PuvhXEPE/kohje+jVtrY95/IfyRurbwyDjs7xtabS+Ed7M3g+dVrPl D+AtxufyQpeaVMAb2Y/KPhdcD94IMYr6A54LebbbA33XBAPeDnstRs+XR4B8 +3CJ98nhy1MwTjX3v+n418kNjFPyS8apLOat/MiVgEXJHCfD5Js4V3JgpfpT mm/3MG9breta/BWucfd82ubbec3AmdOmRYDn6dfzpwdlernR5ynh4VCz+dmn D8JBfSPvMVnePEeNUTv4+jrgbW+3kBq7om+IrW+bHntfvo2iEFvfdo4YnPHo 3i/EzkPKd2sHbRv/G5F5CMm3Ftn+swfM/IbYfCvp4ifwfRiF7jG8rV+yO6D2 2y/EjtOvRueTjpTEITbftqhMdeu5Lgqx+XbC8Zfn6nG/EZtvYw3eK9igz4jN N3KfP8ubcdzyvuJfcYjl7Z7/72zzsCzE5tvdhnljaiwzEDtOl97S1w5zzkHs PGSPvInS57BcxD5PK3xlOgVsz6K8teD6tv3R1012XhlovHbb52mM36phsddy EHmeEt7WNRxXib2Ri9j6pjax10sduwzE1re313yOz5baw/ImWvDnb2ZJBuCN vKdm65vv9K0fXJ1yEVvfvj4YMSLyTAli5yFzl2Qu6ra2GLHzkOjdxzYufVUK 8q0gxVF/TW4ZyLc9I95PLltTQnlrJs+FB94Wv6yLUY5GK2/qmLe5dq7LN78v RT3x/O0+5u33t5Blmz+UoTiftvl2adcnR3/zYsTO3yLeZwTE5pTRc2eEt3rb kaNkbxYD3sj+VfZ5qtztLl8toAyxz9M7M8eNfvKHT3lTwLyZ93AOj9Hjo0PM OL3jvd6Av6sasfVtbOKWdwK5GsTWtwNN9rp64XxE6ltHPE6N31v9eGnER654 nI7BvGX7FkY27qtGCXic3sW8qf86EtnIr0Y8hjdZFYnZ0Dl8ME7jvLrVBEjt YedvM3zHvYg24yO2vpH9qOw4XVBZ7raurBqM0/V+P+fVbqsD43TQ4VEpA34L wDjdIN+4ebq4DrHP07LZMgmzr9YD3sZaKC+9YFJHeeuCees6UqFQmClAPI22 vN1SdMiYI1dPefPGvOVMHpAxx6EeqTLPhbDzXoe3JwjoOCX5tmbc425NnvWI XS8Iuv362rtaAHgj+y7YfOu4xvGp77F6kG/K3XeZzRI2gnGalPOlepNFIxin A/dfO3rGpYnmWxHm7eHDOxXnNZvRdjxO32HeSn+83RGX14gMmHnvV+dHLfr7 G+l9sGScrj6oWu/k2UTHKeHNyzuwzqlfM+DtYNV095fbGwFvfW4sUJ8rtYfl 7bXtrtz1Do2AN7IfleUtgtP8XK7UTHlLvcr18l3E59ZWz7l2620zV5T/4sC9 Y+o8/sjTMY4vKlHBxrvaxX2l61x1L5cwA5WIgeJL/9fHI/sTVLy//l8fj+ix bhh6J179nx6C37744NiyEQ0UfyDr0v2/c7IW+/ZuUrzVxEXk2dxJzAL8c4R/ p+OBO3Y/l84D5Td+snzZxJ3q0DgjeBbgkyN8GvWNXGMv5XOYrSp6NLqZ2+T9 YNCZ3mMiarBf2nWyvbzPNHAho1r9Yvih8zriL7lvjfX33ZVTDpc86oG/2cO6 WHRxqwH+Pur8e8En+Xrqb1bbcUrXCxewvxp3ucfDhtYDf/G4o/4uxv5u6+ag bnaznjt2r62/e523Nqzk1wB/8TgC/pL9A6y/YvX8nTzZGuCv4d5E9xPiv8Df 8juTxtgfrKb+MvWczldJfHdMUXNNcqym/jL1meMx8X10v7BbP/kaGt9a7O/O hVfeDwgr5+K0W/1l6i2dTxJ/yX4A1t/T9k73KjPLgL8JXrfMy1PygL+bd+lo bvlSSv1lnvu033UJ+7vudteKQdWl3EXsL/Mc5+IYf5NtXAuul5ZRf6uxv+UH V1w8dz2fixvRNr74uQziS97vs/4qPjbZsyE0F/gbeI0zDbT8A/wtvVFdG+uT A/zF80Pq70Xsb0F0TOjFnzmcbcdWf5n5Hl2XkXy2uL/qVafPuSCfqw0mPCkq TKD5zMzf6PqU+Ev2J7D+ar4cbes56jfwd9+suyMlQjfg74+h6XINgl8gnyta 1xE0n0l83+QaD0q7G0Pjy6wLqL8kvjE+k0VFvN+gXvUenzm0d5Ef9ZeZ54N8 Ju/fWX+XtvqFWH8xD4j1V/ceT2vhwSeI9XdY63oTsf4+ct3z/V30I0T8ZdaP 6B5TrxJ7yfglObgiNr6pjTbzo0xjEesvXg8i1l/yPp31901r3gJ/FVrzHPhb F3Tc6Nf1ROAvv7UvQf11xP52XPWJWz8nEVkx8cV9BsTGt7ff27jNy/4gNr4V sdfnfWrKAf7ivgHwl7wfZ/3901qXgL+4jgF/+c8aUw7z86m/2djffa39K+TK +Cs8OqRPxOd84C/uRwF/j/peHTz3Vx7wd6tP/KFVw8oQO35xfwmx45e872b9 xc8d4C9+TgF/LU/oKnbrVwHii/ucIL77l6xZsLysnPrL9C0R6VsSf2tt45Ym Vv9FbH3eF3o+sdanGrH1GfchEVufyftr1l88rwD+4nkI8LfyUfDdmCG1wF/c Dwfj17ZH9Cxr+Vo6fpn+NiL9bUPs73TfTh8nOdWgkcz4HaU2smqWbj1i5xu4 X/3/qHvPqCqWJt4bc0RRMaMiYEbFnB0MCCpmUcwBMAc8IqJizhnBhHpUzBEQ A+YBxIiBJJIlR4HNJm5gw7uVrvFSdXr5+H669xPL3/pbu7ump7qnq6aH9Bfy 0bi/bN1I+svWmaS/tzTMnjR1K5D6i/Im0n4F9Le73aJpz5wLSH9ZHoT0N6/O 5XD7VgWkv0kHvGvueVNE+svyGqS/kP/F/WXrcNKv5RvkgfOHlQh4nmV5NAHP s+kxVayr6pcIMM+ivJgAeTEYt642hrmv3YqlcYvyWVL8gfe8zC2Lpr1WK5Xe 80pn57HXNmjh8GhlmfjKvfw89nvtJnbwdcoRDz0I7y8PKxPnX+t7efc9fwGd cy69Jz54R5n1SOMy6ZwfRen5lhrzS8Ta7P2vCY2Kw+rMKRXy2PtfKzpc11ty IkfceHixj1aJUrh4xPV5fc03Ut0CnEMOdQvr2Xn7G1ucPV0QVSL6svP2+7Nz 4Ct3So1+Zq0Ux7Nz4Neyev4xejXeDp1cKvb+Ul7PD/UMcC431DPAOTyl4bL0 xMfFIpzDY8d+12PH8Q5nRv3+3SpB6jMnbEoWjfYH3ExV6U3eVtNbNqe7FzqH X6q3P8rO4e82UHuCQ0qpWPi+/Bx+eH/hyLOld/NEhfSeCLTns7q18V6d3+3Z /2Tnr7oIqc589LtfdRHQnv3zju7fqfO7PRei7KadCUqV9K9tBhgNmt9Z6u/F 9jrzvFcrJPugh/eAsH74P1MCz7UvkPTA/5nh8nRhWKHEoT37tHs7XFTpoT3w 3kROraZ1Fqvag9/jCJr80elO1zziB82rgV2HOuQTP8DzHfbDl/zs1QNVeuwH 0ON+JbzYZWQXlUv8oMXyd1i/u9ajx1OOy4kfHsmquDQ3ziV++OR50na6So/9 0N9lQ3Yrzzzih6Zp3TZanJURP0wf3EczT5lN/CDVjSM/NDgydVq2So/9AHrc r/ZmyV26j5URP0A+DuuPD+sxtHHVH8QP8vqf6rkszSJ+0D0vf6Kl0mM/bO4f +S1Y1R7wA9y/jyvrevdumCLdv2C///XuedO/pRE/SPXhyA/Xx6zaMFGlx34A Pe5XaKiT3sc1ycQPkF/Dei3r/No7v8cRP2wZ6hhRzyiJ+OHWR889B1R67Idd FzbbN22XSsbD1oX+LY0iosh48Pqa6/3aI5b4QaoDR37osaHXqJcqPfYD6HG/ vOt5xK09E0n8APkyrB87ZL1b7Log4oea4a4TFYbhxA9L8xXXZCo99oP65+Gj d6vFED+03/pw2TC9t8QPDjVtWi3WCiB+gOdH7Id1E7Lbmav02A+gJ3Hym13h +Uu+xA+Q/8L6ZVebOwT7ORI/rIpMuDHlu0j8cLCfUU3fj47EDzPkbcw/rvYj frA+vNy3XuRTAfuB/a6A/SDVdSM/sN8VsB9Aj/vF2i9gP8B5LFjProuA/cD8 KWA/sOsiYD9Uv34ytXCkB3nvb9Ieh6Yd1cKIH9g4JH6Q6reRH9g4JH4APe4X G8/ED5Cfwnp2nxI/sPuL+IHdp8QP7qYRFxeGhxA/XNSsIly7kkj8wOIS8YNU p438wOIS8QPocb9YfCN+gHwT1rO4TfzA4i3xA4vbxA9f1t/Y+epYAvFDw6Qh //R/n0n8wOYp4gepHhv5gc1TxA+gx/1i8x3xA+SPsJ7N48QPbP4lfmDzOPHD yNHxj8xU7cHzpu+s55MT83MEPG+ydQvxA9SZYz+wdQvxA1sXkX6x9Q/xA5xn gvVsXUf8wNZjxA9sXUf8MFe9ft5aVXvIvOk7Y0W3/YVkPLB1LPGDVF+N/MDW scQPbJ1M+sXWw8QPkN/BerbOp3GyfH1O/MDW+cQPzW3v1Huhag/4AZ7L2PkA 0nMZem4S4LkJntdkc/XHJTcqkZ7X0DkeApzjAecMy9jzGpwzbN9CHCXULpbq t0uEKUvfplTxQs+hAjyHwvUa1LVg9/qWSul6wXmq7PlUOk8VPccJnOc4cn2h Hh5fX/YcR67vMabH16ubz9Dg28uVkn2oV4f2QL06+p6U9H0uuF7fokd3rK6y D9crb8GCA2seZAp93jYIkan6q933/nGrx9r4vXIR3iuHczOgzhzOzUDP3SJc R2j/3vLzZsl6Bp5bob/wPTt4Xsbfs0vbEOvtHFMqwvfs4PtxF0wePjxZuUzk fD9OqodH10Vap33r+sG0ys/1gFPTZ2efKUWNxJGhTy27e70YN+xaQ70QISvz 1L8v7pWJLyfazGwa3torhJ2Ts2X4yp3zlErxgGb5OTmvdA59Tz2RIw43/nzZ sUOx6FVda9vXEz4C8D3RBgdGn8gn/MM6J2u1KnLCW7f4cXdVbBrhV0zubYx8 Hkv47MwfR44bBEjcl/HvJgftlPuOCWpVK+q3Ti8d8mBBkIDt9FMOmLziaxzh rp9tdpcq0glv4D99tslROeGf++etO9a2gPADLo5Hw+8XE650W/4i4kmZxOH+ PewSuKPxozLp/j1sWL6f0+f0yQPOa5SimnmlCvs5cH1hPwf9ruSfI8zOxu4K 64nfC0XDKRXtwLm42A7rF7Ejvpk1vca4XGIHzifBdpjfJDvQL+Uz+03267JI v+C5GNth14XY2Zc2zCRtYhKxA8+V2A677sSObs96nd3Nw4kdeC7Ddti4kuzA /tvQzT33Nm3jJeL9N3iuATto3IowbpczO+7vHhv1WOsrzHeqaAeeC3B72H0h 4H5dfTS51osdkQLuF3uPm9hh9x2x46ef4CmzSiZ2YF2K7bD7WsD+MZpydN0w IxnZn4R1HbbD4gaxU+m5/tED33KJHaiTwXZYXCJ2Xuh9uBG0VEHswLoC22Fx T7ID80L4/t5Ju98WSfMCcKdbc7x8PigkfpPF/8ivHqP1RpeK1iz+w3wXzjjM d3W9Z/Z7tVG1PnGf1u7L6VJR5nM+NGFZd6/T7LyyL1O3hMi1i8UH/5afV+bc qzxuL6vsv7TJcoVY2W/Br7jtzPSNfsQ8v3kkXzxzvlx/iunvOvec+Ck0V/R5 X64H++Y7R1yeX5JN7MsNTvTdNUom2Qd9nz6mjboHp0n6M0xv7ZA1wHZJstgf 6b0tGsScc4uV9HA+25SIJerv9kaKcD4b6J307s5o3CSA6N9bJ40z3uxL9B6J ez/KDJwE3J7wo1W2VmrsJUB74Pw3k7ZD1/ayD5LOfwP7G9QL212dEi5g+63i wn7cjosj9hP29H1jOT5JwP11vK+pPbTGD6KfZb5Gkf9PlqQ/w/S7fa53Sjkh F/xZe76x9hwbMu2k79hcYX7Diu0Z1sVoRI+OBZJ90I+7luOmHl0o6U8yfalT 3OyNT4uFqmw8nGXtmZ/k8H6aah1rycYDzFP+/fss/ahbLOU7YL3aj+2Hw3oV 9OeLZw+xX6WQ9OjcPMEd2YH1JLbDztMT8O/C8wXogcO+NLYT4yjq9orMJe2H /Vusb99Zp3aaal2M9bDPifX+O2rFDludTPSwH4j1jxf+O2veiUiih3MVQA9+ O7F1Qtq6074i9hvsL2H7uw/1e301RyR+g30YrG+259U39VHhRA/7FVi//bhW G2fjJKKH53qsL7CaPrnLiiyih+dlrH/U8r3PXJNcomfjjejZ+JT0aBwK+DzG x1bTzrfRK5POY5x3wt/j57mL5zOihElimRhjZfD1op2+FM/tVy7UPr+9THqO u8/e83VYtuXJfWul2JC954vym1K9jcwhr9lFyySxY97rG0vOl4pr3k49nP2g u9e21dtK725QPe/o2teuWqQUl0w40/Xo7u5eMF/c2TS2iqOekswXwGG+gPeO gyrFXlgWXSj2Ru2B986gPfC+8L6CixOGqvTwvjB6fpeeI8B+M+cRe9qa5hL7 8H4Wtv/xSJW+eWNziX1YN4J98OeL+aZh7muziD9hfYjta5t+7G+u0mP70ntP qP2jjja41npCEmk/rBux/Tsbj1V7Mz6J2JfeD0L2T226m9jMLJzYh/Uktr9i 8t0ri6eGE/vSezTI/sJ7q0tTmnoR+7DOxPaVc1fb72niRexL75sg+9uOb/o8 b6OvgO3D+hPbT0naNNFnk6+A7YMe2++28v64qXsiiX3Y78X2F568f6Ta3khi X3p/AdnX3Kc58/niZGIf1qvY/rVzx4s0lyQT+1KdP7Lvdef6qA6jZMQ+rGOx /bqeySenqPTYvlQPj/3f2Gi+dWgusQ/7fuT+arPb/ZxKj+2DHtsftCVuw5Nl CmIf1r0kPuzT+ZCo0mP7Un01sz+HxVX9i7aDnjmWiofQObQL5kRantYok86h rWJQXhehp7zW+KZxmaih2ehXXURn9l2nSwqHjiccCgTtteXfdcpn9RVsnSx4 u5bXV8xncVsYUP++vq1SfMfiNuzPzDwq2tWuXCrtz6B9PBHv47W3GRX7VfUc Dft4aJ9KsqOXsOnX948uxST0W5ZWIrreHP7r+0fIjrQfWNfTuMacB5lCZFmw ftPIUqHqyYxBqR7aXoMVLmdyPDKFtsMvRrimlApX1Gs6GU7W9srw/jb/n41Z 4qIhrtl1VfrT09Y9u/pax7Bhxv7T3io+4pPW00PPyoSe7072vP9Bx7DjpxPL xl/+Ie3vWWoubVg5ra4X+E3W0DXVxLFQBL8B731Lw7+sLIfw8n3ITMLLz8dO JLz8fgkjfOGvOPCM8PL49kbAvDxuRxFevl+RTPiNs+ElJo4ywhdUtWviqJdH uPbKxgYRjxQSl7mN7tfuyg/xbIs6D80Ky4SUXkc947qre1n6Zk40rFks1rW+ bFbzgELwatC0u3xFVa8dbF1hs2tR5PXwQqGFUcX1hmB8xH16uwJpvQHfKbvX 6sQ3o/b5InynDPSa/qcm7DyWL2J93oOCFyVO2URvvrioz8CybKK3Pf3AZHGV NKIfrHzSPy4sjejV3m5o/DU6huhfd9labeLDWEkP92ODkOJ9dVI/i3A/gt7l wb4rm9oGEH1T8UX9vCvXBKwfn/i59aGNjsQ/fjNX1nzV6quA22N4bGHHT9ZB RP9tyxrPtffjib5JixVvCyPjiH7SxDtp1UJ/SHpYVzukXys6UOmH9DwC+iSH nHqmpXJif2e07GQ9J7lkH/Z1F90xjTBx/L2vi8YhGf9s3BLOxjnh7L7g3Ue8 +46Mf3afEs7ua8JZHCCcxQ2Jo/1MaTyUsHOlXW48fLZ3v1LUflB+vjTw5Bsm x7olKAXgo2ZHvr0XVCZ9v8xg/Y3Ew99LJQ7nkAOHc6u7Gt5enzhJIcD51WD/ QO6GqrXPFgv4d4flJnWzMCyW2rPPqvw7g9esvCdbhJcIXp7l3xlE7RHw77b/ tnFfnmWudG426OH8c6wPinwaZX41i+jh/HOsX1hn260325I49uMkPfQreO2B zCWPw0XsTzj/nOhdOmnsj/Yiejj/HLenyRXv5+L9V8J/tydQwPazbUJGVtWN JNcXzj/Helmda2aafZOJHs4/x/oHq6xHTukq49iXk+tl/U197jkxl7QfvneJ 9fFCs0tDCwol/+ex71GKA1at7DamRGy2q+I4YXWbkp8hnpTdnffwSZhCirfA 6wVaWC5bXShgPtLI56y1cR7R743U29HhoUziEG/PJNcLeG6UIsVn4MP1bwwy Gx4tcbDj1tDq1gL5W2JnwqK6Rp+FJwK2s+f544KmzqGEP+3etHvrNYkCtt+1 0uSF7icySb+mLH0zpm1Uzu/vdT5K3T/U+Pd9nbrKYkfVeSUSh/sIcyt2v/y3 Po7DAwmHcc7RCxz7hLP2cPRywmG8AUfrXul6gR7ONcL6VXt6Zh95XCT5H9UP S+tbsAPnX4EdNN+J+LrA+VdYz+ZToofzr7CezddEb8XOv8J6th4gejj/CvuB rTeI3+D8K6xn6xkB61l7BNwetl7ijNskomfrMaKH86+wnq33iB7Ov8J6tp6U 9HDd4Tw0uO4QJz8fjEzzqllA5l82D0rxE82nUtwD3khXCFhvKyf8rs2I1XPe pYt4/u11ueZgv8tx5He3XD7b4J/SQMKrNvSyfHhzj4jbM+/ShGchTgFkfr96 Kc5hc2YsaX9rm1a+9RulE/0HnTvF/i3lZD2w++Doxi1c84kdFv8F3F82j5D+ svmI9IvNa4Sz+ZH0l82zxD6br0n72bxP2s/WD6T9bB1COFvPSHzSiX3aV9aV SN/jWNT5QPrz8GaGA82OPuy1tkTc9iP7bFpMgVj5yqasBfnNDAcx/nrn1B0u 43PEosvlHPQN+64KcLfLkPTdGN9q2et866kJ4iHE1dtnf202L0TiYH+SeuaL gOnukn3QnxFyM+Yt+ihgO3NjPbt1HhpDeIiHfMHzhakSh3Y29Tk55vqIbAHa OZjxr517W8q+5gmZlyu2Z5lbfvHrU0qpPeA3uB+x3+Av2Ac91L2AHn639aUa k2RfldLvgh7yJlgvZvT39TtUTPRQN4L1byxe70uLUcVLpGffayDtr1fcYbXL +GLSfsjLgB445GUwh/wL5pBnwRzyKZhDvTHmkB/BHPIgmEO+A3PIa2AO76lh Dt+5AA71RVL9D3yXh3F4HwpzGA+Yw3XBHOroMAf/Yw7+xxz8jzn4H3PwP+bg f8zB/5iD/zEH/2MO9ZP4O0fs+1a/v+tU8ftHEkffURKl7yhV/B4TscO+60Ts sO9DETvsO1MCtsO+V0U4++4V4ez7WYSz73CR70bBOMR+g+drDid6eB+Nw0X8 XaqAhwYXTswoELAfdizIm280J5/4823hdOOSD9mEt9BeN2vRmjTCL40f2DHY NJb4f2pRaerOif7E/6f3L3tb48AFAev3jv0R5zssWGon8KEF7ldsjOIJ93iX /q36sh+kX03GOe02fSsn18VgWVmXp5cUEod4m2F8sfbceyVSvIW46lxr7nDz 56XSvAO85/fK2ZptCkXMoy96dazfuYjo2V8yf5mWrDq1o6hU+l2YB887BWwe sKRIxPPgOlurb36Hcsj8btvSYVO1vAxpvgNeNtrMZK1/AuH1snt39pn+jfDj /ZX11g98QObxjjdXGKmv+yDgef9ZQZdat3d+F7CdaZ/8PRcnpQjYzvQvu/Ps q2WT+V2nv279N6fyJP/0nN6/3kq7Euk5dPC4By/1n/3m8ByKOezb/Lc+jsMD CYfnUI5e4NgnHPZJOO0nHJ5DgaP1AxmfbL0n4Hkfnk/xuoKtl8i6Ap5D8bqi Sfm6i6wr4DkU9Gj9Jo3bivN7EtGzdSDRwznMoIdxpV++niTrOngOxfr55etS gaMXcHvY+lbgtIfo2TqZ6OE5FPuTrbfJ9YLnUNx+tm4n7Yfn0P9edxWT687W k7x1smQfrW+lcQJ84YBl/a6PUEgc8jKtuh5atv9MmQh5GSvGfexeRFlOUop2 jIP+Xajh6klapVIeZxHj8NcQ2bk+a1K/gnX5xE66/H4r1/hs8rsLNbvW/HAp TdIDTxsuD+63JZbYiYpbNWLsfX/JDvBdaisMHOc4C9h+/kL7/croIAHbl1dW FGhoxhO+NLhXl8v9fxAum9zP7YyrnHDXZ8Hv4g0LBNzOFXr/xOkHFQu4nZU0 tH1bioVS++E9BVgPwHsKoDe5vuNWoH4u6W/jzR/aNuqTRfx57fbRzG0aScSf cx7ctI36Fkb8ed/I3zBh4EtiR013550Qm9ekvyt6ez4/WiWK9Nd9+ckGM68l k/46nV+iY2slI3xSjeqDxYJcAfsB1lfgB1R3JEDdEXy/dWW/sLb/qBVJ328F O/D8CHZmV/yerID1sH7D+vMmaQX3TAolPXCPz4NqdlqVR34X4jO2k291PvN7 hIzoIT6DHuoB7Ioq3erqlCLVA4Ae4jO2XzzpSEbfqGhiH+Iz1ned26Neu47v iR7iM9ZbfVm72Tj4EfEbxGesf3My0Khv6Teih/iM9WFaetPu6iYSPcRnrJ+U OXe/YJJJ9BCfsT7uu2n0kkc5RA/xGY+30pLHu0KOFUnjDd2nkv4Kq9NYeXDX 5+APBaIhq9MAfk8n+cHB/jmEp6516rvbNIPwNZfMq+R0SJA41IEUugy66F09 RKoDAT67sPvn1B93Cfc3njejXtNPQk1kf8llx/dmy2IEbD/W5lNJ8pFUou+s W7XZixnZRJ940KVH9R95kr5inadCxPWlcF9gDuMfcxjnmFuy8Yw5jFsOJ/Wu zA7hMN447SQcxg9wNC+QOMzmERKHV5bPOyQO55TPU8ROQfm8RvjR8nmQ8ITy eZPEczbPEs7mZRLn2TxO5lk270t671O3+gbXUIjZ2Q02L9IvElc0Lpt0UdQy 9GI8Kn/8o+puJcI+xkHf5si9cy+0CgXQR7QYV3i4tkLaR/34I1X/mI2W4Uum N70WU+ugaj3li/Qwn4IeODynYA7PKZjDc8p/6+M4PJBw2dSFAZXTz/Xg6AWO fcLhOYXTfsLhOeW/7RRLHPzfe7+NRaszedL1Ar5B+9vo4BrZEhcZt1m9dn6T 9BTxCtJXH7xmZs3D38l1b9azIPnt3g8ivu4TOqS8r9T4gXTd4fp+vJMVajn+ m+CLfjf6uscFX78E4QriZhsyAqfJMiQOv7u4neZOmwM50ngDP8B6A/wA+krd 1VsdXJdL2nn00Pfqu95kkX41eXYlKNslSdIDHxIUZCgWhRM79+c/f9DHwpvY 6Z/YrVmj7q8EbOdg48PyuzERhA+ZvV0/VTOZ8PAm0W4vtGSEn9y66X11t1xy 34U/aBI1LL6MtOfGTLeTbi9LSb8G3W41okthKbHvMGSEbFh8AdEHB18NKZyY Q/zQN1Rj47zNGWRcPa4eMuqTeQIZV4eX9e1guySEjE+71lWqGG92J/zUo6Vj r075KOB+6QqN92waECO1H373nMbEJ+pzUwX8u9XWGOVPGJYtYPveYXH1nYPy CN8yfFunOKsiqmd/cXsmpzSLnzBMQfypPulRyekgpcQNTEaaNa6l+v8XYn2M muSJP7L8uzb+9zd36zvyZslOGeHJZ8e1WRyfTHjs8XahNzdHSbwH4+nx8+Jr L30j+iJ9/qsmQZsmPxewPmXKoFmv5oQJWL9qU2jM2qBEAf9ugmkjzeqFmYR3 rX9d17RersSRf8i42qhmMrHVGSUZz+wv77oQ/7NxK9mB+DOufH6R4g+6Lrz7 goxzdn/xxg8Zt2y8kfuCjU8Rxzc2nsnvnisf/7z7hbSH3V8C534k9wW7f8n9 xe53cl3unktebXOgmPg/r9eYaV0K84k/+/vdGRxnJSe8yLf1qJ7X00l/N+XE N7y4I470t+bIyWLL54HEn4kmHfuFvLAncSa4krN615AA4p/5k2s8vVE/jvQ3 UHd4xsDe6eT+vbJxqMMifTnxw8L4iJtuL/OJ/TamG14VTiymvHxdRPzG5jUR xzE2D4p4fmTzpsTRPCuto9C8zJvHSb/YvE/GD1snkPHD1hWkv2wdQjhbTxL/ s3mK+J+tMyX/NCrpfG/QqBxxWVTbOdtKlMLU2K6Pj71sYNiA8SeiukWDjsXi Y8YbMq6cZj363Yl80Z5xsDMyM7D71ipycSrSa9RZrr8iLk3SAz8zwEAR9iKW cCP/tINHewYQntr57o1xS48J9qidp9epDXsyL0jA7RxW91nQquA4Adt5FpVX vZIinfDT05v9+/6InHAzr4ePGrYtkLgm47U7TfGfdb9Y0Eb65jaRWX3WKEn7 Z9URQn5EFxJ+6ZLL88umucSfwWtrjnpok0X8Of3Sp4a6E5OIHV+XdmLb6eGE P1POu1fU0ovwDiYHW4639SX9rWw8yGbsrkgBt6fAxjzDc1GyNE6AD7g8WuOq kUzA7cyrk9wp81suse9us2tEv2WK3/bLXFuVyLLFpF2PozzmKsWO5lvnukVU 9gLeSaul79KPhYSvur/5lvbAXIk3ZHzRCa+2bhOyxItIn/tqd6ZWlyRiJzfh hG1j9XDC9WtuN/StLxL+xvvWnUW1Xwv4dyOr+D2f/jlSwL+7ZMrFBi8PJgvY zjLHlTodzWWE6xfXHrwmLZfwBIsbZk/tFYRf+Gi0ukr9UtKe/f6pE480Lpb8 APzzYtN+RjvziX/gL7Z/V1+35qIXaYT3nZUSHHQ6lvAtjWaN2JniT3hB/o0e DWufJO2f29Nh/+ubQaT9t9IqF9oo4og/Wz4f0qVG6x/EzvtRg91MXeSE73cL e3eiVwHhw5qtj4t+XSzxYU92fHHOzpaelx+X9D3f4s5vDvs5mMNzNOawz4M5 PF9jDvs/mFuy5+7//t0kjv04jp0Ijj6Qw30IhzwjRy9w7BMO+06c9hMO+1Ec /xAO+1Qc/xMO+1ec60s45Csxh/0EzH3YvjqHS37u/6X8PSyo8znkVf4eFnA4 vwVzqOfBHM6PxXwjq+fBHM5ZxRzqfDCH92Qxh/ofzOG9V8zbsLogzOE9Vswt WL0Q5vBeKocLHDuEQ30Rp52EQ90Rxw+EQz0Sx8+EQ50S5zoSDnVcnHFCONQB Al/DzgGrF3RUSMwvFk3ZOWBwPtjkZfJ25ywLpPM/gTtXMqs7JVBO+KMeqxMb bftBuDC/t8f2WfGEH22Vo4xeGUy42tf0Z8HtXAgf37Hw81I9fwHzs4mPWrzt G0u4pmf2uBmz0iQO/R0x8qRXnpgt4P5WvtsrfOjkfKJ/3jggZ29CkaSHc/+W 7Z37sZbh7/OuwY5Ha28Pr7sK0v6ch7rO61vmET5g3J6t3fbLCC9+F+D3ISOZ 8KpZXXuscYwivNtp6xPOjm8Inzwrb9XcsmfEP68VPSuXmIQRPnP81N4a7xMJ /9zm6OJLGZmEXy60HNeiVi7h8xZUXmxxtpDw5h8ubLvT9fe5c+j8cOkcRRi3 kK+EcQvvsULdI7zHis61k/yA7EhxA51bSPSwHgA9Ou9RxO2E9QC2z87JJPbb sPUA1rPzRYke1gNYz85lJXoLth7AenaeLdHDegDr2TnAAkcvEH+Wn59M9Kw9 AvYnO3eaXHdYD2D77LxuYp/5k+jZOedED+sBrGfnwxM9rAew3jn2dcNzlmUi jhsxdh0VkwOLpLgKdmD9ie3oaBz8Xsswn3Pd80Uct5dcz3jtdTeb2If1J7Zv vvmieVbfNM44SSf62NtW7eY0jOWMkziid1t6+10Xzy8cfSDRR1qXadisuEz8 DOtPrK9x7ESKx6NgzjgMJNelxHn39fSt8Rx9HNGzv5xxm070NueV1fclyDn2 5UTfo8ZZ7QDbAqKH9SfWZ6zuP7BFrRKih/Unjofs/E8R4iGcVxO/y7B9za7F 0nk1wDtrXa4rnsknfPn9ajnrasoJh7/A4VyFpFcntr59GyudqwC6hISHp5eN CiB2/GOKI851cRCwHcX8Pr2jxwYJ2E7OdrNx2z/ECdjOiikO2xplpRO+1jEx LHC/nPBuxTtyWmoVEJ5qoa1u5VpM2rPTf41zfHyh1C/gbxcHbz0zKZfwFqUr P17akkX8cF2/l7PGzCTih5mPZH4ly8IJD26f/8F9hBfhNdvkVTo93pe0f1VP 68XW1pGk/R5p8kUfZicTfzaKbjLO1VBG7PiPerCoIDCX8P1uk7YZWikIN2mW 5by/QCnx8LVRtdapOMS3fdtizy621Te0Zd/1mPL59Zl1SoUYyr7rAXqYZ0EP 3x/Ja16gPulBgfQdENBDPMT6U1Ydt+svzyN6mJdBD98ZGXhvRm4NnRyih/iJ 7UeUHFgcHyojeniux/oSB7uHm9tkED28l4r1hh0jzvY+nMLpbxLR7xSH7Egv iue0P47oD981DBgZEM1pTwTRt4isdt7jzleO/UCiH9745FdDjfccvQ/x/8z3 25+v0bpN9BD/sd5gwa3M+lU9BY59AbdnX9CHOfp+nzj6QKIfOkh7YcfaoUQP 73vi8Txtz90xc07FCHg8w/yC7TfOGmN5rVMisQ/rHGzff3rK5qxnqcQ+vEeM 7R/y2n2q//hMYh/2SbB9l+PHQg2tszntlwvY/2qj51tZPckh9mEdhdszT9lN vr9yPqe/+aQ9L+8pt7iOLSTtgXUXtt980cc6QceLiH2YH7Gefc+I6OH5Aren bj+LBy+PlkrxqmaVKR9mZ8aKgaErzdfvV4r616rcbnncQOKa1v5DuxUUSrwG 4+Y1erVLtMwVhyL9gCFdmva/mkXsvFkui7+6LYnYOdd7+YIOj8OJnem66XnV or2Inb06at+GP3glYDvdH+QFGOlGCtjO0dt9tPr0TSb6XUMfX7foKpP0wIXr Zt53xFzCS+rnhOdNUhD7nnYOuUMTlMT+Wr0LfpMNi0Vsx/NZJY9arvmEl0y2 PO3VUk74luDDysyG6cQ/8Bf7R8fCoNsJpwDiZ0PF9ZrJ9/aQfj2Ne3r+fmkg 6VfQ8NOVf1yOE7B9U82gPlvepRMeJ9/Te5+tnPALs/TGB9QsIP6Z6eu9uMXZ Yul3Z8zw6G4li5Xm2cn6G+8GbvjNYT7FHOZNzGF+xBzmQcxhvsMc9rH/+3eT OPbjOHYiOPpADvchHOYRjl7g2Ccc9rE57Scc4jnHP4RDfOb4n3CIt5zrSzjE T8whTmIO8ZDDJT973q6tdvHtd+m7A6FOEaHLgxtKHL6DBtygT1rgeK/v4ooD pxZ8mFMs2hnIZmzS+q2H/WrQl3Qv18/XLjLe7pcvTrybVUEvncvK9N2Yffnj 2d36D5CL1si+dC4r05cy+8H/bukUPS5dfIfsS+eyMn1XZj/v84j8sZ3iRG1k H95vBb0+0yuKGuxZWytQ1EB66VxWZH+6IqiHdehqAduXzmVF+vgxYaO+7gsk eulcVqZXsv5u3XA9pGRJnGCA+vsKzmVF9ueZxNU6ejid2If3mrH9vkeOnNeY ISf2w+E8XnR9c/O7PJ6Rni/g6wvf0QB9F9Yeq7nvAy5tLhZMUHtyWD4Ft+db du9NjWRlIrSnO7PzYeiizMxrSnEJsgPn/uFx4hX8LviqpoKMEzgnH/eryoou z2bvyCXjFs5BxfpD1bVGdIjJInp2XUi/mveJrX/iWZKI/Qz5F6wf8db0SbVu EUQP+Rd83WtNcb3q896bjHMZy79gfbB8cIc973zIOIFzPrF+hpbmxsV3I4ge zu3E7R8cN1JmVJxExhXkX7A/w8PEBj/qy8i4gvwLtn9i+JwufS7lEvuQfwF9 EdNPvV00cktvhXAD6SH/gvUamqfnvn2jlPTwuwNXlV2ZkV4q/a6C8aHlXLRj HPq1vdrCgxoziqRxAnFv/VnfNW/f5ElxD/iznh3Mt/TOljj4v/LxRpuXjUyV ri/w/T6ho0PbxEgc2nnn8/qZzTL8pPEDfGFmUsL8Mfek9oMdTwu3C8/PhgjY zrNtDXda/5Mg6eH+6j153KPKpzIEuL/gfm/dyNfmw5wc6X6HfkVtWnCkkaxA gH5VMyjnE+NLr8/eUSIsca3oz+9PDJr1uVQi+RPa+XWCU2l6/UKpvxAfmibn JVzanCPFB4jnz0vcT94PyZDiOdgx6mJr0dYjgfjzwn3b+a1bfiP+3D69akqy 8X3iT+0WqaFTMz9I/oH+sr9Sf6E99X64nXtSNVXQQNx7bl7yVc1siYOdrW8d K2Vdy5PswLw80MCgZf8BRQLMy8WsPddPfeq93a9UMGftQeNZvIE4uy9EPM7Z /SX1F92n0nhG97uIxxWLG8TPLP4QzuIYGYcsHgrY/yyuCridLD5L8QTFeYmj +UIaz2jeEWBcoXlNhHGO5kfiHzbPEv+w+ZqMNzbvk/HWcOKv9QPhymMhP9ch EodxlV++nhHw+GfrIsnPaH0l+QGt06RxiNZ7kj/RulEan2h+l67XinZWek/X h4iNB3RVOqvWsV7jhh2oNf+eYFaraugtFb/l3dzM26lE3KY3+XuZKm6ZHrCa 9mxliHi+pf3ecGelqNZ5zOsGtQ9L+mxz+0F2lQol/Timj/WIXnmshkJUyxxd Qd9HFt22++ocST+B6fXGDJtqsi5XVLtS0X5uvZ0aH59kSPrxTB/oY7yu9HWW qDaxon7TEJOoAScSSHvmZNcdvsIlibRHLbTF1AmxIaQ974UrrR4owkl7ZgUf f3R7vgfRPxgwZ1WbBd5EfzfiYrZ8gZ+A9R3rHpnbqccrAetfaYz63qroO9FX vvm88ZPYCKIPC4vScWmbKmD/KNo1f7mqcbKA/XPTrO7t5rrZxL5n8U07tVYy Yt/y5U3fhQ/zBDwe1lgaO452yxXweGjbwTj6tnGRpJ/I9AafEm47DlMIatXH VtCbqo99d25MkeTPGYlvZjip9Icd6o8Jn1gsqlW2XdNp8kFJ73TlruuUx3lE H9ThH4NjL/OJ/usgjRO122cTfRMxuImJvlzST2P6XtcS83d0SBUNO5brZzH9 wzuripS90kW1QpsK9sXgW69klWMk+zOZXojo9XZ5/ThRLWldBX1rda9hGzf4 kfYcayTvcP9rAGn/ljXTmvzbw0PA9jt+i784IdJeAPvQ/olCnTsHv4YI0H6w P7an4sqJ54EC7m/bNYa1zI8mSHqwf26ZZ7WoHXECbr/T8E2D0+5nCLj9DQfL +6++ni7g9teoHdFv6Iocon+zp8kjtUVyon/1j92kvaUFRL896/6X0YX5RL8l ovFyf4cSoh9iPinV8UCxpF/Ufo/eNZU++YDX1BZRpaLha6vv+0beE/wm7vW6 qOJDLVNmHgwrFQwXe7ZvM+Se0HRW8IuPq0JEv11Xeo1xLxHVctfmZlkel3hD rRotKrUulHhzxqfdX6r2+GCOqLbSpoK+94nTn6LkGcSO+GrOmbGfEyTemPFt CUaf/5nyTVQbUG6nCePLqg+7MKDTA1GtUkX7V33GKG9v/iBg+8OrtrQq2vtd 4mDHeco7q6MpKQLY0WR8v+P2jw7Vs1X3aUVuXNw6Kex0HuFVLJ+X6XQpkrj9 wje3dVer4kxKsHbTF6WCWp/u01uOOCk0WPQj2GxFiHjhVcOhaZZFoppDg4MN Zm4S6jEeO3Odnktgnqj2vP4vDvoO8m+1zQ2zJX19xr82XBfXanaqqHZO4xfX YHzesIFuB/vFiGraDSvonUVlVuLYj0RvXzfiyetD7gLWs78C6IFvrnqv1YuZ CYTnfE2fOGFrBuGPpjTykU3KIXztc/eIAQkFEq/LePd24/N22JYIaivK29OQ 8Vn67tN7FZSKanXL+Uo2j//TLGCClqdS3DakfB6H+X1tRvH+l2Vl0vyO7gsp zqD7i3B2nxLO7neJo7ghxT0Uf4iexTGiZ/FQwHoWV6W4hOKzAPEZxXkBt5/N F4SzeUfix/qFjeygGucO5273zB+mWs/8+/LM0xAH4TDjAb3qNb/rplq3LC3n Rxhv4mddZtFKJqrNKOcHGHfzvebXp0myqJZR0c76pG8GxvERkh3gDff6Hjfq /YrwDy/b968y11vAfErl/ZXbF4YTfmny1t5XLyYJuJ2N9Z4u7vc6S8Dt9Nu4 8VOCjWp+Z+08yPiu+KbJXWuo5vEVFe0bmj5UW++slOwPebdHXnNEiKC+1P1k UEmZ2O1Owryzc1t6bZrZcedYIUS4+7pNWKF1ibjFNuHYmA8tvewZl83eIbpF F4hXGAd9n9yEq4tMc4he3uRos0E2GZIe+EajqYk3JiQQXjOlp2XXaSHE/hLN vHzd3u7E/o1n1gF97T4K2M58tVPJF4bHEB4eENCi5+JUAdu/Pql6hzijbGEL 4hZPLxt2Cc0jvI3usJk2y4ok/sFqRYrayBAB9plNO3ZO8Rz+m9dgeQ3MIX+B OeQpML/J8hGYQx4cc8gvcLjAsUM4+13CYf+f0y/CmR8Ih337/25PMccP+Zx+ yTn+Sefo4zg8kHDIy3D0pP2QZ+G0h6OXc/yfz/MP4VCfjznU4WPOvi9J+EuW p/jv65jKGbffOf734/jZg9PfEM64SiAc6tUxh++vYQ7155jDvj1wjZ0lG2Sq OKlhee/AbasS8ZZfkyrHRv7mk4obrVkYVED4aUfb6c2H5RDuOcVj08U5GRJv wPiQHetN6g1QxcOPFfVHF2zoXNgxhOjr5rXSPl/qKumBn34XP9IlUBUPkZ1z r9buGjgjRsDtaXzC1fPj5lTCR923Wdd9UjbhlbUaHrWLzyP8xS63G97riiQ+ u0dlo0WqOJn5qiy8xy2lWNn1QweTt795r1kLvVOaKiQ+l/ENct/rF3bnivK7 5XwO47aNJmjdTcoSP7pV5JWHa6a28EkivEmsx/IGgyIkDvbH22+sHR7vTewf f2/ts8rVR8B6zxqub2ddjBCwfurXBk29cpMkPfRr0ZT27W7WlQnQL9C3ff5q qPx8roDbGaW3wHxQD4XEO85oXZTvFCpMnLbU7+joMsE9O0DrxQ1dwy6MH3Oz qDd2ZamoJy/n3Rj/OupNbqUIhWjHONjRiu4Y8dgkTwQ7XRmfve6g9+pHMjFX VtG+cfPICeNMUoh956PDB9gaR0v29RlfGOZ89XLJW1FNXtFOZuil8WO6PBH0 kB7+gr4z+3fd0tHuh1clCneyK+p3fdkV38YpU8D2N/vPqxMWkSPZh/72HaDU 01lVKOD+5rmcGbpcTSlAf59pVlso7AkV4LyawhSz78PjdSQO8zjmUJ+AOczj mMM8jjnUFWAO54BhLmPzOOYwj3PsEA75fU47CYd5nOMHwmHeAV5Z3zk/6kCo 8G7HtvWbn5SJhevXiq/a/fY/5NlBX4np67WIn9O7Q7Gob1dRD+c8Y/uT7hmN TD+eT+xDnh3rj5vc6HypspzoIc+O9e5iYx2PmDSih/kO6wdmhme2eR5L9JBn x/q9AwzXt+weQPQwP2K9zclpOUcuHhOwHvLsoK/C9GZ1b5t1tQgS7JE/YT7F epfpGtEdQ+KIHuZZ3J4WncY2eFaUTtoD8y+2b6IcfunaUTmxD3l20Fdl+mqL Yp5ltS0QLJEe5mvcHu/Pm7/2f1AstQd4652mC+colaSd8D4O2IE4k18eN0Qc Z/qVxxkRx2cWl4h+W3kcI3oW90ROnCRxVVYeV4l+fnkcJnHSpTxuS3ES4u2Y 8jgvxVuIk7PK5wUpTqJ5RIqrwEPL5x2JVxznxZy4l8+JY3JOPEzn6OM4PJBw u/zZh6Z1aniXoydxDNbtnPZw9HJOvM3n2CmW+L26tXLmh6VIfis5UNKg2aWu XsDBb5iD3zAHv/23Po7DAwmH5x2OXuDYJxz8xmk/4eC3/7ZTLHGtwA3BP/n2 OS1yc1Tz9a79B9Tr/x/8da59+C3VfI15zUPfvRao5mvMx+kOv95MTUa4zrrR LS+o5mvMpxu38m++KoLwIJMJQWmq+RrzWsqzijkmPgLwloyvcRlhMUU1X9sd qKjvcSkyYZBqvsZ2rq5t2uyzar7Gdhx0brYzUM3XYAe46cFRwgbVfI3t18yN N/dRPXeDHedXz8J+cuc2aQkDVfPyxLEeZzT+Dx71yNQvWzX/Yq493u3eDdU8 i7nfB10DUTWfYj5ZkVKirxZD+NoLj9svX+VHeLCplekzYw8Bc938IwMaqeY7 zPeZVvZvqZrXMC9tNaSKq2r+wvxZwaCWF1XzFOZ288N6p6rmI8x7vbcd31M1 73A4aT+zQzj7XcJZOwln/SKc+YHnN56fSfvZdSGcXUfC2XUnnI0Twtm4kvj5 MPO772unCRYd0vqk/6MU2/T0e22QOljiV1+aal2KKZT4BcbTzNwqzxifS/Sz w3UD29hlEZ5UM/X84SlJhEevmv0tf044sR9+6lPslU5ehFdxbZV+eYmvgO1k bqg623ZzpID1q+sNWTDOIpnwnKxBH7JGyCR+kXE387D4/iG5xP5Sb1vl9iUK wquubXnzTadi0i+T2luObj6VT/gBl5h1vavJCT+/Zs/jkMQ0wjtdHLt7pHcs 8YPlv22vWA4IIPp75obtSoodSH/tbrzvmGAeRNrvcfWCcdWAOMI7rQ/feDIv nfBJV2pP1zwsJ1xd/Yb1nDYFhL9fZ3Tg2r1i0p4OnTWb+hUpJX767qStaw/+ EDofcr1f0kEpaoe4ii0XNZf4Ct0GZ+6fKJS4M+P3nq7dtqxKrqiG9D8u3/k0 PC6T2FkXuOaM+4tEwpWVVn0e3DOM8MH2sRcWXHlG+LO9RSVNvd4IuD1+SXJL g5tRAm7P95EPrDorkom+y8H1ptFHZJIeeGKO5qIObfMId5ntsdX6voLw2a8n OD8xKiW/6/fte/vQ6CLit/qrh6sfNc0nfptS/WqO0dNs0t+eg+o/UExII3ae Lg3etrhLLLGz36DX2Vvq/kQ/wanRzM8RLqT9Uxo/7nF+VzBpf9vIJqaxi+IF 3B74i/k+YVRY5VA54aNuxMvHLisg/q/UYHvdEyXF0u82KZ2ZYqLisA6cnz4z rs3W3xz2HzCH9SHmsC+BOawbMYf9Cszh/Yj//t0kjv04jp0Ijj6Qw30Itzjb 6lbrsDmPOHqBY59weD+C037CYf+E4x/CYV+F43/CYb+Fc30Jh30YzGGdjDnk WThc8rPF9LdaNV0zhet+xWMa7CoTmn15/j64cmuvyDbyNgYq/tH8qZZpr1Lx 9CvvC4Oa/eYaMq0qVVwUhE/duzX1Sb08ws+0jvtibS+TeATjT5fvXzEhOFk0 ECvyvb3//WfjvCiJg53uuhOa3dF/Q+yYGfVfOsDvuYDtGD145SXfFCZgO2dv n3M6GJcoYDv1N39706pGFrEzokMt5bfGucROJYdrTdreKCR2nhaOMFg2UCnp Wzg2e91RxV0N/r374Of3x45G7jXVbO3VjPGMt2VOy6cXiBqO5Rz0feYt3Kjz Wi7pWzKe+2O/t4fVD1HNqZw3Z9y25YQj2sPixX1HKtqpebzjI60BwZId4O4N uhfvKjtP7Afd82miP8NfAPvAF3Q+N7TjpFiJazEeXByy5um6NMH8eDlvyvid pH2T23/KFryOVbSzcEL7Favn5RP7rR+/2v04u0jicr3tnw+oeNIB75p73hSJ jzudO/rc5DfvpKOXNbh3vsSzGV/9ZM/XHJds0V+3ot7SJXC9WZs0Yifjy6mR r4piCA9TrDXyNf9CeEODqFYNk64ImGeb9LiVlBgs4Pb8WDdl3+5T8QK0J4fx pcZHnjV9/kPw71zRzqpDlgVTZXJiv3NepQbndxRIXMZ4wpwLnZM1SwS1duU8 tHbD5d1UvFd0scYV8zLR3V49Z1LT1l4nxwztPOdBpqC3LqJoSlmZaD/2xgm5 h7ZXzJWSrPd3M4XLh0JGeqkrRYcxu4c7xbaSeKrugC7rNxUS3uXZ2QbdUnMk Hss4+yt2NK2oXxLk/bzf/kRiJ7FKvUZj34cS/nXnAo8zak8J/7Hz6driY28F zJMSJmvrNIwWcHtSR1iOuNw1RYD2AL93YMKzFjdlAm7nipwfwRaD8iQ73xnv OPtA5p1PCsF9XEV9nG+HmvnzSiX9rBM2n860lUl5Bw2vYxktZ2p42Rzq65Kq IxMmRvVteTysTDQ8MKZ2/1J1r5YbIk/5qniG9vBLtaKVgkPA6jYlY+p5zT3+ dOw5lZ3asgezb+kqxGbLwr2Pmmt4ecxxz0xX6RVVNDf46hSJamk2A/9RqEv6 8XubjlhwLFfS32P6wWdt521yyBO3KSvqOwzJnWxQmkX0m3uGGfUslRG92/In bc6HJRH9Pqf15oHfUoh+TW9laNNlEUTfdteGMdsWfSd6pU79xKRhPkRv4VPj nefAD0QfrROZvGCij4D1OdXf1tJxeyBg/ewHFjPN1kQQ/U3L5JQfNt+I/urt FTGDo5KI/uNO1+s1vycQ/ZGXQfuT1WREP8wsNfxMlUyiH9NhzWUDp1wBX9+Z jRrubXI8R8DXt4ZDvRcb2imIvom928V57QuJXiy8HeLjqSTtCUwwfXrjcYnU nhVL531OUvEVuTuDPi8vEb326Bk3rFpPGs+wXoXxvJzp3Q8mPdkdViBuc6io h/Uq1st1Rl8cbJxD9LBeBf0ypl9sM109eWmGKDtXUQ/rVWw/55JW+FSjBGJf xtar2H7upVfjdg8LIfZlbL2K9R3VrAfWeOVG9Ge2xg7JHLXpOdYHGE0o3ePy UcB6WK9ifdqlz/Ic0xiOPo7oLWxqtd+zJpXoYb2K9Rk6l/Trjs3m2JcL2J9X DwqjzKLyBM71Jfr5uZHzzq8uInpYr4L+RrMhX37yrFM9DDdHlIoGYes0W6i4 x9Xtv/SQr7GLqhHzU9+ny2WtA7oyYYnVpqVW4UrR6+G8+ifv1ZXiah+btz10 jhdLcbUd058piZqgZaIQ3WMr6u3qdG4WVqlA0oP9bCfDvkEPc4n955cOlR5d LSd69pfolWuj3x9+mk7aE7KrTvUdOsmkPfsuXT5ZfCKO6J8scrn6vTiC6LUv BbwJjAsk+n/3Tt9ia/WK6Kckba3zsc9Ooh/50ml8oL63gPWel5tXt3ULELBe fYd4+PD3cKKffNm477iSWKLf6tiiyPx4EtF/ttmx9Lt2OtHnWZh1TX+cRfRt L8/9/FhHLmD/X2th4v5yVa6A/R9ZpyS50sN8ol+4M/F9jUoKone2ca401riY tMfgx474iU5K0h42j0v68dEev+KqmdGEn3FVlLUz6vMzrgI/HXnvZ3wmPGqt 5s84T7hxk8yf8wXhASPv/5x3CPdIkv2cvyQ+jvFW9TN+zoPi/OEV9RNf5r5V zacCttOssvXPeVnAdnYE/vNzfhewnaKAkJ/rBGLnyUCbn+sNwm0vN/i5bpH4 jOrlcWPNyV9xQ1Qryf4VN8wZ9+z6K/6I7t8r8lJfl59xjPCdj2v+jIeE103+ 9DOuEj5tmunP+Ey43stNP+O8gLlHi9c/5wvC/ee2+jnvEG5sYP5z/iI8dtuv eVDi4Ifzqb/mUwH8AHzW5F0/52WJ7yi52Fk5LEd4P+zK8e8PS0W7nptsM9oO 8vKxPzSu1vAc4Xq+ffJF3SKx5EvyvozWg7xeMZ56+Pun6cfyxC3+5Rz03doN f1CvTCbpgSfbje5zMCyF8KjxrarKl34nPGH6hEFnh30gv1s7sp/uLJcHAv7d TOcR3Tet+SZgO6vPR36YEJUgYDuJq5uWxlbKlOwAd9W+2WygUw7hy/aP6rmz XSH53Q7y+LEfPUvI71a+Pdbm9YoS0i+T4a4z7cMLCD8UpjGsl0kO6e/F2KTx wcsziJ+7aNxpOdw4geiXbo7zn2cUQvTPgxZNiYh1I7+b4dCgMMD5I/GPRx/h XvWxMcQPHWtsTDi9OpX4YdKK8IONx2QTO3W/rr86NzKP6N8MaSxeX1Uk6WEc tvLtaFSsVibAOLx0x2ZwhEoP+04tPNU0aqcPlDjsc2IO+5mYw74l5rA/iTnU WWEO+40cLnDsEA77hJx2Eg77fhw/EA77eJiz50qp/ctmuCw55qgQnPutHtZv YJmgr1d2TlhVyxD4mM9zTl+2LxWBP8gd0uvBCYUw2jP/nM+5MuF4te2pm+rV kfiZ8SGDm7UoFYEvZ3Ycrby2zExTiCmDK9qJSeyv+2WvguiDS3SsGpjnEb3O 5rO19uTlEn2L47vHvnstI3orzdKswRYyon8+zd+idFEK0U+b7n0n2SVZ0oMf ttXusiB0V7Tkh/tM71ZHPedWUaQ4uFNFvc6XZXmL178jfrsU0K25usVr0p6p GWpu3n0eC7g9c1PsFq+f+1LA7TGN7hN4fFqogO03j5pi6BMTJulXMP1pL7Nz kRMShR85pRX0JaLllBzNJAG3p56jw5dVNpmkPTbHLuzZPSCLtMf3ntX2bR9z SHtse2RE1umeS/TbWlQ5+35uIdH3PHMgf6p3IdH333nxQcPsEqLPqtxR4/wU paQ/0y9w+5fsdKEtG+eQvzvJOMQTzCGeYA7xBHOIJ5hDPMEc3r/AHOIJhwsc O4RDPOG0k3CIJxw/EA7xBPhlrXE3UvqnCvH2n7ranCsRMe+gaaDZpXYh4ctv OxbFrs8hfM7uNO8efhmEJ993O3LhWgLhMb6pj1pU/Ub4+73+w8LSPQgvrFRF f7aWH2l/mu56+8nfvhO+0sJ2zSCNVMLXnDEPXNQim/CuVfLT3e7kUfvLnaop hhZJ/Arju9+VXpwwpYi0k+lpv+Yt2FvdO49w9ruEqxe8WvmiWzbhrP2Es7+E Mz8Q3mVsw3XTNGNo+8v9Sbh/0pwaDUQ/3nUhvNHLFgdXX7tH/MmuL+FrJw8e 7eURQjgbJ4S7F4VOl29OIJyNN8I7fGx0cNelDMLZuCX8y/gO8w5a5BDOxj/h Bz197YLzCujvlt9HhBtrL3Rsta+Edz9KHOLhCXbuE+Zh7HwnzOEcJ8zhexmY w7lMmMP5S5jDdy4wt2TnKWEO5yZhDucjYQ7nIGHO6sMJ78fONcL+FHqce3o6 sZSMzyvBBm2GB5SS9jM7hENdOqedhEOdOccPPL/x/Ez6C3XgnOtIONR1c8YJ 4Wxc8cYh8TPzJ+F4Hgc7sL/H4ZL+HOOVp3mrv3IrJrzt9e6ujcb9vi/OMt7J eJXHZxsl4bXyyxps+Ub1HxwvtLvVpZjw28N67J5xpIj87mUX+bbzixSE+8jn t82qUkTsjMrQzd3QqoBwq6GOxz88pXxFtP/p3XGFhI87vLCwt1Eh+d16nSvX XeCcT3hWqNNyjZI8wpP7my02C84lvPqBVzWurckjv7t/155wg4Nywm9+zd24 vWMOseO+rtfWwROp/WN6r6PTPXKIncnelvKmNaj9Xtb5k94uzSZ29P09x9Ud LiN8bNv2mbO/y4gd9pfwsDBXH2v9DMJTm+v7JW3KouNh/YQDRsMyCe9+78i9 f1PTCM+u52Fd4ppKeOzn3kv2zEsmXHtNg5sdzqQQrrfo1Pghn+IIt6hpczS6 RgLha02yT02dnkR472ua0+9rJRK/eX6fsqXO61jCNwxZP2TZgRjCA4tylqas iyR8vHA3vXN6NOEzOz3pO21SEOHfVv7z+PSbr6SdBRkr3u+yCid80837xsNl 3wjfodXzpNwwgPA67tkd55/6RPg7t5Lq+2b4Eu7Vf3Vt9ZHvSTtTFvWv2mqn A+Hm05OOXkq/Tew0PJn52qu/F/V/i8Jd68894tkXOPYFjn3CmX3CmX8IZ/4h nPmHcOYf0k52fQln15fYYdeXcHZ9iR02Pgln45NwNj4JZ+OT/C67vwhn9xfh 7P6i/i+/vwhn8YFwFh8IZ/GBcBYfCIe/nPhGOItvhLP4RjiLz4Sz+Ez8zOIz 4Sw+EztsfiGczS/EDptfCGfzC+FsfiSczY+Es/mRcDY/knay+Z1wNr8TzuZ3 wtn8Tjhbn9DrVb4+Ie1k6xPC2fqEcLa+Ipytr8jvsvUV4Wx9Rfie4sFCzovf 60Dgi299Pn9J+zeH351b2+FMcqGS8M2zSgf2P1lK7DD75HeZfdIvZp9wZp+s S9k6lvBBW44Mtdjze90IPPq9eG/oEAXh2xpn67XI/b1Oc2ZcZ4HO6bxbuUTv e2dKnYAFcqJfVLhry51mMqJvuG9FfP0L6URv1ubL+zd1kwk//aiH++aNcYQ/ O9ux61L/CGLf6EOGIuR2INH/m211eH+9V4Q/+lor+sodO8INp+4WxJ3eAuan NikD1yQFED+rj+tfvWqdCMKHH32i5dc0jnBlwbS+mreSiP3H83MnzBmcTvi6 98eWXvucRew0dz7lvd5ATrjtuEXjz23IJXaCK/WJ8PLJJ3qDR1WWJNZREP3R ZYG5tcyKiT6ztcv2bueVRH+65xy/vV9+3xdoP0HisE8V5+Lb0HNtMdGz/Qqi bz+gg2JlbD7Rs/0Qol/mv/+73gQ50bP9FqKf8yX0oOeGdKJn+zlEn6T817yd WRzRs/0iwqPM34xpvyCQcLYfRew/zno4MaGSOdGz/S4B87Ifejt0egQSzvbT BGw/33icje6QOKKHv1i/svm+6w8XpBM92w8k+n/WLcjQHSEnerbfSPTdokur r/yaTzjbzyQ8bdQ57UeLi4l9tq9C9FfdBgwsU5QRblK87G64u5L4/5DjJ6dj rRXU/50MNpocyiX6jjvaeZfmZBHu4Z52eMWXJMJtX857+MAsgtjX6Bf8r3Zz H8I/1mvaveMGH9J+s86VtjzeHUH84LJo0D+rkpMIr6v1bLJadRnh73aZrxh9 OpfY35WRt9uxs4Lnf9IvpiecXV/SL/a7RM/GD9Gz9hM9G59Ez/xA9Gz8E878 Seyw+4t3XXj3L/Ezu76Es/hA/MzGCeEs/hDOxhvhLL4RzsYt4Sx+knay8U/0 LD4Tzu4jwln8592P5HfxPjNwvM8MHO8zA8f7zMDxPjNwvM8MHO8zA7dC+8zA 8T4zcLzPDBzvMwPfhPaZgeN9ZhT3SDsNpzldiHhO52u8z4x+l3C8z4z6RTje Z0Z+4/mZ9BfvM6PrSDjeZ0bjhHC8z4zGIeHMn4Tj/WTESX/xeh441Dn/tx9o XIW65f/2M42T8N7cf3Ma9+B8Bo6etB/qhDnt4ehp/IH6Xo5/CMd5+Yrjk87v OC9fcdxmcfyfxPEznUdwXh5xjn/o/I7z8qidnPsil3Ccl0d+kzjk6/E4rFgn kE84HocV6w3SOfo4Dg8k/B+370fb/jv2EUdP2o/HIWoPRy8nHI9D5B+J8+pG /nb/4U95KLz/wNuv4D2v8epY/jZvxcsL8/JivDwabx+DNw7/Nl/Gy6vy8mW8 /BpvX4VX//O3eTRePv1PeTqc1+Pt8/Du37/N3/Hy0bz8HS/fx9t34tVN/W1e j1eHwMsb8vKMvH0wXtz723wiL4/Pyyfy8o+8fTlevdnf5hl59Rt/ymPivCdv n5A3X/xtfpNX//Cn/CbOh/L2LXl1en+b9+TVvfwpr4rzsLx9VN48+7f5Vl7d yJ/yrTg/y9vX5dU3/m0ellcvxMvz8vLCvH1m3vrkb/O/vHobXv6Xly/m7Xvz 6kL/Ni/Mq7Pi5Z15eWrePjxvXfe3+WhendKf8tE4f83LC/Dqaf82T82rT/tT HhznzXl5Ct56+G/z47z6Ll5+nJdP5+VNeHXIf5s359X1/Skvj/P4vDwO7zni b/P1vLq4P+XrcX6fl1fi1W//bR6fVw/5pzoBXFfAy3Pxnr/+tn6AV0/4p/oB XG/Ay7vx6t7/tq6AV0fKq1vg1Tnw8oC859a/rWfg1WH+qZ4B1z/w8pK89wX+ ts6BV3/7pzoKXHfBy5Pynvf/tr6CV7/6p/oKXI/By9vy3rP427oLXt0yr66D VwfCyyPz9kn+tt6DV/f7p3oPXB/Cy2vz3k/5/1ungfeBeXUgvLoRXr0Hr575 T/v/vPpz3r40rkv/Ux4B7yPx8q3o/QLCeXmfv60rwPtFf8pj8t6j4eVH8Ps1 vHwob//5T3ln3ntPvPzX39ZR4P2fP+Vtee8NbeLkiXjvE+H875/24XH+Hb3/ QjgvD/i3dSN4P+dPeWree1K8fBnv/Smc7+blI3h1CKDnvQfHy4f+bZ0M3p/5 U16e/eXcF//7+2I4v8/Ly/DqMUDPex+Qlxf+27ogvN/Cq0NAdTuc607zp/j9 uD/VM+B9lT/VpfDei+Tlx/+2DoqXZ+TVXfDe++PlkXnvA+L6jT/l6Xj1Obz3 Q3l1An9b94XzrX+qM+G958jLp/Pef+TVq/DylbhOCfmfcF69xN/WufHyzriu Bo1Pwnl1Bfh9T159Di9v+6d6Ld77wry6kb+t68P7Fbw6IhTfCOfVV+D3W3n1 SH/KX/Pq1njvTfPqZ+AvZz7iXC9aH4XrptD8SDivzgS/z8urv/pTHp9Xv8d7 f5xXR/S3dZt4P+FPdWK895R59Ta895dxvdmf6hlwHSNafxK+iVNP9b/WqaL1 M9Hjuji0PiecV3eE39fm1dfx6jp49Zzo+YVwXl3Z39bl4ud9Xh0ger4jnFd/ hd9P/1M9Ie/cCV4dF+89Yl591/9ahwx6/FxfPtvfeG7bSRHQo6RMyK1jn3Cp fYnQ8pfui3SOa7MFGqWzRlcx7HNLw7+sLEeEfQAta99DqQWq+4nFETHVsoHt U6X45fHa0yknO3kB12Z6Z8Qrb39boN9RIXZ9UpGPbNY5Ov5ErrjwYUV+wO2Q 75kqMsLPHY42uxyXJHohbmJnbKRjH0H4u1uXXxRb+ZDfbXzWuP44fR8Bczvr 5plj5kUQ/ni/8a1+wUkCtt9t1o6o94VZhE88Obem65FcAfunbllx2wJtBeF+ i50HGd5XSnb02LqcfRdM3LJn+EaHOc0MgZ/kcPgOHeZ9OZx9P5TwcA6H76ti vpHDtdjzMuatOdyLPc9i/pLDvdjzJua+HF6bPQ9iXp3Dx7DnNczHczj8JX7g 8GvseQdzVw5fyZ5HMJ/D4dHseQHzUg5neoGjJ5y1h/A5HM76S7grh7O/hGtx OLtehI/ncDYeCK/O4Wy8Ee7L4Ww8E/6Sw9n9QnhrDmf3I+EbORy+F8y53wln 8YTwvhwO3zHkxCvCc9j+MObZiJe3L1nc0jbheVlZsWixP/J9gzM6XsDHv7W3 XRlRRLjP41GXH60sINxx7vfZeqPzCa8+8eb+lRFywkPyho2IeJRNePn64Qfh fX75J43w8usYT3j5eIil/fo1boMJLx//Xwgvv08v8bjAsUM4+13CWTsJZ/0i nPmBcOY3wpmfCWfXhXB2HQln1532q3ycEM7GFeG1DVo4PFpZJnE0bsl4zkYc 2SHXBfIamMO6Czjct7C+mtn58oFJi9oYwn79oLZfXDuo1m82Q3Ny5rYsE6A9 sA60R+2J/OoxWm90KfndcMTBDuQ7wI498xfwEx6eiy4sGyz5Afb/sR441sN+ ONYDx3rYH/7v9qRz7Mdx7Mdx9IEcfSDRw34a1gPn2Bc49gVO+zn6OKKH/QeO fzj25Rz7cqKH51PO9SV6eF7jjB9JD5z9FfVuVuTbONx109gqjnpKwm9x+EQ2 X2BuyuGtVzY2iHikIFyHw73YvIO5L4fLG7qmmjgWEp7J4cfZ/IW5A4cvrGrX xFEvj/BFHF6VzYOY1+Twvux5EfOeHB7K5lPMgzn82tnwEhNHGb2+HH6UzcuY O3N4/q+4nUn4Dw4fxOZ3zHtweDCLr5hHc3gztk4g443Dt/1a7yUSbsvhvmy9 gflTDn/8a56KIvwjhw9n6xbMp3F4w1/r7TDCS8X/5r3Z+gfzuhx+8ldcekP4 Sw4/z9ZRmA+9/N/88K849ozwIRzO7Asc+4Qz+4QP4XDmH8LrcjjzD+EvOZxd X8KncTi7voSz60s4G5+EP+VwNj4J/8jh7P4iXIfD2f1FuC2Hs/hAeA8OZ/GB 8GgOZ/GNcGcOZ/GN8B8czuIzbSeHs/hM+C0OZ/ML4TU5nM0vhPfkcDY/Eu7A 4Wx+JHwRh7P5nY5bDmfzO+GZHM7WJ4Sbcjhbn9DxzOHwl7O+Ipytr+j1Rbw1 25eB55TOdbPt9jSt6tWbXSd4Dup7NuhJRnAvQ+Dew8e8DS8qFhsyLsUrpifj hMPD2PML5lGIw+9WC79z99iSAul3gY9eU/+4SYic8OYNEnJL9/4g/LJw03uF RTzhEyMjtR5uDiZc3W/A/d1XXMSSMxX5gaX13J00/QWsH1B9eJ3IbrGEP/hm P3TVlDTCHYMj+qs9zyZ8/JANk0ePzye8zrUmKxxjigh/V+/B7oh/ygRf54p8 V43mWmrPlaKMtR+eH0NtPrQ530kh2rDnR9C/Ob+psqeKY71W3a7VzU7lEn3d vtEpK1Uc6+dfPvqjTjUZ0U/8ZPhFT8Wxfsy6hKu7E5OIvtP7Ucs9VRzrrxpP SUzaHkH0VllNrcfsiCD6VaOfKXet8SH6jNMjG5n+40P0K0q6f3ml7SNgfdad a09K2vgIWN/ORX38nhkRRG+hMHmlo+JYX/3SsJlmAUlE33H89+O6Ko7129ba H07OyyJ6lzYt3j1Ucay3vzQrZvDhXKI/ZHdLqaviWN+/jkKxu42C6E1ijZuu VHHQQ34K4gbkp8BOztqTjb7cU0p2ePszYL/KmESDRyo92EfxhM47HM7iCeFR iP9pnwfqYIF/Y/M67M/M6eRicH2HrhfYB47j1fzS+y/Ci8qkcQX5ozc1+gTt Utmv9KhiXumk9fanvRxLxJ0s3wTt0WbPrbidmEt5qwunngwaXUTsR9RIuJhW VkDsW7LnSmwfc7AzqW/RBfmjPPE2you1vjBqr8vKHDH8YUX7N9hzH7aPOdg5 8Wn2npt62eJLz4r2X62YHOH+KEM85VnRPvzF9kMRBzsP328J89JLJfbHn216 o7VjArHvy56bsH0vxMHOkMIR17qpxRD7d52epDaLCCH2XdlzDbZ/DXGw0/ys 3sc1q/yIfaVPffVAYw9ifw577sD2VyIOdvaaHa7kauwhYPtzLS3ezFvlJ2D7 1dnzAtmPRVzKtxaGJtWPCCH2j9wK0uusFkPsb2TrdmzfHnGwc2Hc9fYtHBOI /er29cyf66US+zK2rv7vOJBJ7Gu2iZtx51EGsf/y2hWj63rZxL40DyD7mIOd UXZHRl1YmSPg+3dD/eHzZI/yBHz/yti6FNvHHOxUie0yP6WsQMD3b2+773YD RhcJ+P69w9aN2D6Ps/1qwsM5HOInbqc4+v2GHo4lpJ1QdwF1C7DfDnURhSH7 eg9O0/q/Ng/lxMlD9ePkobQ4eSgvTh5qDCcPpcfJQ0Vz8lDRnDyUHicPNYaT h/Li5KG0OHmofpw8lNP/I3koGJ84LwPrH5zfYfcR8T/mUOfTrlX87mbKMgHq fKAuqMx9nvYARZkIdUEoDhD7PM7i0v/MWfzkrKMoZ/GccHsOZ/ML4bU5nM13 hK/kcDb/kut4jcPZeoCOcw5nfwkP5XC2LvqfOVun/c+crRv/yCFfCflNyFfy xmcHFl/ge3CdPZ/GeBpeFdE+gwD7DLCu7jAz5bhCpV/8sfXxSTt1pTi/dMi0 k3qJpWIWqtfyHZtUNzBAdX+heaH7lu/f1vgqRTNUD3b8trti0vpicT3S77gk ekfqK8RKSB86vFFMzcR8sS7iXgN0bjidyRX7oPZoha97I06WE321gF1HxtSU Eb1XnPuMjG3pojVqz3H/z6mVfySJE5B+TAPb9rNmxxH7/Us7rIw9EiEeQvpr W22Tjq0OJPZfP7JU33jQR/yB6wBnr1Lz6mtB9E2P7hE/V/cRsP7/q+ysw7LY ojVuK6hHMTHAwkZUMDBnbLE7j13YiqggKnYXqJjHwk5sPKLfZ9c5Yh1EsUAM QLoEQS46693jt8a597l/+fBzPe+svfbae/bs+hrddv14ofITifvjHul4e3WX EI29d4OZB6Mbhmnsje37lwq+/1Hi5S2Qz++F56AoifvTyNLbaUJsrMTLa5w4 M99KKUGax+wfu45t+X1lksTrd+6zYhWfPE7R+LPmde4BHcqnaewdW/g1KTf6 m3SW6Xdvv3f6hpOZGn+mrAnZXi4+S7Jj9iM8I5s/3pFhGML4gVJdq6ww+2oY yHjEiVNm0uxEwyGm77zK5l3UvWjDFDb+TPCPOD7wQLghlvGUh0MS1+V8ruGV /PY4HA09o9F5EF327IxKDyRu/7RMbvnNi7cStx8xtHnvhRYR0ljGo7Y0u2FW Ll5jfyrHi1e9TiRLjVl5x4+flbJDSpeOsfKeeuY/N6RXusGbjYcTJpYb5W1M 1sRTzj3fycku3hDAnlug4bVhORwjDB8Z3zBqme2U4u8Mhxkf29Huw9TLDzQ8 Jt098PSJ0xLXOVKpz8sN54Ikbt8lbPSel/PDNfbGs7ufTvKN1tj7tp68OGtU osTLO/KY+V8dU1KlCGZvXeLwBa8VGRLiwOYltOuJtI+Fr+PjXCrnOI/JuaIf q+E4f8c5fv+Uc5y30uGa/Qb4/VOd52p4Jcwr/L5cGo7985xj3zg43oPYV+PG 3qfYP8M59slwjv0wv7cP0+FPNPzYbcn2++dCl3TsJR19Dcf+Ex3/NRz7SX6v 801wxBPnuzXzeDTu4BzneTnHOVbN+gvt+9Wsg9B+Xc36Du2z5Rzn1DjH+SzN /CTtR+Uc53E4xzkUznH+gs8rhtD6CF+XsW3iGRNil2kYzngVmidMYOsCUx+F PvPe+VXYs+dq1l/G0Hwg1zk7ru1lJ/MkjQ6VS6ODeT+uk5jZtU3OuBiNDs5N cx3xncF0ZtsWLzr1wQeNDs4Xcx3si+A6uS/4XbrU9YVGB+dwuU4AzddxnT5d vnTpWyxAo4PzqlynFc3LaeJcYWY165W3Ja6Dc51cJwfNv3Gdu/Z+7mfXvtbo 4Pwj18G6OdcJiSwWNzHqk0YH5wS5TizNp3Gdmm8OWmQtj9Po4Dwd13Ggf7lO ePu2tTuWTdbo4NwZ14mm+TGus+dUaFuv42kaHZzP4jpYV+U6Qy09h75s+V2y Zu0R30E1dprq43yTZj2a5hN0uMgfzDOMY/s/wW/Qe5/zMTr2ZjQe4PwY2y8K nl/H/oiOfVcaV3Aey/aXgnfWsY/Wscf4hPOxbD8qeAUd+9E69sdonPN7/8N0 4qC1j9axd6bxEufxbL8r+Egd+ygd+0Qad3H+c3lvwf4AziP+d/vmOvaSjj8a nqhjH69jT+XV8Gi2/5bFU8NjdeypvjR8NNuvy/JBw8fq2Ivv0d/ns4ZX0rGP 1bGn9qJTrhQN76pjf0zHntq7ho9h+4dZf6Lh43Tsqb/ScIwbOce4kXOMGznH uJFzjBs5x7iRc4wbfx+HBxr/MW7kHONGzjFu5BzjRs4xbvz9c7M0ft7SeS9g HKjzXA3HOE2nXBqOcZRO3PTirCkXxi069ajhGFfo5ImG472vk4d6cdbwWzr5 jPe7Dtd5r6n1aLo+kqH5HsQ5U87RXjhH/XKOc6Cco945R/viHPnAOdod58iT 339vBul8Rz/Q+V4+o8d1vlsf6HznBmk42rVOuTQc7V0nbhqOfkCnXjQc/YNO vWs4zg9yTnkluOk5Sm2/UUBnHNhFZ/yG+6x+366146UxOuOcGJ3xSYzOuGKM znjgqM57HPdy6JRLpz/Xvu9usn5AzDfSODyOze9hHolzzCNxjvHq7+3DdPgT DZ8dcH7B9tzdA3TsJR19Dcd4Scd/Dcc8EueYR+K8U926V+ddyZRKsXnjHTdC 0i+kZ2nWI4hr1kFqbu65esn5TENJNv8/2fbc9GZV0jT8zI1SAxI2JBlOsefG nE+Y2yszVsNnh190MgZ/1PDvVdNt/3QO0XDLfGZrp7a8rnnuLSlMetH7usT5 o+tj81nMCNHw1/ZTLpR981Hi+rUWPXPtlzNOwz9GTl+3e2OSRse3d5HDn6um afiQgOPX6vtnanTwHuT1lTVrzJa4NumG1cy+7R935x06nWx4zOplyYFao4dW iDeEM52N7mU31yoboeGNehhu1It6q+EbBm3827LtAw3fGnTKZvjOMxLnm7bu ndo8LkjDr/1VcKLfznANbzS1/a7W16I1vPceo3OkS6LEy1vUbOgih7xfJUdW 3n+mf9sxd0uGxOPgWDlwnaNfpmHh7+0N8xmPWlu5V5bLN02en620pf/HNRmG +ozPvVR/ZqxVmkaf/NTo16261PHCuxSNfqp/Wou/0lMNrnz9scemwQdXJxkm n/9tfAyPGJ8R8Ml6crcEjX6THn/a9HFONNxh9iUfRS/+OyHWwPsBqhfDBlYv kw9tMu/oFqXRT3g4r2Sp49GGMGb/1/czPWo8/KjRp3zQ6Kf+N/D5+d5hGv15 ma3DFi8PNyxn9p0HxTW17R2i0d+o5KFGP4dZy44dhj7R6BccUHTo+1tBGv+9 pyQfLlLiuqZ+Kf8Nbnw9utjYu6GV+2r0Zz2b8OZbwmmNfufnyVWazL8ucX1v pd1J3P+Q5ieW5GzwRNM/7ws5//r+1gcS19+4btpXeUWIRr+x0t41+uFTvZK9 W4Zp9Id1PBx50/ydRv+C5YxTZz5/lHh+Uj8j8fgMbvVPjaqjojT6z8u8t+pf N0KjXyq53/R9+eI0+tS/afwfvzL3yZA2CRr9Q8nrDifVjNfoPx+StCpqa5Im PtSvSrz9Vk3Yc8cmKEWjP2So7fUWAckSb78bb3vtb1A7TaNP/bnE22/ooJah k52/afTL3LkXsqxbusTbL9kbbjB7S8XeMOPCb/3X2JP/hhJ8fVmJp8ae4mmo fvG39auxp/rV2FO+aewp3zT2lP8a+71K/mvsayvtURrM7N2U9ihxe+ofNPaF lP5BY0/9lcae+iuNPfWfGnvqPzX2Lkp/rrGn/lwax/KB3i8Sjw+9X6SKbBxC 7zuNPb3vhD3m4d8MLO8xKPCb4Qybnz8j2319HpRucGe8Uvz8ERYtUjX2cc83 vFnXNsVwn/ExK0I73D2aoLG3mZp4s92ZeEM0O0/US1rx5/d6XwwTmP2HQsf7 pUmRho8+pvzV5K41JxV6r7Ff1mx6lXHlQjX+X3Os+uVs4FONPy0OvzD2DgnU 2K8akjboq/NWQwHG381uX+9ZyD6J+1Om8O13m64/krh+5PT5X3btf6axzxH8 l++rpaEa+1Hmc46Eznov8Xh6HAkOmnI0UmN/M+Tcqxk7vkjtWDxnXjFbuuBT vMTjczgoNX/udwka/frVDu26556isR8qba7UxSVV4vGJXdfWv1ihbxr7soft m23OkyHsMV+Dfch3p41Yumz7VzGP85LmYTjHOX3G6b6QWIPjtdfVS7US+tIr fMcTx/eksi/vrUHOEXnjRPtP4rsRvOLDzNWdUmPEPc7ghfauf9wusZKM70bw aVPahK3LqC7j3gpw3F8Hf8C5P7Y/eaDwB+VVzhWdC0B54SfsuZ/g3E9w7ic4 9xOcxdNgqXCJ14uVUi4Nx35GXl/ICx4H7Fvn9SLuj2HlBeflBeflBeflBef+ YF2R+yPWvZk/4pwW8wec+wPO/QGHPzjfhfbyaPuo1LpuNjLWNZEnK3IqfmK9 EHxPoOKnM/kJHrxH8TOO/ASvS36OJD/B4Se+Y8FtyE8z8hN5UmuT4ifKBf9R Ltzrh/Zuazal55A2qQbcV4L2XiK+vrPT89yyOc2job3Hu6wNqHi4jJyP8WEz FH7aKWtuWmqs6B9ubll7otKx2sbqa+SOf/plCn4k/u3igSsTJPiDfO7I/EE+ f41T/DlJ+pgHO7RV0UeeoFzIE+QDOM8HcMQZOogD1wHnOuDQOeKn2Iv4FGz9 0x76KC/XB+f64NxPxIfrgHMdcOigXpAnRqqXkOElPF8mxYp+6Ub5nDVt5tgK e+Qh7MGRh+DvSAftKyfp4L48xN9yweN7eSKaGM0Z9yOO++PAPdN2F/qS1052 ZPwm8Qa21TvfiEgX9RKcUXXD54lN5Eq0vxx++p96NXBKhVIy/EGcbZk/4H8x f8CXM3/AA4g3JH8Q/0/kz9A6tpt6VVLj32DTvRfSIBsZ91qiXE8SlllesI2T cF+eiNvm1a2O1neQ7Ukf799LpI/z+eBfDiv7NK6RPt6PHUn/CuN3kxRehv4G d16qzBufovUP8X53G39mcPf3UiGKG/hnilsext95KrwJxU1wxI3xscSxHgBu Q3HYwviXTQpHPiCfj35V4jOc4g+esFGJfzWW5zkSlXw+QvvGkD+VJznEtPjD WvbEPSHEkyjOQ0gfvDWrX+RJjkQlzlXIb/DRND+PegcvwepdnO+neoc+3rPI n6uMy1S/uG8U/BzV73GqX/CXs5X6RbsARzvNxzjaNdoFONppI8bRrlFeoUPl 9WH8K6tfcR8JxWEYxR88meoX/STaHe8nwdFPrvQ1fY88Gtrml/5cfY9zHf4e hz3ygduDw36kr+l7wX+kYo/7LuHPku7vG7RaFyb26eK9w/XBuT/oH7g9OOwz fU3H4Za9TeOAPOQ64NAR63ZUL+fqjMrZs21eGXFG/SLOsEe9wB7jQMQB40CM f8Ax/oE93gvcHpx/16AeOUd9cX3UF9cH5/Z4L3B7cNjjPmKUq7LXhVwzShSX qb8V9TKJeB7GS2xQeAjVK/zvROuq0Ief5qQDLs65Es/H+FDSx72QqN8cg2qd M+6JE/fuiXt6tgx4VrG8hYxzXKjfrsSxjgteg8aZGP8gn03HPwkin8GhgzhA pxztJwC3MJcvxMzJJVdgfH0BhUMH7wvogCNPOEecuf9iPybzE/GEPe7FBr9q pvhjzXgY8xNx5s9FPPFc6CCvoFOecTw3hn3v8PijvFwfefWd6YP7kj6+B/Fc fA/60r4H1MurTubXts7MYzzN+LkOCsf90YiPHdmfZHx0R4XjPgvE5wB9d+B7 BPHE9xH8hD38xH4X6JubK981jRjH9xfaC/oftBfog0P/NvWHyP/l1B9eZzyU OO5vRbtwG6joH6N2Bz6A2h2Nx0T+DyH/GzL+qoDCx7LvYviJuKG9WLC4IU9g j/ca8mEnvddgDw57xA39ZMRA07iBwx5xQLs7QPbof8DR/2Cfn3jvbMmqXsan tIz9fOA9zH5tdxFi/DCaxj/YDwe+h8Y5eK8hz/FeA0e9c4765Rz1yLloF8St WP/G/Qfn/oNz/1G/XB8c+jlTJn9b9D5I8MCK6U9Knw0X51XA+XPB+XORb/y5 4Lxc4FxfzNswfeQn1wfn+uBcH5zrI595fSFvORfjfMbFuJ35Cc79FP0e8xMc fop9q7hnjnQyk5V6FPNyrB7BuT449PG7FMj/w9S+NjFuII7xA9oFxg83WD48 ojigf0P8e8Oe7tcAv1z44InpJSvJ1xj/SBx+or6OMz/F9z7zE/XYnJ7ryObf 8F4wY+OHfPS+pvkK4c8yeh85snmzWHqPWLH3NerLwOYTVtD3JvY1ivkE+t4s wOZheD2Cox43s3mJAvS9Bn9QX9wfcO4POPxJ6vTv1mvhQYKHnUhb+ypCzTdw 7ic49xMcfjrhXB/1q04p0k8/rRiH/6VxHoy4PHH5T/8NjPNygaNcS/5aMy/5 Q5DgJ8d/m3/P+oP09RKd3yM+esejn+US5/rAWXnBeXnBeb3gfcHrBZz7D87z BJz7A879Aef+IJ+5P+DcH3Duj5g/Yf6Ac3/AuT9ov9wfcO4POM9bcJ634NxP cO4nOPxE/mA+/ATlD/wX9x0y/8G5/+A8nuDcT3FejfkJDj/xXIx/8Fzswxbz z/T9CH/A4Q/0wbk+xidcH5zri3kMpg/O9TEO4frgXB+c64NzfbGuxPTFfDvT B+f64Fwf7xGuL+btmT441wfn+hg/cH1wri/m95g+ONfH+IHri3t2mb64v5np i/O4pF8mTE6LXvJF5JX/CquvV5taGa2I430xd5nCMa8OHk7zvRtZf1uD9EuR Dvq9JasUnXlsfr40naOEP8iTZStM7cFhv4BxzPNvYvlQnvwpQfqoxz6rTfXB LUi/LNmLcelyU3tw2HsyjvlwlAv9A4+zuG+YxRkccQ7tOPxzx9VfxHhjeG3p bQXPMkbchwWeh/y5Ot59mctqtR7rL84TeWKsao/ywh76eC9wfXDYXyF98b4g /da2j7fk/5Yo8iqgQ2r/Odvt5QM0/wA/+9G8BH7PCfzNM9c8bXrXE89FnnA/ 0V/BT5rXErzkf4pOBcZrMH1wXi7xHcfKBV62o1IumTjiWY3Ki3kYxK0YKy/4 A/IH42r0Axj/+zCO7wXEARxxgD444mnNeD8WB3CeP+JedhYH8JoUB/RLqEf0 S0dZvXd0UuJgxep9E/kDHeQt1wHnOuDQ2WSgeweoX3KZo+iI+wiIc31w6PfD OXbiy24r+laMc/+Rt1wfnPsPznWQJ1xH7B9gOuBcB+2U64BzHXCug36M64h7 i5kOOHRwvhH9w076jsPvtSAOm5u3M5T5XFp8n4LH0vfpdcafEPdmOjLpNGbz eHhuzCVFB9w+4YCJPjj0bUkfPLyGou/NOH8u+g1eXnCU14vxr81M4wCOONxg /BRxPBfvQTwXHP0V5+gHwKdQfMDNvpvGR6y30nMHkP/g9eqbxkesw7L4oD/h 8QE/Q/YbGH9H8cHvCYGnkT83GfcljnKh/+HlEvsQWF6J+fnmps9F/8OfC76f OMoFzssFjnJtJI76cif762zehvsp5pnJvg2VF/3Dt5ym7Qic64j5Z9Ye0T98 ZHkIjvkl+A/uzvIcvCjxzWweDPPPjdk8EvIE/Q/6E/Q/R9n6COdoL5yjvXCO eHKOfOYc+QaOcon5bVYucJRL3NOEeW9mD87txXw4sweHPc4ti30vZL+F8T1s fg9xa8TWC8S8LnuuWNdgfopxNbMH5/ZiHpjZg3N7sc5O9lh3Rp5g3XkM26/I Oeod3IfuEQZfFzh3yNTh+Y3ejMsPFX6FzY8l0f6TYmYpMf8lqfsGrVpMfdjL w9bYkM1rDaV5Bqxvoh6xvonf9wIvRPtzDjHuTTyI/ga/RuvgbnQPLHip8TH5 mw20Ns5nvN4Ehfeje13BcxdM79VLzi+7Mb7dTOFz2ld6F5RdXvB8lgt6lcgu b1aqZ33nkBjBd3dISMxhU9uI32UBf0n71iowXo/4+8VdHj/P1kfexiVsCPpv jq0RccZ8EeIMf5A/X8mfTPIHvAj5E036aO+T4hX966yfR/9Z5m/6HTvMl8aY vl/An7DxDPIf3JPiD/3+FP/ZjL9zVrg7xV/MM1P8uzI+kuoL8RTzzxTPyoyn E2/E1o9mU37OI3+Q/xmUPy70XPBXZqbPFf0q6UMHcUgmHXfGmxKfSvriu5v0 BzIeam76XDHupedWYhz7JNGO0O+hHR1lHO3uKpvXmkTtHe0I9nWpHt0YL0Tl QjsCRzvqxXh1Vo/g9Vg9gr9k5UL855L/+B1B9J9HWHnFvrKJtA+Q/BfrXyw/ wd9Sfs4n/8H7U7m6MD6elUvMa7FygSM/E9k+seY9lPV0nBdA+8V5AXHfB8aT tP4+ju2zCqN97Nj3K75zad/vBur/xXv8X6X/38p4w0cKh474ziWdsWw/VTR7 rvgeJHu8d8S6P713fBjHewo64nuQdBAHvB8RB7wH0V/hPTie8Ut7TN+b4n1E 9l7kD3gcxQfnBdBv39hjao+8hf0WxsOoXHivgeO99hzrN5TnR4nDT/F7SuQn 6l3sL9pjsj9N5AnyB/Uuvl9YvYOj3v8jf8S+TfIH73fkFd9PhTzhHPnAOeoX XNxLS/UF/7FvRLyn2Pkg1Be3F9/XzF6MJ9k5HdQL+C22fr2V7dtBfa2m/SqJ bJ+MDWvX4p5F5ic4/LzK1oWxHxj9G+KM/m1bgbMtf4wHwPss9PXIkz0euMrW 6YqSDvZLI/7YL72DdMAPk04C66/Q7lBe5CH6sXjGsQ82iTjiv4Ds4xiXyR77 iFAv3ynODdn3hZH2OyGvxDw/5RV+3xf5MJDtHwPPIt715JW2rg3UvGpw82z3 WgXTDN2Io76mM458cCXOz689pXrv8PFalXGvVPtQ32r1i+3PNPD8f0n27cke /mSQPXTgz2PiKROfPS13Qd2flr9fxdxrVxeQwcW6Z1+Fd+s6N7/3Q/X83cPA 7dsHv/1D853rT98p/HvqIvHrrL1EYz/MqRE72qzPEOVt3aRAo77+qg7yxJ/t 3xD1yzjy5LLJd5O6z80/K+JnO3L1n5mSWl/dzxb2dHLXXO0SRZ7guY0oT3BP pchDxqHfhPVjiE8jnX7Pnjj9LfQf035+a7buFss49MErEId+OnHoI263mQ78 /0A8/4abN2a8DxJ8+JrOdeb4hUvH2Xx4AO3DfBe35k6bFsGin7Htd7tdVS8r nEcQ7/13ZP+G7JFv5mR/hs1jbKB9odN09sNP0tm3n5z+sOfMFPX79OLCKrvP FrE1NmtWvc7r7O8g2Ld1ye3s4m5rTCR7fGc1X6TYP6k+d2RStj3K65xSu/jU GbbGe8RRrjOpCsf5DrH/kM411Ccuxqt0ngXnI6CP8xEHWX9+iH3/iu81ev/i 9zvFPN6nq44T4qtgP5X43twYp3A8F/5n0HMPsf4f42qMQ8AP0XNPkD54a9IH F79v+Vnh7uw7S6bvhcHsO+tf+t6ZdW9dz9qDfjnvOcOvsWORyjL9ro3Qr0/n uN3JHnFYRPazicPPTsSV9qKej7akffv56ZymGAduVM5pwh/0h81IB+c64U8j Otfpxebz02le9Aab/8e8txeb/8S8Ynm2T3IX7Q+JZ+clK9I5Dtyfxc9LxrFz iw2YPT+3GM3Oafr/o+wPj2bP9SadL2yf/7kHiv01No/Ui843JbDzL2akE8l4 MPE6rB8bu1zpr0bo9A/wB/3qYfInkZ1PD5/8q/8qP0rPHaVzbj2anyOm+BjZ d/RtKu8Xdv7oNOnXYP3wS9r/EM3Onxb91zT+4CtJB/bivUn+IE/EOXETe5V7 s3zg58HjWP2ueKTol2f77v41yU81/sGPFfs45qf8yJSL8S3xWBYH/0DTcwpi PorOKeRj++4K0T6o/GxfcR3iF9j66Yr2yntnFPuOrkffWSPY9+Mw4oXZ+uxB Onczkn0ndiJ7cPgjEy/I9hH1IJ3R7Pu6GtmPYt998NOa9Rs5qV4OsPJiP8No 9j1V73uEyfkI8Oa0DxbjK3H+i+yhI/ZxZSoc98nCn2Qax1Zg49ui0xXuzPzp kUv5DuLjuiR6bn42fms7w/T8O/wZoDN+68Q46r0t44h/C+Jb2PwAvustWX/V ncZX5Vh7304c5zrF+hEbv+G5/xA/Quc9YT+IznvmYeO3qNXK+I3O0QidmnT+ 94tFyu5F4eq+Vp9O72aYvQ2X3hPHuMjeSeEn2TgQ53FOsPHeTuIOf5ueU7Db r+yPPRtgur99XS6lPd4Y8XbTyOzvTbF/L7bL1QWVaxtvEsd44AZx9wzT/RhN M5X1+n0ZpvsKiiYqPPOb6b6aC+Vm/uTQgT/Q+drj9OpqrZPEuK5/lYf9e5Zu LRep62xdNZvjuXfqVnSwyeZVC1c4XSWbi/OJzV3+SC3VWoYO3u9cB35yHXGu kHSq33SaWdpbPQ9SrW7Y2jyzg6TSjqkXv29OE+X6emJ9hHXDgsIe5SrG7MG/ kX3KaPMacf7qusC1kxsXje5TQm73aW5WmQ7q/vCYR3c/nVxnIbtMNL6ct1+d Jwx76Ofj36WwccrUy/FLCkdq7lvou9bx4soi6jhtQUvfyDkXLGQbu4Vxi+er 632Lnmy/3ccqv/F7q+6ui7OS1XHU9agpR17klndapb5sPkbd/zyjmVOzUk8y DW0+uXgcfabuY3Hvk+HlPKeWPEW6Osj+9TvBV+5+vvFQYj1RXsQZ5XWMVMoL 3t3OtLzie5mVl9/bgPKCo7xVqbwYN+5g5QXn5QXn5QVHeadSecHHUXkHDjxT d0xcqOg3etvOOfHEvZ68rHfA1J1t1X1rDa0WWDl2l+RzpUfs+VT1vci3JeVe BC9LiZQeZR3v1u+kus5+vtTo9ZfWV5VbXVoUuC1enV/yz2i0q+zxXEY8FxzP 7X6sc8zWR+o+vTmpvaYcGicJf+A//OlXRvEHedvNLeinPzGDI6M+O3wQ88BF 9o/v6PB3sqHehqzN+/b6C17Bx+V2V4+yssW1pldePv0s2vXYlbEeD3LYGq8n DBoy+KTa/7RuHz/mz7rWRuij/f5B+vakD56X9IuRPvgx0jeSPvqxxFaKPsoL f3h5UV9dqbyTCrcoPuzFZ9H/3Fsxcf6qvXWMaNfgaNfQF+tclqb64r3G9MHv M33x/Uj6yE/4j/xEuwMfQ3kY03Potu8n1PlJF+/VNlczrYw3NuVz/eSgrttO 9XhnV/JSssHMzizkvwP+go/sfCLu++iyssuCoJEh2XEW/cY/4QMzsuOMPETe XmJ5CM7zEBx5ON9Wadf8PqgdVF7Esx6VF+0O3JnKG0vlRT/Qxse0vGL+kMpr TuUV+/xZecG3sfKiXfDygvPygqO8k6kf4/cvoR8DRz/Wo0qPbTWjQ0X9TrGr /Gi3bz3Z1WWP35RANZ9nhtm9cJ0jyWY5fMdk1Hov3hdOmfbjixnDpNSPz5sG ldPez4O8FetQ1C7SbJTnIs6plspzZ9BzxbrJB+W5lQJvbqndVu1nFh3++vpT B9Uf1MuZDMWfFTmDf/rD+/Pl5A84/Nl33LV5SGt1X6XVxRxFzaOaGuEn8hN+ HsuxaaNDM3VfpVvTjSuqy+WN7mmvRjeU1H2VIbE7/F4+bmZEucB5uZC3KNfD xh53c9R+L+Zv238btOqbf5iUQnHm+Yw4g6N/gP/It+/kf+Omiv/iPWVYY+K/ +N0t5r+4by/M1H/kIfyv6Kj4j3wr6qb4j3rh+Qn/xboV1cvu1279tj9V9/fe dm3SrtnwWvL9MZM+52irjmP71Kj1+WLrcsaItPzp1Yuo91H8+9A99/BdFjI4 4iy9Ujj0kVe3mD54d9L/TDrgF/4x1UccHtJz/8mX+ql0J/U+wCu9FrjZvcsQ 731wN3rvwx/4ifJi3IL63UDjFrRrcLRr6Iv9e6Q/nXQQ5ymkU+5Z8Rf5Nqvn rH3mre5+8cxdyX5mjS++h9V5sLyNk463yltVnvhp+oacm9RzbXXsM/6+cjlQ +u/xtAEW8eq47lp/99Ud/stlxHgD5cJ4w2ZLDvsMf3Ufac3mzbzr9Cohl7zU yD+xicpvugwt0yS4qtyYxnXgzjSu63rpaGsno3p/YOCw7h+dg0vKKBfiMHCB Ui4HKhfy2ZrKFR6mlAt8wOhyl38tl7hfk5UL9Y5y5TuolEvcs+fpaFIu8TuT VC6MV8GdqFzj7ivlAm+f1PNnuRoUm3zwxzgT9fU+a/7sgOxxJsoFXo7KBf/B 4T/8Qf8Mf/Bc8A7suYgnfy54cfZccDwX3zVoR03ouwb+oH+GP2PJH/C25M/+ pJadu89X92fKE4Y75iyW34j2i3xD/9BgfMeAfF7Bor1c/vR+3dT5VeT6xBHn JcTxXYO4eWCc39b7yZEC6n0UDcL6Xz/UM49x82Db2Mfz1P3ML7KKPSiQms94 9ELEypYd1HmSiCmjFuUZlmFwkzs89o1S17Uft/I0s7EvLkMH/kPHl8or1qOp vNBBfgaTjlelwuYFiqj3E+ZKdt3q6WMhL8tvPr5OJ3V9vGzkpSGZ7zMMs4dd /eTxVT1vMsRxVcrYtPryunNf7zWKUOdthr+6MuZJaDF56ZDnZw9eUedRG93f smm/S0nZMXDzhG6+XwTfYBxfLFdkIWPhlh1jn2WPV8Gnx1cpdqVElFQmNm/l 1Ira9SC8X8Dxfln1bNfIHkXU+4LW1Elr2/+whSgv8u3gJ6W8KBfqdyGVK2f4 DlvLL2o9Xl7rOb9eq+KinYIjDz/NL9L/R7sG/5qvxLVq2e0a7QW8HeUn2rXY J0zt2uJr66Vrst+P4AOMLWdVeB4q3o/8XiyM6ziv3sUi2TxSvb+l7EFjiTaZ xeSFKxbbHIxS10nrjKyed7q9Wi5wlCt8mlIu8JjtpX6WC/2qWN+hfhX9MPhY KlcxKhf4hWtKuTBu4fduedL4nPMaVC7keWMqF9oF6j2Y2kWJ+vsKv56nni94 EOhcf3JaPiPyE+2uMeVnvTGBdVt4q/PPe26OWJaR9J/IQ74egTwERx4eGK3o YJ7Nb++onzqwB4d9mcyV0Qec4oT/1rvujBg2t6q88tLiG0M9Pgmew+nuvpjB dY1Wdnlmli8QqVkPqhcwNCQoux3Bn2Y2fmf3WkRJsOfrQbCHP9+rKPb47kM/ j+8+9NtiHon6bXwfgY+l7yOMM8G/s/E8OMaNd/c/nmk7Rl1XKjAuLGHS7UzD QcfqnquevxN8acnNTbyO15NvLCi9eNsjNf5nrF8U2pX9vbPu8vWKXtn5Js49 bS+b90RgqIT5HH6vGtoX54gbXyfCd6LY38jiI/Z9UXxQLtQjyoW4wX4cixt4 CsUNcYAO4oB4ivsV6TsC8YE94oP6xXuT1y/4dfIf3/vgy5mf4Px7DZz7g3yD P95UX3hPOfmY1he/vw7flZyjvvg6F8qLfp6XF/waK6/YR0rlxXexGCfbmZYX HPmM+kI7RX2hP+HtF/Zop9yet988jypUdpPU8yb2C+oEtrtVzngiLDiidusk 0S7sFrrU+la6tfAH+cz1eZ5jvIT86UrjpasO67fbZKnjgT8X3Otj2OUg5yN/ 0N/OWWjqD+qd+4P64v7wesRzEedB9NzdpRIWrW6lnsds2bBo6sKV5Yxt9kyc /E5Wz2Pu2BfWqptzMyPGIeK8JI1DMH4Ax/hhA40f0D94fVDGD3gu8nx6A9Pn guO5GIcgbzEOwXy1+D6i+Wq8l8H5dwF4V3rPYjwM3obGG9Z/L220PHt8jvrd ml72TamQ3HKUu/2BG03Vc4VDey1oXeZWVbllSO6VP/wBv18t6FivbH8uNhtg XqKTuk7xNbTzlxWRRcV4DxzjPfR74j4H6vfwvYD8wfcCvivB/6DvBcRB3PdP ccD6hfg950em30fg7VkckFc8DuIeRYqD+fqsRT/iAP6gmt2d3r/EATyV4oBy IT/5dxB4aSrXZp9XS3/oi/0edfvJP/ThJzj8xHPBU1n8wRuz+It7gSj+WI8Q 5yloPQJ+gpclPxEf9D+IzyzyH/x9A1P/wbn/4CnMf3CeP+J+GOY/2hf8R/6A 5yD/sS4j+gH6XsP3C9o7vl9gL9ov2Vccs2VNny+RYnze5da/5oXcbcU8jJgv pfmTzl3rzHzRWl3HDJ92aMucqKbGCqSDfpLrgG9gOojDZ9JZ6hpzKWPwR/Hc bh6z260NszPuPtbG2arVVcEf+fq/y1MkyjBh4F5nL+808b6wtcnaKU0xk+We Ppv2Oqn7016mle57PXv82fzM87tNPdT9aSOfhfqMHlbX2CNrt/8Pe/QzHuVC Khqy7UtY/DGz6sCP6j7t1rtfD/7Lzmgd0G1lcw/1nFffqJczmmTrTJydN++G llcFbxXVdcjGfZGGKvsOntzxy/msA4dWTZiwytY4bfOsqj/m28GdrgdWXZBp Zdxr1ufOr+etxvYOmxg8x9b4YrPBwtdJPRfz8f3J6Xuy/cz9tPCg7h7q/vyO d/LaTBhSV8QT8Z9H8dxD8QR/tNc0nuA8nsgfxLMFxRN8IMWzO8VT3AvE4im+ 3ymeFSie4H9SPBs8VeIJfqX6kJ/xrE7xBF98wDSe4EuuKfE8RvEU5w56msYT /RiPpzhnSvFEvyHOD1K/MZjeL+ALKynvF7x3ME7Ae+f4vGadIh3U82V+CdZR LS4nG1Z1cuk4Z8BHwQcWmRJQbK2dcZ9HWtfSW/3VfZUjyjh+P1FWnlPNq0bt hlcFD77u2mxa8QjD7vFTc8UGfRbjBJ8XMxJHR9gaUb9iHyzV7+lCZonDX3wW 46LEVRkWlvvUdTTwdFpHg/+o99PMf/C+5P9+8h/8X/J/Nvkv7q0yKv7vIv/B q5D/E8l/8M/NFf9Rj+gHUI9YxwRPoXVMfJ+ifeH7tOWt9FdRDup5sRqRd2dO C0g21HZq092l30fBKwzo2Hz7YDvjvWdLH1be5q/OV9dOmj/9cFl5L7UvcLSv 2vcWbI7JLhe4W9Ddh21/qRdw1AvKJe4PpHJh/Re8XXvTciHPebmQz9WpXNWp XODn+yvluknlEvcj2SrlQr8Bjn54/32lXOCV298zKRc4ylUzNtA8uJP6O0EF Z/TPaJAr0+BA85PoD5/T/CQ42nUQcYx7obORxr3geL+sI9732/Y1Fk/UdYri zexfuJbNMqC9i/krau9YX0B7wfoC3pviHl1632FdQ+xjp3UN2Iv3AtnPoPej 2JdF70f4j/xEuTB/Ao75E7xPwT/S+xT+I6/gP97X4F2Y/2jvWCdCfMR5UhYf cf8Ai484N0f64OLcEBsngCMOKC/ymZcXPJLKi3lO5BvmOeEnuBvzExxxwHoK 4lON1lPAYT+Z1o9GeCxdcmmTuu9oV9WTZ4x37kuY/0c8bWj+/6GnYo/4rNm/ /qc9vk+RP/3p+9Suz+pBA+qp9yrkSg/Oe8XNyliHuLj/nDjm88X9V2w+X6w/ 0nw+5snhf2maJ8c8JPzB/HwW6YjfAQlVdDD+RB4Oo/En1gUQB6wL1KJ+QNxv T/0A/EF8ypE/8B954kD+o99DP8DnG8GRPwMb+pzen22Pcu1Ly+HukW2/b22R iW2z7cG3r/UZOntoXaEPP7m++N0N0h9A+njvHyT9vaQPDn3EQfweFsUB66oi n2ldFf0YeDHqx9CvIv7oV5EPyJ9FLB/Asb7T/s9Xd04/Vddx7Gcf/rD27XdD Q7f4um2fqP22fZjd0E7Fs/vPXaG3Fz5R8+dmVAubjeZZBuig3uuTTgPSEfef kE4u0hH3n5AO7MV+bLJvRBzlLc78EeuqpONuvy0qoaN6Hm1fzcZfOh/PMLgR R16tZFzc50O8RiHvSj+eK+77nfdmbJfs54JD/z7j0Id9S4e2pwa6qvdpTFtT vuTQCEt5r8+qad9c1ftMBtRxvdcgTOWID3gL0sH7y510mvZdf95hhnoOLtd+ j9gRKZZyQ+KIfxviHy/90bmtq3rPSez+Nst7RFrKRRNbPbgzM0PEc/DIiBM1 XljKH8he7K8g+56bV1TcP1M9Hzeu1qqogJcqF7/7Q3znqVdbPaPUc39/T/n2 yLVOccHFfSbEQyd0TLeMUvM2OKtyvboVi8v2/R3/mOyWIfKteddzV20vW8r5 2qSWOz9TPcfXxf20S8YL1R9xXoP8qZ4WPT4kv7reVOzsl4CCy/MY55Y1tJfM 1f3kmVLv8Xc+5zZWPjH+YI0Cqv99mrXrZjFDtUd5YV+N9MW6MOlDB+UdznRQ ru+kAw7/s4i3KBr/pWwBdV1sYtgQq12z8hhDynb9utZc3Wf++EuErZdreRkc 5eIcfj4kPvuFx/LmZurvFyyKe3j79VaVi36G+Czi4t5C4tBHuQKZPvzn+ojz eqaDODxmOognt0ee/0P2mM+BP5gPBId+OnHsZxPn9Gk/Gzh0wDGuQ//vReO6 lzNem83MHoeI+7QXhO4YN8tWBhf3FTMu7qdlXJwTYRz+gGPfHeyx7w4c9uAF Ln1/t/WGeg/t8Bp57WtPLSbnJ458WE7c94LCUV/1vuQx4Wo/r/ALx8xz7Lmj nke4tjEkeOIzlcOf+8ThD+rxL3quGXH0S1uJmxNHHh4hDn3E8ybTRx7uYvZo L/DzInHUVyDxBjaG91emq/eN+02u+eat0z4JHHHIP0rhDfPEpljOVn8H7ZtV 9SajF/lJjYjjuWUqKHxs3oSfXNwDGdaxxa8c/hQnvqX3pmYnpqu/m+BSr2mO ouX3SduIox5r2Sh8+dL2f/09Wz2vMaaLfOvU8NOS69dA+VK2PeI5Z4ydc4UW +6SZxBG3Sw4Kd3cYG+o7Wz3HsaZXLo9JrU5LbsTRLpr1VLiv03y/btk6qN/5 N+stN7PcKzjq10C8xkDr9JSNwerv/cU/Ln/lcBW5NnGxnyRB4ZdL5B0pLQsW 4+30z33ftn5fWeyTQbkW0/cm9tWgXAbi0BH1RTrgqK8M4mlr5Mfz1qjnkXda bV5VrUUVwZEPY4lDB/FPI53Iyn5NB774LPwPr/3xw6PddYwRxBHP48Tz7ryU 8IPDz81b4h3y71G5WLcijvVHvl8FnO8fKPV90M97U8V5qKhBYT/uTQWHTj/i tQ4u/Hd7pThRX8tG5H9XblBRwVFfXsSbW7f3tLGJE/Vyv4tnlS3TCxrDTuZc fzjbHs91MOs66GXnosbJ7aeXCawSJ+YTUlaZD9pauZCxzHPzQTuy7cX5lNyf m64aWNTYlPRRv4kjTfURTyPpTyN95OGCRab6iKcN6e825h9SNFsf9e7sfGRk rx0FjYM3u/4sL+KTz+gV/aO8+8ge+RAwQrF3He6Y2z6bo/1+Cuh1YmPfgsa1 xNF+cy1VOObxxDiB5vFOebjI4zap932FdHKIfjnCXD5JHOWq2UrhpWrK7Qy/ 3KsWe/lwSv2FtkZwxCeCOH6vE/WVk/3upzh/x373U9x/TrwpOxe/n87F43dF UV/8d0XFPeFMX9zvTTy2/NZbP35/BH6uKRLn9cfZcCnkyMQ7Xu/VfvUf700p +86HS2bs/No/dP9AAunAn3+YjjgfRzobXknbboer/dvpVpMP+0eGSzmv2Tbx ea/2/49b3l459kK4tInsxb761qb2YvxG9rhnGOXCPcO4hxl+9mQc/oBDR5xn J169gnJvG+IzsfCxn/e2Fcz54PWP+9+Q55lTF0b/uP+N/24vrxexv4W4FemL 3yX5Q9HPT/riHh4XU31xjy7pLOuau/ShX+7Ba9H6T+unDWoblxCH/adWCt9c 2nv2/l/O990quW5NhWzuQxz5E0vcSOf+EOddMcq5v6vExb33xMfpnH8fr3NO 3FnnfLezzv0SY3XOy4/TOTddiJ07zrNQOedYhP8+CHHf8l0Pf3ZUfycFOuD8 PML2xk8WBsZrywvO/QTn5YU+PxcAe14u2PN9+DvJnu8z3EGc79MD5/upoMP3 7eC5XB+c64Pz+IDz+OC5evHnfoJr9n2RjubcEHFej9DRK69mnxLp8PjDnuct OM9/H9LR41xHr3718lAvnnrP1csHvbzVi7Oe/3p5qNde9OpLLz/12sv/VV96 +ayXt3r5yeP5/81bvX7g/8orvXbH46nXj/1/81+v/0F5xH4kuk8jD7ufIWO9 cq8C4oJ/7el+G/yNOIDnY/cztKX75N+Qvfj9dGaPehzK7FGP3B5xm8V+B1bc Y0P21uz3CAbRffWnR5injUxR97PN+vvJGT/X+rIDxRflO7NNuT/Hmt3D70w6 fqQjfh+NdGZdOX25YLK6j6LvGD+XkZNtjZ7EUV/xoxS+mDj8DBmp8BZs/Jk8 XRl/epC92P9DOn8N7eJY21P9nY4GkW2SvfLWMEZYNN77oGGSKNfjFpaZUzbI 8rPK763cyiYJP5d+n3vo4bCm8ibSQd6ejFF0IklH7Jdoqej8RzrivhTSgZ1Y 99yhxFOcf6PyOjKOehlC/CX5DX9GUf2K85/Eub74nWLGUV/Qt6HyI//nUrsA R9zmMQ49cOQ3ymVDv7sBLuYBiEMH8eE64nfhmT3ygfsp9tswHfE9yPzBczmH DueIA+eIA/hL1m+gvsDhvxtx+I965/6jXjafMY0D4jOfxQH9EtcB5/7DH66P POE64FwH36FcB//P8wf5AP9FHKm8SdtN8xbxTNhmysU5bmYPf7iOOAfNOP6F PuoL+m6sHhFPXr/Q5/aIA7dHe+H2yAduj/jMYBzx5DqoL66D+ECnAv0Nfxb7 z9j62aem4NDfctGUox31ZfZiPfe8KUc9+lww5YizgemLc6ZMH/6fY/qox85M B/VyhOkgzquYDtpFHNNBPCcx/5EPDkwf9b6e+P8ApPc4zg== "], {{ {RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[ GrayLevel[1], 3], StyleBox[GraphicsGroup3DBox[ TagBox[{Polygon3DBox[CompressedData[" 1:eJxEnXm8T9X3/993fN/Bvddw3Xky3OuOKEPmIpUhytikSSkqH01SqTQISUWk UmaVUDI0EKIQ0mCuiEiZZYikwe/58jrfx++Pc/frrvfa6+yzzz57WHuttWv0 HtD1f5GhUKhJWigURTqOP4lccRH8UxIK9Y4OhS4mHVMaChXB8xXpd1xzYkKh GtC/By8Dl4CfSwqFRnDdSZ6V0MdArw79ZXAd8n5LOrt+KLSJ9BjpS6S1oX9B uoZrAvyZ8K8HTwfngl8H14XnEOlhroPQW0JfGh8KPZgZCm2lnJuhfwi9EPoO 8JfgCvA4cAl5t5FOrDD9au47mv8LoX9J+igy7qrm5/y9Tij0NPRXSpxHeceB j0J/Cjy2xM+vengRfBj6EPBL4H3QK8Bvgn8Bl4MngA/B8wT4BXAlrqHZodAz pDFcA7hnLOko6mwo5fiYZ2leFApF8EJ6FVIO5JSSdzvpCeQ8C36jxPWo+hxd 4t/EMx58BJ4nwWNKXM/FKgPPfRL6MPBE6MfAz4BfBXcv476SCc8u5JSBXytx XavOJ4H/gH84eDK4LdcZ6nAo6RLq/37KvIUy74d/D/Sm0E+mhkK1atMu+P8U uBB8ALwfnAF+FVkdeMZraGN9Scu5tvO815MmU47d8Han7Kn8Pwd6Z9I0rg/A V5GeRk4Rcv6E7wA4EzwE/Ce4Dvh15B8EZ4GHQz8EzgaPBh8G54gHnIGshci8 mvR36PnQF0I/Dq4BXg0+Bi4ALwWfAReDJyD/BLgm+Fvo1cjfhWe5k7QK12Xg PqSVuS4G3066l/r5Ad5Geu9lrlu166gyt5nXwBFlbjOvgp+mPUQkkJf28bO+ N/JeQN7xwTvSu3oCngeo/xERzqO8anevBe1Q7bE2917PM/Ykrcm1BtyDNIvr E3AX1TlXA8rZm7QqV0fwHaQFXCvh6U6ax7Uc3I20mGsz+FrSUq7vwdeRFnF9 B76GNIdrCbgr6aeUoyblGVbi703f3Sjw1Tzv46qHCrdRtdXmvPfppW7Dasvz wF/xvdSG/61Sf5v6RhfQ9vrw7F/y7POhb4OnGJ6F0O+Evhb6Qui/Q68P/VQx ZaEuy8AzSv0t65tWu1f7r0S6M5fnph/oAd8SlYE6T4L/haD8eo63S/3t6Bv6 BFwrJxS6FJ4/i52vHnhWqb8XfTf6vo6THua5PoT+N+VpCM8a7nU797qKPAug /wK9XN9OsWl1wO/xfhfr/fL/XPAS8HPgvfBcz//5yI7Opwy0k5HQ50P7IMm4 iPyLYyxnQnkodA/06Hq8R/6fCT2ftCbXPHAt0g+pt37I/4p6i4SvObgW9/kY en/wt9DPUeZ+lPkm5FeCZwD0BdTbR/DcDf4anl9Uz9wrl7L9W2ze5upDyNuX vDfw/9/FTi+CfgD6ndCv5f+/ip02gL4Jep9qfmfvlrrvUh82i2fJgjam3O3n ILT99d2G1Jb+hd4b/rOU5XLkvQd+g7pNReZIyvUE5ezPsDa11H2y+ua54AXw 5MBTRlrBt92Pe7wP/R3+z4C+iGe8j7ybkDsJ+mDy7ifvZPBj4APgz9QewCNK PJ5pXBsJ/o3fHgU/C54D/SVkVi5xfskZrncVtLepJZYlmc+B3+S5RkC/kmd8 MZCv+8RBnwa9G/QJQXtTu1salE1lXF7qvFWQ81PQbtV+twTtX9/BD8E3pW9r WqnHMo1ps6nHHOrgZdIU7lWNdv4u95pZ6jFIY9FH4DD0JshfEdSD6mN3qb+p d0h/DfiVb2Kp60H1sSjAoq0q9bubQvp1UAaV5U2uAvVj8K8N3pfeWyLl+Yw6 nEl5DgRtQ21kQ9BvqP/IokyTefZsjd28zzz66tn6numPKujfbiUNJ9PPZ4VC rWkPHfmGCsHl9FkdwLUCnABPbXAZeBP3zSBvXeqkXYJ/E31dmDGK8iA+VAp9 Je0sB3oivxdJPm3mvzy+RfDH1GkxaSV++wScSlqV61PwZeStzm8l5P0HGang YvBQ8CDa3t3IT0p2fuVNAZeCF0Vb3pUJpifSJ3RKsMwq0MvhWQx+BjkPZXpM GQZ+lqsPeFZ9txO1tazqPD91dSPPlAO+EnwbOAV8MXhaLN82uBP4DuiZ4Pbg 68H54KvA94CzwR3Bt4ArgVto/CVvMrgV+E3wv9w/jbI1pX7yoHeG3g/+dPAV 4O7gauBLwe3AqeC24I7gN3jHk6mPKbzfDOjtoF8DvSq4DXgu8iPr0gZJe/J8 VaC3hv4+/6eBLwd3gb86+DJwZ3AE+ALwdNpQW+qv2v+9C95dOvgD6qoz9Azq tK7GTnAj6PXA1aFdAG5Hma6G3iCgi7dhlvnbJPi96p1+HsyNp6sfhqeA63Pk Z5I2hr89ddKENIv/P9P75Z12SzDPacqzj/f4BngT8n4D19AcjHQz/7+pNka+ a+FfDc5OtizJCSHnIvCyaMvummB6PrgF9BXgXHAz8HJwQ76932vxnKTtsixX MkuS/b9wAjKvQM5CcBT0HOgLwBHgLPB8cHvewWK+nUF8O4P49h6mjh8m/Y/y Xk7eeZoHwx+dbDkd4H8H/vvgz8gyn3j+Iq3C/814lHNJ/k30IvK1BV9A3Uaq POBV0Cv0XYDXaOwHdwB/Ce7JPS8FXwh/HeiXg7tQh9dAvyygd6QMGyjDY5Sh e4LvIfm1SFvDcxVlCNFm6uu74HnO0c/UA08F/weuC56S5rmg5oR1ijyv0vyq pMjzRc0by0gTuWqAbyZN4MoG31TkuaPmkIWk8VzVwTeS3kLZMklfrO88ypst OlcdcG6R+zj1dfmks4PvRd9NixL359FlnrtoDhMLDuse8N9A+jflL6P8Eyn/ X+AS8Bvgs+BSfb9pni9q3liD9DaupuBaRZ7Ta25fQRrHlQLuVeRyq/zpRZ5H aj55utBzR80hI4u8BtBaIJr0Zp7tDL+/XN9zTc05Q0Wev2oee7bQ81rNb/8B nwvmxpojXxPMRf8r9BxOY6vG2K7BvPQP6PN4ltW07egIrwG0FjhW6OdXPbQo crlV/uqklYK6VR1fFaxHjhZ6faJ1yuFCz6c1rz4Bnov8lcj/j2J/AF4Fjojw /E/zwFCZ+95lGifre52sPkF9g+YHmiccBUfS9l6mrZ8mbwHt7Wrq/3/0V3Hg JuCHY73u0vrrt1KvE7Re2Fnq9YbWHXtKvT7XOn0reA73+5H0t/peS2tNfZD/ Y5HZWH04MiPoP58g7QFPFPQG0N+ifiPBF4JnaL7Fc1WAJ4PD0C8C30+eaHBD 9f/gRHBz8EhwDLiRxg5wErgleDw4AdwMPBScErQltakjwdxbc/DjwZxKOgPN yTQ3O6E5QonnA6dLPYfWXPqfUq8ZtHY4U+r5n+aBx8D/UOZy7jUpzXM+zf3+ KPU8RvOZyDKvGbR2+E9riGDepfmX1hhaa5wttW5COop1pdY7SP+wUXP80kBv QPpvqdfmWsdLryH9xmrwX6Ve74wlPRmsiaSTOFVq3YJ0LdKtSMfyDfjPUq/3 pUdpQHv4lb6+gHaWpjUhPOmkdaU3ifEapC19VF/1vbSZRxkvLuP/TfR76+jL NpOuJV3Mcx7j9zvANZjP98sy/VJ47wA/z+9twLeDL+Jet3HfPuAm4NvBd6of Bt9Fnhd4X5NoJ600jnB9xz1uhKcHPI3gaQStJ/g67rcK/g3SD2muDs9t0Lcw 92gIT3dwQ/gvAHcB9+QzuT7Bv4nenLQX9G/J3wt6t0D+amRthPYlaR7PclOW 5V8M/63gG5HzuMYWjamU4WnwGPL/RZ7HwPNVNuS8BG0B+HrwU9A/Bp+BZyL0 r8E3QR8GfQW4JnJeAn8DLgW/CF6ve8HTFHw9+BvNuzTXy/K9buPdVOHbHUI6 FpnP8tsN8I8jncz/Uby/3uAX4I9F5nhoy8G9NA+EvlTjHc/yCvRlAf16nvM+ 6v9N6v8j3tke8vUst+zPsix/LHgDOBL5F2luAP6a8rQE35zg99UVPBB6C63z wYPA/ZB1D79v5P+LpQsgfVjPonUQ97iEfFO4713wPAS9JTzfQD8E/WvSftAf DOivkHdjlp+xM2uzAdLnkPajfTbUNwn9NvAFGm/A/cGNNY6CB4Av0viqvBrT ubZxj5uh15PeB3of8IUan8C3gutLXwO+E9xA4xn4bnAj9VngTmrnCZYzp9zr 92k8y1XQ76ect1PPN6lO9L3x2w3gp6D/Ar6F77Aj5e9E+e/n9yegd+D/G+F5 BrxXcx7w3Wrb4K+Qv5V0PelRynAN9PXRfg+Nk/0ulN6UYHwzeGiW73sr+Hlw N+TfmeD3pHc0mbJu5z28gcypWguB3wU/Cs8o+LvDMwA8GNwWPCjBsiTnPvDj mmeCHwGPDPhv4ffnwNN59jehfxW0+RegrwMvhD4hwW1d7fw16Rdpzw9xfUHf /RrpYrXbsPFm8CPU9SvgaeQdSzqOa2zItFe5EpCzI8a/va15dYDFEx9pWQND 5lWekRGWLfq7tPf3GFc/i2M8gf4+eC24Ovgf+vK0yrQLytURmS/B/xJyTkBP gX4z9OH05fk8T5rGfuhJ0G+CvpP3mqq5Nt/pr+DGWleVWsboQM4mZI4BT5eO MsBjoEfnMhdDzl3ImYz8sgSvB6fzjvZJR0VaUex3d6fGXPhz4b8b/nTK0DfB 77cf9N7Q34a+iOdqKD2L8kC/Bfpb0McivxD+TPjrIfMnfu+nOQB4F/hu8E/g ypT/pHTpYb+v+mku78tBmWdQpoMaw0gbwL+bvP3JuwNcibzHpGcGx4GPgBuB f4FngOZc4G3gPuCzlD+Vst1O2S6C/iv0+0qts6ogbxy4H21nPG1pJvctpK9+ FbyV/n8A9Ingo/B9Rzs+QloZel/11dAP8v+d4McSjO8Aj4Z+AFwTOWOz3Oe8 nOX+R/3Qw/DM4v+TWiPAMwH8gNoMfcDn1OkZyvA8PK8h8z94RoJXwvMveBR4 VZbpxeSdBN6IzBe1XgnGiFEJHj80dgwm/QD6+8i8SzLBPTSOwPO6xjJ9d3z7 Tbh3fdrLI/CM5Lc/kL+XudbRdL43nvcd3sE56ZzqW59WzO8x1Ftr8O/U52Dw peDj4MfBLcGHwIPAFeR/irofyjO+Tf5/kPMJafNi9w8DNcfgXo9kUD/QHqUM s7Nchov5/4i+V3geTKRf4zpGmZ+ljA/Adw34QdJ34K+qfQr4OjDujCTdQ97a yIgE3w/PdHhmUw/DyTsDfC15R4DfDnB92vAzqdYvS/ZbWZZfKt1ZjPW0f8O/ md+GQP9Wegza+hPqx6jDN5gPD+F+u7lvW3AmzzuRdCbzoiejnb6ZZKw0J8G4 k9YTlP3KIn/j9fitGnmTWDNeB89arW2hvwjPbTzLz+CW8KTDM5l0FnKfgme6 dJzwPwPOI52Z5D6kOngaPMngTNpM3WTLnMrvc6A/DZ4BnpbkvGnwTw/4d6mf gV6de/0IrgZOBC9ARiTP3oEyLYI/AnwH/J+Az2UZL4InFno6dVef+/4FfQdt 9SN45vNbH3jeJz0DvQo8K6RvUL+k9Qa4WrbxcumjwNngpfz+Kf/fSd7FpInQ v+CdpkKfQpkTI92PfUN7a8f7+pH7VdZ+CG3wH9pYJDyv13cfUoNnSSlzH5IF Tipzv1Ss9Tz4JfJWgM+R7xPpwxL8LB+DY7hvGnge+D/pJUJ+plC2n+szeCuB +4Irg8dx31hwFfArAT5Gm/kYPIw6/4R0FvcaLp1bsfcqI0pMq5lgem3Sj5Lc r75L+hF54qn/peD14NHwLACvAPPZhmrA/6Ew/LOTfA/JSdZ+H2VPKXE/uYa6 uhzcmGtnjHXgF3JtibHeO4Z2WIKsMeStqr0H1SdpK+3bxXgfVm1tYabbW4Hm q8F9m0nXHGN9+3J4liVZzqek6+B5KdrfaUf+z6bOx5NOhv48z1UNOZOCd/qD +nx+i4fnVdKp0EfBE1Pk/cmOpGMkW/p//r+i2Pp26d1TtFaFHoOcZPDoAGv9 OjbTa9hXwAlV6eOptzXQPuH/F9U/w/8F/2dJJwNeFeBFSeYTz1vSA4EZYs6/ n5WZfkeSUZxgno/Bq6FX4V4neO9fgl+AvrlYClTWeDzXEtpPCm2ma4TbeFK2 2/lyZCQHbWk1Y2NHsLbB14A7ZXt/XOPaPt5jV+nu6CPbQZ8mnZ70TuDOGteg dwC/pX4A3Ab8uuTDcyn4EniaIucwcroH4+ke8NVay8LTGp6m8CwDXwy+ELxY ujt9C5oXIbMxeAQyc8BtwW9qPQi+BDw+0nOA75F5ZYnH9J/AndW/Iqc9PD1C njNsgt4Bej55L4c+mbzH+R4jpDsiXQH/ZdCvCLnfrch237uL387q/qTfUIcl 0HtTWWvB+eAC2uJA6r8Z/fyF4BvBdbV3C34A3BR8AbgfMku1L4bMswnu69XP a8w6Lv0tZVunfpTfasD/JWk2/HfB85Xmy5pna4zQPK4K8xbwBmj14bmHMq+S ThJ8PWVbDy4Erw05X51s5/2avEXil0zpY7N9r2+gFwf0aOqnEfjZSI9LDbM9 NmksjqF93KQ9B+h7pW9H/kz1k1p/wjMD/CP0W8CvQvsBfDN4ltYW4N7gmdCP g5eGnO+3LOd9F3wSfJv6W/r2E+Bt9LHzNXfQOkVzS/D3gfypCb6H5E8i3QU9 Tvp98E5wGDwR/HaC6eO1loL+Mffdwrs8TL50jR0V5t1a7kt4M+lr8G+XjpT6 rEt5ToGH802dpu9+hnnF2Tq8T+hHVU74v+dKjjG+EHoz6u1whectp3m/10of Sd22gj6Wey+lvbXMPq8eOz/nCVG3veCJhOdC6EPhWSndMrgfOAp6g4CeAG4C Hgl+B57DlCEpxnObv7nX9cj5FPlN4WEKEnobnvcSzDMVvF86DZ5rNrR9wXup jMwW8I8GvwXPIeiV4P8CnAF9NXJWJrhMKs8S5DfXnjX01ZqbB231QvAvgd5m I21+Lzg/0jr7hgnW2+9gvOxS4rX8Ua6PS73v1pd59YwU5ho8w23gqeAc6c1I X0f+S5TnhHTP1elrwWHo46G/CI4HvxbwyA7izWzbQmxA7kLNAXkvpXHWj2kP 7wzyq9DB9kb+OekioA+D/z/wqABLdlyK5d9VgGz683HgRJUn1euvzchPQ/4I XuQoKnsSMjcicyrz7gnZ1gXHwv9Ktsc5yXs1KLPKq2dTmfci55ES7w3PjrNe VTrVk/z+DWXthMy/wFvAXcBHwKvBHcCHwavA7cG/IGdQidf4v0NfA70j9KPg LwP+nqSv8n8a+AzpZv6/WutB6dlLrONaTXtIgN6Z8v9E+h983eG5GTwRnAX+ k3RTkPcgeT4o9X7lz1z9SqwzeZN6+DrHeu3PeQcaXPJIT5F3A/SryHsMvDYo p+pe70P13xXaWH5Lhf4k39IF1P8mvq0saLOz3a4qUef51Pn/9IzwTOI97YLn d/Db4J3gp8EtyLsZ/Cx4MPgn8Cz65x70pV359nKR+T4yp8iGR/vs0LfCE1Vh WjTpdJ5lfrb3IR6nbB+Sp1j6Xn6bCk8s6W9cheTdQd4a/P6GbINoJ8ehL6Y8 cfx2ArwC/DM8jyBnHnxFyDmgdQ2/fw/9CLgLPNvB03jG93nGHfC8Av0e2f1Q t9EpXhtrbjCJ9/UyuCpl60e+F3nG5ynTDcifAF8GeYvirG/X3vkUnuXFbOv9 Q/p2Uq1b+Fd6GPX/5J1C/XSiPB2on2+433ja+YO8uxj4x8EzKsb2R6OzbYMU STkzKGdf7nWJ7DBSXG/juR6SfRIyfuDK41uZT7qNqzJ4LulWrmTw+6QpKdYp SJ9wTPtLfO/PIf/7YG+6gjIch2cdz3Yl9zoB/irAZ8Fbg29kAs+4IMd7Jwvq e240TPq8cq+J+3O/6XFeJ+v/XeRdCH9r8vam/J+A87jnneBD4Bugf06exvRj qdB+gX8R9LbQ94IXB/gN7rs8x3szO6HPA18C/aP6ng99jIyP63stNJqydOQe n1B3VyBzH/xL4b8c/hGyD6vjvbn90JcF9Ge1Zi7yPuM7lP99yv+3+nnkLOOd dUTOO+Dl4CvBd3PVQn4daJFcOchqDa0v12FkXoO8ury3GvAMRv4A6MXgMtkr Qc8APwS9HJwHfgRcB5wOHhhrO41c3lNb8pVAzwz4b+f/JcgvqPD+SZ1c76H0 h14ILoFem6sAfHk928XVhq8r+Cfed1/K2QkcAT0bfDH4Z32L6nPAV5Zb1y7e XWp/6q/qWeaj3L+wwuuPfuS9Cvoq2V1R5w+T7ydoHwTvZSX0u6GPpW1N5N39 mOO9urlx3tPSfta/8G+H3k17Rjzjz+CeYE3Sd4F7gA/BszLoh8+Bdwb0+8CJ Od5f0B7pOGTmcs97aAct+D1X7wU5uwOZYfB+8HXqW8B7wdeC/0HO9+Cu4L/B 2wIcBc8evUftSYF/CfAvPPss7UVxr1jovwZyJvGM+3K8B7kgznuE2h/MV51k uy/bAn4HnubwbwPPArcEz6aszUhzSDdCnwa9Kf9vAE8N8HfgKbKZAW9Xvwq+ GPwl5VhBPW+mDtbUt/3KGxpruJ6Tjpn3sgP+uQH/ZMo2h7KdoppnVVheNunX 8ExUffL/j+D3wK3AP4DnBPh7jRFBmTeDZ+S43K/z7G/neG/1ce77FN9Rf+57 B+1jBfSayP8G/kmB/KfgmV/kPfpS6jCLtjoI+tv0t7OoqzyepQ15C1Lc/y+F /3ueaxhzxO9pywOzrTNawm9D060nWw+uzO8lzCUvrsG3As9A2XbWpH8F19Sa mnu0pQx14aks3QO4HvgH7YVmW1/WirwPgB8g72ny3qfyQB9Hu7qT99lXexNc oyhjvQq/u+nIaYCcr9WXUoZS8Hie5XHyxsL3HX1GX57zPe55nLHgrspeOx+X PpE6q6p5CPd6VHNX7nUGPAhcBD6hNQ34Uc1tkNOeseNyxo4/oD+peZeeUbqO KtZP1YiznbBspGTf+my2bVybUZ/PpbgOXuC+XbhHBPV6mjJ3B5dzTUR+bBXv M/0J/QZokfXdTibzjBfyXJPU/8HTHp6z3HeEbJKRf1R7uXwXT4FbcK/RKX6u k1rTUabB0lty3w7IPCd9KvUzjLyVqJ+jyE6gTnqpHpKtW5eO4g/uezv8Z7VW AA8E/w2eTHt7Jtt77ZG8i1XwZvH7deB7o9xHycb2WLbtbLtTloPgr8FzNZ+g bvJ5lqvh7xTlb+cLynAQvnbqfwqZc/EsG2Js89GeeXsN+O9jDjC+qvX37Wiz 7Snzy/B3I9+BbO+h/gB9K/RT2juA/jP0VdC/07PQNq6qa9qVKaYvox5O8H+b KI9p6kPVf7aJ8360bOzGU2/9tZ+m8moc5/u9jP/foR72ZHvPuxf0k9m2M7k8 znvQsttbyH1/kJ6nru2aLqFeGpH+SDo427r19+HZBW916It539nMOT+H9q3W dGr7PP/TlOEi7tkL2lJ+G8V3Vyh5fC+PIGdQjPf9myL3AtIn4a8H/7XwN+bK pYz3kl5DOY/A/w38PcCHgvcyk2c5mm2blWvV1/GMncgfz71m8HuC9Nuay0Bb Qno427IkR3MEzRs0T+iZ4t9E19iusV/j+x7yb+C9HKP97AC/Dv4d/A3yWlbj 3uB74Z8Nf034q5O+hZzXkDMj2/8L3685MO1/Gfw/VNjepoH2zsDnoH8LPQ3e CRqPkP0A9PegfwZ9LHx7WON9rbko+CD4G/BgeGKl1wJvko1DtvddmlG3d0rP oDUabb8PODnatqqye2ysdQF5m9Nkz0Abme25puaZT9EOx/OMX2tc095ctvWJ j8FfjXttqGd79pnZtmn/Q7ZItPk3wKkpfmY9bxWNQdm2FZhGWo3/XwUfQ84C voe9yHmVe73NvbZxr6op5hPPQOrzff6vHet80wP6VbJdp43u0zwKGaMpz0Tp K3mGL6mTNdCHIL8+9I2az4MPUIdfgGfS/3QDX629Q+g/gldAfxC8Brxc9Qzu I/t+7WMku15UJ5XVrsCvgN9GTlf4r0LOPZTzHX4roJwPk3cP9M+RkyXbAMqz FryR+rkt23taTXkvt0uHgJzfeS+9wJHQj4KvA/9Hm2gMzw3g2+C5tJ5tRcLI /o/rSdp6Ncr2HTJvhB6tdwr9EehVoR9Dzs0aO6BfhJybwH2Q0xg510uXyPe1 Av5WlXhv0FrCcy/0+zRng/4h7+I49GWaV8BzGLwG3Bt8BLwOfAf4lObb4CPw H6rstrSc9KTmivrewCfA22SbI70c5WnO/y+kePycQx32pK66UYfb4R8Af6rW ILzfPxiTM8AtKFt/8g7Q/Ef2QeAM5PwF//c8ZyI8x0l7a90O/RT4f9m21d4M f79s76c25b4DVFc8+0l4+mpdJp2tnoU+9CC/N+Je10K/NcY2t18k8VzQ/4D/ bo0p8P9IWbtl25b7B3DXbNvHbqHMu7R3QHmakOcu6Gd5/43APcA3S6dHea4R nfd7BJk9wafBTbjvreA7pRuR7VK29zvLqI/sYG5zRm2e/uCxMtsQ5ebajuhx 7vEP7/110p8p7x/01TXpw5tSllOypZduljKcBg8i7xnq/E/wNORXh35Stps8 61zmUyeR8wHps1zHwMNIlyF3OrxLpZfj/9+gf0y6lOsP8DLSB/htPemD9V2e uqyPHga343o5ynO5mfz+K/zvkhbx+1FwHdIqXGfVbkkzuI6AM0lXwrcPvIo0 n///BhfIn4n/94CHkE7lOgGeRjqW6zh4HOkQ+qGvtLah3I+AV4FTwA+DV4IT wYPAX4DD4CfA68C1wI+D14Lzo20nJ3u5j5k7Pgp9NfRq0AeDvwSngxPkY8F9 E0kfgv459Kho2zjK1nEReRtSD6dqewz6H3Xxhuau0EaR/kLeF4ps+yUbsE/g b8G7O8q7LOTdDUTmCvKei3L/erK2+1jZTcp+cjH8D0JfDv0v2YyC14CzKUMU ZfpLdoakp7jHGfBp0jkpHqs0Tr0NvgucD34L3C/AKude+J8qt86vd471fhrf BgR5n6cPfod+8jeqalqK9YPimQX+H7gG+F1w/wD3or3dKtsI6mFcinVJ0iON B3cHV4+1bqlLQH9E9jyU4VnSV6B3C3he4r4zue+BkPVeN+VY96U++O4c98Mz U9wvC49DRp8c21neRBnuAGdQho/pm69WHxtyGz4l/Qvpu9RhBHO4H2O8Tosq 9LptDvQw+Kzmq9TjQfh/J/2Z6wB4t9os15/g/aQbufaDN5H+wHVa69giP9e/ pAORPRuZMcg8hMx3wP/y7taAP4PnLd7hctkhU+Yzmf4Gf6VdnAXPiPYc81xt zzPfBv8N/gz8Fvgv8EfSbUonrP1v7f9C/xP6e9APImd/kunnbQ2ph49KbL+o eeOHJbY1lM3hwhK3x+gst8mz9CFh8Lvau0d2DLgI+u/wxMoWWut/8HHKKfVi K9mXBTwroG+Anqd9JbUt7ROSxvH7MX6bFe30kgTj40n+TXgM5f+J8l8sG4nq XstpHfcyeCe4Dfgr+Hcg/1XwS9C317YNzWjwDnAL8IvVPX/V3PUM/Ke53gPH a/8rwVjz3vGkH1G2JOq/nvZZNTZqHyLaeBv5DnKvify/CPoU7fGSfgt9d+b5 ZUCofoJ17tKL/kB6GPok6dvBP3JNBoe5b6ME4y1JtqeXTr4a9z2aaZljKfMu ynwZ9O+hrYbvFfAq0q3ai6TOv0zyb6KvlfzM//8MSheQ/kHFb4M+jv/Luecm cG6k5dVNcN7PymxLslE6ImhbAh75l2zOtA7whepe92rN+3x1j/Ea35+u7nFO Y5xsXqXbn1tiO1fNYeaV2FZYNsNzSmw7Kxva+SW2OZYu9H35o3GvBNlyRNvW Vja3H0B/Bvnf1paxE30T+GutR8Bvgvdr7Iy23a3sbxeU2P5YdsizS2yXLPvk WSW2RZZN8swS2yTLP1d+urJFlk3yeyW2qZVt7Tsltp2VDe2MEtvdyv72Ldl3 c9/13Lc82vayspt9W/bU0m/Rz1ST7hGefZqrwfM6+FfNA8AjqnuOovnJc9U9 v9HcZhz4Z3A78Cvg3eCO4JHgrbXtH/Vsdc8VNE8YXt3zfs35h1X3XFPzzKHV PUfU/HAC+Dfw9eDx4D3gzpovUc+VqOc54EnQD0LvoboAHwDfDf018F5w92jr fX+vbd3vfZofgZtFe//neG3vAWkdf7i21/KH4IlAfgPZ0UH/BXoXfbPUz9VB /Wjfo0eO9z6KaXs7pVvhXcwC34KMphWePzWs4fnUn7Rjpo3naTmVbccmGzbZ soUDLDu4mFzbwn2l9RTyG8Vaf3FZjvUZmfBEybcQWlZl28+JX34G8bn2NZAN Tf1k29TUhCcF+r2xnhft4dnSoV/DVaG9K8pZC57K8NwHT21wlQCv1bPwLeXX s83wLdRJDjgPngR4+sPzATz/45laaU4NvkrrKulFueZShnrwv8n3e6nsBeF/ kedqn+O5tObU7QI8CnyFbA3Bw8FtAv6LkFnInHUS/c21yGoOPT7WPs21c+zX nIr8QVXsK12DsiUHz/u81sGBTOmBpAdTXcYVelzUmPgy41vHHPskbNQeAs9b Xs92ObLP2V5uuzrZ123QfFU6AegHVJfgZmovWoem+B1JfjH89WTTKH0eaRLl GRBrH5FqufYTSZdRhvw5oTcF15ONF7gFuBF4OLgluDF4BLhLuW2ctXdwEfQK 6E+D7+MeF4Cv1Rweet1AzjTpEKiXVvzeDPqF0J+FXqj1CviBWMuKr+x9Cfni NM+1P04N8v6quRH0ruBk7W+B62rdAU93cGvytQA/j4x86LvhvxV6K+gXBWW+ GNwE/Bz4EnDTADcGlwfl7x7nOaF8Mqsj5w3kXIecqvD8Bf22WNufnsyxDaps 8i+XzQE8lSrbDlU2qInSbYBvBG+STkz2CvAkV7YNq/LKXvV4wC8betnmy6Ze tvu3RtiWX74753Lsv/MN9Cf4vTZyKpP3NPRbyTuVvNOok5ZqJ5VtxykbznTp DCn/DfXs+34qx/7v0gl2zrGOUPaefwf8avf6FrS+lO3tvzm2v61e2fa4wk9m 2ZZadtQPaQ0Kfb/m0oWeh2kOthr6WOkq4f8M/Jz0vbG2b2yErHu1Fob+inS2 +q7B48ENwV+CxwX0ddJzBPRS8l5A3nu0poY+AnoF9KXg4QFeAh4GLlc/AB4E Loz1fuZjOd7TnAt+KKC/wbuezRz4RMi2XS8jfwjy56d4/1J7l9rDfDjAC8GD wXXAC8CPBngV+OXgeVeCx4AvADegzLcicyAyJ6V4j1lz7OHc923u+4tsqvne r82xP9Ir4Ptz7IP0utodOB3+WuXmvZP3fz2ybtTcHtmvpXjPW33+lfy/Tjpt fp8s3yRofaF15oqgv7qAfv89+B+Avxa/LQePDN7Lq5RnFuX5nXt8AX10UP6m Zc4rGRdo/ED+A8hfAc8L0tsrL2UelWN/sP9UDu7zEjyd4P8uwrSPUryvrPof y73e5V6Huden0J8N3lcy6UD+30f7eTDF/wuf5bs8qnGFctwPvRL0X6E/AE7K sc3cUPCMVNtXK15Fao5jVrQucVwQxUE5VW77dNmmX1ph23bZofdC/jXInxTr +6cE99WekvaotK80CHqVoJ3X01o+kWeQDodv7h76+buQM1vr7xz7BHar53Wr fK8fJu90ytYnwvtg2mPTXth68vYn791hf0O6h+QfVJ/G2PIJMg5Cj4P/eq3X +P1KjY/gZ6jDt5D5M4/2GPQM6Eek4+Len1G298h7M9fr0H/UHFxr/Rz7zn0M /5PgEuQsBg8Fl4EXgZ8J8JPgXPBxZA5OsV27bNpzcvyb6AXgZ8B/xNiOf3FQ n4e0Pqf8H6p+KEsafN0p19MpziP+OZSnZo79DCWjRkB/ApydY1vJISm+n+41 usz1F6rLmM/76kWdTKWcN4GvB0+Jte35/5Jtfz6/3LZd35fZZlR2bhmRjrUR Jxsr+Udk2WZd/LnptnWWbfMXWbYjlw25/K+ioa2Hv0eZbcBl696Id/e4bNeg ZZL3yQT/9qLsvGSHRN4m8AxNsF20/IYqkbYvtn36c4H8l7JsBy8b+FcCX4pp 8pmKsu+E/CZkI98n4AkjJwl6h2LbMc1Iti3TAfA02fiq/WTZzkn0f/X9Rfh5 x1N3byTbBuwKyvZOgu3TPpf9F/R/kP8u/yuYkN5la3heTwj8ofjtWsq0CPp3 WfZHki9SSbr9TORj8lrgQ6Jva0RwX5X/zyzbLstu+TXK8D78G6i3RuSdl2D7 t3lBPb8acr5/g7y9yvy77OWapttmWvbSnSjbhwm2H5ZN9HuB/H/IV0/zBcUq gj4aegT0wnT7XMnfSj5hTybbL6xplv2l5St9B/3Wc7Slz3iGmrTPP+F/HP6Y BPtNyWdqMPc9x/9PQy+A5xj4UfDD0P+RjbrszeAbyf03Uv59aY7Bofgb0scO 5vdf5a9H3pPwb4XWl/uO5L7LY72/JT9n7XdVZu21VHZysgvIti217KgzyPs9 ee+PtK33Z8m2926dbns12aplwrNddv/gbpTtiwTbtuVDPwJ+RDoc8nzIPT/V /ojs7tLtLzCTOhmIzBPR9r0YlGz/ixrp9p2Q30RzZD6fYL+Jd7PspyGeCcz5 LiWdJj1nln3wVM+t4H85wb5sP6quo+2P9iE8T8DzZ7T9gTYH7z1X+/jwD4In Wzoh8MBI64cfJN2N/Depq53yMZCvhObBEd5znysfrQjbaOeR9yA8D6vvAu8F P6R3Sls+EeH2toA6+AP8esg+di8Hbbsi3XaZssncAf112ehL/6y9Tcp7jXwz i3g+/h9Mup30MFdfySLdHeW2INuLn6Mcj+tz0lzyXqH4AKQ7o7yneB3prgCv Ia3Bb1dFeE+0BHwzuDL187dsLCLc1/eIsn/fE/z+D/iVCMf9+jfA9euw5gFf QPoBaZVo7wUuAWeq/sEfgatHe09Re+raWx8r/wXodaP9/2TwHq4M8Fukv3AV yMaSdC9XcfC9qs/Su1O/ewN4kMyvoN8M3gBOl09GlL+LfPlBgTfJjldjQJTr s458nrQXHPL/ov8Y8vMPB28Hv0YaEW3ZW6j3hfy/tcj1pzpVHX4LPqg9TPGQ HuK6BTyP9Feu+uonovz8evYXZAcQZTt52dy0j7INzlrSA1xXQ/+CdD9XO/DH pL/pfuBJpDHRfr4Z6rej/XxqCzuC9iAZ6wI5Ktd3QdlieTdfgcOkSVzrwcl1 vCeuZ36Xfq+E/7+HXlrHbWFTlH/TM20Nnqsmv20D1yJ9PsrPLLra6ddB3ar+ vg3umxHYCcte+IJ02zHLVjabNvYv6bPU8xVRbuvK25bvd0qCbZJlFynbStlG aj+rGbzflrlcw4OyKUbIB2mOE1Il234p6qM2B7/r+fRu1wZ1MpT/V4KfQ85r 4B+i3A7P8F5Xgf8iPce1GhziGZtH+VvSdzQkyu9G70Xf1oqA/lKUv0nVf7co t2m152zybwTnkB5H5nL1BdI5ky7jugSeRlH+TvSN6Fv8MsrfY+sof5/CB8nz mdpWkb+nTwP+Hfy/CPxTkeepV0V5LfdsmWXfXu6280nQfq4KnuEHHu0A9bws 6PPlN/NR0Of/An1EMEb3YM7TlfFiAnW7mzqex/jyBTLK4bmYfnyTxscM6p05 4rX6jrQ+hv8NrW/gKYHnnUjbWMnuSnZW12p9n2pbVvltV46z73YL2sYjso2A 3iiTd5Xk/aCO8HdE5jjy/orMCUHfeDfPuE9bPjzjZsWOIX83/q8gb/sk7w3F Z1kvKZ2k/BhS4uzL0BmZw1JtW7gbmQ8FY9BBZDVF9r4Kx8tJTnbMHMUpiUx2 rJLsLMcuEb6W8fRpyvaJ1pWZ9p+R78z10J+Bvgh6xyzHFlFcEcU4CSU7zskI xpTSYPxV3JHygKe39Aeptp2TPvVEUP6d1P/71P9S6r8aeZ+SDqLC8VdygnlF 8yzHZ1Fslirw9E+23mZRpmOEKT6YYrfkBTx3UYd7KVJteMqyHANI8X8UB6hy gOvzWyZt5jPu9Wq59abjSbdQ58nU+fUh+7IkxNmfZZPmltCvBDckHcA7PRpp v5CYOPuGKJZSRJzjKWku8GDgPygdlHwXWiK/PvS7Et13KF5ObJxj5iieSmKc Y6qUSQ8Bz7fwtKbe2lInL2peKFtI8Eux9s/OjLOPtvxpQnH2qSmk3YbBHcBt pR9KtY1rKTKbI/Mr8G/g6cFct5A6bJPkfcYPqNtYytee8pbIPwX+L+GvgsxI ZF6KzFtoA8MowxLK0IS8qdB7yd+TeryPOupHegkyniDvH+S9lbxp8NwMz62U 54Zg3XEz+Lpg3bFV6zfy3Koykz5D3tPk/SXNce4U404xDKrHOY5BJ/J2Iu8r 5I2lTk9Dm8x951H+OPJ3KLO+Sro26awqeJbWyNyGzGbQh6baxi+X8jdP8h6l 9FjSbUmX1ZQyV+JeXZA7VXVC3u2KK4CcIcFcS/MzzdN2ct/23PMUZW0VaT+z xcH3Ij+5JUn2lfsq075zwrJn0L6G9jfu4/oH3K7ccbVkwyxb5pIsx7fSd5pL GUZQttYV3nPbm+R9t/3c8xPqZ4PGskzv62hPR3bI2nv/k7ROmffetbd+BP5r eK4pIe9NrUvy/pT2jrYmef/oGe61L8n7fdoj+j6Q2RncF9xAfZdiaIEvAG/P 9F6X5Awh75ok7++MAfdKdhyA/VprgKvT3rKhz0m2Djad+eQWxsT7NA+nfJGx 1l3Ld2pNsv2n8rLtTyWcC14tOzxwy3T7PcpP7WrkL0mw/9q2DPugyp/01zTH 9VNMv3uph7/0nWnfmzI8n2i/rQvVTyY4JkD1dMcCUByANMq2EXwv+Dp4TlSh P6Gd9gSvS7DP1P/KbBsum/HL0u1DJT+pG2RnXcXxHTKUN81rzkfSHZtA8qsj Px1cOdLxPJolO6bHDVmO8SF8V5ZjKCh+wqWZjjmieCOKq9Ek2bE1RvEsHZMd V2Ej97qR+q+ntXOZdaHSiUrnL/vixHLHb7g+0D0eSHNcP8X0y8xyvCr14aPr Oo6D3t1O6Vi47yXqr7Ltdyefu8d4lqbk/V+EYzy0C8q5p45jLcQydv+M/A/g WRHhvZ0/kry/s4N6PMNvD8rlQ/u6QdtIzPI+kHjkZzwpyb7G0axD/kcaRbqW 93sszTqIaun2iZLfU3I+c5E0r/+/hWdfJfj4lrZR/vuqWHcwh7royz3bUB8b MuzzKX/PeyjjyTSvC7RR/AW0vfCuh+dn2RppvkK/NzzJ666D8qkM2uHsTPs2 y69Z/s1TAvx9sdcR20ivy3I8FL0vxbOcE4xZdyHzeb7rFVpDZjrGpeJbKs7l +wHWPGyw+oSQ50aDJBP8lb6BKMdJG0iZH4iyTWNr6TKkB+Xayf+79G2RNil3 jLRQhedZg4K51gfwl0V5r7yJ5knwj+LaB/9u0lTSttoPkX6C6xj/H9H6WPYJ UV5raM2hPa264JMh6zSLwcfAY8Bfw98ZnkXIuSDK8e5kO94wyn33OxqHtE6L sJ2l1lhDZP9ebtkzKPMJ8O+aX2us5v8V0pXC01x6RvBLXNOjvCbS2kExHl4P 4nLIF6ValP1hd0Z7n/Ay+Ifz28X8Ng48McprK61BHot0e7+Hsn3O7xdFOYah bPvGQM/jGhCs27aEvK/zGP+34f/+lG0Zv5+lbNUp6+fgc2X20bocnnMh+wlc CY6MsB1/V61/wP8EcxLNTWppHI3yuNBKczfkvBzp/kv92AD5Jkd5bah1nGyX k6Lso/1mjOtAa8NO8D1F2r3C+sqa8Bzh/3t59oXaQ4MvB/yf6gN6Fvgf8DPg JO51B7+/jIyrkXkS+gzp4MAduCZFer2i9ZDWla8jb0SU/Uw78ftx6Qk1JgZ5 xN+A9BTpexH297qM/5/XHCbG7UxtTGXRe1F5JmpfR7oW+FeTXg79DdIrY3yP qQHtioCu/UqVMZ6yfxPwief5YD23I2QdyZlIr7Unx9oGXn67t5bb91GxIx4I 1rhb4Smi7h7k/xv5fWJ98oFvAvfm2hdhnx2tSbQ2GVbm/bO1KpfWxdIFRzl2 wZX8NkTvv8LrFa23tGbRHp5sv1tJnwLeAO6pPhm+tCivBbTfkKM1OfyNoO/Q vEz7t+VeAz1T5vmu5r39yrx207rtp5D13Qn8vzvkNaPWi9IJjIU+NMo+4PJd fFHfF9fYGH8H0jPIT+z5SOt+oyKtz5UuV3qUyEj3mV3LHf9E/v1dI63LmBqy vbfu36q+42wq1o7837tEWs8oHaNicmkt1ZzrikjrkSbIprHMtK/KrNecF9xX +5u9orx3qn07+R0kR9jXSDbzikOl9evgYA37aWBrLZvrHfLPgn9Nmf0g1BZa 1nfsHe1rNFC/H+P1tdqz7tk00vdVrKLoKOcfxDfyPulzkdZXPhXp9/pHmfvO Xdo/r/CaS2uvU2Xun3Zr3zvGecSv+IxRUb5veth6H+l8FCNVvucVkY5TGam2 GOm+Vnoj6XbU5y0O+r17KoxPI38m6TD1/yGnwwOs/mxE0KcdLnc/dm+F9bDP RFp3NybK/wufLPPzqf/XmPBRMC48RTkbB21iRNBPSg+pvedFpEUR3he/J8rx weZIpxL0lfPVxwfflXT1ioukWEZ7oj2+q128HWUbez1nYbn1fw9SlgGaL0Iv L7eOoVGgZ5AOoF6gB2hT7m9KOpCngndTPdI2//qOm/Gu94JrQFtBOjLGfad0 a2/FeKxR3crmX/16U/h/03cF/0rSFbJHAZdyrY1x+9K4/Al4ArQ6XMtjPK5q jJZtq/oy5R9cbt1H+3Lr50cE34jsLT7UmKJ6C3vvQH2y9rxvgT8hwn3/sqD/ 1/iWEfTtf1GmuuAnymw70jfKsd26l1tXen+Z44yFyBfH3GlpsMekvSbZKMyD nhbh/fjboxzTRvqwTkFfqdj80qvqW13Hc02JdJvUOFk56B+kh7siGAM2xlgX oz5NertuQR+0PcY6MPU58jlRvCi150tiPF/RXOUcVxvwcyGPmZcGY8H9YdeL xqrzsZrClnGizPWkuY10pWpH+nY0lmr//I6gj1c9q5+X3aTGkKvK7YMUjrKu 8kXkvRD2u20WZZtH9dsnoqzPlF5TusmJwdxgPPPaN8Cvkk7kehM8qSiI6RV2 X9I/2vs92utJDLvvU7+nOUezgH4+hlbY9apxXraTmiNpjiB7T/X/mh/JjlLj wih4nw+7rY0Ie+7ydoxldAzejfTZR2N8r5HQn+Oaq33AsMdCjYMqy+8x7os1 R5MNptpQmxLHb1McGO35nlC5SvzNTQqeXfM72XI2Bt9X4fnQuXLb8P0TzIuG cq9nwh5PFHPk72BMkf+L+obm5R7TZJ+ltqcYvtKX6pt8Ouz+RWNOZ769oby3 LmWeR2wMyj+bup5G/jlF/hYmB9+D9OtTAjw6yn239iZOc7+TEfa1ma82H+vx QPqKrchLCH5XHvEnRXteq75AY5H6RPWH0tm/HfRLi7j3TPDiIvfJbwV0zWsk W3ObJ8o9BsvXqUbY/bzijNUMexxRbDfpRDUP0DcTHYytKkO3MsdX60kZ88Ke J2mO1BX6C6Q9tPce7FUrZq/yxQTl1zzlyVjPsR8q83NoHq19hjlBP6z9lLig n9C+yrjg/xE8zyvg50hf4hoPHk16BWVICdv3rUqU9w/Ub2oP4dUAP4msCVHu q9U/vB70EZonzw7uOwNZU1VfRd4z+TDKewfaT5gfjAvf8NsC8LfSK3O9B15R 5D0Bze81r9VezfgI79G8IJu0KK8XNGebF8jROKM9G60lviT/+/q2SevKbo01 44+R7ks6B/2R+k7FCdAaSX2l+sx2xR6XHop2H/h42HNQzTM1fqrdq82r75cN svp/7S/fH+2858f5aI9Bmlvpe9C3IHkDApkaO7WmPBXhWEzaI70FGWnlvldU YJ+msVfzi4aUt1GMx2atL7V3pXrQuKT43BqbNI7+L5CvPuOyYHy6iLX5PdIN 1HE/1D/oizSWa49fc7zcsPti9cP6LlvEeC9Dfi+yCWwfsk/p/erTQ27L5+MV huyn+qD6Wc0PKfc94L/K3S+KR/Yj8u25l+vqkL+J83EDQ54DzgzmKo+FPQao /5c/3kNcfUL2U+rL1TBk3xjZZLJEP++b1DvmfGjvUMsYr5c0VsqXTD5ll5fZ RlP7tbLZVPvpGeM2pG/2mhh/t/J7uSPm/BL5vJ/S7THnwy2f70c1Nr0a6X5W 8zONg+rzNMfTWumHSMfA0JpO81P5gGotVjnKNqqao04OxiyNXb3LPO/QGK25 9LkYz6dlV6Z5unxqZS8ge8Z7Irz2Un+ltY3GbcVs0Fx/VGDn1qfcz6D+Tf2P 1qOjYq0feBg8LNZrWI3zisEgO22tkSTvcJnXKPIB7RL0e9rT1Txc64PXYu1L r/mIYqJoHV0r7Hem9/VwmdfuPcqDuUys9zCWaq4U6/Xm9GAuq3Ffc23NfTXv 1djbLphXPRH2WlHrRM2Dase4vkqjvW7Uc4XL/f1lBraamv9qfq35eMPgu9A8 VL56B4N5r/bL9Z19GeuxX+O+1k+yCdK6W+st+ctKD6u1ZudYr9M1p9AcVfMK 6TDaxHrtLd1D/VjrN+LKXV7pJbTGkq2x1kTy35duQ/pp+cjuDvxn96b5jBad z/JrmWNctVXfVZf/oX9SZl+xukm2x5Z/WGmSfcQ0Lp4fH7nfp7nMq+IdX/JB aA+EvQZ7n/ytQtbhz6chXwS+UHv+yG+S5HNDNJ/SvEpzwX3I+T3ecQ911oVs uuWbJn/xi5PsM665kd6T3pHinUqn8meEfekuTbK9vXzZOyTZD0K+yToLZUGZ 7VnuD+Zv8l+/PMk+7Ku578/xXj/rXQ8IyjOXPJeFrMMfUIP5VWXmmOT9Qnpc eFJD9hc/lWyf8f7wjIPnq1jHi9uBjL6ljpfTB/6HFUOOe62M92/al74zbB3F a9DXQt8Z4XlKZtj9s2LW/QjtjlKPsbeHvUaW790FSfa/e7zEdmePlfjZVH61 1aeR+Vm886sP7B9j/zvtYcrGTXoG+Q42SrKN/Qn4/4h3XEvF5uktnVWJ41qr XHfJP6DMY4hssVZzr5WBzUn7EscTqsu4kcm4Fpfgcast9b9c4wnpQMWD5F63 aT8OfFugt/821vWq/nNdrOtPtuxt4ekV6JA3xJpvGbLycmh7KZ4XXlFif9xy 7nuM8h+Pt72I1gBj07x2XgT9e+h7oT2neIFJHhfXx/p+SyIcx/1wmmO5n4r3 3pv23a6C/85gr0F+M/2T7DvzE4U9muazwaYj/5t426xonq5vW991AvXwVPC8 O8CH0txWU8BR1M8Z8E/gh6u4HT9OW/+b9tOlwmuVV9Kss9CYI73sRmhfc5+v 4a0ZcltWm1Zb3UEZDsY79mgm9fN4iuffWjuNS7N+QeOh7JJkx3k23ntdt4Yc z1BleYL3OzjTMabVR/2NzNPwLeJdP0PbPkzZIsOObahY5Y+V+v2vij3vehKK 5Fn+jrctzhrS9eHzYSFDg+HvC36U9D7kzEDOllj32eq7pVvR2K35qHQaGos1 T1WfLH1DQdh9teYAsmnQ/PwBZPVS36G1pPolnndWjNe40iFqnatzSz5J89kl l1C3H4FvD3Si9cMelxWvSzG5FNuqT4X1pq3Kfc7JwjSfdbIynWfleSZGWLdR EXZfr/MK5sU5JsnXil8f5z5c+onSsOdJPwW6C+kwVpV5XpaL/E8VG4P7vst9 V5d5rqR4U/fxPNeR994Sx5OZFGM9ufzm5UMu/3HpyK8NO+abdNg3hK0rvLvE Ptx3kfYvsQ/xPSU+X+XjNJ+x0rDc/vXys1csFsVhUQyWD3jGh3nGNzRPJk9P rf9JD5Z5TNHYsr/M453GvfPxCMOee8gHXT7q8kNfku6Y+IqrNjPdvlK5wZrp 4rDXTdKv9whbP5Yf5bhW0s8oDo3i1CgWzeXk7UV5hkEfSDluhudB0s18d4cr +Ts7v0YPe344QO0/zecPKuZHjyTH/dAaVfNOzTkVm+G6JPu4aew6v8Yj7yu0 2zu47+zYQAcc9hpH6agAzw3upXmX0pHBfe+hPb9U2d+A9PwakxTP+QHoc6D/ CP1fyvZXvGMENw7GTd1X8VG6JNlfrHGZ9051hpfmctJ9az6vmCWdkhy3RHpe 6Xt3w/NuvmMsKr7ief102DrqJ9Md/zT9/+bLYc+ZtUYWlp5tXLpjeiqe53rK mhHnuaJitikulWJS6XyM9+IcU6gN/NdR/qERjoV2OsXx0HTPEcF9B1R47tmZ 53hT9gbwv651HPhe8KsR1hEoj/Y4FMdOMewUP01x5hQjT7HmdKbQh2k+V0jl HRaUX7G+/gniMEifqXW97qW1vbDWNIPL7A8uv/BHqP+V1P+BWJ+/9pvmCPRX HyiWSLzjZU8Ar493bO5LwJcFtg2FZbbBmVfh+AQFSfYd6wDPlYGdzELqJybe MUPkEyMfG/nFyOc+J8l+94od0iPB8UPegmdDvGN5DwTvSfYaoI3iaQV2FPvg vyrB5xMtQP7f1H9L+D8Ep8Q7dof84DOT7ONWu8z7mR9Qziu4tiPjZIXjHFRP cqyDAfR7n5N3YZn97M9Vsh+i/OzPVLKvfWV+/yHNOp8jyDjK1Sbk2Bi1khwf 4yXK+WW8Y5ovp1wb0ryO+D3WedaBu1HPh2SLobUj6Z+xjgXSQ+MFuFmx/XLk XyTfnHbBXE56hHWB/khrmnspc5j7Di+3f1KrwHZiO+Vpn+BzvpTvxSDviPLQ +QFIMRwU+6Fqkv375Bt0SWBHoXgsn1GW98ocWyI5yfEl7iu2DuHeIN7T8mLH f2oG31z4v63wWVX3VPZ5VT9wj3npjuXyDX3R/mBvtyvtbUhl2+DKRkbtSW1p AfVUSH09ofFX/k/xjtN7jjLckOBzNLqT90nyfAT/u5mOba29ZvkHKWZ5Ac/3 MW2gFnlvJG9P5PQIbMC6g7sF9mPt0h3nVzF+UyjnreB1eg7ybopz7JQt9HWf xnvfaRf49sC+fRv8b2uc4/k/gj8Tnh7wfEE5WybYx/mx4Ps6V+G4hhck2Ic3 S3PMNOsJFxXbzvAT0iRkXgTPF2X2mZOvoPzmasO/Pc06UPkFyidQ/oDfag6f 4DO5PqAMP8U5JuHKfMd7VaxXxXhT7DbFbVtbbDvANYrFjry8OOsQOqQ79rRi TT+GzOPMrx6OcUwsxY9Q7IgNxbYx/Y70SuidAxuemuD64MfA8ynDcWQ2QmZt 6BdCfxz6H9zru7Tz4YtDf/D/Ca71EU5Pxlov8T/4dwf79Yo9UyfJvqjNKzyH nVPmM2IOgh+iX3qcNrC5svOPKba+aHSxdYjPp1nH/hv1tjHsNYl0WC+keW9A eojFmotHWN/0Ypr3GKTzkG3UGq21y7wPoL25PmXeK9D+4Lfqi5C7H54S/p9M uqrCexdj0qw/3xzr+Zp0Gnch81PwavWZFX7u+eT7ETn74v08ihsveQ+WWm8h 2z2tAbTX93Kade8b4f0mfN6VJzSQZ1/Is++K9ZmYOjPlf6XW63wW9CGP0paW wNOBe26TDb7mhORdyX1/inf/rjM0Nce/l7wdSxw7pz51+Ah5N8HzIeXcLRul sNelx+Jt1yibxqcow175yJFnCHgH+EysdTCyMfw8wnrVUWnel1Gc8MP8/zD3 +pUyHI73/4PJu76y+9BD8bbVk52e+ucfNK8h3Umb2pxmHbRomiNIt7NR5wCk Wc+/KcOx3WUTon5UZZGe6poSx8FqwXMNyXYsMOlCz/vEhK03+yHDsexldzRd NhO0u18rrA+Q3bl0AoqfWgncVudCIO+X4J3+HGtfY7WlR4qtb3+YdH+sx1Lp sBQnZy7pFOrzKuTsht4QnnU818Y069IVN/c36I2hH4x1frXDTiWOD3oh9PYV 1p/VK7N9v9Ztj1KfT2U7FpvW1NI/Sg8p/f8NXOfIewl5/4n1u5LeTz5p+l8+ ajeW2LesDTxRYfu7ad0Uy7v4Ps37Ke8W2954JunrxbYbf410XrHtgT8gvV1+ 93oO0gRkxIWtF9WaSvso2td4qtg24k9q7ODZN6V570znCSneW2/NxyusL7yY Z5xabDvkKbLD4bezlLmVnoW829K8t6J5ZGrY6yn5F8lWSOfyfMXv1eKsC1Ks XMWiVRzaW8BT5GcV6zi7ip+r2LnyL/8zbB/zYvrDW+g/90c6FqnikCoGqc6B fD/NZ0GOKnc8mOfLHeP8dNhxzvWdRab7W8uhnT+Var8zxeApDfpSxbQ4EXZc iwPwngE3CtkPVf6r8kXV2WJz03y+2KXQLs61PUIdnQFE2T5D5hbyngyfdws7 H5uzOOjni3RmEDyfwhNR7nMq5Af3Ovx74ef2oVrwVMAzN9LxMhXPVDHfLirg 2RKtU3kaniqJ1pe/l+8414pxrfPQ3kvzmWg6D+2dNJ+JJv97+WTKH3NWvuNZ K5b1bHAS+AXpCZGZmGg92GwK/o/6Z425+Y41rzjzI+DJSvQaZAY8qeBfpCfM d4x4xYdXPEjFiFRMyBaUeUyi91qagV9K9LpWZ7LNSfO5bM2hj060fvyDfMed V8z5YTofM9HrlGsrXEbF9y7WmU2JtieT/7jGN8VZVWwYxYVRTJhT9BsZSY7/ E0f9D0l1fBj58sp3V367R2SLnuR4Piuo/6Ph8yb8532L5Vcsn+L/wE+k2gdW vv61gvG9KvjJVPvD/ouc/CTHHZI+47806zQUq/tw2PG6FVNHcXkUV0e6hH/S rE8o1LlUPMvHkY7Bozg7irGjmDfyy5VPrs7Nm5nms/MUn6BGMPdQrPF9Yccb b0YZxtIvvMt3l8OzdEHmHmR+p+8v3fpK+SlrzFcM2CL5lKfaN/bduj4jQ2dl zJLeJmzdaTn5+iDnYKTj4yoermLlyZ++cTDvlS9+k2C98B55/yXvFWWO0av4 vIq5Vxs5NyDnt0iPkzrYQmOl4jcoLoNiMiiug2I9KLaD7NCGxDoW7nvwHiAP TeR8XJn9YceWqa3zuZC5INJ2Go9Cv7vC8d2Phx3jvSmZXky0rqWcshVSPyPL HKPvkbDtRuQ7rPOO6lfY/mem+n+Ny/xeNd12jQvVzsE7kfNkps//0HxMPtQ6 Q+lCycv0GRWarz6Q5fPJdDbZ3fLjT3Xc1/l1fV62zs3+SfH54r0H0ZMydufa G+l4o4r7IH93xSFVrATFSfgQfFmiy9CDtCDd/OnUw+9VvN7XuYhvp/lsxI7w ZMDzMzxXgjskGj9AO5mhNRT3vT7R70bvRXaa/eM9nupdXRe8r17MAYZW9pzs QKZj4sieWX418q9R/3Bzovtl9clqL7cFbUb99E1BX604bPpe1bHenui2JZ56 2Y6zL1vTCchqEXL7kR9A/0T7AvyV6bhIss3ey/OOCXwnl1EnfRN9psD9PFcW Y8od5L+JMj9b2XM7xU7UuROHkPm/RPsYSOYennc+z7sqwueBrgz64x3Q68Xb zqEvMm8M9DYV8lEFzyzz2Sy/hH0+i/aTdpNO4j6/wp+Q5Fhef0hvmepYGXoP Vwb1r9hXio2l+Fc6b2Rn2GeO9M5yfAXZFr/Dvc5SjkvLfC7HnrDP5ijg2cuR ORueZ5G5S20U+px8nyWgcwSa0OZfSLTe5Un4kxOtT6gJLgXP0vod+S8n+gyO efk+n0N1NBKe3ETvRyj2g2JGKP6D4kkoNoTiQqjd9Qza6i0ZPsdCttnjyPtY Fe81Lsj3OSU6o0TxLZ8Mey/sEsr2SqL1o5/A81P4fBj08+ut7HivudRvXRX0 XdWpn4ZJjsOm+Jkar3Yi5+pE93Hi0Xd5RfBdjKYMRYneB3sRXCvR+2OtuO/Y ROtfR0EvSPTafH6+z1nRGSuX8CzXUIanKUN38PWBjujKDJ8LIt/VzuBXoc+G fjEyxyVav9s1y2dG6rxIxYU6EnZsqDnxXstpHafzS99N8xmmitmsOM6K2/yl zvcN275XsSUUe0LxJRTnQPEaFOtgOWu31+McC+JCnrcTch9D5uNltjGRvZLO qV6U5rOq68pXA55H+W21ztYNe0/tM+S8EudYCorlrJjLire8AvrEOMd81rmy 78b5HIR/0n1ehfzvFMdCsS0Uy6JUdY78hyPsly9fffnmr+Jep8Lel6ya5bOu dc51T8p3L7yfVNhG4q5ix/8eyn1WpPn70Zzx3zjPG/en+1wT+bcqtsFDQfyB yCzHGlOcMZ0HvjzNZ4LvgL9dUJ4xZf52ZWNbO8PnWskvuxzcHZ4n+W2d9D1x 3pd8qcz++5XgPygfGXim8n80/J2Dev48zXvC8n/6T/740KdDf6XM/bfsRR8o tm3G/aRb4T8ZZ3ue0aQr07xnOrjYdjWPan8HOR2Dd/SpYkUoJg51+AX1/1ac Y8s34zuNjrMPjmLjKY6e4uPJxkoxnhXjRvH8FONPMf0Uh0+x+RSLT7GpFINJ 8Zd6V9jerQblvAiZzaXPLHM89cgg5oPinccGMSV0Hvu8NJ/JvpTyvBDnWHyy oVY8VNnCac+8Tdj73Hk8Sytk3g+9F3Le5L6ZsX7uY2E/u+rwt7DrsQlleDbO MUOWIP+5OMcYrImc1sh5ULoa+A+Fvd/9TLFtgZ4mvbPEZyPcQRorn/d476s3 R+bV4ElljpuuWOSKQ6446IpvrtjmLeCZGuczCNYiPz7O+84fw7MHnkul15Nf YNBOWqmvC/oExZjXmR+KMx/DfY/R14UpxzLKPybOMUMUu0WxXRS/RWdxdOL3 vqQdy7y/qv48DZlN4u3foRgtituiOC1F0NtCfyjCcZgU40mxmBpT5t1hjy+L uddTcY6toZhPI1Ic96k3491w3t3SWMereDqIfXFvhs9P1TykIMPnyuvs+HYZ PkNX/dUJ+qsmCfZl+pwyDA72hpan+4xYxSWYk+7za+VfvyfT581oT6QT7WSZ 1heUrz14Mfh67QeUue3Lj6CI8u+izAPBGzMdk057KHvTHVtQ37Lsv2VftZZn 7Aj/XSk+W2Ct9nPBC8Br4L8sqJ/N6T43V7EdtNE6Ivgez4gn6HOuhv5a0Fe/ D31QsB+0ENwmaGMt4BkXzJkVI0exgRQnpwNlWMqz3FnhGDCK3aM4MH8qzit4 a4zjBilOjWLU/KWYsuBtsqHJ8FnvOuddsXkUr0fxeb6EpwF4fozj/SjujGLO FMM/mjK8o7FG88MUn7fQmfr8jDL0C3stviXO63HFw1a8csXEXlgexCqUrXqG zxiT31abLJ9DrzLoHO9ZaT7LW3G1Ff9asa8PUw9Dg75uE/RW0D+FPkw+mMEe h+LNPBjEvamJzA6K94XML4rtx/056cI47xdqr7AqZXievG+BX4vz2KNxZ2yx 7cdeJn2+2HZrI4utwwjHW4+xBXwgzuPZV8X2j14n3WGc93W0pyO9fpV46/aL uNdLQb0NBL8VzGnXgZeAt4DHxXlM0ni0oNg+3fNJ58RZByH9w4U819XBd/Fp sf3QFxc7xsyQIJ6M4iFrXqr56RvF9rGfQNqRul2i+TbvaJf0+fCvjPF+woo4 7ylUojwdg3rbAs8l8CyJ8ZkEisuiMwrmZ/q8Pe1zyZ5FceFl05JK3lFBfb4Z 57mC5gkduO+n4Bu1x6DvKOh7Zxfb33wW6Y2U9Qloi5Ffh3Y1BJ4ZZdZpfRVn vVbfMsduUgynzzN9Tp720SYg84Fgz+u1dJ+vqfgzU8i3Js32NzUow175DcZ4 D21jjvfRVpR7Ha994S+YnK4q8L74NcyV1lb1OvdPFtmJyO5WSv8CfV1V60NW kq4usI3U6Uq0ffXtUY59+28lx7/tCv+aql73aS9ud4bbajvoq6t6ftua/nBQ rm06OkH/sqp1KVuKbaO2lTSSeWVEkm3E4rQmlN6VvvpzeFcWeP9e38HPgfxV 0L8ssD9BJfgflY4U/gasRXbyW7son/15/gxQJn+3ct+vqloXdHmR9x8ugr4c 2ucFtgO4G56vq9oXWGeC6mzQUsr2N+X6EXp9ZI7I9bpCa4qiQp8X1BJ5/9V2 PFnZVetsI+1fj6ywTv7jWPt6L9X9C2x7+Cl4aYFtDpaAlxXYtmBviet1E/f9 kzo+Vcl1vgKeLwpsu7AMvLzANrO7KNv3/F8bnirU85ECn92pcfLjDI+V2YnW E53XEdXjuRkrb65wbHnp4co1XyXf83neN7sC/Fye96sTkXmwwOfc5SV6TaL1 SA/m6g2Q01h64UTrhqQXuhze4XneP/+Bcu3g/1LKdpo2FqYsbanXQ4UeM+tS b9cpXi5yWoQdE17ybiJN4r6HCnxGns6vVfyTb4s9Z9XcVfOl1rzrXVV9Plf7 Isf0aonsc+TbW+Bzh3/i958LfF6D9hSWxdq/+FLK0VPrD9Kbue4ib7F8GQs9 17sIeT+Td02BY1KpTe0ucLvaAd4FbgHeDt4JbgxeWsnrXq15Zc/QNOx6zuBZ finwWdsq754Cl/lBnXOVZ7u2o9Dvy7BtewT8vxb4XF21u58K3PbOSVcn3WaU fVIfy/C8RedNS6k7UT4j0MdUto3cWbWLGt7DmR7vPULtD56BXrOG9x96KmZY rv3PtN76JGgz2gNUPAjtA15I274OPENrcd7XE5VtC/YncmrU8D7D8njbhMke rCv1GSdbZdKbqjFflI96tO2pbtQ4QlqNfEcLfKZeFXia17AN2Slk5tfwvtBf 4Fo1vGcgGzXJli3WCq0Fc32utuJV9AzKWSTdOrSrSx33S3748sFXDAztZWof UzHA5JMvf/wu4G659udrB748136cc3mP1Wv47Mg/KENeDdvdyqf/lkDmaegF NbwHpbWK1iyKPXYtPDfm2t/ub3gKa3j/QzEAbgrue6P01uDp4AbU7W3gt6jb qCLb+zQr8r5rj6DM/yCnqIb3x44k+bvSN7WJ9vAsPLfKXoXfn8i13dm90L+p 6hgI6clur2qrq+JtIyj7wMJkfxv6LqZxr5dzfT6ozgfX/vYUnmkD99pW1ef7 yAZP9/mqxHaHkiF7vNJC7/1eTJm/5b6P5Podywbh0VzbIWiudyzD871LKedz uba5k03Q8YCumOvqW9Wvxif7u9I3dY5+I1vtkXumkPdwgc8FHptrfbF0xTfT fl7Ufny0YzIOznWMRtmJHMjwuDmEsm2o6tgIQ8Ebq9o2/hDvelNVn/vzN/eq pjbFvYoLfbZhK57rUfi/q+p4KQPB31Z1zAqNyfsD+duk7+G+fZDzIfW2parP oZtA3Q7P9dnJ70DfXNVn6OhME9l1K+bu6njbQMj+IYH/H1K5qec3yt3GZV/R Qbr6PNuR36izZat4vRdPnRwo8JmerVId80vxvrRueyHD82rNr18McILsJEjb 84wXpzr+l2J/RSFzQp59IArifLaQ9pm+l10S+C7k/17odWH9Is9xRmR4nqM1 oL7vfRrHuXKgXYH8/6jPVK2fwGuRMz7Pe09amw4P8mrNpBi7WjcVJzrujGz3 LqMNjM2z3+Tk+l5f7iI9Uug5Uj3KcInOAKzlOF/TqIPrC2zL3Z5n2Zpn+8W5 tIcNeY7XoXXkvAyvJd/T/mme7UunxDumgGxBF8fbjkE2DPL3Ws19N3Lfvwsd A6Ex9x2gc2PybDetuJmKn9mYtAt552R4nqfz2mWTJbtZ2dDeJP8f6mZQTeaa tNcnomyPdyX048W2Efsmz3pj6YomZ1gXIZ/+zXneq1Ps1iupx9tI+5fa3kc2 eG1THb9Mscv6lLrv1/6gzm/WOc43UPY+tL13kHsh97sD3CnTuFWhx02Nn5em Op6aYqm9wT3zuapyv7OUuYbiqsA/Cxmjkiy3Pfy1atnOZ1iC4xgqhqH2AZrm eU6oWAyKySBbkQ7w167l81bapDrOmmKsZZK3eapjRNyL7Gsz7Vd2vNB6jgso W+tUx3dTbLcWqY5boZgVskW8HN4jxdaBvZ5hvdPJQusALtT7KrVNlmwOZX/Y Xr5h8LdMdWwOxeWQvmpCkPfuUtttydYxFr7ams9C61fqb1Q6hBk812Gtu2gb rWl3j+TZ53VSrve6tM+l9fG4DK+Rp8J/CP7d9R2vRHFLZLtyqtD6vwZF1jeM DfgHl9pWWnatsnG9QT5mxe63thS479I8/esCz9Uv0XyVeu0Lz3r1TwXW72ss 1JhYCP1i8NXwPE86r5Jj1ihejebF3xR4bqw1wfoCrwtWFzu+1pekoUTHNJTf rHR0zSn3qzxLLu0zJtH2M2HSx/Psj6u5/9oCz/87SqcNXx3aUidwrSq2Ye0G z2N59j3TmmBdgdcFvwV7i9pjrJTofVDtgbbh9yF5tnOsnWidsvTJUfSBvxU4 1kwYvB+8ENxCc5IMzxdjoO+DPk/9F/RuyY6JJ93P4GAepXn09gLPpdcX27fz 62KfBSZ7LdltaTz8scBjYkfSMXn2+bmJOr0Nntrw36CzvKvYJrW99P959l3c St4fChz75s5y89eCv0ai9eDSgWst9VWBv50uyZ6Dav6Zkuj9A+0d/Flo3XND 2swjpfZpkP3/X4XWGTcqsi5zStCHJHOPhqQd4B1Uajtu2d7rnN2/in3urs7N vFV6PNL7Su1vITvhB0rtuyBbaOlr5wf9p+xmu8qfi/xZsnOC1gneqfVtS7un vte66gulAzw/fhZ4DH2aZ18a5TMoZWt9lewZiz0+by7wGK0xeWuBx+UT2pDJ 89nb3ajbetRtA+2F8/uzebZRnUI//1SeY39V1/5Vnm1BNQ5/X+CxWGPvtgKP v1rnfVfgtZ7G840FHtPrMw+5jG94WprnUBsKPI9qS/pMnu1eq1LWFjxXR563 TqL3ObTHoX2AtzKso5au+u0A65zsSqSXwd+F8pdVsY141UTbDchm4CrodarY /lt9oeLmqD+U/abiYcmG83fKk1nDdvGXMW4OKLDPyhTSBwrsv9OasfuWKrZd vDudd8l3/mnIZzl+HewvnNX+Y4ZjWGwHv4H8fuCDms9nON7KBcjpXsX2sV/F 255VfaJsnzTHWU/6tOIG5zo2lPw35MchmyjFz69KuXbIPojyjpNdrOwceJaJ uT6r/qMy2/Vsp52MJG8HZLYkXRdvfxXJGsb/F0KvKPUZmxuCPRqV66ECl+0O aPcX2B+5C/SBBbYV7kT5+1Wxv55sc2XDJdvR3HifE3/eLwaZo6nriiiv1bVm l89pO8q8PNe2RZ2R8WCBbaplj9Qf3m9IezOGz831WPK39lqr2l7+ct7n/ESv 13Q+/Nkkr5119pHGBo0Ln1MPy2TTFuszjj7L9TlHh6QbAT+iOTDlXJAcxNNA 5uJEz+EXc58lBbbhXiQ9TYH9eXrwnuNq2CZH50j/Htjw6Pyld3NtC6GzxrSW 0pkP8ynDTM05Y31u9qFAly4bKrWFr0m/jbf/iXxPmiM/uob30a6o5P5Ufeku 7e/lul7aQY+tYVud7+Jtl6w5Ss9y293JRq57JffR6p9vpQ5n5Hr8Hkpbmpxr G2OdEy17s+dI61Gu/gWBjXxAV1yRqBSf8Xzeh5r32x35ubzfE5SnZob9/DJT fF6d/LfX12UNlm6/8+QUn2Uu++71OT6LVmfSPoectlpbk9aG554C25X34v9u yM9BflPa1fVVbJ9/UcCvfI2gX1PF9uotwTdWsW3/PaWuP9mkXc5zz8q1HVwz 5P+vwD4Et1byPF5z+F20mYm89zjoO+Ntg6i2W6S+KN/xiYZXuFyK7XAc/rhk 60kK1aflOy5SLY3p+Y6fUVPzhHzHt6ituUG+Yy00kO4i3z7zbcG/5zs2zSXg Q/n2L20J3p/vsyIuBR/Nd8yCNuAj+Y5r0FD6kHz7YbQGH853zAOdx6cYSk9Q 3lbQD+Q7jpHOUpT/6jPQX63kOHSKQVesMSLf8Y9KNc/Jtz/oB9TTzQX2WbgM +rF8x8KpUN+eb5+YBtRzK+nnSD+Ct0+B/Xouh+d4vuPm3CDbTeoyg3dRpvEl 3/6U5RoXwPPBdTVG59sX5zB1+zZ1m6RnJO/TyO9N3iPw3JhhX7d6mg/k2+9n Lve8qcC+dSUay/Lt03+hdDj59vnUGKmxMhM5u+LtH6jxtTk8v+X7fI5G0lnl e0/vF9rzPHju415b4u1joLlse9lWVLFP8Q0pPutU8SIWkfYtsN/Tx1X9v3BJ nPsy9WOHobfPsI/gW7T/MbT/Bupb6BMWyGY31vb28gf5jvR2vtNVuR6nL0PO bVXstz+Sb3ZJrn1Gfoy3r6bmDZvB7+f6m7+ast1bYBv84fAvhB7Dt9iMMvya bx/v+dobTfW5qFfwHXyYa7vR/oqvSPtYxr2awr83376v7yPvxgLbozaB/ku+ /WaLa/ncTfkUNJa+Lt9xynWOp3xrn6Kcw6n/JhrfpKOinJnJ9h2WXa/se2VT mgO9UbJ9gcM86w0F1jPfRj0szvWa7Yd4+/4pj2xN98bafvg9eHsV2I9RZy9v C/Y9dZ7z9mDfswn3+n81XXd8FFUXDTXJZrPZ2VlSSHZ3ZpbApmwICKhYQRFE mqgURUREUVHERlEp0qQXpYkgKF1AARFQQZQiKhYExYoNQYqA9CLgdw7nfX/k Nzdv37x58+aV++6795zhqEO3hHjtPovIpyI3H30lIJtYRTyr1FUM+TG0wQN4 3nHccwTyTnw7hm4dZ6ySX+mVkD/pyp+3MuQyVz7ObdEOj0aEHdIb7f9wRP5R fSE/EpFv1e8ca7k6xyYvJH166dt7P8+dMhVvmGqLF4I+r1Uhl7uK+asAucSV f3qXdO2NL8UTo/z7g9oX70Ydv2BMI237yF/XVdxhFci1XfnXLkOebFc4n2Gm OcLA3J+u+EPqrIyHIOYdYyKCyHPOEY7ocYyRXfQfraQyLjgqJwT5X0f4tPSD p/84fZtp2zviyL5Hn+f+uG877Vvp8q2nXz35NOlXzhjTPXjuffjtCNL3Qv7T L/kB1P8nxktUFkd0t3TxRM/x6x1Y/33p8l/ns3vhOiVTedJx72WufH+zbHGU Mu7/KL5FvqvYUWJ/Mn6AsQOMIWhpZPpAbcqVHxR5beZWFbf1U2jzByPynSMv Im1ktI8dR5kRVzGudZDemrbHbOHyMu6IMUdrUecc5PkCdT7kl82a9urmyHNz RBhajE+6xeT/B2VWd2XfYyzdRlOf1sjTJiJ8r0noC1tzhU/zB8rsmq4+cAz3 Friyf12EnHAVT5Bpiz+VmATPopwMrk+og4dv1oll4xumIE+xK4yGGRjfT0QU f/ED8Q8jwj4J2OL4JM4B/YY+yJXvUDPk7xcUdkCFmoo/uxLXaEL6A/WI//DM IldxR35bvLDEXfDZ4sMivsJ/hfLHuQL3XkD+Wq580BnHts48K8MWvynxG27B 9feI4pb2ox225V5yv025E8+7AXnDCfG6cmyRR4V+5iM53+P6Xon8zXdBTz6e rjhq2gWe9euMhOv+sXTFJ9PH/UE892hE9oIRftlMP0Se0+mKuWVs7b8YL8cj esblqMvBkOK/k36dPfDcoSXnkoj83B8o1X2M1T2TrpjDS7Yt5A+4wvUtg1zR lS/oQ6jD+YhsXi7SU1z55o30a9xyzP6B73AAef6tKr981p2+921RwIYMnbPQ J38Y92249vTrLIq6tI158iPMkwVo2ydR8Dz8tiVFXDJ/R+Sz/xjS/K4wiqf4 NRdwHrgl16x/KPc0fSEjekZ31HlvRHviQ+km7gJ1Opwu7IBLe+xipdGv/nE8 dxrK3YQyJ/t19sZzN/KaHowIv5rcUvRhiSall1A/qY/rY7h3NO75KEVtc8xR +zCmhbEtjGUjLmJT3OslhalFTPhncK2Kd1+Dd8+povH6j6Mxyzg47hu+xvUi 9JbsgL77636dtXBNaY7rzojiitg2Zxy1TwHyXHTk9+j4dX7GszN+27OOvq+P /cGRj2kG6lAjoPf9kbE1KPNUVfG4/hYRxvLWMnGl83zhZty7NaJ4Pj7nqHkW ubroY+Uktbc44Wh/wfgFzuU7cI3nal/KPSk5Zk9FhCtOfnDOAeRw457jpKN9 xwEUfBJ5UlKFId34/3tn2vwjZq5H+jfsw0jfna44JbY7++9xR334T6R/jfT9 SF+PtfulsLjOucc65WiftahUvxPL4n70n20R2UTIB/ttRHjLq5H3AcdggPjE h0EuDMYTNIjK3jUL97b2tMfw4TmfQb4V8/NspLeBfBfSX4XcypP+OgNyC8hX QR5bIjvSGLTHTKS39DSn5CdUHvcuHyHtbfz1I6YFroOQ7xm8y0767Bj75zBc 78ZfTbRpw0LFAjbF/LaDPkfG1ppLnyNjl3gdZbT1dG5agne5Ky4/2HTU/1Ok t86WL09Rnvx55iD/bZ7OgN+AfKcnG8qHuPcaT/uoTkzzpB/fjeu1nuZlP7G9 Id+BMpdjHpyOcpfifTfh3us82Q7WQr7K0xibhvKbeTo36of2KcF1NPKfpm4D eRyui5Cnoye72CuQb4F8GeSFkDt4OiOZD7mdp/OMeZDv8HSecSope85YXBcg vb0nG3EG6rmV35Hxh7he72ndYhxAwrTD/HJhjyxG37ET+lZcB0ah/brjrwTt 3x/9czT0hIfYz+kvaeze9D3Jy5P/yQik3Ye/Iu6Lcb0ff8WQJ/A8B391uLai TTrnCvfzxaTs7jPom43fm8fFMbOgXLgmbyI9G/XfiTrXz5YPlJsnf56nkPeW uDhu9tCnydjtydvOONdZuDcH936HexvQlxPyl5A7Qh6NvA/hrxT1GYNrD/wl GStG/H62EeN2kvp9N8qxkP4178X/WZC/gnwd477wHcdxDSvS2CKmOcdXvULF Sd+IvjocZd+Dv1rUB+ivas7CXsD1XvwlkD6e/R1/5dS1kKdXXLw8P9OvNq6z sHG4Poa/2sgzFtdH8VcGeR/9juM6HzkMuWdc/DgH6XMd1/nLM/h2HVkPzgNo /0aebO5T0U+aejpffA/yw6avvgv5IU97krWQHzH9+X3IPcy4WIlyLvdkC2Of bWD6LcfQFWYcrUb+7uy3yHMFnl8Rf7ehDu3QhuVxnd2s4bmMeVbnsPIxzyrc +wDSayJ9DeQHzbM+gNzTk5/EM5CDkLtC7oB76+LeRrh3HdIfNe+4HPK9ns7+ +a5Z5n37IT0AuTPSW+PeorhwfrhOku+Ba+XNzIu/OPK3QZ7iuPBn2kIujQuf h1yq5+inhj7bG7rlf2jrAOb551B+mHMR371Qvj308bkV95bExU1/E37P9OTn RD/EOnnyReQ8YZm54lmUE4L8QCX5lZebPLGE5uC7MU77I0828vREnurok1OQ rwJ9SJDW2NNZy1u2/qe8AnJX7kmRf4ut8z+e/X1say7mPPymrfmCc8VJjIXe SJvA+AykP2me9Qnkvp5sEJsgPwX5CchLbc2VnCeX2JpDOX9Ognwj5HOQM9EO X0Buz7Fmqy3YDi/bane2eX2003/se2iryUhv4sn/qQHSU/DXEumfo//cYPpD F0/PYPnLbP1P+VPI/Tztbz/jOgN5FOQPIfcy/Wc95MdMf/gI8uOmzU/gnavj Oh7Xu1Hny/HcNvSnRJ77kcfBb29Dvo/zMOT2yFMHea5Fnk5h1fVSPZHnOa6V GI9bIT/r6WyMugO5Sag/1MVccxPa41/ulZDnCdN/7gqrLdgOfH4FU4c7kV4P clPIHWkviWufzLmwiZkPu+F6Q1zn0ZyzbzTz9jNhzTucc87jWWvxrNNo1qfD mvc5559FPS5HfSbSLwvpE5FeF+mnkX818u9D/mfDmt85t9dMF+cnMdH6hDW3 cl69iPwfIP8F5K+E9I3UB7K1zl9v1vrKSN+E9CbZmiMbmXmS819jMwcyVob8 soyX6RvWPMg5sF9Y8yPnxgTkfex7KGcI5Glxxe08FdaaxPXogll3uP70wpjt g/QByNMdeZ6LC8viFOq8CuXsQZ3vQ3rfuM6UyV/xclwcFlwPe8e1Jt6Ddx+Q KczTB5Dn2bjwKE6inHdQzh8piiUllyHjSRlrSE56xhsydpA8mowfZLwgeTQZ M/hkWGsq11PG4ZGrkrF4j4e1rnBNeSKstYTryBk8aw2edRDPqon0vZwDGTOB 9HUcCymad3l2zrm3NuSznnBjOHee9zR/sv/+66kP8yz9kKd3z2eMGuSG2Toz P+ypHQshH/G07nKOPOFpnmR/vOCpT9aCfNRT29aE/I+n9uFceNLTfMg59ZSn eTUJ+bQnvLI8PPcHrhHZ6u8XPfX5MshnPGHF1EKevyC3zVb809+edD+HPJOs A3EpIO+B3ApyCeSDkO+EHCeXKecZ+hBD3sB24DtC/pNzF+QiyPs5z0AuhnwA cgcGXDE+EnIlfPf/0M7rIadAro70HyFfyThPyH9AbpYtvfW6uHTXGNJ/5RyN 9AjkXVw3IVcISz+mbuxC/t3TvBCF/Avka4i9BPlnfkfID0LuH5eN8WHIA806 1SssHZr6c5j8SMh/GfL3oN3GrL+PQm5l5qscjIUWkOtVlt+0Y3StnsjT2qyt OQnp+7Rbp6LMLZzTUOYZn3Qy6mMn0A4rkf5ris6y5sV1njUZ8huQb4FcBfJm fsds7WMWxrWXoc11QVx21waFwoBpgnWzKtI/Rv6b2VZYaxfFdT4yJSzuUvKW hiBvR546yPM46tzWzJnc/5Frh3tA6kfN4tKRJiXV794ola7UNC59KY0cNSin ZbZ0q5vi0q+ol90cl242Oal+upRxCfSLi0tveYL+e2bO78NYGcidINsocwd1 GJRZDfK3kOtx70OfRuTpSFsr1u4X0e4XoU/2QvqtZm5/kr6CZs5/mr6FkNtB nhoWFyl5SGkvnx+XzXw85LmcHyDPDgtPh+04KywcH+qm5MuaERdn1qth4e8Q eyeKtl0eF+bJa2Fho1B3mRkWPgixQchrND0ubiOuCU+bdeFRpA+Oa8z+iz7w Pt7xBPrAWcjvQj4M+THkGRrXnPMQ5AFx6V09IQ+Jayy/Hhb+C/d7F8034req hbb5MiAcvxjquSaecil4nty578blM0QeYMaw0X9lHOQ5kF20w2jIsyFnQT5H mznqczRFcbevxhV7S46smXHxZI2B/BrkapXE6/VKXNxeoyDPgpyO9DvCmkP5 LgWoz+tsf/SHl5H+Zly+euQKZvwP/X5eCQvnhRgvC8OKm6IvEbmU34/Lh4y8 uIzh+Q3yNMhL4/Lnnh4Wrg39GheEFRNFvzfGhV8dlW8M4ypyzV7s9rDmR7bn Zp94NMmhWY50n1kvvvHJb4lzUW1c082aEuN5YlQ4Gz7utSE/iXK+9olfh9w6 XB86RzVvVMO8kRlSnOZM8spHxddD/yLyNJFXsw7KzzBrGTGA20flL/S5T7w+ 5PSh/xPPrmNFiru9L0+xt/RraoL0eaXikro9Kn+MmQYHiXhIZSg/zcx102oj f1Q8MuSUuzUqH4/VPnGvkneVHF+tovKvIDfXLVH5VKTj3nvzhIX1nU/+WNRP lkFuHhWXWEM8p7IZs+QVYxo5YcnZ1Swq/43XfeIdJOfglchbyYzZdRGd2fC8 hjgQjaPycXrFJ85a8tV+4BOvEjmVFvnEd0uu2xURnfGzjbhWd4lqTub++Gtb e2Suk9/YWiu55vxia93h+varrTWuPt4pKy7djOvbb7bWOK6H/c2ayPVtr601 jmvm77bWzYkR+bbSr5Vr10+21i+usT/bWmdfh3woTetCFXz73ZCfQfvMpY6Z pnn1LXzfu/OEUXUZ6pMZl85Jm9CPttY+rnu7bK19M/DcLrb6E/f0223t67km 77G1LlPf+cOWzkObAnUTYmpx3v3S1tx7OZ5lxaUrcg7eZmse5lr9ra31muvk V7bWSuo7O23pPPQlpU9pFvpnA5QTjEv/vBKyHZcOTN3zT1v6J9fqH2yt11zb v7e1vnPd/s7W2k3+vbvyxMFH/WW3LR2G69gXttay4RH5rPPZ85FeIV22rAUR +SvQVyEN/faePGGjXV0o3+9mNcWrR369qpgnW7no31Hhu7xCjKmo4hMn4t4K UeU5ny5cS2JaTsa4rhQVvnmKT/iexPZsEhYXL9fQpmHxAdNuk1sDegZjLhg3 6RMuKjFRbwlLR6R+eBd05Eao50P4aRaedWPA8FRb8n+l7+t01K2a8TutgPTs 6KViUr5A+TbxU6ifYx30Y865L0WYM+mpwhHtivKbo/wvkd4sLC5k6iS9UJ/y qHhOejCWKyrOOGKNEXOMXNgDfeLG5v+Mg78sKl9BB78tRt180Hn6+sRbRs6y KqhbQVTxPDeFxalM3aBWQjZIxnDci/rcjPqUo85nUOdU47d8CO/yeKawwC+m K06VMap8v9vz9I4XfOJmJpb5MZ+ewfIZx9Y0T7FsnVFGkzzZ28/69M5831TU pXdUe5OrIVeNy/7zt0++udRzaI95JCq9hZzE3COSjzgZ1v28l/NWz6jmroWl 8tmZVy7fVva7/CLNhb2img+P+NQ/2DeuQnoVo//w+kRUMjmk2V/IH01dvltU eg7r+FRU9TzpU99iPmJR3GTe9zeffKxZ1+not12jwnqa5BNPMzmaG+L3sNFJ iKNzXVT+qA/TXgS5K3UMlDkxU7EnxIElHiyxoSr7hFfL//f65BPMfTTtDQ9G pdd1wX3z0/VNf/TJx517VfpN0u5Nv0vaLR6ISv/c7ZOvMPfd+33yaaY+ucsn f3fubbmnfzgqHe8KpIXi2pvP4FyUpn3xQsgZ6bLDvwG5WrrsupUSspe0K5Zt 3vVkG6L9PubJ5j4E7+55soGMNthH9HmgjjbG6GmlhdJNrq+pGN8zuYrzHYp7 a3iymQyG7Hiy+dBnPOrJdkT7fYEn2xGxY8+aewcivbon+xHPAfI92Ze55oz2 tO5wv1I3U3uWCcbWdE+pfMSIm8M+R31tlNHZqDOWZEpvzEJffAnp55Pa+w73 tP/lPDrR01waQJ5hnuwqN5TLznEuqT1TjUztm2jPGOrJpkFbxYue7BXcz03y tKfjWvqCp/WU+uwIo9NybRzraX2kHWWcp2dwLRrvaT3i/nuCpz041+GRntZi rl2TPa1f3EdO8bSXpL3hrF/7bp6xRDztu3i+UehpfhlEO1+eMOxSEzpTaM85 J6yxx7FGnbpVpvTAskLhGTaqKT29aaZ09echX5+p/cxI4vvgmU+UChePZTMm tEtYeg/H+D1h6TScE2jHGmbLlkUbG/sZ+9glu6CtfkJ7G/sQ+88AXHM92QnH G9tanVKddeR4Ou/gec61cZ3p8Ewpz9O5Es9qij2d1yzh/OzJPrwQch1Ptjja CGt5shPynKTc01kJz0PqejoTYX1reqozbT/XxGX/4RlLPU/nLMtQZn1Ptuu5 kGt7qus0yEWe7Mncx7TLlP7/IM9TPGGolXo6i+GZzGzkT3qyDc6AXOLJ7to1 rHmZcx3PcMo8neOsSojzenVCdjfa3xqVK37dylMM+6U+bqufs88esNVvW4Zl Z6GNZTDS99uyX3HcHLI1djjWD9sa76kodx/kM0n15b9t9ecQvvdwPO8k5vbr y2W7Yh76hGbmyS+0vFB7wcY1pYvN8aSPNSnXHp36HnXS1zzppWlIP2Jr3PH8 ZIWnMxTaD6gvUlfknps6IvVDjpV/bI2Xr4yvO3F16uEdA3GdzexPSA+1Uc9p yP9+muw2zUulf3FOmI70zWmyN74K+Yc02Rzqohx/XPbAFmHZpGiPYr1GZqhu Szh/puuMbwDkv2zZNGYgrWGe6sS54Zit+YFzxlFb8wbH8XFbY/ndmPh6ydVb Fe1QhPvH4V2WsU+m60yKto3ZntqOOuksT3opdcCXPemBtEvxPfmO9M8i9g19 tMIoaxTn6yKd9XFt4LpAfXaRJ52W57dcP7h2PMN9cKb0MdomB3n6xrTZ8D35 jjwHG+jpLIxYJkHT97gnmOppX5CV0LjsWCzdf4gn/Z92U/Y/9j3aQbMz1bbc Kzzvab9Qt1D2hhtqSr9e7EnHpv01kqk+zPNVfgO2P3EI0vOERUDdfKYn/Zw2 JH5XflPaj7lecq2kvv+KJ51/B+R5nsZSq7B88jjn0w7N/sG+cVtYNkfOh8R3 STPPos7+lie9nTr7Uk96O/X65Z50e54r8lvyO3LvtcDT/qtpuc43+K15/kzd nXp7RkLzXIdinYG86SlfU+izx2Lia1ybEL/XOu6JoResylDsYVNbmPLEJ21i i6eBXAI/4vc3csSlQ5+YSz416CMFxTpDaIdymvFMwRWu6U08+3DFQbAFeula V3iV5FxjzPRajKEvMFb6B4TlQv4+xtBsRPpW/D1aHWse9Ier/cJfc+gXR59f V35T5BBkXM4ntAHY4oogz8HnxFvIFAfK97h/UY54wG+2hSFObNDmPEtyhRF6 I+ServgRroX8oCtMf8Z20hZShH40ICF+ooG4dikX3jtx3xshfw9XeJhXQ37A Fb7q9bb4X8kxcB3kh1xxBBDfkzifHybFVcdYjdUoZyfqvCNT/ETk9fiZ8Tmo +3dIHx4Qlvsexs7nCN+9sS2cdGJb/oLv8kGOOPmu4pmRKwzZw9Bdu7vCer2S 50euMKWHJsR1NSyheEWuXRUS4nRvXl0c74yT5BqVntAZM+15lxVq7acOkJbQ +eFIW2eIPPMcYevck7grx+inWyZ+Ru7zrsA7xYu1lg6lbzh+/z1TvDL0Ubik V5TqXPdsms52uU7uSVM9nGKdB3ZIKCaNa2yVhM6Ej6TpXPhjo0sQc3dTUlgy 5Mcmbw2f0wfyEtyzCeUsTcjPg/a/KwvlY8dzSJdjwS8cRmIwfpkUFhr5lsnB w3On0SWKy+V7pyB/frHW7cHFwmKqT39KvPt65D+PMT60TH4q1NsZ//QJ4yBc 4YGTsy8d5R8ukV8F13QPefbS7z1HuP5/0IcnR/yXv+NdxweE889z41G20cv9 wvokzifPe1+wddZ5dbF0ogcSwqQqQ916kFPaFkYw8YFbQO7tihcpF89+CM9b hzwRW37J9EnO59moKzz0A6jDkUxxChP75Uvqt+hr4xLi6hqPazbtN674nS6H fK8Z+z8yzrpYfixxW/529LXzaB9y5cMWs+U7Rb+pS/jz+D4TcJ9ry6eQ/oR/ 0Y86R7wNB1GfaQFxN4SR51pXHFYFtmIPGHfwO95nb46wfd6jXx/xE1HnSQlx k02mfyzyX+eK56pWsfSyYcWaQzmX+hOKJWNfy4RcB/nvcoVjXNcWRiHxCS+D fLcrvN96tnAAiQGYKNa+o1NCcTNncxQ7U5P2JFdYuDMS4rycyX2eX9ivxH3N sYUnQiyR6rbiixhblGsrBp7x73m24swZY15oi9Oa3GPUn6hH1UY71rBlo6F9 Jmor5ofxPo4tPzn6yM1NiINzHs//kT7Mle2jFeS+rvCFD6CPnMsR99RJtP9r AfFldKJu7gqft6MtjhPym+ykblakff3d3OO4wuTthXe8kCNcmw7U5V3hD5cW a5/XmXGoxdLl74TcEnn6uPI75/9Mr4nfT6AOFzLFi0ddgTpDEL/fifxDXXGW MW6N84rFfYyJsWKsVaxYev0QXNvbwq0mDvIdtnCrL+FEQ37GFVbzrbYwqYlH 3Rbyc2Ys32YLc5x44w0hd3OFu/FqQpzcs3DdSDxIV36zV9jCzCJeVjvIg1zh UV/Eu2QExOfVnz6WWEBvSJEeQ32mDr7j7cg/wBUuOrlVyLHyAsbKYXyXQK74 wVrb4mwgxvR/KPONgPLtR9/LzBXv9ecYD90w/3Qq0d7lpzTNrdwrbEnTfoF7 fs4xlRPic2gUEQ7/krAw+xh7+S0Wz67EzIX8Zlj4ccQTeQjfthveYQ3kNVhb BqMOZ9En2zD+wuDC7cC9XXBvV+T5BvK9jF9A+jg861tXcX9bkH57TJxx2yxh ARAHYDsxXWjLw73fQ74fch3I30HuBpmu07QB0cZDG+JOpN8Xu2RqSfkacueY uLLJW0nscOKDZeDdd+K5c5HnGK7f4W8R5PuJZ4h3WQH5etrtMhQzuyNH8zXn au6bX7K1d45DftHWvN8H7/uWwWTbhme9grZ4qUz7yOG29pIX6Z9p5gGbtlhX fHon/KoT67MZ941GG15EG34G+ZdMxZQNKNBZFM+hnoX8tsFzG2L6tovrNYzX zFAM7/oc6RPUJVYyDssTfstWtEmHmPhpPoXcLiZ+mnOo2w5XfvsH0WeKcO2D 62/I8yjy1CQmD+RHIC+jTgK5B+S7UOYuyA9Dvh0yAYl/cRXbch7Xn131jcGo 142o0yk8azfy92K8K8ocgvTnM5Q+AmkX0sXnuQx5rjExUEdQt21GB3sD6ZfH xOX4FvF1THzTYbTZ167iLz62FE/LWNo3IV9l4qGWQL4yJj7VG9BWb2YIb+RP pD+O9LrEVEYZu1zFln5pmZhnpH8B+c6YuHhO4fcfXOl5J3D9Hn9LuMdEnk4x YRUeoF5BXxhcP0N6+5hwcz63hA1EXKA9kJ9grBDkMyjjR1d9bx/jPRmnhvSK 3Eu58qn+B+2w3cy9lZH+mys/7aqQf3flK36Oazj+3oH8E8p5kDFlkPdCfpJ7 SGIdMvaTMWuQa6Ef3uqKY4/2a9qtab+m/W+iLRvgJ+jHr9MGgX69O0f6CnWV xcQGDgmv8U/aC9BfJ5AzKqL4LsZ20R+QPqz0CfyqSGltiuQDSB9Z+gFuId8K +vn2pHiiyQNLTg36T9F3jT5U5FKPcD1MyqeJvnHckyzGM/vh25+oLJ8y+rFR j6RfFW06HBv0PaRPLf0P6dNH/0X69dE3kDYg6qz0MaS9hjoB/QTpm8j144uk Yr2Jc/YB6rSDYyshH96cdPmnNYRcKV0+uNUgj7al79LnNzNdfmu056xLk/5H e9LXadLL6S9GP0L6jNFmSttpCeb/MQnxvY5NyI+SPo70bxyeEL/tC7iWF8tu 2oVx6sXm+QnZt1anycZ1XanSR5TIj68kXf579OF106UT1y7VNzyP68OYW+YZ nE9+0yFo34llsp+NtbXuji6QfwB9A9bh922ZipkdZ/yQ+Uzi5BIvl3jSI5B/ ncF0HVQs21W1YuW5KUO417QxT7BlZx6K/O8arNcfUdYpPOPlMvm++T35v/2V Ix2R+uEqPHcX8kwuk/1vjC19bjvSJqFvVKqiPQm/cyGu3XFve7/GCG3J42zZ k79D/r8zFa86FXl2o3wb99xLLH+/xni3Ap3r80yffn/0H6XvX0+kLzKYqIPN fiGC6+NIHxvWfjInKc6B7KT8T+l3SJ9D7hU5l9xVIhvteFt2WvoD0vZHux/9 T2k3pM2wWlK4p2Fcny/W73m4Xo5x+2qGMAHm4F1WZirmZQfa8Ai+5fZS+WzS hshvcDvqNtlgvbYvkH9Dlhl7HIP9ca2PutzjiueiAeQurvhRauK+NfkpKQvQ tl9gXtoaVGxRNsZ+TchPQX4T9elgibeslHg4YdmOm0AvX497M5LyMfkgX32p EHlW5wtDhGvvqnytv0tR5qqgODNGoZ7rDR4mueDeyxcfHK9FWZKJ5flJvvA8 H3HQf0OKK65LvEOkL6cvHMpZkyV+0x9Q9sGAYhI/xu/1DH5mtAa+Df5fXEWY mvyN6YzbfjGk2O330B7jjN7I9WRDvtaU8izxAJEDiHiNv+QLs3ED8k4wet1S 1OEHw1/QPEvYjsxT28RyMqbzDOowt5p4vusQ9xF5llVRHbeY+ryEcjYbTNGV PB+zxIe3C+/1U1Cxk2yPBgbjdDzyb8gSB+oKnndZ4sbj2jLJrC8lWeIIJD8g eQLXGplX/ka5Ka4/4/8NbAf6F1DfQjmbg9KDqQN/SYyooLis2AbNDXZloyzh VBKjcjJ+fymo2MBmSN+F9I1VZK/6MV82q5uyxGVFHqt11LGDwh87h/aZV028 5t9ShwkqZnMG3vFz3NOgquLRXwopJn0NzwYt8SDWQ92uCopbl3iZ35j68NrI 4Gf60UeH8sy/XLgUk0LCpmicJZ8n6usf8V0DwjE7hfrMQX3mQh6OOrxvMF0/ Dcq2RbsW++n7pt++i/S/AsKyW8bzT0s8grWQ513kWYj05hgvO/F/JKlv+Knp 2/SJ+yxffnE3I88O/FaQlA/Xznz5cV2LdeA7yM/jHY4GpSdRR9rP8RpQrOvv kP8OKK72POo/v5p46x3I3+PedfTngfw55JWQ78uSXxd9umjnGG/2R63pA0Ae EeSpZEm/p27fA/PaGOIIlAnbekSacJqJv1uxQBi8vejbQZ8h5PkGaafxWxvG NxEnICgOm4957m2J/7UVntXD4PceDCrGkLGG54PSZanHEuO2coFwbsmVfk8l 4YLPTorbvLBUZVQydfiEPkSWeDfboPxHDUbun8TtCIp7ZgN9aixxyt6N30/k i8t9YVJcTTdzvS1VXBcxZ+YlxQvVGGltkX8f8m9F/vlos5GubKfXovzGQfE9 0x7ViZjgaIfWuKcFytmN/G8g7yhXdlfWlXUmhvESnu9gHW9bpnj0ySHFpL+O vCNc2TxXsQ2yxH/8ONp5IXEckP8AufYMxi/fs0qBsIFvzRKvHjn1iM+xN18Y HbVKtR4Sp6sydJQ3qqlub+I5o13ZWmmj+574yChnD8doUHHQXbOEX0zs4rU8 P7fET9kFZfZBmb1LZdPbRnxq3PsZynvR2Ao6496TuPdbji9cu2QJG7kS102O 1TL5cp7Llz9nHH31POTvkaci6rkI9fwR8rkS4RkcwbM+RtkTzX7cVypMgkm4 VkGZy3Fv4zLhr0wNCYNlG9rmRJa4pbdCPpolPiDiMZ8x7/UlynvJ2CK+R55/ 8VvbqupHVUw/bIl+xU30riryY61aIF/WnlnyWaS9cgXKGOPKXjcnKT6zUtTt VtybivyZSeFDsy3YDm3Rf9oExfPNGNOL+YozZTudNnk+Kpd9aivu3YIyDmWJ 86g+yi1A3ou4rsIzxxr7T/cs8e2Ra4/vx+/Hd9yEb/egJW7m5bheazAliA3z Zb7wYRqif22FPChb+7bZZu82Lah+zz6/G/PNPFex0p+X6+z5ZVxfQZ4FrmK6 n0ad3kF5T5XKpkbbWnGx1oo5rtaLCUH1dfbzqZDnuuImJgYBz5AbIn9GruxZ tGW1LREP69FSxZQytvR2XD+PCKeG/5/mfj9DWOGLUOaegPAwaauizaqMsYfE t8gQlsSwEuE+Ef9pJt6hLcr7lGeeEcXwM+bzu4hiNRmnuQx1nObKrsj9WzZ0 y+3obyuR9rIru+IaXKcbvYvnKq+4sq9S16fOXxd1uK1EXBPH8dxDEcX9/j+u mNc7i2RveM3YHGK5sh/RdrTd4AO047vj91muzi+aIs+pDPHGExOEZ+8NaNcs 0Zk+z/aXo032BoSz2qJEPGq/Iv01pP8ZEKboJty7E/k34/pYrmL2GK93JqI4 7f/HgfPaqUj2a9qxr8WzktAz27vi/NtZJFzYzkXC1aVPay7GdMIWfyS5Iyuj /e7JkQ2nDOkdXPHn1Ybc0RXeAfHjeFbfuFh8FvuI94E2H1AqDF5i8ZYj/52u uOtWoV+fDipO3x8VRi3rURHPujtHtpq0qLDeiPO2w8T2dsC1iPsYV35ojBNu HVXccAnS7zD9k9h/9NvNLxSWH317CyD7/LJD0Q5QivztXOEsE5uSvrrV6c9e Im6ufaj7XbnCvSLmFXG287h3RN/bhufdl6M9hd+vPQ/3O8W2uDPJmxn0C0uL tg5irhF7LVoonDXa/GKFwu+jH3QEclW/9kLcBwX8sv3RthPyC9OENp/Ls+Tn TXv0ZbnCLSJmUdiv+HDaMRbi+VPM9+V4nWzapBLn5YrCSV6Ktl8cFAYv8bt5 1nGmFvYGfnHSoNkvYZoT2/wOvKNt9pXcXy5BeVPNd38E33US9/0JlfeWqzJz /Yqxp82EeAfEPfAKhZtA/IR4ofBqiVtbo1CcFuS2eJLne0GNYY7f6ijnaZTz Ge4/VaK58DDngaDmMs5ja9DXFmEvlo7816B9vsbc+F4VYeFvzxce/nVZwsen 3Azz/Ff4P59+mLhuQ/q7VZSX+ZhnKubwT7PEL3ZVlnhAyQH6Dp7VNSDOjmLi oKAOg5BnI+SPg+Kancf5Mygs4j/QkM+j/ploo/9Q/w0o4248dzu+22By4CH9 XZTZI6D3X4W+3NkSf3amD+t+Hr5bRWF90h85jv6/MCidgPoA586lrubPL1Fm H5TZqZKwxemTXoi2XZcUliH5Wzh/LHI1h8wOSu+hztMT5U/FfY/hOiuoPsT+ Q935HVf6M/cEq13tC2r7xXVHnruncM903Ps0rh/i9xmuzkmJhU0btluo+ZfY B5yPP8Hvr7o6V92Ad1+Nb2dVkD1gco50oE34faarc9ideK8ptIMjfSPyP4U6 hZDeE+/joOxJjDMIan3l2tob9ZiJvH1wzTH7d+7jeS5I+xBx9cLFsiu0TQhf j+lnawlnnHadk7U0By93NQ8Hi2VDapNQPCftdk5COL+MIahVKLxa2vsv4N5l QekZ1DHWB7XecK1hv1jsqm9wT/Ouq33NfJT1EcpfgGtusWxytyeEKcwz4fMo 823c+7YrLLbVQa1nXMuon3/lSkf/GX3nIXzQlrThB9WObMPa0LWyHfFD3YV2 ToPcFHnq4JrjiDspiWs1R5x9tXANOeIiLME17Ig3sAhX2xE/YCGuliO+qjiu QUf4my6uWY54nh4MiWOJ/EoFuGY64gevj6vfkW9wZ+TJcOR7czdkH+Q7IN8J ORXy9ZC3oa0CjuIXOiE9HXIryB2JwQz5SsgdIFdxhE1/m6P35Du2c/QMln8H rhUdce2xvBRTZhTX/2Jaj25HngqOuLraQa7kiPuvO9ozD/I2yA+FxINFDqyH Q8JyJY5re8iVHfHW3eHoffgubR29D9/ldkfvwPrPjghLkdh5rR3dz3tbOXo2 n8tnXozpuZdBznXEydXG0Tvzfd/PkX8JfUuIIzUoJCwp4vGx7Ba4Tkd6P/SP gcg/A/IzkCdDfgXys5BfThEe5NiQMCHTUF5H/P8CyunG74n0JOT7II+EXAy5 AvJ0wP9DIF/EfNUe8vMVhaM2OiQste5Mg9wAcp+Q3o3v1RtyS/Mt+ob0/nz3 HiFhthKvNc0Sdh+x/YiHMSYkTIwHIQ8OCaOMuIY+S9iGYVzzHcW2DE+q7p+g 0AXIu8iRbWET+7Ylboh3QsLaYJnEihsWEl4c8diGhoTJtpl93hL/BXET0y1h J66izcPRexFXbEhI2GJf5cinhP4k69nnLXE3kKvBb4mvoSvkEcQAQv572cb8 1pC7QB5OPM2K4pcIWuKYIHYksRJbFYn/IcMSB8SHkAOWOB02cjxa4nroF1L/ YN+4CWn1IN+I9Bsh14V8Q6rORupaOh95C/mXO3punOdXxKHFvW+GhKPHNlka ElYd24RnHQ0snXfwbKfM0vlOIeRZls5EakGebWkuKuMZI/4wjC+dVU6xdF7J tX2FX+v7CYyvHJ5RQi7iWZClM6/jSM/G/1VTda5VbOlsi2WEzbnnr1iv/8NA vgNz40LU8w1H+3RiFvMsohGui1lf8hDg3jxcX7Z03hriMy2dgeYTz9zS+ebi kHDZOI6etlQP1iHCMz1LZ6NjOYbYL5G+JCSMOfaBvshrm7O8S2dNls6bYpBn WDpj5blf1NLZ32M8A4Rcmqq0XHMmyHOkhpbOknrzzBZyI8hv4FlLHO2dXaTP tHQetgjpix1h+r2D9IqW5g2e8YbMOW8JrlMtnS12DYlfk9ya3ULicCXvy9X4 vQzyNcSWsrQ2cF24gnWE3JC4diFxwZIH1mE/hZxAumtpDeD8X4PjjOMa6feH xCNLEKsHiM3jaK/YyNI6dIm/D3I55OuRv6mldYJrxD2cPxzthbqExKFLHf0a S2sb17XuIXEEcs92b0gciuRPbGJp3uScWQA5xrmafcDSmsT1iL53PO+K4qMO zJEuRT2qLF9YeMTB+6FA8bG0J/xKvwK0Y2/UrRzlJFBOvVSlZZl09uWg6c8n 0R8ijmJ5SvnNIdeBXMfSmsr1NN/SOsQ16Ah9+hxhlC3D81c4mh+KLK27XHPr W1qbuS4nLa3ZXK8TkGtALqMNlv0U8uXsSyFhTxN3+lBSa+ZQXFeGhH3JufoU 64u/1rTXcYzg72RFYXO+ZPA5yVPK+B/G/pyC/FpMzzoJeXZM35q8aoxf4vsS +3NSTPifxOCcbHA46Uc5xfhSng3qnfm+h828zfnbQd22Ik9P/B+j7Y1n2NBn opA/jekse0GOdETqhyfYt/HXgjY65JnrCK/1BOozK6b+OQfp8xzhux6zFA/J 9YL4x884wkAeFRFPxv+5K3hthutLOdLdqbefRv7XY/qOxDUmvnHzItVxlKnn GVxH4q89nrUF+S7EFCf1Cuow06yVHyNtOP6WI/9RS/h0bIfjkF+Nqa8SS3Vi THiqxPucEBPmJ7Etx8eEb8n2GGHaZCbKn2XW5UMo5wXeg/rlWlojL8V+Is8c R1i4bSD/izx3VlJfu9f0txFJrVGbS4RT28cRVi2xbPs6wrMdYqmfsY9xDeli 1hFySZ3MEp/UcEtjm+N6J9LPIv1WpA9LSif6i76olsYSx9EojK9C7G+bp2iN 7W7W2Xcc6SLUQwZZ6uvse1m58suhT85KRzoK9ZOhpp/vQfkDLc1H7J8DI+Id IefIMEvzHee6YcZvrQjX5ijvJHVpzrGQP4f8O8psDfmcac9bIZ9n/0GeWZBf w3P7cY8J+TjSm0Oubmn8cyw0s7Qecy0eamk+5Vx6c0h9l/22FX3b6M9QUXjA /RxhAs8Oia+CXBUDLM257M+vhoTlTZ2N+xnua7JR/1tCGs8cyy0gn4bchjbS kPol+yQ5ddgGN+E6AeVNQzkvpmqfw/1OqFh9hLjJ7Cfss9Tz2G/5rv8E9L70 K6VfgIf8CxzhL/P8juOPuMkcgwsd4RfznOgf06/Yv6iXEZecuhnHJfGXOTZb ONLFqYdXCombnPPk/JDKYjlpIfHUcm5/O6T+wb5RJSQOcq5Z1DGp91PPfMGS DkT9JzUk7liuO+mQV8b0XT5G/ueC4i/jGKKOy3H0WEg8VeSoejQkbHfiuj8C +QbIV0LuGRK+PLHltzjCgSUG7BMhYfoTz//pkN6N7/VkSBwt5GdZEVLfZb/t FRKfFrm0ngtpP8O9zMCQ9jPcyyyOCEebeiHXfOL5ct2n7kP8XOo/1BGIdU49 4fGQ+LrI1dU/pH0I9yADQtqrcJ9CHzTqRtSL5oX0LfkdK4fEH8+1ZjzeaSrX IOrbSF8f0xirBvnDmMbzRO4nOPciz/SQ9hvca2RBfi+md58W0p6E+5FsyB/F 9I45kDfEVLcg5Pdj+nYhyOti2iMcQPljY8LpfYp2EshtK2qtGGPWi3HIMwXl j6P/D+Q5MbNGo5y1Me1BJkfEwcO5+xzyzItpPPpC0p+oO0VCWgu5DgZCihVh +59H/gUxzWn/Qp4f0xxyAfLCmPrYWchzY5obK1KfjGmNvoj0RTHpHkeSOj8n PvfLIe3HuBezS/F98Xt/pFcIiR+a6z6Nc4tj2mvnh7R+cO3Ig7wpJk6NXMgb Y/qm1SFvjslPmhgA5Gzmnpf2BdoZqhcLM5U22Uv2WO6JYtK7PO6rYvJXI/7W cU8xffRNox5JHfK0i/nblb83fcf+jcp/jGtgqk/rIN+B7/IL3ulf5N3vyi/3 JK57XcUmVEDZf7ua86mnX4hKV38PdWiK/5einNO081FmTBHmngzI70Nun4b+ grV5doowg4kbS8zYodUxjyHfHuQ5i7L3ufLxrkJ7G+5dSWwCfP/h+DtdUf5r /0Xlw9YQcoWYeK//CsqOTxv+dX69M9+3DvJOyRDfxOKwOJ6PIX0knnvALyzc BijjLPI9l6o19m9L62xzS/xJ5E66gPIOuPLjbV0iLoLH0Gb/Ie2gK/9V6mIH LfVDYoQ/HxNOOPHOB8eEed43R7jMxGR28Y5+pG/AOx5FGX+6suvW8Msvk/Z8 +i3+48p3kX6j3YLyHWV89gd+xWhH/Lqf9y7B99yLd8lAfy1E+nFXNsBXfeJ0 J5/725D/ghyE3NGv781v/RHS9yO9OtLfg7wPcjXIEyD/Afl0ZeGTMf6Qfsnz kL6HMe/I0zhPse6Mc1+OPlCZOhbyr+JcHhMWfSXce8gVJvxqzvMxYcuvgdwk pjPI2sRlh/wp7n2Xa3FMPEz7UWYa5PlIn4zJb0uW+Lt/Qnoq0mchva5f/ZV9 dSLybMwSr3cVPPcw0juwP/jls0gb/nrcW4V6G33/GF8VE89rKvIfccWh874l fGFiC9/il5/iCqT3S2qf1yUp/e7bgHS83hHhIxMbmf1oiNHZqIMMNXqID+Xv dvXtXkTa9wHh5vNb7THfi+c5cb/6QAu/xgbHxXq/7ue91EkPW5pbmhcIV4WY Kk3py5QlXmPOKzsCmlsKMQZbEns9RefSW12dTT/hl98nz0GYd5iZi+73y4eV ZxyD/Br/HPsD/SmX/Fx53vGkX2OA/b+DX/6XPGcZ45fvJs87FvjVpmzPfrSB 4+8Yyh9MH1G89/5S6cs7A9KZqUd/F5Au/TbuTfNkf+iP+65H/U/g3gE8x8uQ 3BfXq3NUJvU+6tPU/chTSH8xC9dxSL8tU3jxLyB/JE3zCXXGfkZv5L7ql4D0 sd+COoPn+Tvx5rmecS2rh/4+PUNcM/QZ+dSV3wj3TD8FtG/inunngPZNxKbn M3m2zn3ProB0SPIhDIqJE2EK+Qgyhc1LLogBMfFBTER6d+Q/UFn6Zh+jc073 q0+zPw9M6syiWqk4IvrHxBPBM7p//DqnI1/EszFxRpAj4rmYeCK4Dm/zaS3m 3vGHgPaPg5I6h8pm3Bn60gtZ4nHjHvHHgPaJ5H4gB8Q/yDMkR+coPEMZ69c4 5xh/2S8/XZ4pzPfLT5fnTeSseCYm3oqReP7vxMogFhPk3ZDPV5beOtDo6ito 64rJd2EB9x+8H2Pvbe5XYnr/jyC3gjwe8kraYGJ6B/rlrXflm/dVUOcfPPug jSoak52K9puaMdlwtgXlo0b/NOqYgxzpmeRGeNYRPwL5GZ5zxNFALpr+jvho Csk7HBD+/Hqkt6CuU1E++7Qr0aZEe+FIRzbDp42PdLJE9s7RjmyeoyC/CHl4 qvyXabOjva5vnvhEySU6F+3ZMld9oAP68gDkfx3yBkucQ+QbYnwAbWG0gzmo 22eom4v2/NASXxe5ug4g7SNXmMuMG6B9jbY12roKYrJ30Y5YIyZbIu29zzuy +WZBHuGIX2cubUTso6myoQ5zZEflelUa05pF37SNrvzTXrfEOUq+0c2Q20Ke XFF2uERMtjj61NPOSBvjIkvrNNfoMZAnofxRkEdDfgnyiFTZ3opjmpd3o99W wvPaV5XteYgj+/PeAuGdEetsDH5Psv8gzxzubSE/niob7ShHdlr6IHVGfxlV IjvuC45suX2TapuOSZ3n0JZKO2ofEzvQPik79GBHtmjamIc7sjPT13KzK3/L eUivi3v7cg9iyQ5LG+xC2tY4blNlSx7qyJ58T654SshRcgfGyscZ4pwlvhvx yeoXin+F6wnPYWn3dWKy/T4H+RDuWYh2fpPxkLjvrYTiMxmnuRvvuD8pe0lN +gpZ4ngjvxvrcjqq+myyxHdFrqvBGLO/If1QZZ1XjDP7CJ5XjDd68mXUfZCn H/L3RP5fIF+P561Dnub4bSTktZb4Hcnt+AnyHECeGN7hWci/Qt6H8oPQOxqi 3Xog/RTSD1Jnqygfzy2u/Dz3BeWHRB8k8tf9HZW+TV5EciWSG/H7oPyf6Pv0 a1DnnTzrXFEb+gN94JLCmyFGCfFJQuloA3yUWyvofGas2ROFUJ+rce9jqM9P xOLC39N4xxFcf5BncKp4iOnjfC/9rmOy3V+XovOKMY7OLN6B3DgmHhmudX+4 5jwd9W+QK1+UkcgzEfmHpupMwIvpXIC4NW0Cwq7pnVTZl5UoToU2btq36ef4 hStfx7Z5wrwj3h3jkBmP/FOJuALq54ovgP3xaFR9cmxQ44RjxEY7rEVZbdEO vVHOYLRPN7TPvqRsYJejnI2oWxvc/2JFzQdHopoTnoRe9FmGOO/+B+XreuE= "]], Polygon3DBox[CompressedData[" 1:eJw0nXmczdX/x+/s+5h77yxmmLGPmbl3ltBCSIUiLbSRdpT2JImUrUL2IluW krQJlVRC2lTq2yYtiOxEVFqI/J4vr/v74zzued33++znc5b3+33OaXDjXd3u jA8EAu2zA4FEfl8tCwQ+SQgERuJ64f+wOBD4KS0Q2BUXCFwMwxVFgcB5tQOB h6H34L9++Gug34L/cv47rSIQGMHvpeA6hP+S8Nuh7wF3I/zYkkCgJCMQmE2i 5ycFAqOI7zrS3gltN+4Y/H/Dfwj+a8FH6gcC9UmjWvzk7xr8pdBvUH5I5zzc lfgvSA0EHoeeQ5pngpvxf4S8fEz4Z+B/jf8u47/9DQKBMuJYCO4M/xP5gUB3 /F1i4f+F/3zop5LeFeCxmaQX418DvpQ4blZZ4H8S3Iw0HuK/C/ivgLSnw98K /hfAH0A/QHqtY7irMOVPofyPEv/zuN1VgUAj6G2Io300ENhG+uvSA4HboF3E f/ugR6EPI/z1kUBgZiH1SRq/QhtI/XQgTBdoRarrGuqrIBA4TN5a8t8p8GQR 9j/w2eDTwWfjLsZ/Hv9NIj8VhM/jv7TSQGA84WvVgY8w5/JfN/iONQ0Ewvzm ggsoa33y05T8P0f+/lRY8GLqdzU8r1RSP6Q/hbgPEHdDwrxNvr7gdxSuD/58 +EOEn0z4/YTvAf/L8J+AvyM8jaD/Tny/Et9i6AeojzPIT1/431ec0Oumue91 gf4rdfICtLfBK/G3IY+diedqcEPS+5X6v4TwL4G7E34J/30cq4cPywOBrcS/ kvq+mTjO4b9TiLOI3zrE8zb1cRY8N1LP/xC+Lf6f4f8A/lvUH+E7Cm5B/M3A FxP/O+ThD3in4V+Iv4D8fpJFXyGO16mfU+ENkf+uca7jMHG2g7YJHMLfkvTr 83890l9B+k3L/d3p+yvF3wjXBbxD5cNfSPxfEN9W8HOEPbPc342+n1b4a0Pf QP02AJ8BvSnt3IH4LxduwncFz+Xw7wNX4Y+U+zvV91qBvzmuO3i/vin8E+m/ jWm/+eqffL/1+K8T9G3QS/APhZ4JfSz006BPpX3fI/0g9DDp1oKnDfw/grPx T+B7/zDN5Vc97AIfSHN6SrdumceS9oQ9nTqZiv8H3BDqtxHx1qUM+/E3gJ5B 2TISzCOaeBpC/y/gMgeh/0B7jaP9epC/2vz3CPnNI79TwGeR39MYj+rRRkOg dSKe90j/W/xj9d3jL8Pdyv9XgM8lPzmET0x3/1A/qQbPj403bYmzZYXzfpnq h7Dv4taDL8StpfxTGX/6Qrs0Np40Ir9xGs+gh8jvVdTfEmjx6u+xsj2JexDe O0mnFfE/yv89+a8ecdcu81jUlv+aQxtCfgKUbwR5mcx/jYk/UWOR+h7xd6S8 zTW+JLhPPk8fPT82NpyDvy7jwQXQO0G/Cvpg+tCn+JeRzlf0z8b89uL/S/jv LNK7Wt8z+XpL7cd/e+h/jQl/E+lfx/fwAOm9CH252pT/DkC/KPZ9LoDes4lp VxK2M/n7lfbqAv1WeD9SO+NPTXPbaMzcSH/Zk+b+q358Efm7Rn2feJ4kf+Mp fwPKP4/wF9C+Y8B1wDPBHcC55P9cfQvEVU3+N5Pe87TnDdBr9B/tc0ztTZ2M xn8x/JmaMNX/8dchnb3AOvCmk99ulH8SvPv4ry7/1aV8bxBfH/jPJW9TiON6 1Rc8U9TehGkJXwf+a0Fc9cRPeT7X+Ef994B2h8oWS/884jiL/3IIN5Xy/cz4 dpnmY3jWEt+FUY9/Z1KWd6D3JD+vEzZJcxb/P0+e3xMd9wH970fK+wT560n+ Svgvgfo5Rvq/w58EblLq9C4En0b+tpJeO9IbEZvfQuT3EcJfSfhS0l5M+76A +4O2+EvrBdKfR/p/wduCeDLxtyrwfKb5sBY4JcQcTfjLwUX0t6G0z3fxHmP/ I80v+f0X2nH8OfC3KfB8oPk5C/7B8H8T7zE8F3oq8S3AfzX0PM19Be4/14CD 4LYFzr/mg3zwOQWuv+vAAcq7Pt5jxgnSiwd/H+9vMg5/q3RlknqkbPNxudXU CeN7Q3je03hfbR7RVkXNe4Q5+9lEh/kJ3t/BjeB/HfJh/Fv4r3GC40gu9Xeh byAJ/w5oJwodVnF0o7znk98keG7TegTcGZwMvgM8Gd5OBR57NAadSV7+47+F hH0Otxb/9dTPv9DHg++grS+GP530p8C/n/TiyXOp8kB8ifgP8F+F+gL/XQm+ hfCJ4M8Iv5z4rgMfhfYo+CHWJiH6xwLiWkX42nVZz2R4bXiA7+1T4tpMmBnw TsNlU1+f8d90zY/U10/QNhaaJp7D0LJI8xX8Lyt+yjuN+FKIbzDxnQetL+kn aD6H3hR8EzgOvBycA07DvYR/Ma4L+ZmR4fIGk/lGyj1nTMHdzreRDW9GkdNS mh/Sv3sT3wnKt4b8fQTuAw7A/x54N3m9EXwc+iz4vwPfAD4GngL+G9wL/B/4 GfDpxH0zOJ7wq8AbKN9BeJ7GP1vzH/h4rL0WJLrt/i20X/9dTn0dz+E7SqEv MD6sIf/lxPWqykD+P6B+FlO+CHhJkuu+kDL/muQ2eIT4i8AHwX2I7034X4Kn CbSF/NdCcwX0CupmJXl+s1YgMLyu13P6bzLfy0N1Pd9q3r2M/FxLfp6FVkV+ Xia+hcRRD/oc4hsP7yJwmcZSeEaTfj3++wPazaTfA/9s6DlaX0JfR/xd6Y/5 4Hz60KdVHlM1lp5Kfa+kvEH8M3H3Ut418F9S4PDZ8E8h/bkZXmuMI43V8Bfj fw73MPz9SW9BhuNrRHpJfON5/HcTYX+Bfy/xXVbg/FbxXyLf4MZ4z5kJ+CdR HxfC/7PGPsK/qzUZvC8rPeK/hPTTaN/2tE8veHpSP9fDXwfeAuonStoX1XXY RfoGSa9fXc8fmkdqoPcFl0BfpjGL8L3reo2utfrvpHER9RbG/Unax/ne5uTR tuT9CDzPkr+b4d8dcByFxN+B8txOXL21XyH+AdAbQ3uL/4qgd4T+KOW7CXoP 0rsaeiH0PPI7FfpYcFPiPgh9Bng6uBL8O3gY/hcyvNYvJ8xp+CfyXw3+NRoT yc8E8KGA/3sFfG9dz4/KQxX8PcG18S+Ffyb0q8A7Av5vNPU5C54s7UkpY1Pw w+Af471HqmJ828r3MZP6mIqrRf6/yvJcdjr1FQIfgD4P2lvgGyq8djuqPRB1 eQe8s6m/26CfhjtI2rdQxuvhuYb0tzPfDSv0+Po/rekZL0eAb4W3Ge5mwg+P 4ebarxL+NsL31v6Z8GXk70voT0CboP4O/1Okdz3+SlxX8nAdvNNwd+L/C3cZ /9fB/Uv7xpc7b6fi0sn7dMKPIb57wIM0HsB/M2Hn4x7CPxFagDR7QRuAu4T8 Nw7zF/3xT8r8NPgBeM6KN+5FfEPAfeE9BZdAendqPa/0tN+hf42Gfjf4gL4j yv9gjL8G90tjxhTwHfhb4SYRXzrp9090Hruztx9Q6PxsxfUh/frk5zB185nS B9cDHwR/Cr4Z3AB8BPw/8Cbae3mG967v0f63QG8I/T/oX0LvSHrX51KvxN0Q 1xk8k/q9Cn9j3NEy+xvh4rRWJq7x5Odejc1aI8A/LoarcRnaOxd4var93G2k 14j0Eqi/r7VO13qXvMzG3Yd/qfZUhEsk7h9Zb3Ulvlmkfw3/lal+6A83E+fV WqOT5xuIr4T49uH/WOs6+G8k/9fBG1EbgK8BX4I/X+0OnkZ8XfHX1nxYZn+B 9qS0zz/gK/HX01yhuYz+PiPP/71C3tLB1xHfFeBF4AuJ7wbw1eBShSlzX4zi UihDD/Bd5HUxbgL+AtbX/cj/3eAB5HkP5fkkw2vJHuBLaeu2zGnvE/49XAnt 3SaG12j/Bj4L/AH+d9Uf8XfCrcW/TnWe5jWq4tMY3B5ak+zYXpw26Eb87WLh V2t9j/8C3Mf4P8V9XG6ZzCatR8q8p9LeaoPWt5I3EFezIsuP3qU9T0vzHkV7 k9tJ73fqo1aR1wZaI5yd7jWA5v5FWj9Qf9voH/UVnvVdu3SvKcT/Iu6Tcq/R 78KfVO68tixyWZXnLvDXgFdqrtX3QFyfZzj9lomuuzOLXFeqsxb4C8hza80/ pNlYdVFk+YLkH9ng6lh8b+EuJP4q8Dv4V+AOsZ4fVOj14eeSb+G/v9Bz/1+U N5XwDeGPQl8JvSv9sQn98SbC/ogbRX2Uhj026L/74R1c6L3tEf7Loj/cRX+4 XWWm/RPAd4D7gm8BX0md34b/Bdyj+Btr/UWap4Ej8c5rBPd2ovOsuikvcllU po6Upz74DfxLceeBS8DL8L+eaFoh7tVE8+QQd2Ws/IpTvHVwryU6zFr1P/ps Bnmrx/ixEf+HGd5LX8p/RylvSHmQDEnrf/jrxdJXGvHg4lj6ijMX/79Z3huW ESaT+NZmWBa5k/hfgbaS+hoL7xhca8K3jaX/JXiVvg9wOrgI/s9Z3/Sn/u4l fKnkQ9TnwFTLH0bB8xvj6+w6Xgs9Dv811OlAaCu0vsLflv55SZB+wPj0DOET WM+kEf+18G+Hvx15+xJ8EXF9qz04YR4g7BqN5fgjpDeA9O4HD4enE/iBVMt3 nwAfZj7+oq7lc4pDMmHJhj/HvYH/BtxQyTJwr+C/WzLQBK/RtFb7hvJNK/B6 rCnjz3rwdH1/5KU731Mea6pa0LIk3yLv9xB+RoLHWI21Byn/5Dpe242hPGeR v0GplleMJz+/09+nEF8R8fET+EhzbYHnb8mc2lA/F1M/Xaifp6mfglKvpfKg lZHeYNKYm+A5VHNpW+rrfcp7PnF/RZyb+D4OEd9g+N8k/u3kfz/4aXAN+Z9N XhbA35zwf0KvV+q10amiE/99UbeX2u0L5od7wcs034P/B+7N/LovFp/i7wm9 Of4M6J9Dn87vG1o7a/7TWp8xOoq/heRnZZapSrb6jfYT+P+Q/IL4irWfJ75W lOcF8tea8nzCf0vJ7666lv9oTbsI/ENdy5u0x30B/Fldy8u0B5bMS7KvH3Af 4b+G+h8KzzjwXOL8j/6xqa7lU5dpPoD+oGQV0GeA90F/D/qxgOv0HPKzua55 fyA/G7TXKfB6qVB9XHMq/v6aL/GfTfst0pqeto+n/e7nvznaK6i81Mff9I81 dbxWXwRPR/gr2Y8MJv7G8NehEoZCfwBaLfrAedBXQd8F/QLoD5Lf4dCHQP+E //6kPUaAHwQf1p6S9v8e/kvI/938twj8fM5JMUGgN/gF8DxwPfCN4Dja/Djh ryA/P4KLtZ8Bd0/yeuNz+PfAfy389/LfV+pf4D7g+8BdyF8f+uuN5HUh+TtB +X4j/EXE9xX0C7QfgH4D9Oegtwe/Dv0ZaKngFdTJFfiPkfdvqat79D0T/0/E fz//T6M+htSx/1aJJ+gv/+TYr/+6EV+q9jf4s4nvE/K3FfqV0O/hvzL6Zy55 +a8p8y/9cwH06dDZ8geuh/4v+f2B+NvCsxocpL+mkpcU8F+EGc/4eX+B9+/J /HcreXwiwWtgrYW3a/6Cfhl1NZ84z6r2nlJ7yTjyk098NyZYJ/Ev8W3ge5wH /z3gHnyPNbTfTPAM8MuE30n+nophLY03gIeA7wQ/K5kU8U8i/1Rp4G/K9gf5 f4H0SqDPIs1GxPco/NP0bcBzOvwfw38O/iPwryG+L8GdJI+Ffyl4CZisBm4C LwO/CW4B7qs9GvF/TvynEd8b4CrpBvK8p8vF7YB/dCw9iRneINNDC7x+TOO/ 36ifYeAC6idHe1Dq41poGdD+pj4mUYdLEiwTkGyguNR7t0roVfTNLdTX9gKv 53qQ/ytxEWgphPusxnuXePpM32R/kxXk72rWixeStxDuG8nXoL9O+sWEu576 eIr+cprmMwr9Gd/7LO3vA/5vNPPdKeBE/McIP1TrF3AC+G+tOTSXxuhztY6l UBnF1lfcyX+7qY8PyO9sMMULbCb9EPQ3Sb8J//2P/vRNgeUXFeDd1M+7qi+N derf1M9N0OpAO0EEu9Q+0GeBYQ00gV4KPQpOpw4+If7/yM+SeM8RJdBvlaxA +3/J18lfXLHHKtWR1j6Zxc6r1kB7iHQ98V8bk+9dSf/ZAJ4L/7KA9wK/Ev/V yW7TPZS/GTgp2fK5v8AtwMnJXn/Op75OB6eAM+gvraIud5S2nEh7JWptFaNr fRQCnwFOTfZ6cCPt/V6s/p7h+xhO+p2hp5H2VvJTH/5Wwslev1dp7Rlbn3wC vob8nA3OTPb+aIlkgeA48GPgyfA3j+U/jvz1BpeDA9orQH8G/rIYHploWV9V rP0l85sJ/6mx8iYTvkGF9V+NyW8y9X0F/Suq+QV6iP71I+33MeW5D/qrRJtC PTSp67X8UY0RxN9U6xWNRcTzm/S34OPgP8CPEedLCd7jaK8zGvdigmU4kuWk 074H6vpbUxutpr4Og1+O9xplF+37MulfBX6F9J8h/MoEr6m0tmrP/LYP/qsI uwmeVOLbW9fyd/13K+VpSH8ZItkA5WlQ6rVDG+jNKMtmypco/RN4hcYU+Evh f5e4jtN+t4Mba44lfAXh95GfY+Tnxtj6tTXpv0F650D/nP/2aL1aYF1wK+Lc yve5DPqRgHnmked3tF7BvU/5+xD/6rqW+UvXsJX+s6PA8uAq0u8FfYXWB4Rt QPp7SX+P1lsxefFG0ttdYPljM9LLB/9d4PWtdNL/wJ9Z2/uPsyVul7y1ttef 0lH/rfmowOvxVtBvIL3lpHeu1u+VntvrUf5T4jzH96N9/4N/fqy+Kug/9yXY BqAWZfuB+nxd6YMXQz+T8M2LndajhP+X9q0BfxDvNiiusP63Lv74Mu918qHf m+w9zy3kJw9cDv1+6uN1yZaJvxBaEf8Fif/vul573phsWdI/de3XmlRr7RbF TltlPkx53ynw/pLmD6whvtUFlp82JI5ziK9NsfVd4wizkfJsgn5/bDyprLCt Q2vNF+R3X4PAyclY9dEa7wj+W5DgPZn2Zl343trFvufvtN8k/vJit80w/ru7 2nsC7QUqqe9dzD8rCjy2aUxOks4R+sfx1lndHbV8VXLWdTXey1QUOy61+eWE fSrV80GVvjP2c6ti+yONHw3B74LHae+p/TBprozJgpZQvxkVlstJBiZZ2F18 3xPz/N/pmi/gmZBnWdoOypdaYf/1MdlGGrhK8wxpfwLuS/2eU2jd1qsaQ8jz nDTLPn7An9uIPOdaFtOMMeMi8hOf4vVay4jrrn2hx0LVYWaF86H87CT+h6F1 K7T+Ujqc8wm/JdnrgTLC/0gZtie4TUaqf4K3JXgP8gB4I3hHgseoseAswjxC +VI1lms8pP0uLrSscVOiZXEXFFp2J5nc5dC7xPDGRMsqL4rxS0aZRX7P4HcL 8X9FfJtIb2eC19xPgHNYyJ4Lfyvad7r0S/SngjBrf80nGv/gaZ1oWfMO2Q5A rw39M+lSoO+Bfhb0E9B3Qb8SeiH0r6Cv0jqD/lUE3gDuoPEL/nPgT8Dthf+m Sq9tO8fZHiaP9u5Be7SHnixH+MfzHGYe9ELoT4A7JLqOJNubl+b2kUzvH8aH Kwh/puZW7UHhnwr/BZIdSD4Fvgr6efjTJV8AT4F+vtpX5SD8pDyX+aj2JJSn DvnfqPmSPF4DrgveCv5AawLyfzf5H4N/Lm13qMxp1cL9LvsIXP8U65B74b+O 8MWE30n4jwjTiPR7kp/O8GdLpkR5u4PPxj+X8o4mzvbwdaEd19Nfd7KWPJtv eCzhO/L/fNb3oRzLnkPKAzgjx7LsdI15UZdjJ2m/RvhXKd+NjBeLoX1Kex9k PLq+tvUFnwQ8t/Yi/PPJnmPLSe+62pZ33AjOYX64Bvp86I+Tt3XQrqP+R2us J47fod8t+yb8bSOWTVwB/+xkyygWkr/CHMuONH5+Wea+KZmaZGvF0OOzPJfn UG9DZB+W6b2Z9mtF0P/I9Nyu/d1r4CrieyDZ889IzZ1ptjeR3Ullqb/N28Bt GXBfgr9+jmVZGm9ngNNyLKvV/uQ72QgleI9yG3lbDL1pjmWhWm9qr9MK/Eiy 9zx3kN71pPcY/p6E+bjMY49klJJVfi+ZeoJlHP2lb5R9F+EHEf4h6mcr9L0J tsF7Dfpm8C6NJbhZ4GWk1wT+/vCXxsX2KuA7kr1n2QL/Hs3lGkPKvHc8H/rk ZO8htfdoDh6a7D3INvpf39rW/6j9P9UYRNiJmuu0/66wbUdv6KWKj/zeVdv7 /1voSxvoLwMZwy+V7pr/LmS8rwPOBT9EfIOor+PgYZrfGE8jpZY99NH81MS6 54dTrU+TTrZ2E69LtT5NgbeCNCfEeQ/ZTX1e7SMdfLy/oW/JSx/qe1yc95Ta e19M+aYlew9+Dd9jc/rFVHhPUL/Xgk8DTwcnkP//KM/Fud7bbNd4As9Yvvf6 4J9J+7j6YKJtJl4Av0v/XZhqewTZJbwGnq85HvwZuBnxfcka6wzSf1Fpg9eD W4FfAgeZX7qRXglxVlMf3Qk/ivDbA95ztIB/bqplSUnkp4D8PEZ+6sK/VfIX 5q+22ZYlfqUxjPi6El+R1u7EdwrhX8qn7rUel21GmXWfmnM096wg/EjCH4H/ X9zH4HHg/xKVIHVL/b0FLsBfiBtK/p5Ita73HfI3Djwt1bpArUnDpH9ZrnUJ p0inDH2sZEwB7xHvAU9MtW5Te7YAbdgg0TZ4S8usm9uU5b2fdHQflll2/wtu G/ldCf4S/z7cz+DUMu9XtWdrRFzFTZwX7XEzS627nZ5qfaN0uBvpnzPpL9fE 28biK+hbU71+055xMd/r+jTbr8mOrV4T173W5NnEV9LEek7J9LLAb8P/Q5rt 72SHt5P49qV6Pao1byPqbx3110CyA1xmmeV5ktk1Jb+byM/T5Oe6eNtUJJdb d3Cfxnvo+YR/j/B1CVuCu5D2qcn2Xkz6jhradGSqv5FD9I3Py6z72K82lu4O /ouyvbb7HndHmW0bNIZpLFskW5Qs78Uexk0AjwT3TrS+cBTfV232ENNkD0n6 SRXWY0mfdYy4xpdZ1601itYqxeRhfJ55tkPbRvpzSD+VsOlJtt34J8t7WelU fiVMGr/PEn44/IfKPc9qvv1Va1XcKmi7cT9Bmw1+M8FjoMZC2Ubsy/JeWfYQ U8ts+6A1jNYytcjPo3mOcxO0V5jjHqK9DkLbgP9b8jOV/CWobGof+u+FuZ77 K8D/NLUsJZv4wpT9b8LlJVoGO4P4wsQ/Os+ymp/Af5XbL/mNdPMByeNzrbvb wfd7WPYKiZbJTIbeq9KyaM3NkocPp/+8mer9pnTcQeIflee1yWb4j5Rb7yed n3R/LQn/Rmyt9SK8iynTiDSvLb7Dn0V5Lsr12iGSZN1FcrZlA9JhPA3uBz6I /zetH4lzXoLXoFqLviJ9D/TDibbfki7j1Syv1bVmHxb1/KV5bCXpTZH9Dfz7 oH0BLZk6K0+0jeMaybAJ/y7hJ/Pf47gm9N/W5Pdu8r+SslSAu4If0twEDpH/ S3Oty60h/+XQX+V76U1//Az6w1HPb5rnVpF+GfSFpJ8F7w/QlvDfmDzX2STJ 88pdl1qDaS0mu0XZL2qO1VwbpL+PybItShbtclQ2tYneEz8Nbx3qeFyedcnb yqxrys22bEU6pwTK24Tf/8H/FvRj0JdAD8m2MMm60IbZlq1Iv/cyaa2O7XdG 41axdunPHPZ6nO0LMsjPo1m2zckgPxH60yHiqBUrX4Dx9P0M22Nu5r/Hs92n 1Zfjcc+qbWP8mbgo4V/gv17U39eUpVz2ENCzoX0fddz7isyrMJIl7S2yrEky pcOMR6szbKu8nv/m0hYbYunpGxoP7fYQ/TLJNk8fldsmX2P2O5p74N9e5LFA Y0Ie8a1Jt+6rOMmyppw6xpI5FeAP4urExr8V8KbX8VykOem45Am4YKx+/5Wu TzpZ/GHcDMq6VTrHJMuTJEvbVGS/ZEw90q1D1liqMfVn/AvSTVeY99KdB6Wt MXgC5buD8rVOso3XKdTfbSHbNu+h/ubSlr9keu0zljb8ONtzgMb++tIpEF/j GNacMFy2MuCG+P9SfWmuiGHpJ0X7OD3mx80m/v/RPw4R//2JjqukjuNWnNIt Ftcxv3SMLaQLqeO151Din0h6d4Zs2ywbtP/Y31XLhgb/l9qT038HJ9gGNkx7 TYL/rpDHftm87YF3RYZtbdfx39eS5/Lf6HjbkEyB1j9kW3DZ4AX5lrszprVL 8HpzKvR7oXdNss3gZPDdIdveyoauOfV5T8i2uX9Qnzuoyy7E3w18EPpsvvkX ZKdKPl/m294H/SvqIyOmH1id7TlT7aU+sxKcW8d9S31qa6bPTOishOxXXpe+ ie8rE38+cTyH/9VCy9Oflw6H/M+K8euMxULqd1mGbVfPlDya+J4qdFuoTY6n 2sZVdK3/NYdrLpcNTSL57pXmNhS/ypMCvhL+Vgner8Wl22ZHc6/m4NdJ760M 088mvbfJ3xcx+6GJGn+zPGeLXzY1kp28VeixRGOKZCsrCq171ngtmZ5ke5pT n6V9P4C2TDpvcKFsmsDrcJNi43N5uv+TX2P2O1kew4XF8zr4vULrW18K2Lbp k0LnTXkckuFvXPV/ON46S+kuNYc/pbkmy2sQrT1G4O7J8Desb/eQ4qT9jsaw vulq6bfSPZ5upn8syvYYq29fY4Box2NYPP+j/tZk+CzJhdTfG9le02r8yMcN hJYKro3/d8nooafEcF6SbaJP2kbjXia/M4lvaYZlV6cmeyxKrOO4FKdk5wl1 HFYy9D9SLfMSv/ZXcyjvYsr7CGUdjismv6/Eyq81WF3wkhh9WKJpLxW6bsQj 2guFDise5f3tdKenPEezvUY8aQsjOYPOI/F7XHO01s7wv5Zh+e9b4gdHcLfA 8xDlf5q4v+Z7Gh/nPdSF0L6JfV8Jmo+YMx5m/kuE/0fia0x73Eqal6vvQHuG tJ/C/RpbT/xC/SUlWkc7CP5G8E+Fvj+2PuiT7TWD8F7cY+m2GddaQ2uO26HP BR/S94prSviR6V6vfEP4edBGpJsmnosz/J/828hTBuuHLrmWFZVT3muhr4V+ Arwn3rqm94qsi5LOSbRp6cbieUe2H1qzJnp/9IlsmXDHE70/Wq/1bbp1HYlJ 1t18UWQsHcj0dIcRr/ZUoyjPR7H0lYbmzi+LPFdrDh2T7T2Y+JWGdCPLiqwb k46kLuuBzbRHHHl/nPYZAP/L0P/UehO3nDbYzf/9afc3GB9Xw39ujm0jJEP7 rsx9QTbOsnXWmkhrI60rl8O/Av7WObY1OQf+deDuOdbtS75zW9TnXZoSzzc1 tsXIgX5Dsm0yDrP+GhBbv7QjL2sJ3zXHun+dF2ld6r288n4he6n3oXfOsW2J zpct0vo1zzIpyaak63m+yGWTzmdgttek6h86U3AZ7bkoVv4d8faPSTe//rsz 22tc9UX1SfWdZ2JYfShA/gcQxxfxPpMhOZjSlnxPss2jlKdTrmWFW8lPGv2p M/g/7d9oo7eJa1K62+coLo0yjyT/Ojz5A+H3EF9com1g+knezPc/uMiyWslg tYfVXlZn4lZA70Nc/aD/oDVzove82vvqzNH70IfLPrPItpMnbTrhH13ks5I6 M3kV5X0EvAv/dlwHnS2M4Z9k35jtM5bi34E7H3x3LL1vE807rMhhFeYm4r+r yHtH7SEH4O+a7bOTrYlvEv5vitz31ed7ZfibEN4H/RDz43f0h+x469d/Ba8H /0b433Fd6acT4yzTKad8lxBf/yLLB2Wvprn3hjTP1ZqDe1P+QUWWZUumfQf5 axq2rVo7wnTO9p5X+d2Q6LoZUeSyqswqy+1FponnlwbMFbHzCecGrJucUGRd pXSUvfGfne2zl6cTfzv8N/LfGTF56OR0jxEaGyRDGZZtmYqwxoyHwG8VuW+o j2jsm1jksU5jXo8M9yHRdxFnOv3rAvpXPLhMa0DGu3OynfYn9K0z8F8H/9fQ /4e7iP77Q6x+tYSqX+0+pL7zadQyAMkCJMNbR/321/ysM1PxlsleQPhPwd9q 7UH4idTvZ7Vd37Lxla1ZAd/nzcm2OauQvqHItpqy2SwivebZPvt4gXQ/1ZZJ SRb1YdR9+dYi9y31sTrQuxX5PO1aytM93Tagiu8jzVONLcPWWujjJOvsQuT5 RIF1eZqLz1NbMa9OkHya/2r43vriFlPWh3WeEP8Y4mmP/xFcW/Bj4F3s5ZtJ JwV+m///wD+S39bg0dAz8R8gvmrwzbhXwAnksRX+e3BvgR/FnYV/LPwr4I2D 3hLcD/cmtBPSp+C/G7ccfAR8Kv47cK+DTyHN2/G/hv93/H9Cby57c9yrypP0 d/hvxS0F/wY+Bf8tuCUaC8DzSXsUbgb+49I3QbsL9wb0f6Ufw38nbpnqAje4 FvmGfz+0jbhZ+Ifipko3Bv1i6A+BN4Fbgu8GPwzeA96Om4t/JG6ayiKdMPQR 4B3gnYqDtPrgXpYshzb/WrbStN0B6mYL9NnwDsc9qfaL+mzAs1ofsZZ/FteU 9lwAvpj6qMY9AO8T8B7Cv5vfp8GP4Kbj/1n2bqTVG/cS6dXA0wv/i6or/D9A rwDfmOd9QjmuPfkdQvjvoX0reQS0G3DPS0YCngHtQdwU/HulH4R2E26R2gt3 FeGHQd+qvT24JXgweD34K8nDZL+PW1humb1sz2SDJll+pWxo4F0O36/439d4 B+6Pm4j/Q8Up+3Dcs5I1SL6jMxHQP5ZsFFwFvh/8JfhzXFN4r8M9J1kULgv6 PdA/gLYO9wT+gbjJ+LOg/6MxEfwO+BPZtxD2WtyCcvdh9eW7cOPxB/kvnvju Br8L/j7ifWNBCnsG/PfgUinfmHzqGP8Y+M8hrgnw7+X7Gg0+GzwevJrwo8Dt wOPUn6Cv5L9G4J64Z8rNI95+uAmqe+roamjzoR2ssX2Lzha9Sn2eS32uhWcy vANwk/C/hWso+37c0+Xus+q7l4OfAh8mzWfBt+NehPYm7g783aHPhX6G5K2U 9xb+e6PC34i+lSuhz9E3Svh54L645yvcjmrPK6DP1vcK/RnwrbgXJH/mv0bE dx/4M/AXuKn4B+Ee11gFvQf0PuDXKzxGaazqQXzz8J+rMauW86i86hvTt3Yp 9JnQWuB660wP/y3Tt0AdXQZtlsauGv8nWjf+m1HuPqu+2xU8HRyB5ybwQpW1 xjo/rXl+YsxP0Vk28CrWaIeZhx6j7udELIs7jfH3zCrLnCQXkkxJsrZeOlML /3b4h0IbELEeaj39o1Rn5aAfhL4P+sioZXSS1S0hvQj0xyLW+22EPwp+PmLd o3SQleBnI7aVks1U0yrLuGV7c0Fdy74vj9oOQ/YYsr/4NOK5MgN6rSrrIHWO QGe6pJvUmVTtdb+v77OqrRl/lks3xDogDE6O2i5W9rG3S19L+z5FffXGPUed 9YnalnUO9HER62Rk+/BcXetq1lf6LOcZ2pNV+/ytzmJPZo1yvNrn+WU79hj4 mGwN4f8Q/4CGzAX4y6G3py5GghO0vua/2qwHvgcfwf84rjd4EPV5HH9HeC6H vx5rpCD+ifz3OvH1hv9wpWXOkj03Y17Pr/EaVmvZI6zD8mok8KGfEVcl4SdF bG98D/TahP+r2uv9CeBS8N/gS6O23Vwuuzhwr6htTY6AA+oLGtNJ/zKFxz8O 9zS4K3h8xPdT6Cz6mSpPdcx+FFwJ/gc8Af6X4O+p9PCPxc0EdwYPIvxXUe/1 trJvCFb5zgjJ4kaW+C4J3WkgW5mVBb7rYE6ldYlrqKPTZPtGHqO0Y7zOsIPb Rn2W6FrGtz7wPhWxrdVz0LtX2YZUtqSjwJeDG0Qtl+8E/42VvoNDZ5eXQu8J /cMa24ClgXtIFh21LUFv8ne9ZNtR2/kN1Jlc8Gr4cyRzA58lXV+lz0Z/TH5b ge+IWJf4Hm3UGnxLxGfhdCauJXhGxLLzIsKfDr45Yt3hCvjP0PdHfBeR1w70 33bS1UZs6yWbrzbgG6K2OzpK+PPB79ZYR5HCmqtjlW0EZSt4RHp88Ac1ttF9 UDa5VT7DrrMpW+r7bPvZpLdK62bZMVT5zLnOnnclfOMq30nRkfp4tth3VehO j57g34p914fuuNBdFx/Khr/Kd3pItt2ptu/60B0jkh1OLvHdIwuitvXYQvmu 1fccte2ebPjuI+8f1dim7zPZxEGfFrGt7xDiu7TK9wPI1j2Z+rhQ9Uf+e1Ff XYivs+ovals+2fQ9QtgXoF9H+B3koRtxb4xaLrVb9wgoPP/VZ8z4l/qfCu39 GtsctaM+L4HeHnwebfsD30sO/t+J8xXGixeTbR/yutY80vFrjQ7/EtJbI9sn vs/UatvIvAvu0cC2M0vB76v/QU+rtk2I9g7ZWbYV6Sp5TcA2WadFfWZWdgHf pvosrWxmJMsJZdmW5omI77ORjdT0qHXgUcqX3ci6cY0nlVqXN7JuS2egZFf7 ZZbPRulMmXTZZ2X5rJlsqGRLpfNk09Q2tMW14Mugx0NPJs446q4t9fOk+oJs CmmrNoxP71K272t8Zu926HHVnh9mUdaW4C+gbyLMEeaixdmWB5bw35uyV69l +8D6uHfAO2vZPlFnamQL0qDYZ23qEOagZFeyzdRYBP0a+GfV8nnXrzUHEv/d 2ZY36Yz3EspSUOSz34lR3w2xC/wu+FHy933AfUZ9R2fEX4A/pchnx3UGtR78 Owp9NrUAvB98K/vAVVUef7QPjad91lR5vfVVwPbwl6nuo76npBV19nGV5Zqy a6hDnXwG/rrSdqhLSG8tOF/2U5Rnbi2fN/4yYjvLOOJfDX0v+DyJm8AfgAs1 vpKfT3EpUZ8ZlO3DuVk+S6gzs3O0d87yWdpllbbbTa7HuFjt9cIl5OUl+u/b lbZJkm3St7TnP8Q/Bvr5cdbZSXen+ahUuqBGlrVIZyndpeyjxkU9vp1JfMOJ 781KrweGgmW8/yH4f/SNL3DvE/+fhP+W8PvVx3ROHnyUb7ED6a+F/leVbTxk 6/ELLl9jCXGk8b0/wvf0oMafqM/e6wz+CPBB0nsR3ubU90NV7u+yzdwpGSz4 tajv8vlRdvnge6HnxFknKt3obtkIkt0A9ftOrP11FvlF1rPDqmxzL1uB5CLb 4t8e9f0eP8HzUNQytJuk229g2ZruRNG9HgsyfVeKbG5019bAItvi6PvV2Ryd 0ekbdX1Ldq198zngoeDqOOugx0dtg9Wb+I7Xt23Wa9THV9DfpI4zq73+z6O8 Q+F/VXMF9VtJnR6jvR6MWgYoWeD5lP8PwifhXufbSpJNp8Zu3CVx1rE+oPUh /MdYD/5C+EFR3xkjHewUyvNLlefTNeRnSwPfdaU7Yt4F76/vu2O+rrFOsZds UKp8x5XuunqN/rG3yjaCknPG1/FdWtqza+++ivE8MeLy6yyr7L27a61XabvU XXx/P1d5z6+9/2vw/1phmYJkC6+DD4Gf1H45z3to7aW1J9fefBn4d3BJ1Hqs EvrURxGPB+3IzyTG/D4Ry1gla82nftJJbwr+C/O8B9VedCr4Iq31wQep52ng S/K8BtVadBK4U573FNpbTAZ3Bj8JPgD9cfAF4Gngb7QXBHfR2l/laeo9gfYG c8C/NfU3rm+9JfndE/E+QvsJ7Xm099GeQXsH7eG1l39T7cd/JeQ/o8pjpsbO 1oTfR/gT1OdS2nY37TMkYpmGZBvLCf9XhWUakm28AT5cYTmI5CFvgv8BP6Y9 UJ73yNorS6Yi2cpKcHzEMhTJUt4CH4X+h9Ig/aakvzliuY7kO6uhJ8t2S/t/ 8CTwvqaWyUg28w44ELHMRLKTFeD/iO/9iO9dWU7/yaJ8IyVzo/0m0n698R+O pXe6dIn436I+ThBHKfWRqfWJ4pStOvRtEctgJIt5m/iPEf8y6Sz571f6axr8 xVHrVYvJ/4eyLYDWIc97XO11x4M7gh8H/0L+J4DPy/MeX3t95e+7gM8UXh/1 GUrp4XbW99lKrV9fBn/fwGejdEZLZ7XGSOan9WelbdV3hOCp8vwru/hUvscv wf3gn8n3uoM2vVNrAc0/cbYRuQv/kDLbjLSUnLfKNiyyZVlY5LOesgGXLfjV 9Icfq3yGUWcZ06mvbVU+M3kq6e1t4LOUOhOps5F7+R53VflMpM5G3kr8OzW+ gteRnz/JT/+ox1vd/aHzpU2iXq/qHEjnTJ91uVrr+zifsRwQ9ZmF5tD/qu+z DM9HbWu0lfq8ocoyBMkSngO/XWEZkWRFi8AbKizjkaznZfDXFZYxSdb0SmPr pCUzkuzoVfW3CssgJIuQDEuyLMmpJK9aDP5JsiDw+eApks819R5fe33J3CR7 k4xEspKF4FUVljlI9iCZg2QPkrlJ9rYUvKvCMgTJEhaAZ1VYxiFZh2QgkoVI piHZhmSIJ2WJ5Za3PA9+r8IyKMmiXgB/VGEZm2RtS8DbKixzkuzpJfD/KixD kizpRfCn4GP0p8v4VnawZ6tFW/0D3kZ9D2P/lgKeQP1fCf0VcHKNv1l9u/WC 5JX55gb4zwU3o32e010FlR6brmR98Wy1xxiNNWfCvwDcJuJ7VTLhn6OzeFHf bXaC/ffsau/RtFfrAv9C8O5K26acC/888FXgKuiNZYenszXEd4rOTpPeM9Ve D80ivvOkj9b6UHMq+FSt+bV2I/x4nQWivzaD/yLpfwJO406tJaO2O9aaU2tP yR90N9bD5G9ate1R35NegfTmg5tW+ixQTQ7jJvgyfZ8pvp/pQu39tN7X+EN6 06FnR62H6Ut8T/5/+vA/jLsL3v3an6ZYJivZ7Anco1rv4PrJlgL6k/jT4n1f YhTXTOtB6uN11bf2//GOU+VpqD0Q+YuS3zegN5K8B1pt8PJq28Aor+MybBtz d6XT0h5de/V/I743qg35nSp5guQbKb4vqgu0y8H1UnxfUzfwFVrDp/h+pEvB u4jjQXj/JvxTuotBawrwz+BZ4AXwt4/pBs6q9P5Uer1l0GdA31npswPH6X8z waMi1nO+yPq+CvxdpW3LlsJfCQ5FbbvfmPz/FLXOWrZtQ9Kty94A/xXwDwM3 AfeP2K7+NuIrrfb+QXpG2diVgT/Reo2xsWO29TPC0tWcB26g/ZTWjKytjzE+ ro56fmga7z2E9hJaX1TEew+ivchn2r8S9g7pUKK+E0i2tmNSfVeQzsjJbmNV ls/OSX6ge5V0P1Lj2H5Hd/s8xf7gKug/Vvrs03TG1+vAtcHF0OdDvxb8v6h1 Y71I8/Ei7y90l9E86FfrrFDUdw0pTKH2XlHbjhbQH16DvjLqu9C2k5/a4IER 297+LPlUte/LfAV8peyhtDetsq3zBsaXltCPan0M7UzmizOqfeb2nID/+zdq myH1lScybEv0asTntCWTaBfbL8ouRDZ5NdXe/82R3lD2H1Hn7x/NTVm+r03x 3y47ogY+6/tyxOe6JTM8s9I6rI9Iv1m2dVvSgbUgvsuKrBuTDuwL8t8q27ox 2djJlu6ZbNveSZ4qW8VF6bbt60h8t4Fvxf0T9Rnka/EPLvbZ5IQq65a/oD5O A7dlDP03yXuGJwl7NGLb9gf4Zu4gf7fg+uGv4ftcDH9U60vaqhfhX5Ochbl0 N219PWPyR6XWAUkXpDWu1rrL+W+X+gL0N0st470a/4RSy36/4XcP9Bv4bz3+ F3A7wdeCXyy1jFuybq1htZbV/kB7uw/5bxT5qZa8irrcgetEXv+o9FmaDtT3 w9B/0jcM//XMJyNi8g+dFVqPay/5J+4H/IvhHxlrH50rehI8HPwzedhLfm4k P9vwXxW1rfb37G9Gx9LXWezx8I+ptoy6F7yHSi27nsLvb4S/hf+m4n8Udwjc Fzyq1LZZ/zW2rlI2WrpLJLGJ79rQnSIrMwInD/LprL5s4GSLFN/EdwFo776E OP4gvtuIb2mpbcuONfZZedmQSYbUH1qDppYtSSZ/O3h1qWX1Ok/2E+VvRP4f qfbdav809t0HsnfX3TzJTXyXme7UGUq4baTXkziG4T+VeA+CB0g+ir8QdwB8 E7hIts+4/eA+4Ez8TXG/gm8GlzW1LdTRxrGz6wm+yya1ic/e6k6bZ0jjd/hv hX9+qdtL56TUxudJNosbAN9uwj0Wm89T6K+J7LcfBy+hvIPpz52I44Fqy1P7 yxYdPBjcivCP5XvPPQ9/G8mM871GnV/p84M6h1+h/X217aV1L0Fd8BBwA9J7 T+fx+D4eAp9WaVlcR/Cgas8hk/Mts9DcclbEdzNMIfwU9S/woBSv+bX236H9 HevVBxg/Xqm2TFmy5RtYf7wEPqPSd2n+S/9bIvk6eDD0FqT3Kvhi8I3Enwte Cm6h/YfWJ+C3wFvA96d4D6K9yF+4x+Mdx+2ETad+FsX5m7+10ne2Pp7vPbju cg1GfW5L57dOBc8BbwavJT/DpK/gv2PQ1lG+CbHxU/dyzQaP1/cF/y/gffCP A98a9V23CYxfT1Rb36KzX7rLIytq+Z5kf5/RRyZXu/5SUyxzuYS0WlQ6LzpT dj/0GvAC8PXge8HNwM/J9gh8Hzgn6rNaLUh/IPjhiM+mSoYtWXak0meZdKbp Luj/RWx3p/+i0MorfVa6mc5IVVuHI13OleB7wN1pv3nUVxX57VftM9a6u+W3 VJ+9lk2fbO2WMX53r/YdBx9K35Phuw/qgL9gfJ1b1+d9JJ84tcI6jw4xeck5 FdapSLei/c7MMp/n0t0wkm+8WWb7cdlNfwL+stzfyGz8EWgdtUbX+ihqeWpb 7ZvBN4NPg3Z6uWXqkq1rv1dYYR2LdC2Sl+kc18SYfEl3lOkch85z6O6ymeAC 2Rnw39NR22Ctx58SsW2W9m+lFdYRSVekOyIagu9M8N0R0kFKhvAIdZhVaflb XoXPTzSMej84rMznPXRWWDpI6SIfhv+yiHW+2pNMpo4vrLENgGwByqC/hH8b boD09LTJ0/j31niP/BD0FNLbo/aD/qD6vNaLNbZxWJtke+GdNdZxjwa/KPk9 7s4Kn/d5A/7TiaMn3980vtcV2i/U2OajIfGdgX9Rpe92qyu5t/YvuCEVvl/7 bf7bAr4ZvBE8V3VRaZmLZC0q38xKy2gkm1F5fqmxDKic+Fvjn1FpmYVkFcq/ bEQkI1lXh28E/LPsCco9J6p9ZMMimUcj3VkZsQ2E9phfUr6uNZafx1f4vILu vZO93xbqPy/isxFTSO+2XNpE8n38v0Qtu/hO61PKfxC8iv79I+PPOvDhqG07 foL+GfhBwtQNUb/Qw1GvobSW+gP8UbXvY9fe4hHwWnDPypNHvgKzqN93wFeD TwE/BV4JfgjclPi+hr9Ia2/J88Fvsx/5TeOv9Mfw72Y9kCndAP/9DZ7Aej4V PJj0OlGX88BJ4I7E0Q08GZyovq7xQHMROE1rJ60hwJuJL1vzK3g16a2RPFTj p/RhsluDnoW/FvG10VxN+PQayz9071BBTB6iPaH2hjvJ/4eUZ4DWJ5TtJvC+ Su+/ZkOfRBp7tb4hP49RP7VI7zutP1RGaPvgP6DxAvodGkuhfwv9F/Bcya7B P1Z7fzRR+gbJRzUeaj6RfT34QKXl+0/Bnwf+odpraq2txxD/B+BH4XkK/jnQ f8U/SjJ28HPgg/gHao4m/3fC/wv+4bjToW8DPxG1TYhsQ3rCv534PgA3Jr1R 4qm2DFSy0FHQd4LXgc+EPgL6z+DRkhfifw36oUrvd4dTnnvBu6rdv5MUJs+2 W/oe/qYDtcizLZX6+2ZwJM+2QK1wy5Ms8xmh7xncWecz+X4yKz0maWy6iP+6 En8t8KPgruBLY/lfnOQ9y66Ix3Od3ZynO8C0PiC+KngXEt9xreU132jtxH8d oDeXDIpv6TnZ5enbqPRZz2cJ3wn6qSoL9VFK/b1d7TvJy0utg5QuUvJB2VVL J/dsjfWBsiPVmn8+/km4s0t9f88DmvvBl5V6z3Yd/uJK2y7ojq/OxD+B/64t 9X2y10uWpjVjqc/bToz4zpg6pbaxka1NTdR32UylDo5Jll3pu5akU5duXXeA 6KzrglTfDXJ+1Hd5nac1qOQDlfbvZQ68qdr2UDrLrLuDj0RsoyFbjdIc350h /ZzuDtkFf+9q19c3+OfX9fnYKzUmUr9NmY/7Vlv/9Qxz7Rzq9/tK67N1LuLk +Qh9m9L/JFmHOQVaIjzzwK/A367auIT4F4MT8K+B57kk3/e/A39Lwr+SZB3J MHCy5A/wL4U/qdL6Rd09so3/bqz2nKO5pxn1cW61+Z/W/hL+c8DLIp5bXtE9 dayFxip/TWzDIluWceDqUuvs+4KHgL8D/8CY3Aj/A7jnwF/rDBz+S3EH8Bc3 9v1est9QW87nv3o17n9q6/HgurH5RXZvsn+rwD8d16aJ11BaS0ler770lM4g qy9pvMPfuLHv+9L8rLlL+gLZDumO+QZN3AfUFzQ/ay6TvkG2e5q/12i+ybMt 139R362sO5abg9Mrbfs3H3oL8GSVv4nXWFpraf0gOyzZY8m2SW+QFDWxTEOy DdnQtWa8HVTLtnVPaA5oYhsc2eJcAc4h7nbSF1R5fbCY+HqCy2ps3zCxzDog 6b/WgLPKfH/edVHbhwTLbNMi2xbJ93XuWzrQhTXW568ts45N+nHZb/zZ1DYx so2ZAj6t1DYbd0asL9E5bckwnsO/D1ef/FeS//IavykSKPN9VHprRPYS9cts MyTbocvBaZSnZWOf39b6RmsD6TOa1nh9I7mz5M9NYusbyYklL25c4/WL7P5k /1daY/uKxDLbIMkWSWc2B5RZhi59peyzFpVZZyj9bIi0jjKe3UMfD+O/kf8G QVurO4vIz9qobZFlkzxW+mbGtcM5viskmXGuOfuGnmGv97Xu157urxzLbLXX +xt/Uon3fLqT7oTsHEr8NsVh8niC+I7k+C460b8hvv9yfB+p4itmnqgTNE1x PFjLZyZ1VlJ3nMdDKwC/lOzzbXPUp4h7g2zearyHO5bjuLQ3GV7LZ0B19vN3 7dHLfDd0tvZwhHkSWgJxfpDs95FmlvjOiZN3CaqM7INqK3x84OSdBNoTZZY4 Te2V7oN+SonPB+qOhImkfQ31kyv9T7JluFUlvs9ast1O8JeD18b7vtQmkjuC F8f7vNa54LISy4R1/+gpkkOCl8fbzkAy1qbg1fGWvV4MvQK8Lt73yUpmXhR0 3ak9JDMfDP2bRMvSH4e/TYl11noTIgJuDH4Nf13cTWm+U1Hl150bY9NtmyAb Bb2pIhn36SW2uZPsuyf0aInfZ5Cc7HLJvUp8/kL3+xaA66u98OeoDOCGJdbB 63ze/sa+A0R3fwzXvCQ7IMbeoM5Q43bAf0uJbVbui7dM+OYSn32WrHg39NtK bMMyUHJVreMY77rSv1viFmpdCL5Y633tOcAZ4Etlj5XvNWMK+IJ8ryUzNP7R fqfn2z5vEfyZubbJO1P3LtA/57K+GSSZn/Qg0juAZ+J/jfYeKr0FeGDAPIsJ n5VrHUlr3GOMm7XAZ+Fvm+817HHSOxrw2nYq/CfCgZPG+1dAn6t1b65tjFrk e40cAp+S77Xz09K75HqNfGq+17DZui8732vbMaSXA26X7zQXaF2t+/7yXcZu Qd/RortZLqa+u+u9HP7jswk0BtehPIVBr1mFA+DaQfvFc4z6H1hiewLdAdKG saUAeotEnz+TTH9Aie9akqx/H/x3lPgui/uhHwDfVeK7MgaBZ4DblfguB93p sBHcq8RnvSQn+hR8eYnPb+h++EPgfiU+Sy65knQCXUpswyZdQT556VHi/KoM X8N/TYltVO4Gfwu+rsRnf/qB3wd3K/H5B71PMg98bonvctCdDt+DbyjxWY57 wO+ALy7xfdZ6n2QhuGOJ7w+WHdG0hhL+MMZQv921j6nxO0h7GYe24r886Dtq dDdNN8l1qd+zg34vpV2KdWYdgn7vRLq0hYyfBTqPGzD9eXDtkN9WkZ6tA/hL +M/Bv0HjCf4vcM/G+7/noOeHbCPUBtwe/D/oZ8V0SlWk3yboPYnoZ+H/HPd0 vHnmwl+L8Pma5jTGgN+FXhGTmTXCvxo3Lt7/tYa+KmidoGRc9Ym/QdB7JIU/ F/pnQesAZXdQBv0U8JMaT1KsQ/so6DtepFuTjnBd0DJ+6Q6fJXyuzqeTn9Ph qSD8qdBnxBuPZTw+O+y73dckWyZ4T/DkNdAnZYWFzD/nhD1Waw4YBX/LsO8n 0z1l30JPDPpuLNGbgduFHZfuc30I/negvw9+HbeC8fO+Yt+NtD7OOtCVQesY pRt9DP6zwr7b/l34q4ivNXh1su9fbQ7v2qBtmnSPTZTytAx6z9cKfA7l/TRo HarsPBaA80K2SRJ9HvH9luO8qcxRcKuw9SXSm4yB1ibsu/eVZg30tmHnRffV VhP3h0HrHFTnc4g/O+S3dk4n//XITzH0RzR3pfjthjkl1snKjlZvt0wHd0zx fT0XwDurxGP5XWpTwp8X9HpBb2jo7Oob0Hum+AyrdLq600o6N+l6bw/6zKLO Kt4Kz4+aH3QeBv8AXG/q+0v+W5Ts8/mdgr7jSXc7KQ/lxD+lxG/xLYz32ymv 6gxkiu9z0d3RJ+/UivO9HXor5RXw5Sm+P6Z70HdC6S4o/Xec+pgaW39oSdAz 6DuppBNWnPs1dgRdNtXRF5J7g6el+M4ovZ3yYom/de3B+kP7rsR3HenesFuD PmOps5U3g9uS3nv8V4n/bXia4l+Dmxjv/yLqe0HLjGtSrOMOhU6awpzUfZ8l uUDQNMl9ngYHoctcRnryeeAccLHMZ7SPpX0q4X8i3npz3X3+aYnrXneCSade Dn1SvHXtNwd95lNnPXunWCauM6fSwUpWrrcd3i6xzPykXTb8y0t8V6Xa/Jka v+v1N+Ph9hrfffFRicsuO+HXyV9hyHWpOl1E/O+VOC3dWaG7knUmVjZiuleu Fvzjc6wDuI8yPcj4Gyf7egasq3CzwAngc7XHwz2st6lwU+j7dUhjJP6ncWN1 /ho8Bv9CyY+SrKd9BP/8kGU+JeDH8D+P+xRcCR6H/0XcJn3LwtTn8pBlJI1S LENZELJMQrKJ0ZLN4N5Msl54JPyvhBx3kfoQeEnIMpi6KZa5vBpyXiSLGQ39 tZDTlp59LPgN3V8Bbgh+GLwY3ABcBzwCvCjkssoO4THwspDz2gA8RnYC4Jp4 6+nH4n8B902S/xsO/eWQ60Z6fsmIXgrZplCyo4HQ3wk5r6Oo/wPQ0xv4rs+P tf+UzrOBbVpXST4J3hDy+vIb8D7wZyGvf5eD7ye+lSHbU40hTIg+kprl87o6 L/Ev/EPDvhNU5y12gG+s77qU/Ok+/CtCLvsjAcug3gq57JJNScb2bshllext CPxrQq6Lyeo/4PdCrssnwBPBH4S81pshOSX4/ZDbdqrkmMTXNWibkYupjwHQ 3w65LfXfIPCqkGVoY6WnxP9hyDI3rRmfxD9J33OK63wKeAJ4Qor74Cn034Vh 35+re3SLwE+FfR+q6qAa/FzY95vqnlOdwVgQ9p3e0hfoDMissO+skry/HP75 Ye93dQdbCDw97P2r7lXOBc8Ie3+pe5JzwNPCvp9b93TrDMkzYZ8hl/6jBPqc sN8o1Luph6Dvy7bObhv1+xv4tRzrOLdIdyYdVAPbwG+Wvhj8NvhM6mIr+CB4 e7Z1fJskfyP+2WHfZ6J7TeqD54b9hqTepW0Inhf2flvvJobpLy2zfH+a5OHZ 0J8M+w4o3avdHPx82PdD686xCdT3aOp7RIrHAMl0Hwvaxkay3skaG8CjUyxn ehw8TuuZFH/TT4DHa/2T4m96InhM0PY7GmOmgidq/EzxmDENPBk8JcVjRhn5 mRr2+Wmdoz6s/XUD2/CtIf9nQ18c9n19urfvVPALYcs7dAfZUfifzXDb67yQ zuS8HPYbstJXnQ7/i2HLQ3SvbBvworDfr9Q7ln9KR9bAd8t+KtkY9CVh75n1 rtJZ4FfCfn9V7xDOAMfr/sp870nqUN9jG3m/9iThi8DDG/kMwVTJa5mvPw67 rZSnOOiNGvqNSZ0n0pmjj8JuW8lrGsD/adj6MKU5Ft6j4N9g7UJ648H/hi3T vwhcAP8nYbe9ypQAXht2X9S9mhHwurD1darDE/TFz9Rf4y0TmIR/Rdh1oT6l M13Lwv7WJF+ZiP/tsPV/6uPj8b8Zdl3qGxyHf3nYbaFvbCL5Oxa2TuMS8jcG fAT8K7iz7C7wvxX2+5Tq09JJFOZ6rypdxSF9i7neq2qP+As4P9d7vV/Af7NX bpLrsmtP9wW4Qa51IB1wH4Lr5/oMmua8A+DGua477Xl1ZqUh+Px8n2XRmbPy XO89dRZtNvlNzHVczXE/kn5Q+8skz6k6A/dO2H1B8q086rcs1zaD2mNngJvm WmejPfk+ePNyvZfdQ/73gwtyrcNRnfymsSvXe+3j4D/AJbnW0WgP9Tu4ONd7 ae2R44i/NNd1qz3+CspXD3xOvvvkXo19uc77ToKMBb8R9reuewZH438tbH2q xrRH8S8Neyw8eS8lY0e/XO8PNecUUCe96c/3au8Y8Rm8gbmWP+gsjcaa+3O9 v9WY0xg8INfyCt3ZdolsMWL3l8hurRb0e3K9n9Q5n3xw/1zvd8VTDL4313fX 6Q67rrLViN1np3Nol4Jvid1vqTv8a5Ofe2RbQf6+I3898N8Vu+9Yb1B1B98Z u89Rb0Tl1jhPystGyefx3xG7n01vbnUD943dN6c7ay8E94rdn6E7dy+TLUjs Pjy9aVVIfIMbuSxPVPpM4t253m/rbMhFlOeBXN8lqTzs1DmVsPXPGoN1BnF1 2GOz5K8nwHkN3VY6L7gR/vfD1k9rDnxCe5uwxybNQV9Bfy/suUpz4Cj8r4at r9aY/zj+lWGPnRpz2pGfQbmWP2iMWqtzOuHY3Ad9OGn/GbbNq/rUefAPzrW8 QXV0BXhIruUbJ++Upj9Gcr3WlAwmXjqshh57dP5xFP5/wv529c2tJL13w55L M2XXAP1w2DpRyWx0ZvSvsPuuzpLuz6R/sVhfm+w7N2QDc0bYe1XZxpQxdp8G fifZdm6DWA9HQ957/4x7AFwV8l5iJ24wuDLkvft23EFwacjnadonWadYEvKb 19I1joVeT+9hSl4Bz3hwfbAemdc73UN0/1jIe43duPvBkZDPxG3B/Q2uUHz4 L5HelPVQeap1hJpzG8m+qp7fztQb1KWyr6rntz/1Jnk6/KOClnVI5jEX/+6g dXAdwUPhbRby3ljnnqSzLgv5TJh02X9CLwf/Br4wyTrdBiHXjXS9u6E3DLku zoB+ANxEul3w2eDvWYu0A7fF3wa3EdwxZHvijlqjwN8hZP9HhPkRevuQ6/Jc 3A/gc0KOq12SdfJttT9Isq5+o+7nDplXdsTS0Z8dMq9092mU/9GgZT+SAX0P f5uQdfxqww3gluAWSa7zX8CNQ24L5XkvuFHIba80t4OLwX9qvw8eBm4esixG dTYCfGrIsiS12aX09zNC5q2gTb6lPK1C1pErze/gPzPk8xTqc8Wyfyuxfets cDL5Hxm0bEYymxTww0HLLiTDKCH890HbEFTzX13wd0HbGETBReAN4Eb6HrTG Uvvx3xkB6+NlU7Ux6L4gWyvpZDfp/ayAdbVxpPdQ0LInTSFz8O8K2ibrLHAG +T1U4rdu9cb5dGhbg7aJzpPMi7Q2gy/D3zbFNtLfBk9e23jSdjoP+vqgbaol Y1oGvWHQeZW+vQL6T0HbpJydYpuULeAlybZVkQ3F9qDLLtsK2VDsADdLsW3F bPw7caemuMwfV/sb07cle41s8v97id/+lZ13AuUdFozZxAcsi8iGPz3eMomp kvelei+iNesUyZtSvdfSmvYJydNSvZfTmvdxyedSvZfSmvhJySvB4wPeo6SC HwladigZY33ZU5b4rV690R0PfWjQsgbJHKaBO6Ta5kFr4hngC1O919KaOEj4 wyV+a3cy4Z8g7GbwfeLVngm8scSyoGk06P3gTeC/48wjG+V/Svw2r2yXpxN/ p1Tv7bTHKpK9Y4ntsfVmuGzkRwQte5TtfJi6+iZoGz61kWxeTgt5rJMtzCfV HnM01si+RefvdNfRvboXqMo6H+l+viXdCeBO0NsS11fEvwQcAX8o3aTe/ARP jnrdcGcd4qiyvfRd+Fvz3T0O7c2IbaW+ovL6Qzsv4rX68QLW8eD4qN9iOKH9 CLhDxHvvIPl5qcr2ck30vkaO3xfR+YRG4Oocv1eiM34661ea5fOasjmW7fHf kqHpPF7E3+3Z5OlF8FJwF3A66Q8AdwZ3AH9NmKVVtn/WXm4w89LLVbZxk63b INK8H3xupWWnG4h/oM57w/8N5etHHu6LnceVrux86KOqfN5Hb5UkUJ5Hq6wD ky7sf+p3VbbXluz+P/I3psr23Lqb6HL4H1P+Km2bPJD8DK6yfb7eXtYbzCOr bH+vu6R0p9Q48MSo3+LN0j19OgsZsS3Yw3onscr221eRVgb1NVp5lU66jHWW 3rSvsg2ebPF28/HdUmX7V6277qE8fWPnpfQ2XCrx946dB31JumPwzeBRUa87 e5DG3eCXIievOAsco6/3q/J5Ut3N1hH+26t85lpnr7tn+Xy27C/7ktfraN9T Km1/eSv4BnDzSutktHYZwIA6h/A/Rnx3aHMSmQfeCH4U/CD5fRr8MXhUvP/b FLH9qmT9XXS+pspnSqULqtSbbuDtEdtiPEz4Z8H1oj4L0ob2WlBlHZ7WxjeT /uwq2xONjPeZnx/wv8/3dV89j5WDZPvBt7gn6LFXY/oq2ejUs83uPbL1Areq 5zMy/cHvgi+vZ1n6veD3wHfV81xyv+xFpE+s57H/PvBI2amFbON2FfkcBa4D XkodTwIPB7cIWVeiNYTOw2hckjxQ52/WR7w3KKI8T8XOG0svPJb+tLzK9xUQ PLBFc1eV7cE0D23TXFDl8ykayzV36y6BmVG/DXyZ7mmOtY/0bps1tlX5/JLW LpprdXZSd+BLdq/1Sl7UMlrJalvTHvPVvyN+V+wnwr9RZZ2SdEudoT9X5fOG ervxWfI7Jcavt9rGgR8HryfOFOnuwU/qLEfUZ31Ooz1nxc736m3dE9Bn6vuO nFR/BdaR3sIqn1fXW0a7dS8j+KuI7y7uTP+YXuUzSF8HPdfqbNJm6vs8KqxT ktd0m5hUzw/ZJlH/naX9CgVqm2h93pmyqw7a5lt12E77nRy/ryH9Xh7pxAUt u5cMXzbHtxX7DXDZz/RXfyi2zbK+lwHgW4pts6zvpTPxDc7xXkp7rH7QVhDf UuivJtuG/e4c781k294B/v453htJf91ethc53qvpnNO54H453lup35wPvi/H ey/pQ2UjPzDHY4bGjv9JNp5j2wfl/2n2G/2LfX/fa9ojQXs7aJtx5el2cEjn E1Uf2iMQ/2053rtJH98X/12E3xBnHUqEcfFS9g9/4P8dNxH8OTwHkn0uZ5vu JSi2zcgewnwGrVvYtF/hKYe/a9h+hVkP/bKw389TnO9D/y7HNuiKfz/xbdN7 RMS3X+OY9tbQL020Pn8t/FtyrK/6G/7d8H+n97Hg38d/t0C7u9i6H+W/Hvzn kd63sTMlz0I/P+z3G/XfJOjf5jht5Uk27z8VWwchW/hK6JfD/0+y09sE7xVh vw+p/2Qz/0OOdWmypT+P/A7I8fvL0mcXkr+Liv12xOWS0UHrCu6BfzrhH9a4 G/ZbMm+DR2pcDvsMxVvghqRfE7Zf7ws2BjcLm1fvC35A/I9p/Kb8mySvIPzp Yb81rT1fMfwdpF/E/wXuKegdw36/Uf8thD43x2dqRC8Ft5DMK9lnlEZAqw5b Hvsm/w0DR8K+j1730uuMRUXYfp29GAq9PGz96DL+KyK+srD9Ouf0jdZmxfaL 5xH4Tw37LRylWR/+qrDT0nubJeBo2OexdC5rNfiLHOtj1Z/GgGfnOO8qk844 TC62Tl1nH2Tz31P1E+ezAHqr9OpinwnQPU96+7ZbcawtwJ30rYK7SjaQ7Ldn zy+2X2/QNqK+u+sNCdrzGsmM4e9T7DsanoWnFvT2xX4b5MI4n1F6Osd519ml C+gfD+b4Pl6dcxxN/qeqPMl+k7IO+FzKuy7Z/80HT8txfQtPwd8+bF7x3JLm N031No7eyJkM/V6I9zK+fkeY1dCHFnuNpTdxvi+xjlG6RfH8me03dhReb6JO Jr3NOe7r6uNfgA/mWHccB/9c8N4c64als5ZN830xfaFsnTfIxjNoXfCeSts0 D4jZB2hu+x/48XreK8v++Vd4L5K+Pt5zqmyeH4zZM8gWegu8F4Rsk645Vjbp XUKWFchW/Rft5UK2edaeVTbQQ2L2DLKNLtD+LmYPIRuK9g3Jb9CyXcmw11d7 j6+9/QjZplZ7z669+jDw19Xeg2vvPRT8PTgatC50LziH+AfG9Kc6JxwE3x/T t2qeDYEHhXzmVjpUnfkZELTtnM4CfS4b3nreO8ve+jjtdXHIawvJWK4k/HTw UMIPJ3wP8MyQdUtad3UHzwhZ96R10mbas3PIsowukkcQf4+YPYTsxbeCawWt G5T9+0+k3SlkXu3xN0FvVN9l2QX9y3S+hZDPx0qmI5vu2SGnpbXZZnC3+t6r PwJ/CvyXhLxWkkyotvZ3MXsBrSu+gn9VPdfHEPi/AL9Yz/Yfg5UeeGk925s8 AB5G2Fkhl106xS3QUzNcdtmz/wRuXMu6F9mzLyRP0wI+g7Ui4jNYP5R4LtbZ LJ0BXJnjM4k6GziL/vxJjmVjGjO/ov4XFvsOq581RkNfmuOxV2OyzuBdEPYb bzqb9xr05Tkev6XDOkL4ExrfCP+b9BPQF+X4DGMp+Xodf5ew34dTHP+Df57G D+prK/y/gQ+AHwH/qjGI8DtzfGZLb/Iehn642Od/DmpfAL1H2G/W6e26/fBe Ffb7dfpvDvSfc2xLojnzIOH3Er474Q+Ad0DrHnbcx5N9Jmx3jr9tnRWrJvyV YdOUB52pfIPw/RJ81vIT4psK7gP+iTBPVfpOA9mo6vzNTMKvyfFcojF+I/wr i2Nv6YCXQ1+dY5raZAb4rZzY3MZ/G+B/tdhv9WwHb5W+CHxxou/BfqrGefmC NDfhb0L4C8Pe0ym+x8ALcjz3a86fAP4QvCfZ+9AV4LU5bnv997LWXmG31Y/g BtA7he1XG+oM6uIc9wWddZwG/YUcz1WaI8dC/4T87Ye3C/TN5HdNsc937YLe FP6LiW9vstP7QGvBsPOi/xKb0oe0BmTATGrq80A6q3Uv+7cXiftHMvaX1rDQ N+LfQ9y/prkt1Wc2g/em+Qyf1lBfg3ekWUagNVIi+/Jt+ZYxnB6wje+WNNel bH+Xwv9tmuta9fqc1i5p/hbu0JgE/iPNfW+M5k+t4VMc16uVtqHV2Cr92fX0 gZ8ZGAfl+Uyw3mTRnrZXpu8E0V73nqjvctMdbrrL7R/d25fpt391L53upLsg 03d+6O6PXuBv830H64OS32lvm+m3MXWPZF++9e3pXktrTX0TeGu619JaU99E +A35PjM4nPBphO+T6bfYte/WHX6b021bqPV6Mv4DstOD/i/0q4nvq3TbLvXX GEF9JIQ9Xx7B9dd7AWF/b/1xtxD/rjTLQNbFWSayM99+yUpu03siaZaZfM5/ NxP+WMjfi86J36HNfdj68rvUx0jveMh9Zx9uGfjfkPu63hR8lLHw90zb6uoN 3A3Q48Je3x7GzarxOHM7bfMx/of0tgvlOcJ/nbXHle1M0LbOekN9Evm7Nst3 dSdpf0t+4sNe7/aTDky2bWke62QDnUb4tLDtrdNxNeD/0mzrfV68ZVrfpZ1U 656UdT2ou/FJ/y/oneJ9R8v99JeMRN/dso3+MzjPMhe9uVSf/DxG+ToTfiFh fta9g5l+q1tvaF9LeuvTvffTHnAz4Qfk+X1KvVNZRvhp8HeF/wWNJ7p3MNN7 cIW/nvDfpXtvqD3iHujVmX5LXG+K/0R89+X5/Uq9SXkIeutMvy2tN6b3gk/J 9J084pdM5ifpdeIsq+lJ/R0OeT3YS/Yc1N+fIY9POvdeTkIzCP9BLH/xfK8/ 5/sOQNXZGH1/Ia939cbmNfB/nGYZ0Gp4LsdzKOT19XWyR4T/t5DXjnqzsyf8 76d5D648dYf/95DtKW5QfynzW/J6U0JvS2RSF7fDP0V50fqA8t+b5/dAdYf+ 7dTX3nTvzbRHK9Q9aeR/VcB3rtcGP5jpO++Eg5JrZvrtXr1Zu4P4hhBfHck0 JOckvv3p3jtpD7UT+oPQ6+G/EtdAbyll+g4xtX8O+O5MyzwV362E35XuvbX2 2NsJ/wDhCxL9ppbukBwITkn03ZIPUv7fsr1flM3+vYXeQ2rvqD2wdGu/Qx+c ZB3bFvw7M/22i96s0dswu2JYb750aeK3D/R+w5mMzw3IT2G699baY/dk7K4d w7KBH0n6f2c7jN5NWEd6J0Le2xzE3UH8h6j/S7UW1/gA/jnNMuNPwNn0j935 pl3Ff+/V9dksndHSuS3dAbqlls9Q6SzV89C/reW3bf6CfqHe6wMHk32P6nDw cnC59usBv+2+rpbfQpEceYLeWwFXJ/vNvRH09yax70P3lOrMje6e0x2jOouj OziL///7kuxVMkHZ4Sf7/M5u4nuNPVZinGUuqyjPd6m2f9a9v0Ppj/MT/Iac 3pKLK7Me96Q+l/75I+EXwx+nvQ3hjxP3+lTfgbksPnaHai3fiaK7Ucqb+B17 vVVYm/a5ua7vPtF9JrvJ473gReBGGl/BD1C++Ey/baB7RUeDm8W+d90bOwF8 Vmy+0pvTy8H5se93BPhN8Exw9xieAu6SefJY18k3zZ8Ap8fmN+FrIHya77br R35XQV8I/Trww9BXgmtn+o5A4ffBRZl+y1Nver6qt11i45vurW1IeR6u5fNg egdVMi3Vc7TUZ8W0dx0C/UCS97C6Azc5Nn7pbrErwe/nu25uA4+v7bvDFsfK 203jOeN8X/DLlb6rUXcb6s1hvT0cIv37a/kMm94B1Zkq3T2qO1N11upiwj+V 5juhv5Quosx2OLLHaQfPv6T9aarfJlhKvl8kv0dCXmvrDd6B8M9O8Bs0eovm RfrP56k+v6A3rK+VHDpoW2y90xuCvjffOgXlWTqFo6R/Q8C6Bukc3k6zrbZ0 EU2a+B14nefLpc6ONLVeXvr5XJ3z18Bbyzy1EvwWeBJ4XJLfBD9CWu+m+u2U ReqfTW1HIHuC2jpnz4ezJdO2qXqj4W/KlxL2XjsBNwu8jvxsifMe4RHwmjTr HCTz2a+7GMNem/8neQX5SQ3b3nsg7i/Glr8yLRt4MMk6llVplg1I9zKJ8B+l +Y4IreHvI3xy2Pv7Abgc6mtPvu+MVB09CX4/1fbRveG/i/qfluA3UPQWygjo b6XaXlvvn68ivmgtn0HUm53tSb9luu/Q/qDSb6uXQl+Y5HuCRhHfC/Blaf9E fGlltgORPUhj6qsD4Yelea33kfbnmh9TbY99Nzxna7yp5TOhOv/5Be3xRy2/ DXWC/J+gLD+l+g7zt8hDUpntRmQ/Up/4z5FOopbPeOo8qGxOZHuiO5x1FnAT 8R2HfqnGL8IdAB+ljkcm+U1H3fm8LNX25roLei/0FMlv4U/iv5nSDRE+D39e gu+8bwBuEufzuZEm9uvt1CL6W9Mm5tVbsfngOOorp5bP7+oc7wd6iyfTd4jq ++9N/EdD3j/dgrsW/FfI+5M+uL46ayz+2v6+9Mbvh/hvru23f3X28U3ot4E/ 0liLy9X6lTXg1RX+PivUX+C5pMJvHPehvLfX9tvHY/lvIP2nj8bFCr9XugLe O8Gfxe6miAPfUdtvD+tO0Xtr+84M3Z2hO0KbqUxlvjtUb9wvBCfovnh4rgMf yPD927qH+1F9Q/pedN88/l789yf0U8Cv4n+E//pBP1Dg91j1Ptr15DcV+jzo c3EDyU8KeA7+HNxf0Gsob48KnxX9B/wNPBeArwXvz/D94rpnPFv3aOA/SPzl FX4zugTeYbX9/mpjcFma70PWvch63/Zp6B1r+73EOqpPxoAzwadB7630iL8t +AzwGNwA8t8GfHqFz46WaL9AfNf8X0tnHmdzvf/xYWbMzDlnzjSGc2aIwpkz 53toDLJFaU+5lkQiISndLIl+sraQJbktips2t0WrVqWUUunWdeNGK2XLFhFl l+L3enqdP76P832fz+e7f9b35/V6vyiTsl/W+Xop/UPtf048v3yvN7Lu2FDb UmJho8mt/KfJbq7rdZV9luwLiRGl4yfKPqS2qZ7SYzr/Wv3XhdhOso/qfi4i 3i/Poq2Z0vvr+v2VPlPbGNobpV+Qtob3Dbr+uFJre9fXtpiyoK1t2vFM2un6 15U6rslg2X/p/L1lf5KyHvCrunYf2Z9q/x1tTzJ+lL0o5ZiwF5Y6hgqxVOD2 7tH1VjMnSDuG5H59izkpx5ZET3aY0g7FrUdHzPaxsp9JOZb7SP0+qLTGEetz 02f1KnO8Yfoy9KBPQ79N9vMpx3I5qPxDI9bnnqXtJ9n9ZT+Ucsx0vj/lgFjq 4/Q7X+lt9N947U/ifci+SPZk7c/QtlJ2d9n3pqwv2rTMz8yzUwYoC3wTvg1l mrL9UMR64XwTvs2/ItaXel1blexZEestA5Sp0PkepM+W/ZK2euh/R6wXjn5r 6zKXIcoSbQJtA3Wcut5ednfZp8tukHKMc9oH2gn6b2LF7NL9b9U37MM7pz7n O6YNsW3Q17tW9qk6xwtKH6jtgPKmZZ+pY6dru1XlJ5DdQvtlSo/QP+kandOO +du41DF2iLVTi2dSemuVvz5p6wePU95QqfUO0bSso+cpKbXWJXqE/XX9A+hE pxxzlO/HdyQ2zzTlGQUGlXle2u+Id9VU9quUER0/MN/vlHc7QNtvuv+Y7Crl j8l+Rftx5n1plxHKSl3Zz2m/trbqBY6PTZzsa2X/HvY34FvAxZ6mtPql1h8s 1RZifK/nu1r549RhPU8F407ZO9QHHAbDCZY16W/Ct/lR5+iq9BnaRpc4Hj9x +W9Q+p9hf0O+JfWC+rFN/12t/V7a1oddJimb6IdfrHO9h057yuPtVXr+L/Tf JYCu+Maya+n+eqYd8/XduGP+EPvnSv2ug1MV9/i8uuz7de2FsuvJXqF7fbye 49swpmF8fwFlXem30xbr3OcofSbrEayv65hhep4nlB7Xfg/lWQPHLO7xE1z3 NTqmru7nStmTtd1cYn0BdAZCSn9M1/9Rdnna48VW1H/Zo6lv2v5Q+jLZ9ZV+ Qm3gPtmvoU8gu6fS14Zdh6nLxNSdF3fMJWIvERvmal3/Wf03JmXMxQeZ/hgs xkx9u2k6/jAYIDBksufh09SzZ+u/s2QvzIzfGQPfqvniwZDXkllTBiNyh+ar FTnGjoAR2Rcyt5X13ynMf/XsbZU+TNuRmH1W+Kpu1TkvIe5oseOFsQachR56 zJoDuvWs2/Su99Y0l/GzGsaYPJeZX4A9GaH72Rvy2jNr0Ns1n75d99Mox/GG huMviznm2Gzlv0v3c4Pup7nSbgKTTJzLiLWOwaXs1PF31TaGYQhr4Dr/0ZDX wlgTm4AenI6v0v6N2qrQL8/Mn8DB7NDxd9Z2zLEBnEPXXxezBsyDjT1e3Krv 8aWOuZT6pvHPkZr23w/OdRtFW/VD3ONJxn8/KP9K5e9I/6yX0kf2A0ofkXI8 rbGlHrMwdrmCMhB2n0HfQWyFJkqbJfvWlONhTVb+e+OOi8X4OFD6/bKHa7+7 tm90/Iy45w+MsRhr0QfSFzIOYjzEGI2xGm0IbQljHsY+zD+W5DvePXHv0S9/ T3YNvbMr0tZ/P01pt9NHpayXPkD2ZtkPp6xPv1v5A+W/Svnv1DZU9eWeuPXP L1f66rD1P9AB6Ub9D1u/hDEwYwTGCuNlF8s+LHuz7Gmya6YdK2NRvscUjC1o s2i7aDNpO2mTaZsZQzGWYszF2It40MSFvkrbJu1/Fvd4vAbPoPTPZTdIe37Q Tef+QvZU7X9ErLR863/gQ0av/grKm+yZtMU6ZoSeb63sRtrP13+blb+hnr+X 7I91fD/Zm5T+QMptIm0jfTp9e29tP4XdR9NXM3/7TPmXM4bT8X/K/lR2oc7X I+0+g76DNp62/pjSf5H9mI6Ppa1xh9bdDqX3TXnMx9iPPpG+kTERYyPabNpu xnSM7RiDMRYjpjb9Lf0usdoYwzGWY8zI2JExEmMlxsCMhYmFco3udaOOuS/l MS9j3zER652jaVMr408jNv+jSuud8c+PUZ06D92UqLUhI2ofblHf83um/QHz 3gGdGaWvyrEe9XVKXxey/xzOAhiyI5n6fRJbpvo4u9B4FXBlo5V/RLFjA1D/ wYgdC1mTDOzY2Tp/06i1u9ELTzO/CTk/MQWaKn1loTUq0E+tC65J93+Nzn+T 8jRGz7fQevbVlN5f1/suZP8uHI5rZa8NmbsP56JMxy+LOuYrx1+j9K9D9ifD WYgqfY7Of6XSb9R/EfR5lX9Zxkbbe1LYWt/oeaNNPTFsbWQ0kgP8TYXWAkZ/ sp3sBlHrxRN7sAX+O6U/l2N92Y/qqF3S9fQqsvpWt9Zkn7C1JNGUXCi7XeRk CNKsPqwvyx4fNZ8S+0PZd0et4cLxaNP2D1sbF41atGV7hq2tip4qMX87yd4k excYe9mVjE+yjAMDk7c55PUVsHpgut6IWsMBrBfaymPC1lpGr/jven/bQvbH wgFrqec7rOd7Jcf67M1k/yh7Xo71eauB02Qsk2Xc2DAdvytkfzAcmrbKX6Lr va/8+fg0lb4n0z/B2WiN/0Xpb+VYz36I0neE7J+Gk5PU+VdEre05lG8u+/WI NTKw0eyoU+TYKmh5tCKWRcj6x8RkmcX6TpFjsxDz5L+nqx8J2SZ9KWNpPc+0 HOtzoykyJmTMH9i/J5W+M5LRWtZ/dZV2gFiKsmvJ/jpl33pP3WtYbdO/lP/X iLXPyb+M8ULhyW78pCb327JPj1jLHE3zhbLnFxrTh91L978i5NgY4I6J4dNa z78yx7F9wMQOLnKsFrCyaFc/UWhtavSnB+v7Xy377zrfWcoT0vu9pcgabMTc uB5tnojfJ5qpU/V+jkYdywXN9eV6P/VDtonx8rTOvzdiLVM0TZ+RfSDjX8X+ t+wzItY44Pm+lv1xoctfPTAHOl865Ng0xKhBo+WSiMs32i1ounyr/I/nWOul Pdj3kGPVEDNnC7pCha4v6LxslP257NngvbV1AFseciyc98Gb6HpVIZcHji9C h4W1WOV9Tdsnet6qIsc8JybI3br+9kJjiInvvUjp5UXWnCCGCdrui5V+X471 09vCLQg5ZjzPc1DpPfQ8b2XZR3a+0h8LOfYJuOYTZY6tTYztF3KMcW4f8vXB PoOB3lVoDQSw0bm632sZX2cZJw1m89SIywdYzhlKHxB1+QLXCcZzZNTvH+zn Q5XW6EaTbZWeZ08TY3eIL0Bs2ndkP5ZjPjnx1cDUg62Hn058PTgs8EqIT4Be BpgdsDvEH0E/lHjenXKN9yf+O5wWuC1gVol13TfwOjPrzecxd1J6x1zzC4gf 3yfwujfr3x1Sjk/fKtf8IeLpb5Rdnmv8DPHnwYCABSEGOfiQctnjalijB60e NEqnKm+LfGuX7mxibBCYZvRAmp5hnBe+crR5iA/bKrM2AtaeON3E656uOt1T 51im/1bkmH8PPpqYS8Regv8Pnrlf4HVT1k8vYPwTeN2e9fuzZV8ZeN2e9ft2 zEUYZ+OvBPela3YLvE7Pen3LlGMkp3TdO7McO5m4lXGlNdZ/k/Rfx8B+Y/zH Zyh/l8Dr+qzvt5B9WWA/MP7gpsz/Aq8Lsz58key/BfZDM3drlrLm2GnkzbcW GTGZm2SuRaxmdDuK8P1m7uk+vZcq2W1kT5cdZDsWX+uM/Q+lp2Sfme/vgK4O +jrnyp4puyXruHzrjI1uC/ot7WXPyLJuKfqlCdkTZM+UfTprp/nWSWua7diR 7TL5uTbxALk29/C16nufkNtDYlgR3+6xXK8noa3Gu3wo18/HO11JHEP9Hs8y JnANOOio69sA2bNZ34gaI71I7+MLpf8j6vrdT+kTdM7VuqfaGidOV9m7p4l9 32jmom93m+z3lL5Vc/0pVY4hTCxhnhk9mIebGDvG3I7Y0JO0/Zztd4ae3Ur6 94jbA643V/fzctSadj8ob0u1T/szeD1iasxV/gYR9y/oHsyT3U39+Wbt/5Zj LfBBYWt/owH+q+zhsvfIjoLJkz2BuVSWdRbAdN8csSYZWO8/lD5K+X9TWony b5M9T/fzXpZx4H9SD7Ndf67Ue71R9hWy59A+5FvvZZTs77Ic/7Or0r8Cp8Bc N9/a0ctzrQ+BhvQw5Z+l/JP0/iZWOSYxsYkps5RdytJHuS5LlCniShJfkut1 l92LdUnaO9md8l12iD9K2aEMoRH4sPa75ls78Bad83mw17reXVXW+yIW8/os x++n7FPmKW/UgauqOQ405/+b7AGyO2f7nN3yrWGFltW3WY5XSdkOZ7tsU8b5 ztQJ7p86giYY2mDrshwfk7KPNiBlnzpA3UI/kbpFHaMcUSd4HuoQdXVGrusq dbaPvt/ymDUlR8Bd0PdqFvX4Fx5ND/VP/w45Ntb3tBPEjis2XnICGEvWsVSY Pq7u9eKRDTQuKDH2ATzW78S6KzZfgbjncIJOKTH2Ba7QQf1XLe74oqxHj9bx 0RLP5cHQwUF6s9j8UrhJY5ReVOK1D+L+10dXIezjiVO6Pc9riqwlblX6rjyv GbNWzBrnbPAl6j+HMTynP5Q9sND+C2z8g5/rfTXIsW8V4Gtl2OdDQ30/3MZi cy/hoNyq+yks8doLmLKQ8leFfb1hrKHneU2KtahfGAMqvXnY9qgaxiJfo/HD N7nGJJ+LPyPDRyMm1jngBzJ4VPClF8s+luHbgaEcoeuHS4ztwK1wSO1Vk7DX Iq8FY6D7fbXY3IjbdMxV+igvMx/Lc0ytjuCRMvxS8LN9lL5A9h15jgEGR+Sv DP8W7shDxEILO7YS/Vx35X+h2Jwx+vThup9QibEpYJjhoBzK8BHhppzP+DHD ByVm15U6/iXZE/Os09ND9ovFLlvExLqQ+WCGL0pMrG5Kf77Y8fIZo1yGrlCx n42YW23A32T4nmBO4SjNL3bZg7vUSumrVb6H6t6mK72VXlpJgeMZgQ8vwA8C pl/2SqW3LDfOG7x3Qh84qvwn8h3vCP9lC32/S/T9PtHznqf/viNurOyz6W+V 3qzc+8T3PV3Ht5B9UTXHO22YtP8YrjjxKvA3b9bxnYucp222Y2IQG4O1KGKb 5un+auj+Lq5mnePT4PYp/+u5HuPkKv1P3d851RzXHmz8SKVvyzVGfoHu/86I 8VXoQs+THY0YHzdO9lzZkYjxdvgHWD97X9cv07f+Q2ODMU2spcraHOsr85X/ lIjxPujuork7KmI8EFqYXcADhjx3+J++fz/lryhwfK+Z2Y7ZShybVNqxXP+r 529d5HiyZ2Q7puxHOrZ+0rFmz9bzdFf6F/CBeEflxunTN6eS1oAdXuT/iMfc uty8DPgZSaX/QRz2Iv93UbbXI4hLQnwS1itYgyGOCPFEWJvZo/xXFbkMdNB/ DXX/BQWOPwVfoBA/Y4E1sL+t7jWWr/V/kOO1F/z3xDEhngn+ebTQ0DKrrfTD ep+Bnqe9zr+YuW81a/gezHe8LPQQZrE2pfZpSJbxeaw/fKzj6+V47QquyY06 fn2uOSeX6f7qFTieGPyHMH7uAmuMrq7uNaeV+r88x2tRcEYpM5QVxrfN61kL AXuK2o895V6b3qLr/6r9rXnWKgYLBCZou97P5UWORUoMxtUaX3UJ2SZGaQv1 J7WjHi80pT7Jnh6xPwG7g+y6Sl+q+/lU20WyZ0fsb2mu9MvV3nwYcqxFxmtf 6fw9Qo41SszRC5S/UdT+BPLv0/30LXI6MRq7wEUOWUOK/JPUPtUqMXYTTHQp fWLcehes9w/S858fto0Oxt3KX7vEWAkw13AkV0XNyYOb1wcuStjf/gnlj+b7 nfOuwfh0U/o5Ydv/VHpJvssM+cErVEN3q9jcBziMTfU8hTr/u3oXH2irzfgr 4vFTwJhK9tFCc3yxd+n5huv5zqU/1vaTjp2eWY+4SvccU38wvsgaY3DG4CQP DtmGqzwFLSvl38B8Tterr/s7TCwZ2YuZh8C/rGWu9RxtI+pY6wrNq7Xa/qHz XRY1hxb9KjjQXaP2t8CNHq38SyLGl8KTXqXv1zHkWLjwfOH4vhhy7Ey4v//T 92tX5Fi4xNT8UvnPD9kmRthpOt8JPf8but4ibZ3oj0PmFFLeyvGP6Xof6HpN ZP+g811c5Ou10vkaKT0v6vEq6V1lB/gDuX/qlM73drG5h/SRcIifjthfCLe4 vb7nWWG3vffqex5T/reKzSeZmOF4xuLGkoGH26P/GsaNpQJDRszwTYxLyh1L HA7o8WLHKoU/A0ezdtxzdebv+8qNFdnJWKrcnNKOYfta8DehWTwk7HfJ+/ud 8VRNc1OUfFIjuFncY2/G53BIS+L2zVJ+tyh/WdxzAeYE8/U+uoftq8Bn8Yjs zmH7vvCR7YDHH7evEJ/NqSovxbLXVTf+5bdyY++2K22v9n9V/gZx+yrxybyp 8/UK29eCz2an0uvHjbXTp87aLRswIfyUhHY/0P1Wxa2xXNrEGrw5NT12QJsX jeXmcfc99DdTVV9jJcZGXc94qNz9x17tH9T+CvwlYfta8Lkc0fXScfd1+MRv 1/E1S4zFhi94Me1z2GOBB/W9C/I9RsBmzHyn8peUGCsNn+qEXsqiYnNtGEMd 1hbEPTdjjnZIdvWaHsvBkdknuzxu3y0+4D/LPdY4ov1j5dZ0zq3psQ98J2Kk H1Ta0XLHTs/T/bSKuy+nT68hu2XcczPa3P1oX4ddN6gjS2X3Ddv3hQ9sv66f jBubCGbxgM67RP/v5ljtT9DzFZdYn+38LK/xs9Y/RXXixZTXuJeB48z2egi6 VuhbvSL7I+0v0ZarD3mgkb5l0touV8kur60+Rvv/AvOUsMbUU9p/VVt2wppa ryWtHTNedkswydp/kjVi2Y3QlNX+PG1XJhyvnrj1T2nrIzspe7n2n6AP1n5D NGe1/4y2fkpPyV6t/ae19ZVdIXul9h/WNlF2K9nHtD9L93CikTXEHtL+LP03 NmH9CnQsHmTNWXYL2QfT1hRFW7QtPkN8Wzpmtt7F/9SGzkg6xnvXImvaEPsd TU60Oa9nzKP/9inPR8wnlX+/9h9Q+v8pvbnOvz9tPwH+gh+Vvk37z+q/AUoP lP6t9n9WI9OQeav+ezxtDVC0QEvxaQfWCEUrtBCMWmANULRAK2U3CKyRilbq hWCEZT+ga8yhHdb1HkxaIxSt0EZgapX+T/33mNJXKf2RpGPWVy+yRg+x7O9X /lHK30z397v2t+v+ZiT8Tfg2LWTHEtYwO7PCmt+HWA8NrAV+F+NjlbXDpcYH 11eeEuU/pvynaX+s0lsrfW+p8aG7A2O/S9VHRGh/lT5AA5XjrFEGxhCAJQAT ADYAnBF4o3k6x2LtH9F2U5n1gNEFPqBnKtT1juh6B7U/V+lDlLeozOO3fbIH aT+q7ZDs6rqnooQ5PtnaX6NjChLm9KxNek2WtVn0c9HRvUfb5TrfiVLjIR+U 3U92Xpkx1uXgSRPWbEtq/xEdP0X2WXAU9Hz/lD2Z8ia7muw5su+S3QZOhPZn a7tDdmvZf2l/LmusCeuxoMvyqOwrZJ8t+25d727d41+NrJE3he+tLS9hvV50 e5voHmonrB+Ojvhvut+Butca6IcHjiFCLJFTGlsLHr8M/pmVKh+Ttb9dWzhh jMvPvBud45SENepCFdbURVu3D2M4ne8+2bfIrtL97dX+Lh2zFP+Hzrdb+3Ed UzNhzbtS7b/EenfCz8SzPadtUML6MujMnALGnPG//lsg+xhzuoT1zNE1/zjp tus7nf8T6pq2F/DPyH6ffR1zo/KfofNtS/scnOtc2dMCazR0qG3NKbQbduie ZibcZtF2RfT/dO2fozxTtP+i/ruJ+id7J3VPWy/Z58u+R+ml2uK6397679W0 /Yj4EzcTg63CmoZoG1IH5ySNQQOLNlPlaW1gDWG0hC/X9nLaGupoqaO/gQ4H HDO4Zot5p0lrIqKNSJs1XfsrtQ2TvZA2TPv/0TluTVjjGq3rT2WPTFjzG+1v NALRCnxK+Z9NWuOC9p52H+2Lj/Q7QvZ5yj898DPxbGh8o5tVS1ukyO+Ad7FT z3hfwm08bT36zneqLxoXc3uOJgj62miIoRWCxjZa2/QB9AUp/X+Bznet7Ddl r9I2JmENdrTY0fC4RvbraWt7oOGMljN9An0D/5OOxjNazytkj05YwxstbwZ1 n+Ev1/eopv03lN4/YU13tN3RRrtBdhPZP/EttA2UnZa9Nm2NabSmx+EzCKwB jRb0CNltWTuQfbPspsr/q/aP6p3+W9fboOv9kbTGNVrXRzSGLVT+J/Xf48zD lD4vaYwZWDMwZmDN0JhHa54+kL4wT/YXyr9J+fO1f6rO0bDIeivorqA5g749 Gmdo0aBBjxY9fQ59D35Q/KHf6Pi3kn7HvGs069GuR6MUrdIuaN6Dl9XWpsjv iHe1V+d7NOF3wrv5Rts47XeqbZ219UmXzR90/g3a/07bW9nW10Fn58uky+Ya 2ason4whZH8ve7n25yddFtHfQYdngbanZX8t+xXtn6LrFyeskVKs/eOBuUjn 652VNnYdoi6hj45O+nJti7V/bpk5DmBkwcp2BMPHeorsOZpvD5X9R8plvFHM enWUfepIImZ9POpOddmTlbcn/UHaZSqp9GdyXda26RzDwb6hT5+2dh1YsW6F 1rADIwxWGMwv2F9iABELqD73ru91XP+NUFoHbfnKu1r2pxFjYMHCnhtYJwW9 lAGB25wJtCd1Xf/QrKuIeayDdtc7gbW4Gsfcv9Bn0neCacWfEFJ6b5XFqdja X6ytRHPQM2Lurzoq/8gccyvzlbZGdq7u9/ky89Hepf/Ghxlzf4a24XCltdKW q/RFSt+r66dj7s9CjF8K/A55l98qf7bO11V53pfdWfYozQ/vqGO+6tv6b0td 6/UxvrtE6XPgtIFLS1svpqbG8A/pHAOpH4w5C/wOeZcfa1sQMaYW/85WnW+I 0nvDE1Padtkj8b/I3pGyZu7kmO8ZLd0fZM8qNQYTLOaPsh8pNaYJbNM66nCp MV1gu9B7rySOqr7R7rQ1fXl29BDR+t0r+/YCj3EY61DHJsX8jNQ9NAk/zLWG FPUXffl5araO6L8LA9fRu5T/+7quu7RZd8asV0j9RH9+Wsz6hO8ydtQ5lta1 BhLt5SOBywJ6hZsoL4wx9O6e1f0Eup8Xq/z96WvQfmJ8Ng5/mdJ3K/0Yfbzs Gxk/Mf6SPUP2DYx/UtbnWljXbRHtO31Oua73aK77Ivrc8bLvr+u+GI1H+gc0 k+h/0YujPKFJhTYVfS59x9113Rcf1Da1wGM4xnKPBy6rm3WOHVxT9mil91X6 Lyn3GdSHBbnuS/bxvgs8BmIsxBiKd8s7Y/xBezKrwGNKxpYPNFUbXs+ak2hP 1uD5wZNQvrV/mfKMzXEdyQvMSYCbAEcCrsSrgZ8VPUv6AzDiYMUXKX2T0l4P rG1HG8N4+7XAdZk2iPHTK4HLEpp5jDfmB25r0EBjvgQnAG4AmH6w/Twzz75H 9i+BMfFg45+VvT4wzh68/UuyNwTGqINVXyL7J9nPBv5W6Hky3wOTDjb9daVv VNqCwO8aTT/GU0cqjbcGd/1NlTHiYMUXwoNLuYxQVupr+zPwHJS5KBh+/KFw WOCywLmAewFGHqw8GHnWc+B8wP2oSXuTKX9wU9vpv1hjY0TBioJJrJEpj3BL z1R6rcYuk5TNmLajgTU6qd+MLdEyBDMNdhqMMVjjl5Vnba71Uen/wbSDbT+J YU8ZowdWL15m//rkwGXz9Jjnb2CywWaDsQZrDacAbgFtCG0JnAK4BbQhtCV3 KP8Q4hnI7k7/rfTBBa6T1E3qJHVzjdIvT5sPnFPoNpO2cwntt+aPG+G3pIxX Oh5xG0dbBwYVLCqYULChbwZuD+izmP/S/4EdvpRnbOw2lLaUNpa2ljafth9+ fReuzRhH6XOZQ3G86kdlmTVP0T59K3DbhH4s83/aWNraDbr+tsCaqbSPzGXQ mkRzlv4LXwBadmA2wW6C0QSrCYYeLD2cGbgzbwRuX2hTmF/D8YDrQRtMWwzG GKwxGHOw5nBQ4KLACYIbtEzbK7I/kb05cHsBd7yYOV5jc6jgUsHBgotFn0Df sF32z9RVbW/nus3FH/Fc4LYFTUr8EV8o/3s6/j/Kv0Vpt8hOy/651Hy8FwK3 77ThzP/pf+DCh3T9/MaO18BCHH0afdujgftWyuRW5U/onWyt5Tkmc004VHCp wBCDJcYHgS+COTBzYcYIjBUG5xgvMiJwnA/ifdxC3xc41gTxO0Zpv33KcbvA uPSSPTwwloV4HzcHxuyC3QWzC3Y3X/U/UmjNTLQzweGDx4cjAFeAd8y7hkME l4g2hrYGzhXcq3NSjisGxqZ3YH3X5+LG8IPlZw7HXA6fFL4pMOJgxcGUgy0H ww2WG4w0WGnm5MzNwSSDTT435bgtYJKuVtrFlcbfgsOFD82ckbljDZ1/WdIc C7gWfXX+pYExwmCFwYiDFW+kd/59tr8B34IxNGPpHB3/NnOpwFgc+BToBlMG KAtw7uDe0ebT9j/Mml3KmHCw4dRh6nLjSvNP4KGgDTi11Hh2cO1oB8Jhg8sG phxsOXggvu1+/H30lYGxWcSjGR8YQw6WHEw62HTKIGURDDxYeMZ3BNtDP4/+ C4w8WHkw6GDRaeNo6+DksbYI5w3uGxxEuIhgzsGe04bRlsEZgjsEZwbuTHX1 5/N0b3UCx7dornvYXss+JHxJdSrNF4E3glbi0MDYJ+L9DAvcR9FXwSmCWzQm MLaMeDljeV86x7Za9nHg64AzBHcIThLcJDDwYOHBzIOdh5MINxFOIdxC+kT6 RjhpcNPgtMBtAUMOlhzOJNxJOINwB/Eh4Uu6KeK1QTgrcFfgIMBFaKZj1mf7 GXlWOEhwkeA0wW3Cp4JvBZ8Nvps0PqdsPwPPAgcRLuJ1uv5ngTmCcAXhEMEl gpMENwkOF1wuODxweYYrfVLanCu4V3Aq4VaO1zWO6Pw/6/wTkubwweWDkwg3 EQ4OXBww+WDz4XnC94RjBdcKjiBcQTiPcB/xKeJbxMeKrxXOD9wfMPgnudRp cyngRMCNwIeKL/W48t+bNG8M/hgcM7hmHSrNT4CnAJ8XnyS+SRYT5ibNWYK7 BOcJ7hM+Q3yHcIbgDuFTxbeKjwpfFRxHuI7MmZg74XPC9xTB55Q0ZwHuApwk uElwEuAmwFmAu8CclLlpvvKvTvqd8e7isicmzUmCmwSnCm4VY0DGgnAs4Vqi IYv/ED8i2rJotX8fN4cCLsWlleavwmMFH4DGbHXlfz5p7Vk4TnCd4FTBrYKD BRcLzhPcJzgDcAfgQMCFYE7M3BgfPL54OBhwMeCQwSVjjsRcCU4o3FA4u3B3 4ejC1S1gfanQGshoIcNJgZsCBwMuBhxauLRwduHu4qPAV8EaAGsBcDjhcsLp g9sHZxnuMpxjuMd5LFIUWtN+YZXn+Mz18VHiq4RTArcEzg/cHzjJcJPhMMNl xoeMLxlOGty0RKX5tvBu0W7Fx4CvIaTzbUx6DMRYiDkqc9XfKNMJ+6jwVe1j Tpmwjw5f3QHmqAn7UPClPAVWXvYs1mKzfU7OvVPld5P2B1ba/4sfmPhIAwNz 94nfdwfjj5S11NDHvC5wmafsb9E2E38k8QfrW7Me7XrGjPj+29f2WHIP9Tlh nye+zxoaEyyVPUX2BbIPKf2dhPVsmdM9AXZP9j3EBtD9jtY1ehBXQGOG25Lm dMPtZkzC2IQxJGPJL5U+KG2eIHxBfPb47v/Uf+/h/9H5mzA3kv1uwj4gfEFz wRYmrAUays46uWi5RPYgMOtKry77A9k3y24TuM5Qdzbr+W8Hz6HzLU7Yx4ev 77js92X3ll0le6zyjI65zRqXdB2kLu7Q8V8l3UfTV/8s+9Ok6zR1+xfZe7T/ GWOemH1Kn9M3a7s2Zh/Ut9p/ES5IwprIDbPNQYWLyhoBawVw5uHO4zPCd0SM aPwH+BGIHd1d/VlE37Z/YD3b33TO62JeA/pd+4eSXnsYgQ9G+ym1a4NjbuOD CnOq4VYzBmUs2knn215D3yVwvLQ6ynOD8n+l/HWJbaHtetkrwK5of6rKzwLN R4fTbleZIwVXijUI1iLu0zX7xrwGdH/S7Qrtyzbd0wtJt6m0rVtlP5r0mIWx y3bZi5KOcUasM3yMNSrMaYXbig//F8qytkEx+1BPaH9M0mWNb8a3Q3P6QMIY XbC6vAPeBT7QI0lz8uDmwemD29dA1xgV85iqIf23tltj7kOrKszpgtt1j97Z cdlNUo6bSfzMSwJzxOGKM05aE3hOwtyEOTpzdXy8+HpZ42GtB58pvlPWMFjL qKdtSy2vUbFWxZoTa08NdPw6+sKU43OBse4c2CeFb4oxOmP1BcQvJIYqY109 e0jlpZWO3Ui7XWV/HVjtgRqvnBd4jsdcjzkec72zUo7TS7zenoF9cPjimGMx 12qTcpw64tVdwfg4MDadeIYTA/sg8UXic8T3SIw7Yt211f6iKvsQ8SX2UfrW lH3Q+KJZQ2EthTUw1sKaKn2D0itTjlsLJv3SwGtErBWllL5eaVUpxxUEk95J aRH4/4XW7Ea7u2vKc0XaQNrCx3WNa2L2cT+R9DyR+WIn5qQp+xDxJTKnZW57 aoXLPt+EbwPnZlPUc1rmtm3031A9+23EWCrXu5b9fzH/11r7veBG6NnOkr1B W7TCdecnykCF1ylZr6yj6/2YMqcUbilzNOZqcIbhDrNGyVolazas3bBmxdoV 5+Bc+KDxRT+v9z1Qz3pbYH3Ep2V3lv33wPqx7+qZ+8e8JrVY+y9p6xezT/tl 1tb0/s4utGY52uUnOeyl5qiDNcSHii+1u/JsSRnzBlcfTj5YOGI8EOuBGBDE gvh/heDGXg== "]], Polygon3DBox[CompressedData[" 1:eJwt2Qm8z1X6B/CvMpL1Xhqly02i/Nx7kSyhTcuEikrRIhr/qGxZSkWURsq0 b+ZvJxKFUom0TUpDgyJ7IZFIEfPXhpr38z+9Xs7L7/l8n/0855znnHty99uu 7HdUlmW9SmXZn/zfriTL3s7LsvZVs6wJui16VsMsm1GYZR2OybLqR2dZw+Is 61E/ywphT+FdWibLiupl2c2wqbBxsJWwEljfIljZLHu1Rpa1IHse2VvxPY/v OXyf4WuIrxw7B+tk2fyCLDuVL8ei/8eoSmZyebz4p6L7kp3j96tkN5M9g2xN +LrKWTaTjR/53IfNYfhW4DuA70/8vgBfT3xn0/cWfe/6NgO9vVGW/eTbkIpZ 9k/YC7BmRg9yq/KzrD/ZW9BD6Vvm+7fwDNaazJ2w92GbYD/y5WzY52yXoX8v fHnpLPtAvNthx8F+hI2HLYDdQfYd9Gqy+8m2IjsNPtBktD4ly26Df87uz7Be JubNk/kH+xJ2Kn3+ZaVrZdkIPu6GfQBoXs43Ot+i4yf0bWzMQy8i9xUbTdlo Du9CtjzZYWR3kR2Abz6+xfi+wdcc392wJbCvYIdg58JKyDYWe62Tsmwj2TvI 3maMhD1JX4l57oBnq5z2zKkl+GX4Zqqfa/AVoWvjqwvbiV4R88TnJuxUMC+1 xFoMa4JvGhtVq2TZPfi6Gc3JLDPGi20Xni/Z2M2nQeZtetQSnq7GR5E/skvx 3o4+yxghhhL1/K66aoX+mPxf2S0htx5/eXZXwebC2sKa8eVsWFW8ZcV+ZtTV ieYZ9hW7t4utGx+7szFbbOvI/ofsILKnm6uv8a03Kvm9l/6+5r4+vjX4tuDr ga++b9vwnGQ85fsAsbaB7UfXMB6G9YLVhW1F1+VLf34NkONaNbOsDvpDeFd+ XW98oq6WoF9nY/GxWTYKz9mw8bBXYB+LfYIaWhW1ELmH7/H9S/61Y6s2/zaL 7Xw5LS22vfiegF2B95DfXeSvh7q5/A/Zp9kcKpZddKxEv8nGj+z+zO5ofvaE tYB1JfM0u9/TsZ3shcYaOX0J9kKsYfRCfF+T/YzslfTNIpsPPwrfAfTgSlnW mS/18IGzR8jOJ7sV8QWfPzEfA+VlIflLYKvI9yVTZN5K0ZEH+xxfE7FtQ79B dhR9n+Obja9FjTTPMd83s/EAXZ1hlcVxCp75sM/49xL9fWGdYPfAvsFXA/a2 HP6M7m3NzDK3L9K/gb7T2WtI5yNk7sXbE28D9It43zYfz4pjLN4vYPn82V09 yyaKd6qxiI3F8HnHyy/ZjK5FjVJd7ZX72XJfXm1sQLfG9xA9rczRcnrP+6M2 VtHzqdENbyH9/4KtQHdF30jHR+gtdK6Tv/vYqMT3K8k+EXkWb3f+bhBbBXxt w444nuBKG7wz8Z0PawV7DHYh7HlYMex42P2wYti0kpT/mIf6cjqe3U+jnmOO 8d0XoeGbgud42C1qcRueY8W2Fr3OKOf3dthm442oH9h48/bVielb8PwbXk/+ u8jTLjp2NOCP2MqL9yR7RCUxrUOXwnuAzZ/qmjOjG2wy2dJ8OEaul4m3TMwv Xb+If5BzZScbLeXoKuM7cSyDD8a/Cv1r7M/OrN+s1T74DqHbsVWWrh3V8JqP l9G3Rl3K70J7xjo2eqGHs1ERNpyNH8ieQ1+XXDpfDrIxnI216IOxH4vh7cK0 79wBuy6X9uVv8d2Dbw26KHKAbib+99koRl+TS2fTVvgQfJ+he8dZS9c8vizC 1wfdNs4tPm/n87/4PBd9oXGIvaPFNgbf17H/F6XvPdTqF2rk1dh3c+mMzQpT HUU99RPbbDZPi3NZbIWwu2DbYV1ha2GNYVPk/1b/32JspndS1AC+h/GVwfco viq+fcJOCzbnVZADplryY45R2+/f+LzVmIvnlTgv8K04Nn2rE3szbDJ9P4lj o1xcXJL2xdgfb86ls2oyP+bB/0p2NdmYhrpkX4szDnYQdh2sWWBGR78ryNdO dl/GM4TPe9m4lc9b+NyMgk65dLavgd8lL6vRvfCNQefjG4OvGmwLfaDsGzn8 3ZwMoW9g1AK6G/pNeR1Ebh38H2r+VrU/E//VcWZZ1x/63gPv3WR2iKOP/zui O+WnXil6plhLsaa+DHn1cQL6E/I3mtdNsO7yurQk7bsl1ul76u1J+amCviuX 9N+Sn3qC6A2+IzudbBdn7Rz4oJJ07sX5N0j/8n/2mPV4hsTcku2dn/qn6KO2 wR8n257sDPhAst8ZLa2jg/mpT4h+4ZC6v4cfSwuTjqF0fQ+7Aza7MMXYF/Yf 2F2whYUpZ4Ng+2CDYa/AOsFuy6XzNs7dHvzbyr+1/BgM7+57j/zUy0VP1x92 LaxLfuqLoj/aH/0efa8Xpm8D8FxE/rDfJcenPEY+Mza6+b1RTnvK8wJxNDH6 mOAL0V/41hQ91jwdpa7Wk61N/3J0v1zy9dr81LdF/xbr4jLY5fmpZ47eeT35 A/TPVAfvMNmF3RfVwUzfL49cR6z0TcK3Df2LGp3D7v44s8QxUBxTClN/FvXf K5fkOuan8yvOsYvxHoE14N8Q63IcemnUVvT4Yqmhfo+ifzB6A7ojerncNqDr Brzv8muL8+2EE6zFOJ/kpXzU1J/1kupqYvTA0StaFx0jB86CVrDpeM+AjSJ/ Cuws2GHjWbqnqI9p5dP9o7R4a5Evx35T+sbBHjSOYaPzcfZS2ITYx43jTnO2 GwPl4RIxLIwzVO73GJPwvYl+zVhKditsHOyN6MuMs2D/y+erYC+hnzTOhHVl oyPsxT/Onr1i2MvvivL7PhuzYB3Qz4jjMnFcHn0ErKG628LGWLLzYX8XQ93Y W8hfiq8D7AR8Pa3BqWKtBquOzuFzpGW75HQD3o9K0vqPfWCHnnok7G3YaUX/ X4LZQdinsA9hd0ZvxuYn6D70XY2hE2wWvvX0PQJ/B98yfl+ZS3eAd83pygap tqLG9tCXZy6X4xsEG6f+/kauIn0n07ckGjM2OlVIfoa/kecp4pxsNBV3VXO2 B97e93JyU8Z+PJTcP+NeRm4ufePV2pSi1PsUmNv7jX76mo2U1oa9Ly/vyMt5 0ZuVpHmK+fqS7Y3G67AG0UOr9zXoD8zVZ7DVxmK/V8Nq+vYeG21y6Z76oFh7 8eff6Ofk4M5c2hf28GV2cepHoy+Nczd6/6l4/pJL996hZG8h+3Gsubg7ozeZ z6/Jdi1O97C4j62Qv2ZysBi9Bt9/+LG5YpqrmLO1cd+V03Ot6RtgZ8J2wC6K u025tKcEc3/5WMBGY+ttnjVRO3pf2OLo92GLYKeGn3H/hbWBfQCrn0v3nLjv rOHLjXQuY2MDG5Osq8qVU84id+1y6V7+FPk+YlueS/mKvK3ld0tz9W7UVdxt T9WHGd2trbaN0rkc5/M+dXWTevm0JMUSMR1mtwtsJezyXLqTvlYz9e7Rw/fk 833oQ3Iwks+VYL+b9yrkD/pd1Rw8HncjdM+499D1kDroATti3Q2Tz+Wxf9m3 huF/o1E6N+P8/Fh/fCm7NdTgtWRX0rW6dOqB2+fSW8JMtvvzZSX60lzq4SfC +sFWoPviHSHW+4zrxdumUdrHj2G7Mzu12T/M3wH4XsUzz+iNrx2ekXxuqSYW 8KVp3Ef5ck8u+do3P71VxJtFM7p2xvrLS/Mc830mbA/so7w0zzHfUW9RdyPQ K6KnyaX9KfapH/EfRs9g9xt2x5q34+R+qPX2ALtLYc1gI9ATjFElqbeLHq8q viGwkdGD0Dearv10VaR3NHqu0dnvn+G/w19gY7xxot8Fxl98mxHr3jjf72/x fQuf3ij14/v83gtr49tMPM/Hnu33d9Fbw6ej1+L7Hl0WflHphD0Xd5VSqV86 3hiH52o+PqquhvD5PT7/vSSdK3G+7KLrG3zT8HWE34vvUXwL8Y1GL4l6lvtR sHmwh2C7yTaP+4T6Owt2P+yZ4tSvf6lXaQ4bEfsL3avlfFJe6lOjX23Nzn42 vrdXneBseLIk7SexrzxSM/G3jdiLU8+9kb5z6fsbvmpxF4cNh50Ouw/2Z9hu 2DBYI9i9sC2wOvwbCasBGwbrHDXN7lg1tM24E32tocXJxqG/Mu5C32hcBZsa 70XG3egf6Ls43hzoO42+4bG/ysvJ7I5CTzcejP4P3zQxb4mzIe526IfwVYOd HvUJOzf2STlYgJ6Ib5S6rxx9cbxJ4FuSS/fHoeiiXNqTNheke03cb87IpTvB QdhQ2C/xVpVLvXSpGqkPjH6wci7tDaMLUh8T/cxpubTvrSpIfWD0g1Vz6e7w bEF6I4q3ooa51KPsLkjvffHuFzU7GTanIPWV0V824WNNtVbf/bC6NXxjo1Rz 0a9PxXc7vj34Tsqlu82bBanXjJ7zlFzal5cUpH4x+sY58jDOmdDP3nkYvYm+ 4npp3Y7JS3te7H1x6biXTKF4D9DROpfeS+PdtDI/avGnX5z55F/B/3jwy3N5 +lvB5pNZA38q1kfssbD7fd8Y7xKwibBLYUNh78Ceg02AVYhem7/zYWNh49EL 2GlRL91572a/Oz9+hu9S31XVd2M6zmuUzrg46+LNMHqHifE+BhuDvj7e58je UZzeR+KdpIY4SsQxtCi9K8T7Qn1YK9jjRem9Jd5dysKqw26BtcqlO3jFGmmP j73+3Fy6MxfUSDmL3B0h+4I45sb9ET02eknyTePdUY1vUveDYb8a+8Rxojha iOMCPh+CPeDC+BN8F3WNi9OdOu7W+8zP7+bq+piPeun3zrx034t731mwg7B1 eakXjp74QlgFdo/k/XHHr5/u8nGn/7VmemO7IZfuhHE33Fgz6eicS7129NxT nG89nbUf8+0c+n71fUteukPHXfprePd4fy6X3o3j/Th6p+ih9pM9h+z7eBYa I9ClK6SeL3q/RbCXYFUqpF49evZ4G4g3gh01k61rc+mNI946VsJ+gF2Nzi9O 95h8/VpTdf0s2QuMX+XyNWM4fZcUpTMzzs7nyH5B9jL0b0XpbeJosgfi/Io7 E19O5nN5fAX6kFLoX6LvxFcK3y58w4rSuRzn85ya6R2vA/rT6HVgH9RMZ2RH 9GPx/sePFWpouTEIvYzOnXTtwduYrRtg3SMW81AmP/0tI/6m0bhe8nVuXrrn xH2nEWw9bEZeurvHHT56ouiN/lEzfbsEvZGNGeqvWuW0f8Q+cgW/G+I7Kd5f 1Wv76JHqpVyuzEs9WvRqY/HezueG7ikNjGHoisZGOajM7wby/CRdk8h3y6X6 +pnOXnhqG5WsmSL1O139PsqPm+NuAasDmwp7pCTt0bFXt4C9BHsMdjqsgJ7R 6NeNx2HdYE1g+/i9BPZEnDOwfmSrkR0He7gk3a/intXeYXOTtfQU7DE+5vha H32NeC7m7xDYdrpOgbWDXQTbTrYK2SJrdzB8DNk5cS+BdaKvD+zZknS/invW 1bDesGdgk+MtEtYB1gP2NOwt2ARYE2vhh+rp/fQB4yb2flMDR4y7o38zboBN QI83+hWne1jcxzaTWxl3/OL0t4j4m8R6/cFwOleKoQ4sL+5y5uMh8fSKO0Rx uotcA5sJG1CU/nYQf0PYQvZlsqthrWEtYZ3xTcfXH3a+MUX5t4c1l7PZ4jhs PC3Hv8nxkfh7XJyXxekeeAW+R8j2jnt8rGk1W9ld6DE18m1xenOPt/fYV+Id f1FRequON+tYK/H+/QZsU7w/xFts2fQWGm+iE8zJFbnUf+4w99fB3sM3i83l +KrDGkUPFrJq9uNjUz8WfdmD0Z/rqSvbT5qzdQ7sv+Hsdbs= "]]}, Annotation[#, "Charting`Private`Tag$439315#1"]& ]], Lighting->{{"Ambient", RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, { "Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{0, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 0, 2}]}}]}, {GrayLevel[1], EdgeForm[None], StyleBox[GraphicsGroup3DBox[{Polygon3DBox[CompressedData[" 1:eJwtVmlsVkUUHWywPBhUWvB7H/1hCLkfxgbaBKNRJFBAFlGWQlmKVEQUKNDS Uiyo7JugRVDZC0IFLAi1yqIsyia7Gy64sIgiLvjDuCQGicZzcubHy7lv3p25 d+6ce+a1GlmaX3KDcy69gXNpwOyEc70i56biva6dc/+lO9cz27lZ5twOfL8J WIZnO2wPHItnK+wmwEfxbIbdGDgVTz3spsCVeKZhve7A1li/K9afjPelwNZJ 52phz8S3SmBXYBv4dI/0/qwpl27AiXgmwc4D5sVYu5Fz+YgxhjlhvDMwB3Mf xNyn8d4BdgHsWbDbw+4bKY8lpu/3A9NynLsPOZxp69wG+FzBfltizU6wh8B/ DvxOog553rkj8JmI8RdgH4bPWOSQQA4jYE+D73W8r4P/LvhcxTqtMP4v5qZh /eOY2xbfG8G/N8afhM9urHMa9gXYf8EfqbgRyKkUa3QCjsT4nV61roC9BfYJ 2D1gFyHeAvhlNHZuBdZPxyGuwlh72NswPsVU4y7A8fCfjLn7MbcE76sx3heY hfGOkWqXgH1vpNiLvXJlnrdhvHOkuv8O+xryvAvjT/BcMdYHeApPBuIXAVti XhX8N+NbJews7Hc094tv1RjrB+wAPtU3UM1HYM02Xhy6A+PrG6hW5xBnYJZz 5Rifbqprf+AxPLthFwJLMHc25h6Az3K8b8T4QOB6PDNg9yAfTfwaBEwinzTk 0w3+d2NufiS/YthjsM4e7gt2Hy+uVwAbYk5H2OtMeypgfFONhwAXYo3MpGLv 8uIE+bAY32owNgD4nmm/Q4FF2Yq5D3ucb9pvPrCOfQR7MLAAa2Qgz6FYpyvy GYYY8/gtW2e1B3MbetWOdesf6vMMcFiuc3OBs3M172CsuX3DuY83nQHPogLY 28Sjw8AHTL57TXkz/+dNfcu+WW3qGfbOi6azJwdGmXhGvj1l6mH27mxT37J/ FwEvIt9ZkfZ8KqGeYd5/o0fmxtoXeX0sVk7tvXqS/XjQi0/k0nlgy8biHDk7 PRZvs7z6ij21IVv6w56lHtTEypu6sjxWfrVetWadH87VOa/BvOPIFcu7iPoA n6KEdO0h2Cdh3+7UE4ti9QV1pTZWje5pI86eNulodaz9t4uld+RiL5OuvAUc jrg1wPnA3Vh7aqSzKQh8qwZGiDsqof0MDjzZZuI019sILMf3avgddeIl+bkT 2MSL0+RzU9hjqDuwR3v1M3uZ/ZqVVLyBoY9eJhcw3iQpHlAL98bKuzD04Pvk M/Lezz4AFuYqR9aedfotXbUaivFi+EwHZnr1LXt2uEm3PjLdCUticYiavTOW bqd76SA1MAW7CnYm+wtYFol/PU2+W4E3e/Uze7mGuheJ9wmvGrE+eeEeKQc2 89JHauM18LAuVm+28NJ66nxR0LcT1BAvLaYO/wP7XCyudPbSfWp+fThfnvOt Jj7+BKxISRt+ZK+kxOWfYSfwfAz7F+Ch4M95LUxxrgC3mHLJBL5p2kdz4Duh Z9m7c0x3yASsPQV51UY6pz1hHa5XG2rFmo1LKd/PWY+U+uAH2MWYuzaSZl0w 1WaZqZa/xqrnDpM/51Fz2NPU7w2ms80w9RJ7iv8Pk0yxGJOc4dq8B1a2lQ/7 78NQB9bjMdM5j4X/RZNmr6D2mDg1HuPfhlhrTf8i5Mhn3JdJM4rh85yJ4yWw XzLFKk0p7nm8z0Xc8pT+I743+dH/G1MMxjoL+2DQSerlB4G35O/rprlcIzOc 0Xcmnl5K1x6ahRqylhNT2gv3lBHy5z7KUrpvL8F+1WRzjP9S1J6rpn8v9vGX 5Lmpj78GLsO5ZCelC+y1snBXsNeHefkNwPdDXvXtEmsO/amjm5Li9xqv/yru 55NQ/0eAt5j66RxwBer2BXAm4qwJ58I9NQ+cvAzcZ+I5+U4ukpNfmbTtz1j6 dsTEf/bBpbDfV0x1Z/0XhFjUE+rKHwnpEbWod0L/PTyDG2PdwdSshaEmrM3S kDNzvxxy2w5cFc6CZ3Il9MUuU6/0S6pfzgaOVZo05nIsnRkU6x+L2krd5j3O +5z3w3WvcxrXVLVmnfkPx3tppGn/rMMM05kxz3mmmjLPKlPvsafeMJ0xz3qa 6d+a9/wZU6+yj0pN/CbPPzVpB2MeNXGFuZw06QvrfMCkQdSWd00axDN6m3rg 9W/ULXCXHN5kise4j5t6g7x4zdRj7LUJpv7MDHwp9PqXzQk5MbfRwP8BL2TA bg== "]], Polygon3DBox[CompressedData[" 1:eJwtmGmQlcUVhr8JJAxyyeZN7hBSScyk/awCJpPCLKUhApoQEwVB48KigGwC giKrCAgIKCiLCyCbhE1AQWSVYV9nGBYBFTUCYmX5kaRiKrGScklVnsczP7ru e7pP93f69Olz3r5X9B3ebdgXsiz7WVmWNeZ3Rsqyn/A7DvlxcKeqLPtneZY9 lmfZgOosa9kiyyYXsuwGdNagM5T+84x/p3mW3Q9+Ubkyy77cNMvWgiexxg/R HYPuo+CBtG8hP4g8CLyyVZZtQe7Mmhf41hPMOcn8Raw5E/wc7RTyMuT54N/T XkdegbwCXIk9s5n7W9ZYy5prWK8OvI6+D1nvVnTeQr8O/dvAw/nmFYw/hO4D 4DG0q5BHIY8Fb0Pn1+ylNetuBz/Ensfy+xfmX2S9IeC3K2PP7v1+xm9wnxVZ VsP40+Aic0fz/WfAY2jvVMZ819EGbfkq3/gd+DjtfcZb468T4L60j1irI/Pv Be+jXWT8+4zvB+f0zy5l2ULsXY/dc+j7A+OfsOZc8GLae8iN0V8CboUti5nT Dd31zFmKfybwu5C9Dsb2rtjcFt130B2EvATdjhWhe4Q5C9EfDu6N/n2Mn0e/ CzrD0R+B/Cn4PPpfJ4jWoD+avoOMXc13/4Hu7eC/M/5j9O5omDOM388qYq17 wOew9yz29wZvoV1ArsCmrXn0OVbCX33ysN/Ya0TfQeZPou80ay9lvUfz8IG+ aIv+PM8Hnf2MD2ROB+a+oT+Ra9F/E7xL/yHvQt4NPtQmyzah2w8fH2Puk/St ZGxgsyx7Cvxz2mBsW8T67cBHGWvJ/OPeHfxUa/wjH6C/zlhljTrkLsZedZy5 Z69P9M1S2jXI38Zfy/LYo3s1BowF9+BejCljyzVd+1HsOQa+RFvI2E3Y+wF4 AXgI+q9jTxPOpAbdUiHOcir2dURnCv45St/14LWMfw28O4u4uJG+psz/E/2/ Af+CtoY1P0PnOvBE2vzy8Lm+H8aeFvK7Dv1DxhK6axm7i/VeZr2jjG0sD5/o m42uh/wO8ivgGtr68oYz8Kxpm8vjjDyrAbTZyCc8wzxygrnhLPKsPHKCueFN 5AXgVbRXsOVB/LMavB/cohA5YRr2bKJvG32jGX81j5gxdvoiT/buEyPt0P0i fRurYk9DGXu+Ya9nkM+x3krkB5C7axPfr6evRx4xZCyNZ84e8DRaa/xZwC/T 84g5Y28a42/lceae/VTmv5DHntybMWfsDQL/i7Ndge07sWsEfU/zvVP0P2Ts 0roy/yDye3ncY+/zYL75bh52aq8+0TfmBHODMWfs/ZH+Kxm/PIucog/1pefp ubon9zYLuWcecWw8T0O+JY8YMpbMf+ZB84VrXWqCvVVxZp7dPMYH5XGnvdvm WHPtHMaqKiJ3H8xiT+5tAX0j8/CZvruPvhngT+m/uRA5e5k5kL4fMD6Xvpfy iCljyzP2rMfREt9qjM7D4J7Y9I1CfKtPq6hZ1i7zkXnpcvRGFiIGVpXFHOf2 pG+88UHbWx53xLviHfGuXGUNAvd3z4WooT9qFTXD72uHtcScuJ7xQ3nkSmuk tbIDOuvyqDnWnqXo7Mij7lp/jSFj6d98q30hatiSsqgJ1oYujB9Ql/XvAJ8E j2H9v6HfthA1dxH6p+hvx/o76Hsd3C/FuXtm94KfS5EL3Pt88ATPrzLuvHff vG/+P1Qk/vOIWWO3Fnl5HjZr+zHk1/KogdbCo8jP5uFDfXkY+RH3h43Drwx/ LyT3/pm4aVkKfqDNnrlnfwT9x72v6DdPkaMXoN8TeQ7y+RTzZyIfBm8vi3xv E9/SImqBNmv7cfb0YB42aIt7dK/uwb3IMeQanpPnVU/fYXB31h/F+m+l+L4x Z+zVMf5yHjXOWncA+U7wFdZDcD/ww9Xhc31/nL7Tecxx7mm+twHcjbalGJxF 7qKOum8gn8nDBm05i3wkDx/r6zPIO8FD+ca2FPlOLmRMGpv70bkJ/Ff8+91S 8B9jyJxubt/HeHvvQlXkZ/N0X9b6lfmYsTdZvxN4ivYjv4s81bM1ZovBceQ6 a2g1xeCAckHvgLmrWYu4G7e1xKZS1KYRfH+z+bIYNd/af7c5ohicQG4w2z0W g+PIdQbTthWDg8nFFtF2FoPzyH0+ZH+VpeBz5ghjxtiRU8otjUFjUU4ptzRH lUrBccxdfVNguUwfcHf6NshXwZPwx8es36oU/Ng7PiUFt5XDTgaX8N31pag1 velridypFNxgIPIjKfKWto0HP5virhn/z4BHcRZfqog+7+HDKfZivI9r4GwL UnAgudCiFHVb3efBT9PGN9SKeSlynLluHXhGdXC4e1JDvmdsaIq84F0bAj6Y wlb5zAHw5hS8Qf7wKrgmxd6Mr53gmSl8sR35CfCpFGcr/zgJbs7+r2X/k8uC g65gb18phH3a6R3xrhzjPO4Cj0yR1z7n6Cnur347lOJuy/nalmLP7n8vc3YX gyPLlY1hY7kWuUMeMW/s1yHfnMc99D7WI/fPo2ZaO08Ysw13VN4t//buvpyC C2v7Syni2XOfpV8YL2d/P8WeSWXxBpFDv838S5XBretScOPLGKt1byneTZ7f YseYf10pfCxnmmKurgidfVnEn3d1pnyR9ValqJV+ayV4awqe5dwtnkV18FT5 6vfAHxGveSli1HfYRcbWUS+epUa8n0dNtjbfif59edR4a/2tyL3MPSnuqWd6 IkXNt/Z3ZrwreHWK+Pr87QU+kuLszblHU3Deztbx8uDCe1LE1ibG94I3pIgt fbwxRc239vdi/VF5vKluBP8yj7eWHFeu+59vcp7UjR0p7pkx+Rr4/hT31Zge Bp7PWs0KcT/1wbEUd9szqQe/ksJ3+n8T+FrWn9kiOL5cf1+K+PNO7E/B+Xx3 +v6UC/ZP8Q6zhg4Av5giVoz3teAXUpyV8bEcvLNN1LZ2rP/fqohRY1VOLjc3 Ro1V/aXfilXBL+WZfaojx5vr5cw1DTnaumH9MHcb08a2nFnufKZN+Hop32tE ANQiL0eejPy/qqiB1kI5pdzSmmJtkbPL3Q/gu7EVcZ6e69XIK0rhX/1sTbI2 ydnl7hdoH1RGjF1ssNl77f12L7vahC+6Mf5xVbzRb6+IGLZe+R9AfSlypP8N bOd7gytiD8aNnMZ3su9luY41ydokJ5ObOce5E/H1EHR7MP9iKfZsjlqa4l55 v5aZy1L0Oz4dXM8ae4rxJvdtLu+X/1tjrDXeKeuRdcm75pvBt4M10drom8O3 hzXQWugd8675RvOt9lSK3GdNnJ3iDeJbxBpoLTSnPJli3Fxj/jaWtlYEd13C b/NC2Gze9T8Z67D12P9qrgE3uyxi2Fg+R9tbjHxkXpIXyg/lgHJBc565zzPz 7Hwz+HbwTeHbQk4pt/Q977ten05IcZ/09UTsaVSIO2Xd9M3j28ecbG62Zo5I kcPMZeYYc4013Fo+hfFuKfzfozpyirlFDiQX8o3kW8k9uJeJ6LRPcYfuAk+n dUoRU72qI2eZu+QQcgk5tdzaN4JvhbnY27QQ9dS66hvet7xvXN+61sj1KXyu 71fT/0kh8rc5w5xkbpLzyH2eML5TxOfd1fEm921uDBlL5i3zlxxKLmUOb1KI u6M/jHljf3sK7vZ/iygk0Q== "]], Polygon3DBox[{{11163, 379, 9616, 9615, 12380}, {11050, 47, 9603, 9604, 12379}, {11102, 191, 9633, 9634, 12381}, {11729, 6460, 3253, 96, 11067}, {11719, 6403, 3162, 47, 11050}, {11095, 170, 9577, 9578, 12377}, {11080, 2046, 5935, 379, 11163}, {11067, 96, 9659, 9660, 12382}, {11715, 3137, 6070, 412, 11169}, {11705, 6276, 3077, 170, 11095}, {11169, 412, 9590, 9589, 12378}, {11707, 6318, 3091, 191, 11102}}]}], Lighting->{{"Ambient", GrayLevel[0.8]}}]}, {}, {}, {}}, { {GrayLevel[0], Line3DBox[{1990, 1, 469, 118, 1730, 11041, 14, 1705, 11042, 21, 1830, 11043, 28, 11607, 1833, 35, 11609, 1836, 42, 11611, 1839, 49, 11612, 1842, 11053, 56, 1845, 11059, 63, 1848, 11060, 70, 1851, 11061, 77, 1854, 84, 11616, 1857, 91, 11575, 1712, 98, 11599, 1798, 152, 570, 105, 6465}], Line3DBox[{1991, 2, 7702}], Line3DBox[{1992, 3, 6352}], Line3DBox[{1993, 4, 1812, 8583}], Line3DBox[{1994, 5, 6358}], Line3DBox[{9481, 10, 6363}], Line3DBox[{532, 13, 5840}], Line3DBox[{445, 20, 11083, 126, 532}], Line3DBox[{447, 27, 11179, 445}], Line3DBox[{11044, 34, 11181, 447}], Line3DBox[{11045, 41, 449, 11044}], Line3DBox[{11051, 48, 451, 11045}], Line3DBox[{11058, 55, 453, 11051}], Line3DBox[{457, 62, 11182, 455, 11058}], Line3DBox[{459, 69, 11183, 457}], Line3DBox[{461, 76, 11185, 459}], Line3DBox[{463, 83, 11187, 461}], Line3DBox[{11062, 90, 463}], Line3DBox[{11068, 97, 465, 11062}], Line3DBox[{2008, 106, 7687}], Line3DBox[{2009, 107, 6519}], Line3DBox[{636, 108, 6960}], Line3DBox[{2010, 109, 6526}], Line3DBox[CompressedData[" 1:eJwV0kVvlGEYhtGXFcEd1iyALVtWuCdIgSIJVrxAS4tbseLuBVrcneLuLilQ tLjDr+A8i5N7ksn1ybzTOCs3I6dSSqmcisop5dsWzVJ63CSlJwzkGU9pxF/u co8B3GFZ85Ru28lNU/pjr3ODrtziJg35zVWu0Z+luiv2MpO0v+x5LtCFS1yk AT85yzjNOduPM5xmovaHPcFJOlPKKerznWMcpy9HOUK+7ps9wEE6cZjF7nHI 1uMr+9hPJnvZQ572i93BTjqySLfb7qIunylhO30oZhsTtJ/sZrI1RbYDW9lC HT6ykU30ZgPrydUWaj74vJo1tGcda6lNBStZRS9WsECz3Obo38c7soR2cX5x FtTiHQvjXchgvq4wesZr39o5zKVtfM88avKG2YzVFNiezGJmnJv2tZ3KNNow g+nUiOtpXsV/iCn0iP9EnG1cT1se7x6/Ha3j7OI5NHm2Oi/j+eL96B73iy5+ X+0LO4rRtKJAl23HUI3njGAk3RjOsPheW2YHx2fNENuSLIZSlX885BGDeMB9 qvAf5wySIg== "]], Line3DBox[{11074, 104, 467, 11068}], Line3DBox[{2012, 116, 507, 160, 11074}], Line3DBox[{5664, 10215, 2082}], Line3DBox[{583, 154, 8282}], Line3DBox[{5665, 593, 1250, 10506, 3673}], Line3DBox[{594, 161, 520, 5872}], Line3DBox[{2136, 162, 522, 5873}], Line3DBox[{515, 204, 569, 8055}], Line3DBox[{1010, 397, 5838}], Line3DBox[{2408, 399, 10852, 5839}], Line3DBox[{125, 406, 1366, 10683, 6991}], Line3DBox[{2493, 470, 5866}], Line3DBox[{9564, 513, 5870}], Line3DBox[{2572, 514, 1535, 7207}], Line3DBox[{515, 2573}], Line3DBox[{10314, 525, 5874}], Line3DBox[{2667, 574, 5877}], Line3DBox[{5680, 1945, 4499}], Line3DBox[CompressedData[" 1:eJwV0mk7lVEYhuFliqTQICEZNylsswglKlKk0dCkqE/5ISGl6a/0d/pKIY0a ONeH67ju+3mfd+19HOstn5kff54SQviI+ewQBlJD+FQTwp5ECBm4gqnqEIb5 GerRqw9xD39IhnBankQ60tCFKs8O8VOcwln9Mr+33y3XyRNIRQrOoNL8IM/h JN7Z7TK7FJ9zLd9FwI7eyRWcz7OoQad+kTs4wXfwX/6HDrmc3zo3T36CarSb DXIbV/Ft/JX/oF1+Y79MzpUfx/+JVn2AW7iCb2FbXrH7m9v0E3yAZ+Lvolm/ wE1cxjfx2v4v/Sda9VLez4/i+0jq/dzIr+yWyjfwQ/+OFvk45/DDmNGgn+dl +/VyiTyOb/IWmuUS3scPUIyX8R7NzsX74iK+jq/yJpriHmfzfSzZP8Z1Zn3x vriQx7AhryMpF/Gi3b3yPRxFrVlvvC8u4FF8kT+jUV6IZ8tZ8jSOIKH3xPvi w3wNa/ILu6vcoBdyZvxe4/eGq/oIj3B3PIt3ASSNWHc= "]], Line3DBox[{1246, 581, 5879}], Line3DBox[{583, 2672}], Line3DBox[{2673, 585, 1519, 7194}], Line3DBox[{2674, 586, 10562, 1523, 7199}], Line3DBox[{10317, 587, 8716}], Line3DBox[{594, 2676}], Line3DBox[{636, 2806}], Line3DBox[{2859, 683, 8940}], Line3DBox[{5694, 2954}], Line3DBox[{1010, 3310}], Line3DBox[{3433, 1076, 9036}], Line3DBox[{3439, 1079, 10764, 6486}], Line3DBox[{3471, 1136, 6536}], Line3DBox[{3480, 1145, 10314}], Line3DBox[{3669, 1243, 6777}], Line3DBox[{3670, 1244, 6778}], Line3DBox[{1246, 3671}], Line3DBox[{3672, 1248, 6780}], Line3DBox[CompressedData[" 1:eJwV0WVPFlAAhuGDiq2Y2AooYWP7O5y/QHF8k7FJ2GJid3d3i4qF3Yoidnd3 B+r1frh2b2d7ds524vtk9OofFUIoJSc2hOLEEHomh9CD7nSjK13oTCdS6UgH clNDaK/taEsbWpNCMkkk0oqWJBBPul2ctqA5zWhKExrTiIY0IJb65NvU07rU oTa1iKEmNahONapShcpUoiLRVKA85Ygi8C8phL+UkeWOP/qbX/zkB9/5xle+ 8JlPfOQDaXbv9R1vecNrXvGSFzznGU95whibx/qIhzzgPve4yx1uc4ub3GCI zXW9xlVKuUIJl7lEMRe5wHkG2JzTs5zhNKc4yQmOc4yjHOEwRfSzO6QHOcB+ 9lHIXvawmwJ2sZM8mx26nW1sZQub2cRGNrCedaxlsM0aXc0qVrKC5SxjKUtY zCIWkmmzQOczj7nMYTazmMkMpjONqUyhr91kncREJjCefMYxNvIvjGYUIxlq k6cjGM6wyFnkLyJvZxADySWHbHpHh/AfcxKVWQ== "]], Line3DBox[{3807, 1362, 6988}], Line3DBox[{10507, 1365, 9450}], Line3DBox[{3809, 1368, 6993}], Line3DBox[{3830, 1405, 7042}], Line3DBox[{3974, 1533, 7206}], Line3DBox[{5782, 4462}], Line3DBox[CompressedData[" 1:eJwV0ddfj1EcB/DTLffu3XDrGqGMrIySTUpl/zLLKLPskZXVInuPUIi0SMje 859w7X0u3q/P6znP53XOeb5P39zCjERSCKGJf31CSO8Xwt/+IfzhN7/4yQ++ 842vfGHhgBA+y0985APvecdb3tDDa15RrP9SdvOCLp7zjE46aKeNIt1W+ZQW nvCYZh7xkAc00ch97nGXBu5wm1vc5AbXybXvNXmVK1zmEhe5wHnOcZZ6luuf kaepo5YaqqniFCc5QUL3uDxGJUc5wmEOcZAKDrCfdfr75F72sJtd7GQH2ymn jALdbXIrW9jMJjZSSgkbWB/3ZZX+2jjzOEvWsDqus5IV8dsojM+6CbmMpSxh MYviP2ZBPJ988uIZ+vPjLMlhHtnMZQ6zmcXM+F53hpzONKaSxRQyyWAyk5gY 76M/QaYznnGMZQyjSWMUI+N9dUfI4aSSwjCGMoRkBjOIgfTuFcJ/a8qDJQ== "]], Line3DBox[{8913, 1369}], Line3DBox[{9282, 1711}], Line3DBox[{9297, 10923, 159}], Line3DBox[{10317, 2675}], Line3DBox[{10507, 3808}]}, {}, {GrayLevel[0.2], Line3DBox[{11041, 12158}], Line3DBox[{11042, 12214}], Line3DBox[{11043, 12215}], Line3DBox[{11044, 11696, 12040}], Line3DBox[{11045, 11697, 12041}], Line3DBox[{11051, 11890}], Line3DBox[{11053, 11637, 11754, 12216}], Line3DBox[{11058, 11698, 11899}], Line3DBox[{11059, 11638, 12225}], Line3DBox[{11060, 12217}], Line3DBox[{11061, 12218}], Line3DBox[{1854, 4414}], Line3DBox[{463, 2487}], Line3DBox[{11062, 11699, 12044}], Line3DBox[{11068, 11894}], Line3DBox[{11074, 11692, 11858}], Line3DBox[{11083, 11075, 11943}], Line3DBox[{11106, 11122, 11348, 915, 12484, 11860}], Line3DBox[{11107, 12530, 12337}], Line3DBox[{11108, 11139, 11360, 11382, 12495, 12006}], Line3DBox[{11109, 11142, 11364, 11141, 11394, 11384, 12485, 11865}], Line3DBox[{11110, 12531, 12338}], Line3DBox[{11179, 11889}], Line3DBox[{11181, 11694, 11797}], Line3DBox[{11182, 11081, 11952}], Line3DBox[{11183, 11082, 11953}], Line3DBox[{11185, 11893}], Line3DBox[{11187, 11695, 11807}], Line3DBox[{11260, 12297}], Line3DBox[{11279, 12298}], Line3DBox[{11305, 12291}], Line3DBox[{11314, 11771, 12302}], Line3DBox[{11334, 12292}], Line3DBox[{11338, 11772, 12303}], Line3DBox[{12387, 11391}], Line3DBox[{11393, 11374, 12401}], Line3DBox[{12388, 11395}], Line3DBox[{11397, 11385, 12405}], Line3DBox[{12389, 11402}], Line3DBox[{11406, 11379, 12404}], Line3DBox[{12391, 11413}], Line3DBox[{11417, 11389, 12408}], Line3DBox[{11575, 12219}], Line3DBox[{11578, 11680, 11301, 11124, 11392, 12477, 6278}], Line3DBox[{11581, 11683, 11308, 11375, 10364, 11991}], Line3DBox[{11583, 11685, 11330, 11145, 11396, 12478, 11819}], Line3DBox[{11586, 11688, 11337, 11387, 11386, 12497, 12011}], Line3DBox[{146, 839, 12498, 12012}], Line3DBox[{11599, 12209}], Line3DBox[{11607, 11639, 11755, 12213}], Line3DBox[{11609, 11640, 12226}], Line3DBox[{11611, 12220}], Line3DBox[{11612, 12221}], Line3DBox[{11616, 11641, 12227}], Line3DBox[{11620, 11840}], Line3DBox[{11623, 11850}], Line3DBox[{11783, 12467, 11398, 12461}], Line3DBox[{11784, 12468, 12451, 11421, 11400, 11779, 12086}], Line3DBox[{11785, 12469, 12452, 11424, 12038}], Line3DBox[{11786, 12471, 11408, 12464}], Line3DBox[{11787, 12472, 12454, 11435, 11410, 11780, 12089}], Line3DBox[{11788, 12473, 12455, 11438, 12043}], Line3DBox[{11789, 11203, 11255, 11202, 12052}], Line3DBox[{11790, 11134, 11257, 11133, 11875}], Line3DBox[{11791, 11210, 11275, 11209, 12063}], Line3DBox[{11792, 11154, 11277, 11153, 11883}], Line3DBox[{11793, 11473, 11536, 11472, 11923}], Line3DBox[{11794, 11302, 12183}], Line3DBox[{11795, 11580, 11579, 11180, 12161}], Line3DBox[{11798, 11500, 11632, 11633, 11519, 12265}], Line3DBox[{11799, 11700, 11446, 11443, 11903}], Line3DBox[{11800, 11320, 11520, 11521, 12095}], Line3DBox[{11801, 11430, 12443, 12488, 11522, 12097}], Line3DBox[{11802, 12475, 11321, 12284}], Line3DBox[{11803, 11483, 11539, 11482, 11929}], Line3DBox[{11804, 11331, 12185}], Line3DBox[{11805, 11585, 11584, 11186, 12173}], Line3DBox[{11808, 11509, 1939, 1940, 4497}], Line3DBox[{11809, 1223, 11912}], Line3DBox[{11810, 11340, 1501, 12109}], Line3DBox[{11811, 11439, 10550}], Line3DBox[{11812, 12476, 11341, 12285}], Line3DBox[{6804, 11471, 12067}], Line3DBox[{2689, 11708, 11093, 11734, 12069}], Line3DBox[{11813, 11709, 11094, 11704, 11161, 11831}], Line3DBox[{11814, 11125, 11323, 11529, 11530, 12340}], Line3DBox[{11815, 11172, 11717, 11049, 11718, 11845}], Line3DBox[{11816, 11481, 12075}], Line3DBox[{11817, 11724, 11100, 11735, 12077}], Line3DBox[{11818, 11725, 11101, 11706, 11166, 11835}], Line3DBox[{11820, 11146, 11343, 1507, 12341}], Line3DBox[{2658, 11733, 11064, 11726, 11854}], Line3DBox[{11821, 11176, 11727, 11066, 11728, 11855}], Line3DBox[{11822, 1550, 12090}], Line3DBox[{11823, 1552, 12091}], Line3DBox[{11824, 11248, 12427}], Line3DBox[{11825, 11777, 12373}], Line3DBox[{11826, 11690, 11547, 12104}], Line3DBox[{11827, 11691, 11548, 12105}], Line3DBox[{11828, 11269, 12435}], Line3DBox[{11829, 11778, 12374}], Line3DBox[{11830, 11678, 11249, 1554, 12092}], Line3DBox[{11832, 11111, 11299, 11112, 12428}], Line3DBox[{5826, 11114, 11300, 11113, 11833}], Line3DBox[{11834, 11679, 11270, 11116, 11549, 12106}], Line3DBox[{11836, 11117, 11328, 11118, 12436}], Line3DBox[{11837, 11119, 11329, 11120, 11866}], Line3DBox[{11838, 11345, 1627, 12135}], Line3DBox[{11839, 12479, 11347, 12286}], Line3DBox[{11841, 11523, 11524, 12096}], Line3DBox[{11842, 11525, 11526, 12098}], Line3DBox[{11843, 11322, 12431}], Line3DBox[{11844, 11716, 11047, 11732, 12053}], Line3DBox[{11846, 12480, 11405, 11135, 11352, 11136, 12345}], Line3DBox[{11848, 11361, 11140, 11565, 12144}], Line3DBox[{11849, 12482, 11363, 12288}], Line3DBox[{11851, 1503, 12110}], Line3DBox[{11852, 1504, 12112}], Line3DBox[{11853, 11342, 12438}], Line3DBox[{11856, 12483, 11416, 11155, 11368, 11156, 12349}], Line3DBox[{11859, 11159, 11960}], Line3DBox[{11861, 11097, 11990}], Line3DBox[{11863, 11115, 11307, 11545, 11544, 12126}], Line3DBox[{11864, 11164, 11969}], Line3DBox[{11867, 11104, 12010}], Line3DBox[{11869, 11121, 11336, 11555, 11554, 12134}], Line3DBox[{11870, 11429, 11428, 12501, 12027}], Line3DBox[{11871, 11170, 11995}], Line3DBox[{11872, 11431, 12154}], Line3DBox[{11873, 11432, 12453, 12502, 12462}], Line3DBox[{11874, 12486, 11378, 11401, 11126, 11324, 11684, 12367}], Line3DBox[{11876, 11056, 12003}], Line3DBox[{11878, 11137, 11262, 11564, 11563, 12143}], Line3DBox[{9446, 1114, 12504, 12033}], Line3DBox[{11879, 11173, 12013}], Line3DBox[{11880, 11440, 12155}], Line3DBox[{11881, 11441, 12506, 11693, 12465}], Line3DBox[{11882, 12487, 980, 11344, 11689, 12370}], Line3DBox[{11884, 11072, 12020}], Line3DBox[{11886, 11157, 11281, 11573, 11572, 12152}], Line3DBox[{11887, 11188, 11419, 12447, 12511, 12200}], Line3DBox[{11888, 11399, 11420, 11666, 11773, 12306}], Line3DBox[{11891, 11192, 11433, 12449, 12514, 12204}], Line3DBox[{11892, 11409, 11434, 11668, 11774, 12307}], Line3DBox[{11895, 11587, 1944, 11177, 11197, 11246, 12231}], Line3DBox[{11896, 11346, 10283}], Line3DBox[{11897, 11189, 11350, 11190, 12507, 12166}], Line3DBox[{11898, 11594, 11593, 11055, 12169}], Line3DBox[{11900, 11362, 11191, 12470, 11596, 12171}], Line3DBox[{7675, 11193, 11366, 11194, 12509, 12176}], Line3DBox[{11901, 11601, 11600, 11071, 12180}], Line3DBox[{11902, 11247, 11959}], Line3DBox[{11904, 11319, 12047}], Line3DBox[{11905, 11200, 12048}], Line3DBox[{11906, 11451, 11450, 12049}], Line3DBox[{11907, 11456, 11455, 11908}], Line3DBox[{11909, 11259, 12181}], Line3DBox[{11910, 11054, 12000}], Line3DBox[{11911, 11268, 11968}], Line3DBox[{11913, 11339, 12058}], Line3DBox[{11914, 11207, 12059}], Line3DBox[{11915, 11463, 11462, 12060}], Line3DBox[{11916, 11468, 11467, 11917}], Line3DBox[{11918, 11278, 12182}], Line3DBox[{11919, 11070, 12018}], Line3DBox[{11920, 1252, 11921}], Line3DBox[{11922, 11212, 11958}], Line3DBox[{6802, 11470, 11469, 12066}], Line3DBox[{7733, 11213, 11296, 11214, 12068}], Line3DBox[{11924, 11096, 11988}], Line3DBox[{11925, 11702, 11478, 11476, 11926}], Line3DBox[{11927, 11216, 11967}], Line3DBox[{11928, 11217, 11325, 11218, 12076}], Line3DBox[{11930, 11103, 12008}], Line3DBox[{11931, 11292, 11487, 11084, 11603, 11657, 11761, 4360}], Line3DBox[{11932, 11220, 11489, 11221, 12311}], Line3DBox[{11933, 11490, 12187}], Line3DBox[{8993, 11222, 11493, 11223, 12312}], Line3DBox[{11934, 11494, 12188}], Line3DBox[{11935, 11442, 11224, 11198, 12259}], Line3DBox[{11936, 11226, 11955}], Line3DBox[{11937, 11227, 11459, 11228, 11208, 11654, 11758, 12255}], Line3DBox[{11938, 11231, 11252, 11232, 11497, 11650, 12244}], Line3DBox[{11939, 11610, 12193}], Line3DBox[{11940, 11235, 11447, 11236, 11201, 11655, 11759, 12254}], Line3DBox[{11941, 11295, 11505, 11090, 11605, 11658, 11762, 12256}], Line3DBox[{2850, 674, 8241}], Line3DBox[{8026, 673, 1357, 8181}], Line3DBox[{11942, 11617, 12198}], Line3DBox[{11944, 11629, 11258, 11503, 12235}], Line3DBox[{11945, 11407, 12031}], Line3DBox[{11946, 11076, 11237, 11652, 11757, 12251}], Line3DBox[{11947, 11077, 11215, 11720, 12269}], Line3DBox[{11948, 11078, 11512, 11744, 12275}], Line3DBox[{11949, 11079, 11162, 11722, 12277}], Line3DBox[{11951, 11266, 11546, 12128}], Line3DBox[{11954, 11418, 12036}], Line3DBox[{11956, 734, 11957}], Line3DBox[{11963, 11219, 12245}], Line3DBox[{11964, 11239, 11653, 12253}], Line3DBox[{11965, 11288, 11477, 11287, 11966}], Line3DBox[{11972, 11241, 12249}], Line3DBox[{11973, 11457, 11293, 11205, 11656, 11760, 12260}], Line3DBox[{11974, 11458, 11294, 11206, 12261}], Line3DBox[{11975, 11730, 11199, 11710, 12268}], Line3DBox[{11976, 11309, 11736, 11310, 11731, 12267}], Line3DBox[{11978, 11317, 11518, 12339}], Line3DBox[{6923, 195, 8465}], Line3DBox[{11979, 834, 4829}], Line3DBox[{4843, 835, 12205}], Line3DBox[{4981, 10889, 836, 3008}], Line3DBox[{11980, 838, 3009}], Line3DBox[{11981, 11558, 11357, 11721, 12001}], Line3DBox[{11982, 12489, 12445, 11358, 11745, 12170}], Line3DBox[{11984, 11099, 11712, 11168, 11713, 12276}], Line3DBox[{11986, 196, 8708}], Line3DBox[{11987, 11303, 11619, 11681, 12093}], Line3DBox[{11989, 12490, 11304, 12280}], Line3DBox[{11992, 11711, 11312, 11516, 11311, 12201}], Line3DBox[{11993, 11714, 12474, 11313, 11663, 11764, 12282}], Line3DBox[{11994, 12491, 11376, 11318, 11089, 12366}], Line3DBox[{11999, 11353, 11557, 11556, 12102}], Line3DBox[{12002, 12493, 11355, 12278}], Line3DBox[{12004, 11723, 12481, 11359, 11664, 11765, 12283}], Line3DBox[{12005, 12494, 11380, 11381, 11356, 11138, 12346}], Line3DBox[{12007, 11332, 11622, 11686, 12107}], Line3DBox[{12009, 12496, 11333, 12281}], Line3DBox[{3651, 11147, 11365, 11148, 12146}], Line3DBox[{12017, 11369, 11567, 11566, 12116}], Line3DBox[{12019, 12499, 11371, 12279}], Line3DBox[{12021, 10446, 11390, 11372, 11158, 12350}], Line3DBox[{12022, 10234, 11298, 11661, 11766, 8748}], Line3DBox[{12024, 12500, 11144, 11327, 11662, 11767, 12290}], Line3DBox[{12026, 11488, 12309}], Line3DBox[{12028, 12441, 12492, 11351, 11659, 11129, 12287}], Line3DBox[{12030, 11491, 11670, 12315}], Line3DBox[{12032, 11492, 12310}], Line3DBox[{12034, 10275, 11367, 11660, 11149, 12289}], Line3DBox[{12037, 11423, 11667, 12313}], Line3DBox[{12039, 11589, 11588, 11741, 12274}], Line3DBox[{12042, 11437, 11669, 12314}], Line3DBox[{4967, 1112, 12516, 12206}], Line3DBox[{12045, 11701, 11445, 11444, 12046}], Line3DBox[{12050, 11449, 11448, 12051}], Line3DBox[{12054, 11127, 11349, 11128, 12137}], Line3DBox[{12055, 11454, 11453, 12056}], Line3DBox[{7949, 1225, 12057}], Line3DBox[{12061, 11461, 11460, 12062}], Line3DBox[{12064, 11466, 11465, 12065}], Line3DBox[{12070, 11123, 11297, 11618, 12199}], Line3DBox[{12071, 11475, 11474, 12072}], Line3DBox[{12073, 11480, 11479, 12074}], Line3DBox[{12078, 11143, 11326, 11621, 12203}], Line3DBox[{12079, 11485, 11484, 12080}], Line3DBox[{7226, 1545, 12120}], Line3DBox[{12081, 11496, 11085, 11604, 12262}], Line3DBox[{12082, 11756, 11608, 11750, 12252}], Line3DBox[{12083, 11507, 11091, 11606, 12264}], Line3DBox[{12084, 11511, 1375, 12085}], Line3DBox[{12087, 11513, 11515, 11514, 12088}], Line3DBox[{12094, 11682, 12512, 12448, 11422, 12160}], Line3DBox[{12099, 11527, 12521, 12328}], Line3DBox[{12100, 11528, 12371}], Line3DBox[{12101, 11531, 12456, 12522, 12329}], Line3DBox[{12103, 11595, 12508, 12444, 11354, 12168}], Line3DBox[{12108, 11687, 12515, 12450, 11436, 12172}], Line3DBox[{1502, 12111}], Line3DBox[{12113, 11533, 12525, 12332}], Line3DBox[{12114, 11534, 12372}], Line3DBox[{12115, 11535, 12457, 12526, 12333}], Line3DBox[{12117, 11602, 12510, 12446, 11370, 12179}], Line3DBox[{12118, 11538, 11537, 12119}], Line3DBox[{12121, 11541, 11540, 12122}], Line3DBox[{12123, 11543, 11542, 12124}], Line3DBox[{12125, 11306, 12429}], Line3DBox[{12127, 11738, 11265, 12383, 12434}], Line3DBox[{12129, 11551, 11550, 12130}], Line3DBox[{12131, 11553, 11552, 12132}], Line3DBox[{12133, 11335, 12437}], Line3DBox[{12375, 12136}], Line3DBox[{12138, 11560, 11559, 12139}], Line3DBox[{12140, 11562, 11561, 12141}], Line3DBox[{12142, 11261, 12433}], Line3DBox[{12376, 12145}], Line3DBox[{12147, 11569, 11568, 12148}], Line3DBox[{12149, 11571, 11570, 12150}], Line3DBox[{12151, 11280, 12440}], Line3DBox[{12153, 11574, 11624, 11167, 11250, 11282, 11486, 11645, 11283, 12232}], Line3DBox[{12156, 11577, 11178, 11740, 12271}], Line3DBox[{12157, 11582, 11184, 11746, 12272}], Line3DBox[{1736, 12159}], Line3DBox[{12162, 11742, 11426, 12442, 11425, 12513, 12202}], Line3DBox[{12163, 11590, 11591, 11763, 12164}], Line3DBox[{12165, 11592, 11048, 11743, 12273}], Line3DBox[{12167, 11781, 11403, 11404, 12503, 12463}], Line3DBox[{12174, 11597, 1790, 12175}], Line3DBox[{8497, 11598, 11065, 11747, 4331}], Line3DBox[{12177, 11782, 11414, 11415, 12505, 12466}], Line3DBox[{12178, 11069, 12190}], Line3DBox[{12184, 11748, 11264, 11703, 12266}], Line3DBox[{12186, 11749, 11427, 11739, 12308}], Line3DBox[{8964, 1113, 9047}], Line3DBox[{12189, 11464, 11225, 11211, 12257}], Line3DBox[{8094, 11063, 11752, 12246}], Line3DBox[{12191, 11229, 11251, 11284, 11495, 12229}], Line3DBox[{12192, 11751, 11498, 11630, 11086, 11631, 11087, 12263}], Line3DBox[{12194, 11046, 11753, 12248}], Line3DBox[{12195, 11613, 11263, 11285, 11647, 12242}], Line3DBox[{12196, 11615, 11240, 11271, 11289, 11504, 11646, 11290, 12233}], Line3DBox[{12197, 11242, 11272, 11291, 11506, 12230}], Line3DBox[{8266, 1358, 145, 4454}], Line3DBox[{12207, 11625, 11626, 11274, 11412, 11649, 11411, 12237}], Line3DBox[{12208, 11576, 11195, 11175, 11196, 11510, 12228}], Line3DBox[{12210, 11627, 11628, 11254, 11502, 11651, 11501, 12238}], Line3DBox[{12211, 11452, 11238, 11204, 12258}], Line3DBox[{12212, 11052, 11644, 12241}], Line3DBox[{12222, 11634, 11233, 11253, 11234, 11499, 12234}], Line3DBox[{12223, 11635, 11244, 11273, 11245, 11508, 12236}], Line3DBox[{12224, 11636, 11614, 11267, 11286, 11648, 12243}], Line3DBox[{12239, 11642, 11230, 12247}], Line3DBox[{12240, 11643, 11243, 12250}], Line3DBox[{12270, 462, 8648}], Line3DBox[{12293, 11130, 12357}], Line3DBox[{12294, 11150, 12359}], Line3DBox[{12295, 11768, 12352}], Line3DBox[{12296, 11770, 12355}], Line3DBox[{12299, 11769, 11665, 12353}], Line3DBox[{12351, 12300}], Line3DBox[{12354, 12301}], Line3DBox[{12356, 12304}], Line3DBox[{12358, 12305}], Line3DBox[{12316, 11315, 11737, 11316, 12384, 12430}], Line3DBox[{12317, 837, 9829}], Line3DBox[{12318, 11775, 11132, 11256, 11131, 12432}], Line3DBox[{12319, 11776, 11152, 11276, 11151, 12439}], Line3DBox[{9993, 9232}], Line3DBox[{12411, 12322}], Line3DBox[{12412, 12323}], Line3DBox[{12324, 12517, 12458, 11676, 12364}], Line3DBox[{12325, 12518, 12460, 11677, 12368}], Line3DBox[{12326, 12519, 12344}], Line3DBox[{12327, 12520, 11088, 11673, 11517, 12342}], Line3DBox[{12330, 12523, 12348}], Line3DBox[{12331, 12524, 11092, 11675, 11532, 12343}], Line3DBox[{12334, 12527, 12365}], Line3DBox[{12335, 12528, 12459, 11674, 12347}], Line3DBox[{12336, 12529, 12369}], Line3DBox[{12360, 11373, 12413}], Line3DBox[{12361, 11383, 12421}], Line3DBox[{12362, 11377, 12417}], Line3DBox[{12363, 11388, 12424}]}, {GrayLevel[0.2], Line3DBox[CompressedData[" 1:eJwV09dqVVEUheEd25WCgoKCggFFY4EICgp6pU/gI/gA+hD2EltiTe/F9J7Y e++99xSTmMTY+zcvfv4xFmfOs0/2SuqadavXpiRJ0o/uOUmSMy9J1qclyXhs RJezXGcdKNQ7eQIf4+70JNkkH5UzMIBa/SNP5GrezD125MnHUaSf4PdmJ8mn 5C18kndiEHX6EE/mGt7KvXbky6fjM2aLnZ2Rp/A53sZneReGUa9/4qlcy9v5 gx09Zgv08yhxdoGn8SXewRd5N0bQoH/m6VzHvWYz5D57CvXLKNWv8Ay+Fr+B r/IefEGj/pVnxvebr49nlPvtKJKvo0y/wal8K76fb/JefMMnc03OvsuzuCH2 84AdxfJtlOt3eDbfi1m+y0NmM/kHmp395LncyJnxruwoke+jQn/AafyI+8xm yQ/lLPxCi/6bF3AT7+NBO0rlx6jUn3CX2YXyM3k/P43P4g9a9b+czs18IN63 HWXy83h/ZqucvZAX8Ss+yC9jF/6hTU/mJ8libtEP8bAd/WbL9dc44uwNL+F3 fJjfxvchxWy7PoqXcmvcX7PZcW/sqYg7iur4H+BlcY85h7vjeTDabIc+hpfH 39J8m/NcecSOyrgzqIl3zyvivXNe3KF4Zow1O2Ku09k4eSW3O8+Pu2dHVTw3 NuirUIDs+G34Dy+yxN4= "]], Line3DBox[CompressedData[" 1:eJwVzesv1nEYx/GvR3nElk2bNiYbRQ5RiCJFToXQ0SHTcnbfzocb+a/0L1Qo FZ5UOtlaa82sWWtm6+XBe9fn/bmu7++X3httjcSFEJ6j4WwIJ86FUGfGm01m M+rxhC+jF0+zQ8jR3ZRfoRbneZ8+QU7ED95v9uFzgWyXq6vjq6hHHh/Qn5ST 8JN/cTsoD2DQLl/XIK+hEQV8SJ8sn8Iv/tWbYXkIw3YXdLfkddxGIR/Rv3CX wk/jt27UHMGoXRFvkl+jGRf5B/cRu1Sehj1d1Iwgqr/EW+Q3+Oj2jlmsG7M7 I2dgn4+bYxjXl/BW+aX7DbMNpboJu0w5C3/4pDmBSf2K28u6dv4Wd1HGp+yy 5Rwc8GlzCt/cT9uV6+7xd7iPK3xGnyfn4y//7nZWnsGs3VXdA/k9HqKCz+kL 5SL847vezMtzmLer1D2SN9GBazymL5ZLcMgXzBgW9FW8U95CF67zT765aFfG y3GkWzIXsaS/wbvlbey4fWxW657ZVciVCKg6/j96UGMfd/x9/Ac1fG05 "]], Line3DBox[CompressedData[" 1:eJwV0lszlWEYBuBXO5USQmSTZbvWKpsopQ3a2VRKkmRv1RhH9RO0UQm/x0HM NDk0mWlGf4VKxPUd3HPdzzvv9x4888VSb/pep4UQlqQnHsJEMoTJRAgdekrv 5CQX5Y7EzeOs4UZDCLf1ab2dVexlNW9xQdqk0jzGCrZyijcY42OW8ybn5bqs eLfM2ah+jtf4ildZwkcsZQu/yBUpNo+wiM1M8RIL2cOz/Ondy/qcNEmBs2Ge YSMn2MA8PuQv9/P1i/pnqZdc8xBPs45jvMBVd7P1B3oOa/lJzkuW+QVPMckR xvndNyf1+3omE/wY7VZOmAeZwXX3qvUhvZLH2M3jrOJstFs5an7OdP7wTbk+ qJfxMLt4hDF+iHYry+4dcjagH2QpB1jMNHbyAEv4PtqvfPVNcPZM36uxW/ab C7hr7uB/rrlXqL+Ldiw7zvr5j/ns800u/5rvcZt5fBvtV/6Yn/I3c9jrfha/ eXfT2V19i9mcid6TpDsvmeCT6L+RfWPSV/4= "]], Line3DBox[CompressedData[" 1:eJwV0llLUEEAhuERUzCofoN35ZV/pUIiIkQjokxtNdNMy1ZzyfbVFlvMpdJK s3LL3HKrIDWzxboJgiAIgkDomYuX95uZ7wznzJzU7PxVeQkhhHYsXhFCIhZh aVoIyZyEEbxZHsJbLDE/yRPYjNcYxXedcR7DsDzMI0jR708PYUgexCa8RD++ 6Q3wKwzJvdG6fZzsuR7uxkY8w3PM63Xxi7if/E7/qdyJRM90cDs2oA2P8FXv SXx/3cc8YPyQWxE884DvIwuNaMIXnW79Frk5vqNxA9/DgnyX7yATN+OeuvX8 2dptvhW/Ub7ON/BPvsZ1WI9J/Ut8GZ+sXeUr8WzkC3wRf+Xz8ax1z/E6nMJp zFk7y2fQJ5/kWvyJ56hfI1djLSpwAh+tVXEleuVj8Qx1j/Nv46N8BGtwEOWY NX+YD6FHHtUvkw/gl3Ep70cGilCMD+ZLeF+8P7mQ9+KnvIcLsBo7sBMz8U7t u1vehS7jbbwdP+R8zsNKbIl3oZvD09ZyeWv8H+TpuBeWudMpfh//GfP/AT4I kCo= "]], Line3DBox[{10507, 10451, 10724, 10470, 10725, 12467, 10452, 11015}], Line3DBox[{10764, 10469, 10763, 10498, 10762, 11040}], Line3DBox[{11016, 10726, 10472, 10727, 12468, 10457, 11017}], Line3DBox[{11018, 10729, 10474, 10730, 12469, 10458, 11019}], Line3DBox[{11020, 10732, 10476, 12501, 10733, 10459, 11021}], Line3DBox[{11022, 12502, 10735, 10478, 10736, 10460, 11023}], Line3DBox[{11024, 12503, 10738, 10480, 10739, 10461, 11025}], Line3DBox[{11027, 10462, 10742, 10482, 10741, 11026}], Line3DBox[{11028, 10744, 10484, 10745, 12471, 10463, 11029}], Line3DBox[{11030, 10747, 10486, 10748, 12472, 10464, 11031}], Line3DBox[{11032, 10750, 10488, 10751, 12473, 10465, 11033}], Line3DBox[{11034, 10753, 10490, 12504, 10754, 10466, 11035}], Line3DBox[{11036, 10756, 12506, 10492, 10757, 10467, 11037}], Line3DBox[{11038, 12505, 10759, 10494, 10760, 10468, 11039}]}, {}, {}}}, VertexNormals->CompressedData[" 1:eJzsXXdcFEm3xZwVETEriGJCxYBh7BYzZjGjopjFiKJrFhFzzqiYs7Lm7Nht FjHnnDCBEcGAqIBPqFt8zrFrmVnd/XzvwT/7+x3vnjr31K3q6uruGpvOns26 JTczM3vnYGaW4tt/O+9/Puph9BsnM/bn0zRr+MwW1Zc41bt3p+Lxr//Bb57L tLnja2+nP9/5m1/9DveM7tmgx9jhTqe3pJse+fXNIY6fGTr6g8cCD6ew94WC P32HT3Rb/7LR2S78//+X/8JNbrdYtaoz33yn/0GK8eejK/Z3+r18C3dK0pmk M0lnks4knUk6k3Qm6fz/tn4T+bN8x+ivyWL/g/cd3TLf+3l+Yt+2zfTb+B1P RLGYNt0X+P7j+UbEDKsT/q1fZjmd9siZJ0opNPnylXL7PZ04Xt3+cqUSFs+V 55MYLspXpJ/zJPvqeqlF7iuKRPyJxkex+FpGxj88uqin/7Z3krWR8YvqsHwL Gqvntme9c6kWSO8nGRlv0T8+PsrI+E7HmX4bo/1het6ZyG9svnVrM3/yG6sn R5v4/qppbLw5i69G8b9qvPy3xpFVg7VZv35rd+Dy3Tu/+JRTXTaXV1YENxaO F1G+Iv2i+fPXzJPi+e3XtBv+i/Qn8STx/N/iEc0Dv4pftB7j8zCPfDDJ8LrP 8RABflWAXxfgtwX4XRPxOybyXzNRvyjfYH6dFfj5ca3ZmqFx17W5BbdG+pvL f1qkzbCv1kSnlzXlul+/i3/dqGsbv7wNnM4Mfpo/4rt+zJln4qGHd/o5RRFP xYpri/lOsZTH/k0erqeZX7FMQY9s5GLZf47njnkfj8WZcsv1s/0cz/vlN5Of mRam1PxJntH3C415e6ag/OYneUqX9z3aLzaZHPiTPCvT6d8Vv20tN/lJnrn1 u7td1OeUV/wkT/MruwKbh+eUV/8kT8URqz2shueWY36SZ299h0ajp9jKpX6y nnMcbezi0CGHrP+bevr02Ooe/P39Zvm1UQHeg53Sz9kx7tN3PK4vqtZI2aGr U8ltw7+fB3wWxKa1jpsHRDym8otwU/MS6UzSn6Q/SX+S/iT9SfqT9Cfp/6f1 /9N6TL3/TYpPiv+Z+PvjDPdnOhxzzR+3PyPatzmtN9y/DXp8xzVu/3b2uXNe L77DN3+defP4bK9/fB7Qzkv8JxqnovhfNZ/8bv2eFP/fjReNLxFuKv/ghYY8 M5Xn8Tyi8S4av7/q+Ytp4y5ceN0UzkuC5+wiXPTcKik+Kf77eNF4ET23FY0j lwMBVb+/fsn9bLs/Oy2+fiU8R34R9xx8vbR8OtufF/Ek4Um4MbionkXXC9F6 TzSOROu690M+rIqr5zvuZevPr/dU+Tgsr7t7O9PrWbQOFI1f0XpMlK/o+mIm +BPpNPV+0NR1+K96fvqr6kGkx9T+NXW9sfFIiSxfvotPleyxUjWok8nrE9G/ mPo+mGj+F/mTxJPEk8TzI49o/jH1fTlT2xXFi653uo2GeOnhB6LjcLNf9Gfq dUTEI5q3RfGi67ip1+W/m/fP/pl63f9VdZIUnxRvTLzoPStRfVbWG4671Meu 9Igbd6L1TxLOcNH8bCqP8D5IgIuuR6bGi+pEhJusR3BdE76/bWK7STxJPL8D j6m4qesE0bxh6vpNlK+o3ST+JP4k/v8//L+Kx0zwN29VmNej7+I3lbu3adLB P4TzYVJ8Urwx8SJctP9sJvj7Vdf3/+24qc/x/1vvsyXpSdKTpCdJT5KeJD1J en5ej6nP5X/VcxxT35NP4k/iT+JP4v+n+U2dDxfMHl0n7hyb4uWaPWzc9b3i vXV37y5yA6dO14Ya8G8fHhVb/hu/COc8zcozHifi4bgL8bf9m/x/V49Xo2Ef L4xJpjqDnjqks82/rOdxQ6anHegZT3rc/2U9IaSnPei5Bfi/pceW+qsO6LEn f9r9y3qqN9Lur/cNDXX+W3pykx530NOe8Jb/sh4z6peeoOdjuf/O+CoM44jj fuTPwH9ZzyuqkwGgx5r8mfAv6zlN7dYDPXxeqv8v61lL/TUM9PSk/vL6l/VI pKf6v9RuEs5wU/fJy+7eXevJdzxzs/Y472Uuxl93N1x3BcRcil93ifCw6d1z fv/edfsNWWsMT9XNKTzfxlffvx+SufD8Tftzid9vNPV9bF6H92g85qE69M2V 63Psdzyl9kWVfVvKRYgHnA4xuI+uGWnlHvztPtrUfhHpN1VPEn8SfxL//z1+ 0f3mP92u6LogmrdNnc9F+K/Ky9R8RfO5CDdVp2j/IYkniSeJ5+d5zAR/Iv5f tb4Vve8ten9eNE+K8hXNkyIf+Pq25O3H++blWqzMpvXtr1qviq4LIv9FPohw U+9HTNUp4hHpEeX1q/5E+kX7yabWran3fab6lqQzSWeSziSdSTqTdCbp/L+n U7S+/VX7t6J1qShepFMU/6vWh6b6/6vik9pNajep3aR2k9r9d9o19f2u3+38 gf8tuMhnU3FTv6dO4kni+Td5TF2v8v3bjMMGr7O/+kU6mcj7CaY+NxTNh/z3 gJ6suLNwmnVp9QX9vpVI56/6M/Wcq6T4pPifiReebyM4r+ZXvb9k6n3xtswN reO+3wk6/mhksim11aFZUnpffd7Iif8uavfuow8vcg5X0m9hv4tq6n20KC9T n1uJ8uL6dzUe0uZozXrq9GyG+kOaLOh0o1YmeVQi+vm5xGnLf0ifYkMzucec v/493H8rr0jql2JZDfNyCb1e52WvL1LQTuPy+liO5TX6N8mrRBPWX5bmhnkF nFrQNvPygnKvbcbldf03y8s6Xas1XW43losnN8zrYD/vyldtcql2ieT1lvI6 KK02X5mpnFx36u+RV8N2+V7myVpNPp7KMK9Rznl6Dg55IF3ealx/baO8Kv4m eQ2l8RUJdbj0XeXd0/YVkxvtMi6vC5RXvd8krw6x3i27zcymeqUzzKtV4PYZ lfK/kN4m0l+8DsNofHn9JuMrFdXhktSGeU3IqHM4WN1WPmzkvMHr0Pk36a+R nkOSrS2cS36V0TCvGQN0TaWBpeQ8u43LK5T6a+xv0l85VmXNt2dLJdkd5o2G TVI4rWhhI7fdblxeu6m/mvwm/bWgLavD5CkM82pXeGDKNl455EZGzoe8v0ZR f/1b+st7sXr7BOu9bAWXPc38LK382ch+wXWFqe/n/6p8TX3/x9R1suiP+5ns I5tv36Yx9NN/1emv6Y9nlYduZn6KeIxd5/A6EfGI/DG13V/1vO//G/5Pv7ds 6vvDSXqS9CTpSdKTpCdJz/9GPb9qPfl318m782T9dMXXUf2cma3rfpXOv6un ZgGmZ1aW30PP7FHS8tWbUqu6VL+HngchBy2v1JHVdr9Jf03Lx/qr22+iJwfV z8bfRI8s63pfXVFGHZDp99DTjfSc/U30zDuXc3nA/mxygxS/h54O6Z5NuNK1 sjrwN6kf/0qsv679Jv0VFMrmH3fzv6fn77Z7JjL0W78Uk8PS/nW7ot+ZEp27 K3qOaSb4E50ryHXeXFw55MSqSCmK9qU5/uxpusW1z7vKsgXDTdUp1C/YJxTF i57nJuF/jZvaX6Y+Txfhpu4fisbRr9Jj6j5kUrtJ7Sa1m9RuUrt/3a7w9zFF v5f0X7q+iHDR+Z+i9Z5o/WZqu2aCv1/1+57C33dLwv8aN/H3737Vuj2JJ4nn d+Ax9b5SNA/HzjCcP193HFgtbv7k95VDmrVsec2ltuxP+yemzuecp3ALxuNj 9nM8Ec0ZT6nkP8dzcVwX+Vp6J9ntJ/Oa1pLpqfeTeX2ivN7/JM948nnrT/Kk IT2Df1Fe+36SZ+kY1l+DfrLf5+213Zjdqab84Cf7ndfh0dgUP8VTZQ7Lq24G psdM8MfjXfY8cSi3oJz8mJ4XiH5XztR9nlB3Q7yxU/ECcbjoXKbOgEd4pO3+ fV4Hhr/4fLpZWbWdJdPpOvLDqu+/f8l5dkVb93aeJuv8347XNXGdkxT/fyNe NE5F36OJxqNoHPkNNcQ/ZhjaIQ43S/pL+kv6+3//ZzPN4L7DLChWmRV337E7 xOA+wqx8+NKAuPuIxQ/8za9+wwfm3PT8TKGM6tYtQ5r2GDvcacVmg30Ps3DP FB/j9j2uvS0UHHcfscb31bGFNpZyzeYZ3zQ628WpzyinmW++4ZF7IwZOcnZU /WukKRtdsX8C/qXAquA/WjVVJwHO448AbhUSpdt3vJk6C/CvTxm+FPDkFL8Q 8GzWrF2MT0X4EsCzhGjzpyF8GeCfKK9RgM+nvJCnGeHTCMd+mUr94k/9kuA/ 9ct18t+toFr41PV06kDyX7sawhPaDfAo3rNYqcrqKWh3fdtK7x52fy+1e2NY D4FNYpR+LR9JQ6Bdl1oV6gzpGaM0S6TdUFu2LydbfNroci256tE8Vca43zXD fDdDu0eo3U7Q7teg60ct+z9VXI1s9/XaGY36Ziwrb3DVbve0oN011C6vc+uM p1IMmH9XqW9iu2cE7W6Edm9Su+Mh3y7UbkMj252Zlfk8RuDzTmh3b+NdTdqn jFSma+Z7VqlpZLs7Be1+Lq3PnW7QVWmDoK4GQrvFqV1j831O7Y6gdvdAvuug 3WGU71jwuQr5XMfIdhutY/27HPr3C+WL9TyR2h3/kz5fWqvdLo+cAe32pHan QbsulG8FI9s9QT7PgP6NYPkq26Hde9S/vaBdV2rXxch271C786Hdq9Tucmj3 OLW7DNqdkaxWqjy1IpVyRra7nfp3Hvj8kNq9Bu12gbpK8JnarWZku1mp3dXU LuffQvwDgN+R/HQykn/xesbvT/w517DvMtxTnalf2ipMStm+cfx3GSEUbzG5 17jslV3kK21YvC/tH1456zCja9FMss/b0tXj9g8zKWx/IL/b/N4z35jJ3cul 6Ba3P8C/67FrPcbl6btc8vQdleK/6+F4rQ2WW8slLyw/p+/N63gOMzg3o2ix A13izs2wnj7CAP/jVtHqZeN+Vw7WDwF0XcN2m1G7Ih4RXnc3u19bOnFzppSH 7VSvWQPj7+84f9scI+P41a1nyv8U/yLizwH8OdwDz6yebKFOPfbX/CLfOP9C 4t8005A/vCPjXxb49/zn/OmI/y7wnyf+bonwJ6b/VdqntS//UUwNBv6z5wrP OF41tWx/pNJP8fORshf4O59h/KfVv66fxPiLpWP6A4H/y2nGX1j9Nfr1ifTv 39XvR/274x+qnxGTGH8t4I9pwcbv4a1/b/xynqap71mk3vhaunT853ga5GTj fc7Zv+cnn6+s6b5jM81X3If5qePqpLK8jHzg3zOe7de+fZ13ZWQnb/Y9I8f3 1Z3eefbbsmoNwH1Sf1nb8fkbqdAQQ9y8HotvAPFmXz/Hx1eBeJ9ohucH3MyT 6amGPKSnNupJxfQ4IH9KhpcBPGV/xt8I+WOZHluI3yfQc9eZ6eF4985s377P 1u5b3py6Ii0v3e9z3L49v34li++uR/vr0fWLxztQvBfEs+59sb8jxLtR/GAB vyfEH6f4AE3+15XdIN58G4vfrMl/uHJPiA8n/iWa8UE/6N9G8as09ZiZuUN8 LYpfqhl/uDLyD6L4tdr69/+gfwuL99eMD9vfRuD/XG3/K7eD+GkUP1O7f3/Q b/7X9VO5G8WPqMF+77vNtGWvVn22l9uO8R0U93vfZpp/4QnxaVOtrHEkeVk5 52gWz9dv7mz9r+6n9RuPvxNUfWhqy7LyAN+/5h9J8f7JBgRIuWzV3r6G/NnY +lOdDvxtiL9YIvw8vkqn87drv7JWtwF/U7ael3s3N+Rfb962aMDlsvI7H+P4 L5M/+8CfP0n/YtA/ssTLuj71c8hTjNTfeVC/pu/K35BWjzHkP0L8M4F/nFm/ ae1GlZDTGMlfaF72DbnqlVHXgD+PyZ/p5A/vL6uszB9nI+uHI66gfzzxjwf/ d5D+a0bytyV/2gL/VwH/eNLf2Eh+N+LvDPx3qP4XgP9uVJ+5jKz/ERUHfuMP VfRQP7SPIY8B/dUspkyKaGIpLzCyf49VfZplvntB+RTwnzNn/Buhf0Oo/o8m 4g+Pn/Q65Bt/WfUs1M8Nc8P64XpCiX+/kf5XXBJd68llWzV69F/z8/nQJsqv nPOKW5IrzYfes9j7eyOOOY2f+w2f0X9zrbj39zj+OXnJ4xf97NQXfRjOeUoR T2Pi4XgjwpsBf/UjjL8l8fPzEpucbaS+DXaUm2Rl5yXy+DcUXwn0uL2t7z41 Iru6lfDE/D805Hj0tpb2ci+oz6XrDecfjt9ivqnoWyrKqzXky30YAfly/Z6Q 75O3LqfC61WQ91sY5ru38eBeA5o8kZpAvkO+2H/z30p172dcvt5nbHMMvllc /jBG+3qx2sh8Iz+yvAIgX14/IyHfUUy/Upr0R1G+fXe2vNM3tIJcCvJN3oTF V4N8x2yutmTThuPSNSPzrXZlnmdjy5JyIch3J+U7H/Klca0GQL5VKS8XyNdC kO+nAw0tFp1/qZSE/v1jqPPayMyO8l7I14/6twXkW9amRFz/yvOMzLfjRZZv csj3Hs2HfP9NtN/L86pMeflAvm3j8efSWMi3I+l3gXzP7WD92wjytVOYP2Ug 33OxrJ5LeBqXbwGq51Ywfx6D629CPdO+q5+rYb5FKK9xkC9v0QfnQ6pnGfKd NLnZBU/vCvJRyHcyxVeGfCtR/043sn9nVDkWP195Q/9eoevpMqhnuo6r4zXr +bnkDflWIbwb5OtL/dsc8h3l2Kn4ncGWctZshvn6U3wDyPcU9W9TI/u3JfWv DfQv7durKyDfiYJ8q0FeHC8Gdc51doL5luer25u376YzleSx1L+jKX4o1XN5 yJdn1MvI/l1hF3PCY5WtPBz6l56PyCOgnmmd+cP8XBXmJY53IHwc5OtF+TpD vo0sXbvaV6goH4Dr7yS6fjlAvp7Uv/WMzDfXJTZf4foc12+wbpdnwvitTXn5 Qb78OlUb8p0t6N/7NF81gfHrSP3bGPJN/Z6tN5yNrOeDND+XgnxnU74+kO9m yneRq3b/roJ8UxBeHPKNpHwrwvX3ZFh1c13r8nIHGL9paL1XUbC+qm1kvpFn 2fi1hPH7kuarMzB+6b5S7Qn1/I76sYmgf29Cvn2OMv05oH8r3ncN7e1SRPaF /t1M8a0h37t54udntaGR9aycZvkuG6Od73rIlz8nmibo382Q19NDTGdtyGve A5ZXuWx/da74f3R2pjo8A/1SmT3flz2gDtvTdZPvV/D9z0HTGu3of7uW+qom 2//kz7PGumdZm6FMFvlCM/Y8i+NciU0iz7l4/L1HtQ++O2spN2j+I0+1mA26 3EbyVHE6MeDkk/fSJS09wUV0NRLh4c+XzbaWPns0y0CpE+jpVvvQiTStPymt jNSTLCfjKQk8N2sxnu7G8mRxiOcpp+GPmVlKvWQkT2Hyp4YmT2zltsbqCWZ5 NdHqr6gN+sTeM0ngKcjyctbgsY7eoK9rJM8Fygvrh3yWdEbytK7KeCZp6PG5 s0HnaCTP9jRzz5UOSinn1vLn9gZ9KSN5nIinpQZP8PEN+sT05J1n8J6q2fIe ydl7zvT8Iqbr+GbuDnnUR/T8gj9fHr7yfejEP7KoR93Y82WOt+2U39Xr6gfp FeHR+w1+l8HMbPP8s3G/yxByhZ2T8MC7/7FtK98q78dcuxZ3TgLOeyto3vM1 /M7FbBs9p+bz4Z7DbD7MAPN2BrtMxaykIvKX3gw/nJ19/15j1pgKtcqbya6v B+0Vn3sZ7uRMvwfh+uBp21WtXko5s54pH/d7ELg+GQ7zZCjN57NonhQ9P+L9 tXYKmyePafdjonVVh3RWLdOwRps9B5W2pJPzRDSaXf7Gx/fSS41571u96RKr N84fXezpwraZwqROwP+axsVc7XGRaB1yn4PzKIOG3nur9Af+IVTnFQXzZGLj l/PXHGnRrYO1tfoU+GmeUZprzzO6xOYZzv+wAvPfHfjr0fzTUIs/aoOuuZH8 1Ssy/vaofwObb5205+39ic3bnL8G+fMQ+acy/jza1xed/JP8fB4rIZifE7sO cv5sxVl9NgV+X/J/kfb1Wkrses35iweleTqm1RdlLPrTnfnzUXtdoU9sXcH5 H9D4aof82xj/BO31jz6x9Q8fv8vKsfppTfw4/wfQ/M/nc9ddyT3qXf2gFOPv EdG8fbL9TreMw/KoNWne5vjKNwUHVJ6eV34FuGfdE1MiawdLQ30ZzvXfDYva svfSe6mLZl19GxuE8/n/9Eez/ErDd0pfmv/5fJ6rrU2pfpEZ5bOv/no+F+F8 n/zMsLp+V49mV8/RcyveL1krMd86wvxP87zK53n+fvWxeT3zTM+ZVo7px96v 5uvkj/Re8UR4f/gW4WsAv0zvQeH7yS/ofemVgB+m+MWAxxbQfl/aTPAe9XOK R54IwlcA7lpiwfWgZzp1Fb53Tfz43vhL4plNONbhXKpDxFN4MBzfh/9C78Pz ersfVLeL39r86l2qQ/48N9z3ba4pp1Oob8qy57kcd2C43KqcIb5tDIsfCHgZ 4mkC+A4WL/PnxTzfhXR/lLoWy5fHP5zvrk50vSw5AU9Z4i8F+GsWrxTWxqUK 0G5Laje2pmG7Zf9YlnVx9kgpO/CQHqUz4OHkA/oTQ+3aQLvHM6Ya/Cysobqt tmG7byneAnhiqd1cArwE4Lzfi0G7u3xyjBiQvZZ6FPINpXaR/yPxlxfwY7vv iSc/tDuJ8p0H+X6i+ILA84raLQ34C8LLAM55HKDdPtS/XyDflxRfVptHcQD8 M+GFtHX+0O5Iajca2hX59oH4iwMeKuj3KGrXEdp1E+TL6xD5sU6gDhWsQ86T F/tXkO8bGu8tBXVri+OajTtFMO6kztDueKrns9AuH++CeUCpoM2vCOYZuRS0 60L5PoN2+TxZS3veU7sDzudJV8C3km9e0G5RajdZLdOuCyk9tPERcD8b3Ind z2ak93I5/pnd58r8PhfvWz9vYvetHC8wsl2o/eQPShTh+JzXG94jouuOHFZW uz57C8bpx7KG/uytl3tuqu115Ee1Df25PGO878eoYupiypfz5PZjdfIU2h1I /dIe2s308lo3m6jPygeKF62X+Ppnb8lCqSeFW6uZ6f4X/X9Aevh77/HvU21z 0bek994NcDN7fWl4Hz7ZPLb/k0ljfbgidoNuVSLrXmhXJ2hX90O7R6t9a3es dEdjPf+tXT1vtyH97qrjhB3vskSXlv2zTlbjfneV4yOXBtq2bmqrLjFneCPC D0yu6T/tQzU5KBvDRfp5vzd87bhrx6iC8k1n1u+8DheEbcyWOfMTqSLtq/B1 +5W2Gx4uvfpBygbr9qIRbH2eWXt9rgwl3MCfwzp9+q1avkm6VOQbjhc70JM9 9FjF1TmzyOVBT69RmYbkX5Zfvi7Q0x/0KFXaVB71JINaTNCPpzYb6plG/hQH Pa9Iz2U3Qz1cfx2Bnoqgh8c30dJzuITOEfypE8705AY956PsUviWSqm+AD0B I5k/Z0APb9dfoOeIpj95delAz4fXTE9h0POV/DGH/ppWOFu8nnCBnoMCPVMF evKBnvlvmB4b0DOb/DEDPV8KMT0nQM8A6q99oOcGqx95iKaez/t1oGcB9VcR 0ONHemKgv7qRP0dAT+t4PeHKUa3xZRa9f4ymnlf7m4CeFORPPtDT+ZO2P/x+ /Lygv7aCHjuJ+TNW0F+oJ4jGV2bQE0L1cw/8KU7+XBXo2Ql6mtF4b6+lx6eM vgjomUh6ZNBj/YzpSQv+2JOeJaBnBNXPPNATQfUzS9sffTnBfFgW9OQif7C/ xpGe4r6GetqTnljBfGgjuJ4OAD1XyJ8CoIfrzAJ6noxg889RwXzoBnpCdUzP DdDD+ScTLrp/5zobhWvP2zzeCnS23TimdNGJwUot0BlM+1R5fTXGnXUV3WLN usqr4/2I9TmR+PE7+rr0HT3iX/tq410pnu87vajVufnjAaXl1vS8GL8Dukjr 1YT3DG9tUf64WVA9AevM8SXG+WR8nE4+Qes3fP+kPz0fwXXaie5sncb9rxS4 zutmzCOJr2/Rhyfg8yaah+9q+y8L/Ncv0fY/YRzxfj973yx+HzIKnis1pXW4 LTxXsqjnsMmlXbAUC3r4euO+YH8S6zmE1bN8LZF6zkU6M9J+acH2hjr5/UJO 0GlGOnuAHgdvprPCGM15QBLMA7JgHtANAD+fkJ9fwc/mpDMV6Ow2taTzqr65 1KGgh19fbmvPn5Jg/lQF86cO+/0W6XwNOkOOs/osiH7S3xrQ85jmseOmXXdk wXVHVwR0fiKdYaCzLfmZF3QOn14qrt8VvO6cpnG0w7TrtSq4Xuurgs4PpDMa dPYknblBp+eA8vE6D4OeyD754vt9r/Y6RxKscyoL1jmVm4DO84L6bEY6sd/X kU7s34/k52XAvag+cX14i+pzmKbO6MqVBeMoLYz3AaSzkKA+Z4GeU6Rzq6Df VdPW1fp8oDOEdD4CP91JpwXotJnGxvtB1BPOxvs8gc5Fpt2P6NPB/JmB5s9D oHMZ6SwOOrtSv6eE9dIRqs9tgnnexPs4vSP4eY78LA79nvoEm5cygs5Fu8t+ 0xmupAedU2m9pxfoxPtfleal4oL1Hr//5TpzPmA6PwjGUWbQeZDWS0VBZ4Xe zE8fX+N00r6BLoP2voGe7xvwcxgm2u9bNriKmTyOzmHg65NtM9m+VjDsaz29 Z2ujc04h8/1tvt/yrlY/vf0mB3myheE+TIv5Lf+wXWmr/gH7MHNKb5tWZllW 1Qf2bexDCxXYvbmQ3BLwL1E939TIYKNOMjfEX9nc6L9i40FFhnZ9Oi9c+mCG g9zY4q95uJ7r1UemKXLIVg0D/oW1WV5hoKfQJ8YzAeJPzPMPvDLGVm0I8e53 q+pn6Wzl9YBfqL62zdH0hX7YpzJLs+Fc3z6F1bMQn4p4bgO+c2ndwluO/6jn YmrGsx/icxLPTcCzUV7eoGfqjmMeW5uVVQ8D/1LbgpMm6FKofpiv/d53LpH5 1O4CPdEQb0N69gB+PzTdvLL5rVUf4Ck2n/mM8aF3GE9x6Pf15M8gyKsr9dcm 4OmdLvf7wBAHuSTwqENGdhtboZi6B3gi9ppbZF5upw6F+OWUlwL8nx5+GHd2 SQF1KuRVx3zwpzvDs8n5iQfvX1a1Y/cvCTw55/pEfi0oHwX+4bT/KQH/oIJs vGQDncferWj3Rz8Hldcnvw/60o3t21eAffs/aN/+wExNXN0CeLx4h076fIDH Mn4Z+UM7M575Wjzf/kZSPJ/HZheLn8fU8TSPJZyr87y92etxWWXHcEOc82x/ o437Ec7bPRvaa0ugRU45J+iMIn8Og87x7JwKOT3F834c3adw+b0t0qh/0vsJ 2G5/aHck+ZMe2n1O/qybaegD51kBPI2eMf33QWfvLoznuIBnFvBMIh/OAk+x Lob9jjzrgIfXz3ng2UI8dwQ8/sDjzeLlp8BjQ3V400ieF8RzG3iWk577Ap4N wDOVeMygvwhXnxrpcxryOS3wuLB+VO8Z2e8O5PMyyItwNcMsbR6sw3qkJwp4 zjA84bwdnAf02vODzOsE17H8/iVhXqrsFb7WLYW8i+Yl/vwrotFB97qjcquu PdjzL9F+EY+vPju2Y7o/Y6SXvbTjN0L8mJreuydNyyOXFPCvhfhkKxn/BQH/ ZoyPRyvpB7bUjt+H8Udj06Xt90k50kU7/iDqP8biDwnif+A/weJVQbxAv66P QP9RiD8ymfmz3Uj/HzZm/VvVyP5NtojxnxLwH0N/arD+rdDD8Pwu8+DAMzU3 PVJewfvV7dm5Xgn7DBxPlW5wy0n5LVR8nkX7otIUatdM8y/8h/3Vh8Dfidot 3d4QL3nt7dTA9SnVnLAfO/RPj9Znx6aXVxjZ7uUHLN8X0O56ajc3tJud8u0G 7RY5HffeV2b5oJHtVof31Tk+j9q1hnZfXWX5FoV2959i7d42st3+1L9vod1Y ajcbtFud8o2F/u1E+V4yst3OlG9a4N9I7VoCnoH6NxnkG0757jeyXXtq1wz4 h1K7VoCPonbTQ7u9qd1DRrbbiNpNDvw+1G5OwBtQuxmh3Uzk8z4j230k6N8B gnzbUf8WFNTzgUTa5fsnB2kcRRrZbkpBu5to/L4xMt8K1K4D8D9J+bzWq8/P Es4h5HhY45JdF6d6qtgL8t1iZLvJqV2s593UbgXA51C7+Fx7XgDL976R7fo8 Yu1iXmvIZ/TBhXzOD+1eCmL5Xjay3XTt2HsdmO8oajcztusfNvLelQ+KHeH8 O8H6a6P+uDqtuLojC/tOkOMTrlws45rqrpTJnOF8vZT76RXrE6+eKcGwjmpC eDTgVQgPFNw3hQjwCwL8sgC/KMCvAl6D9OA6n8efTqTdULiO63wNv1eqfuHF KQ+rx9JkPB/AJu77oxyyDz1349f9dE+3VM4daSe/bUvfDfHnv7uqtlyzJr86 Fr6Hmnme8S8X8D/tZ8j/8ItU54BfarVFZ0N+q1ZeBR075FMnAf+TL1NHfwq5 pswB/nuF4/nVmn2BP4bx9+1suM5Jmz3DpGwvs6j3gX8D8U8Dfu7nYk9D/qyh zJ9c7Qz18/jzwJ+L/F+oxW/trGsG/hzJ296sUN8Cauruhvr3pQq0f9f9qjQQ /TnkPr2S3WVlDfB75swc/33ZHtA/puaglVP3hEj1esM6sEqZOH5lF/B/ov71 A362vi2sd/fU7t+2nbXXmeOBX4pm/s/T5tchfyfy52k3bf7jwH+K9KM/Xswf dR/wlynA+F8Cf/OWcfWZSfUC/rrk/zrt/tVnBP5LebT5uf7awF82zKzmqcgn 2vWjUZ82KeR4/13B/xXUv2WBvyHVP45fGl+yaHy1EPD3AX7/10z/fO35QcX5 IZkZ019TUD9uwB9O9eMt4Mf5zSY38/9SN8Pv2Tn/CHhvgeMNyxm+txBfnw7l 9SuJn58D2ZHOh6wC50AyFlddoCa/nd69nMZ7EYct9fWB3yxd3DmWX5U24zX4 DzvpTgr0zwP+FMMXXklrEZlwHkgCfwp2TmbaIYb8PeLf60iujhTw2wP/66GM vznyP2Pnar4arOWPtd7DSP59wxh/FeDn55GWHqLJr9PW/6FyceA/xfilRqg/ GePPoMlvZjZcoL+UVv9++6su4M+urV8v0L9foF/5QT/1bzaBPyb6L/3gfwzr 33za9SObWD8S1o9PLqY/Uqt+DjvpTax/ydj6p/GrF4xfnWD86nD8+lix8euh NX5Nn390P8w/dC5uVZp/+Pvhe5YfOmW9/K7iaeQ5EvN3NlngOuSpMs7I7/1P En9i595fh+8oE/udC4x3NjG+opH6A0l/PRP5E/u+GOPLGqmnWXOvhR0mvlA6 Ghm/i/SnM7G/Evt9BIwvYeR3Dftyxf2+T7SUE75f8OreYE2/qsnV8sTzluq2 pHP6WWuWNlRDG7G65bit54JjLW66qlaVGc75exB/MnjfoH9OhneE3914+mp1 qdBldxUr+F7DomYxlw+Fb0jNAC9ZP2BcrXZmaiHCOU/B41k/ryx7XsqYiA+m 4jzfl5TvpEqGPuxhuLwH8NeEXwc8b2jlyALVc8jzihr6Zk3+1ADfeH81BN9u n/k04O3aN1Il8GdO1epub+pHSp0BX0a+9QJ8WH6LeN/s/iHf3pBvr8AHZ6qr rI0N8Sch8f6oM4oa4ttqx8fLNxsZ+pYhN/MnF/g2m3xzBt9ad76U/3r3dwl1 wn3I5hTvm5IV8MCObFwUBNyZfCv/D/l2uQ7L9yKMu0FUV8vAz1fk20Dw7RPD 5TlQb3w8lgPfqpRZ8ufZWDPZEXybT765gQ+dWb0p9oBL5M/dZtp42n/ItxuU 7wbw4TT5Mw/wGMKnAP6MeHaAb5XBH453p3pD3552GP5i5ozPkgT+LKb5Dc8X 2kXjtDHgSwlP7Dr1s74NAB+ukD/+gFuxeUydBXjVKw/6xDi2lJ93MvRtP/lT CXwbSHgFuB7t6R5Xbynk8uBDP/INzy3JTPN/VcD/6MTGb/F/yDear+Rx4MNN Nn7VVzB+R9C89wjw/Ndffij6xVl166DtWxlBvZUH31Z2iau3F5IMPujIt1qA 16TxWAHjCS/6D/nmxXyQn4EP2ZkPsmsHzfGoTgSf79I8+QKuCx6wzkHf8sI4 TeGuPU5v0vymAzxvA8PxyPHK5Ftiv/f0d33LTeuHheDDvAP7XiWb21Ll447j d8i3QRDPx/uSotr1JoFvswi3AN+G0XXBBXzoRPVWGdZpPCM81yiE1p95/yHf +HVwQlHt9cbWotq+bQI8kHhmgW/udF1IJVi/1YJxyhU2wnme6q0t4Dy+NuBW VIct/iHf+HWwv+C66Qf4KZr3rmuvW9TFlQx9O0rrkPzg22jyswzU20m6njqA D22o3hA/Q+u3IoBXpOtCYr8j+bO+4fXxT7aOVW+DP7ROlnGd7ELz5ING2uu3 auAbr8Mnm43zzZZ8w3orRfPYecDLkW/7m/0zvtF9k3qzknHrDbovk6do35ep +6De+PzfDsZjdZr/20C+llUm9Nq550jCdQHnsSX/UP3oqN/va993y/y+e7TB vpa9jn+vJ+I33Of8uv9TIufx/t34CfHnHn9Rqpuixyeickkj4+2Iv6yR8dUp voaR8bVYvKQzMr4x8Zc3Mr4o8VuZ1F9mZm1MijfX1TMyPn7fspq5rmki8fw7 XMegNukX5M8t96bvcPn7A1+kGnJEdIyUCd4r4AzX4T0TGd7bSXh/id5PeALf odSrd6GbudtlKcNmw/NV3o9vdeHxpA8J35Vz/GLedcfcz16ScgDuO2WM45Qh 4VJKwCucGFrOPVu0tJW+Y+Xzxib2u6LKQZhvX9DvjfLfV+XPxULOsPc0msBz sQ65S5brez9SWkn7yZzHkual3cTD45e8GGd32+mj1IDi+fzz2LnzhmZL/vN7 xAn7PK2X5KvZIEzh+2P8HLy6ETO3XVrxValD5+CJzkflePibrxc9fU8rBwnn /I3pusDXe/w8vVS73kbkWRaseIWz8/Q43mnjMo9aIRnlyFeGeEX9pEUOZT5I RSief49Q5oGX7cvijnIWeM9/XPDofSVWXZNssv71+Sem4vy8vkXhyZoM+/xW mWnJzuvjeG92jqtintUQf3032i56dGV1L8R/GDX35fM/cqvTKJ7/jmr6gVW6 VVhRU768jZ6fEl6rY830W/fVk33XMJzP8w50vTsrWLcfFKxj+b4ZjGs9H9fc T7+iwZen3KogzwCfvV/3jTiS+6NSNhGfE3xYNex6n1dWcgXwx578uZXNEPcn f6ZQPMxXej5f8Xp4SPXwBL+vqTNhRuqg4G/9YpzO+0OXz4gomkfOBTr97zGd XwU6x2nq/M88zHVOJp0HQOdj15fZ9ve4rRQwUue1s83zP9tqITcBne9JZ3ao t2eTpzS8XjibWh900vVFsQKdGwbW7OuzvIj8BXT6OzM/7YzUOev97HSdYgup PhaGehaSzqvg5y7S2Rx00nUz4XlfwndY5Ocz0Fnp6fQHDcdGK6mN1NmT6tMV /Bxyn+ksDH5OpX6fADqdyc8q4Oco0onf2a261MqzTskHSmYjdVYjnW6gcyb5 mQF0ug71HVeoeaSUF3TSOkeqDn7W9SrT3DvUUa4B4/0E1WdxI3V6Ur93h34v QH7mA52dyc/xoJPWb1JZ0NmR/LQFnVyJsX5ynV6gczjpfA71+SfpnKE13n0i 9peEfo8gP9uBTkfHDWd3p3ir5DZSpzfNSy7Q78keMJ1ZwM8ppHMi6JwA/c51 nlKWJc/vV1EuBDr3NIneMStVBrWWkTrHPax2dO1sc3kP6KxPfhYHnQWnsPFe R3P+/FqZ30dwPf3NrVfa+HyRqoHOokscu79N+UzJZaTOIeRnedC5g/z0A52F SWdlON+Yn4/Xgs4JTEz/CqoHHX7P+zrbttnRfyojjdTfguaB/qC/Gfn8GOp2 D82rfL7Cc3LuwPrciX7n/Qmuw9l39BJ/35uvS5/RupefG2Cwrjhsrx9A9cbX jUGLLfsvUi4qy3Cd2cZrSf2HgdJywvE+2g3WqxzvBTwVx3df5/chQpkJ5zmH V7Gctd+vqPwB1pl7bRzvNdh2XGn3xhA/+yEwmfORD0pvwC2d3Xu0e/FZGf7a cF1aTZphfr1uCbnx31x/8v66uvNhvcVDysi5YV6aQevPBVCfWY755rDpl0xt A/Vw3+54p/u3kqvusM6cSutJpzWGvy9gdf566EGvQapOx3D+HkvxqJvWQWEX pU5wriPHPfA829I116Wr+kjqAXjEsNWtcr5fI7UBPLkDi0f+WOLpAHgI4XjO 5BfCuwC+i/ChgKeldrsJ+LsKcP67wHje0VQ4T+Au8OD5XWnhvvLWZPugpZNT ymW17zeVrXBe6Bh2f6rw+9OE+0Ta32sG94nHNwZuf1stVMoLv3MkMVxJRzj/ nrf2lBy7T+6LUQ7S97wJ5/c63vJ8XDpUwvNaezFc2Uw4vx8sTs8l+XsIBtfr w7V19vQd98jvf5fWpbW+Gp1bxe9fOvpNm2D1tI1s4ar9HJbv+/HvVk7du/el Z1iMVJHmK66z2YrH+9bah0pVSafBe6rmrvop8B4+769Nmu/xfq2cPpH9EP79 afVoz3lW1s8kK/peG9rVJdYuvlc2QfO9xK/7E9PDv0dIn3niqy0zsslr4Hza 5UH9XuV4k13+sklzP0R5DHgA7ZNYQd32Oc72SVrBeWur6PqC3/2FRY7OOi7i sbQNrjs8/i7g5ek7lGjAc9O+0DM3w+vUlsa7mrRPGSkNgP0ZPe3P9IP9mfS0 P6N1btLZHJG6O2O0+2sL9Rf34Xb1Ri0GWUUr+cCfNuRnNPj5J/n5HvCOd7f1 vLD2pHJzk6Gf9F2Sgt8lcT0XwZ925Cf61pbOycH9t9HkZ3q47nchP/GcqOfk 51zwcz59h7VKw0+PtJH6PQI/Y0oZ+ulN9Vlms6ZvygdBfaKf0cfYvGoL9Unf l/3wHRbXMxjwKuRnccALk5+12mvWc8J5bty347SOWiaoz8kCP/3ATzqnSK0l 8HMs1OfQD/7rsgedkfKDnyvJz9SALyA/o8DPGWy8K7FQn/SdoITfCVrmHxA/ 3vF7xr4Uj/7zc7FSAz5P4Odd8rM3+BlIfs4CP/+k8b5Toz5vpovUzxH42QL8 PBzG/Cwu8PMT+DaV/MT1gELzZxqoz74CP4+Sn8/AzwkUj/vnD+EcPI7vhe92 uW89abxPBD8PMFwZBX52ID9vaZ3rVa2u7rbATx/w83T4ni0fLmeSsT4XkZ94 jvpk8jMW8HZUn1bgJ81vUg7wZ/buabmebUip4neRNqnZ/JAf8DfkJ34XvCXV 7ZPTJ31RCoGfEwXzZwfycyD42Z38xHO9uG96gZ+Dwc+ZEcxPa/BzMflpBvgE gZ8tyE88p3cE+YnfQc+h+kR/cqRifuL3+FfJT5wHvMnPnODnMIGfV2m8e4Of evJzj4afGTNF6vB7Ou6nL/h5jerTVnA9Qt8OkZ/JIf4ojfeU4Cd9Ry/hd/Qt qT4Rf0XxRQH/IPCTnw9QAPykeTKhDjl+ReDnc7oe3RDU5z4j63PfOzZ/op90 3VHQN+5nJsAv399inSvtVwXPjf9M/liADy/JTzxPgM+3eG4DP5cVr1/Fyc8c 4Odeqs9p4OcpGu++4KftJvb9+HsNP8MzRurwe0nR/GlN472uoD7xOs6fe8YA Xneuf/eJmbOr5uDnLPKnAPgznfzE8T5aUJ/VyM9QgZ924OdNqs/x4Ocu8nOi 4HnrPq36PFxRJ5o//cBPjrcEP5d08qu3qGYK1ULwHDkU/OQ8IbBeWkf+5BLU J36Pn5fi37tp1yeuB/g5Fa/g/ugw+bka/LxM430Z+PmaznM4q+FnzlSROvxe mOe7CfzcTOv5MPCnD9XnW8D9yM+MuL6i+bME1Kc7+VMKfJtCfpbRXp9L1QTr /wjw8yT5aQH1eYT87CS4P2oJfvLzIvh3uAbfp7u46kX1yX+PW7QfBff7Kt7v pz/F/LcHP6+S/1kAp32nhHVpwrr3Nrs/xfVAZ/IzHHy7n4etBz4L7vezCPyP gfgVcE4FXr/wdxluNGLzQy/wn5+3kwXOIx3HzqNW3/to+z8G9mdKx/8eU2o5 N+3P4H51e9iXLlU2fb4CWy5LNWifme/TnpkyYHpUrSrqyjlsP5b77DA/zn8z mdc//35wx+HlTnWONFNdPNg+WGJ+1qL6fwPvz1C/S+bQv1QnKtbJPtbvP7xX w/eL+H0N+C+h/+Sz3F1Q59znhPsdyssc8toaYvi7DDCfSDif0Pyj4vxD84ni LFiHZIS8QqneWlBeMH6F15fikBe/PuL5Ufz3HepCXnTdkfG6I7pO4XUH+ysE 3mu6DPsS38/z1qki9eMSmecTzvUSXPcv0e+exEId8n2bSNBJ6xkV+4XWJzLW 7RjYZ4N1goTrBFoPCOdbP0FeeL/TQZAX3z95A3kFsXVvwjnksI6V7AA/SHll hjqk9aQ0RiOvb+tGfWLrRlwn430u/52jLO21+wvfl6P7IxXX83S/o6TH6wjc 18N9xw/7DFx/YvcXcP/4w/1+JOWVEvKi+2IJ74vpPlrF+2i6L/5hPpwA94Nw f6rg/VSc9m/3ofrE7kNhn0EqBHl1pTr8DHVI+ycS7p/QfouK+y1tKS/c559C eX2FvGgfQ8J9DK4/yMj+2iW4/11K/YW/37Gc8voIeW1j+3JKCRxHVIe4/zZV cP06RHlp9ZdZtbr6xPa1YN9SKoj3QdRfJaEOV1BeuB9L+7cK9hftx/6wTubX r4/QX3y9hPuicdpvpovUJbb/iesNzItfv6wF8wbuz9M+v4r7/LRv/8P+AL+f jYS8aP9cwf1zfp5/YvvkeF3GfdRln1l/JYe8XCkvfL5zkz0PkvKCfnq+I92E +E3wXAPXG3M0+ssjbaRO9DwlupRhXgUoLzwnk/dXBciL388+AZ303FDF54b9 aHy1hnyp3xN+vwb7C5/HxWm/mCNSf1eQF3/uxp8v3y5T9OzY9o5qenofA88B vkrnAPPn3XtLndgzNWda+aLgd5dkwvl91jH6HYHicJ8V/95LUB99OTo3GN8X chH8rugs+B3SbPcn7Jt+6Jk0CHA7wucIfrd0igAfDvjRW4xnKOBZiX8P4JkJ twJ8BPmQtofh7z2x9+1TyXz+NHxf+ouSld5L4c/r2bmCqVS+nkf/vQX9slaA 2wvwVgKc/666sTzOAlwS4PUFeEkB7iPALwtw7g+v8yIv48+HV6PgvGsePx3O qT5Jv6vlBONrWb3wAjbB0coEGl94PzsV7mf9a15U6pV1UC/Ce1a7PKLeFFp+ WfKG96lWZH+zIkf2UKkxxfPfL7O/7LtVvmOhZqb3QKwarM36DT8UeOzQ2Mvh hdRJW8orK4IbJ+h3rpn1YJqp+eSc8B5FBYfwkMBxyVVXuE9/XW1Br1U5oxN+ 15jnNedOifZRxSKUJfBemf+IeoGeN1LJLpCvXXj1JctKFFOjId/hvlWCuwV8 lCq+Mcxr6afaDmPHl1GXjTbMK1vPsIWpzGqr3XexvDhuNilt+Kh+M6Rwyteg Hzt20D+Fflxp/yb9nZnhUjj04zynMWnSnX6n4DlFt8gHR8F+ha/ge5CO4MOI 8ea7Zt4rpGZ5bejD5xm1/VIMzCqPCjP04cL6lGuunrFWA3wMfcjcut6RrWa1 5SvbDH1wDaxi2y/KUt22S8OHb383wYfXX8K/+RAsjQQffMgHPO/L4+LgXBsf PFIaGFkPBQ+q0/M1ipEagw/neges69axoDoO6iHAyvLKiOnvpeLgw6TPcfVg o07wNfTB7ozluHEda8gdthv6cH9Vy6vVRpaWzbZp+/BJMK43gw+taFysAh86 kg+jwYdG5MNw8CFz/4CYsceipWHgQ5XMliMb77ZRraAeGva8bd2mt7l8F3zg +kNgvBc6y3zov8PQh3QHaj6p8NxSTb/d0IdPadjvUwQLzuH3BR+8qB6mgA+u 5EMjwbjA904LxvvwSpoFPjRcvrlW7mgbNQX6kM+39NOWFnIA+PBpAxsXPjAu zMiHVuBD8tWsHrZBPVxkPqirwYfnNC4Ogg9dqB4mgg9tyQdn8GEA1UM78CED 1cNQ8GHKqofZbXYWVt3Ah/rTeh7eNTyl/BB8aPiJjYuVMC7e0bjoDT74Bm1N Vj2Lo6pojYttnXSbwIdX5MMO8GEw1cMk8KEz+dBZUA+DwQdz5oPSGXyw31bn /HUPO7UF+JBKmjhnaLEUcphgXDSEcRFNPtQHH87S/LAQfOhN9bAQfNgaf70I lqaCD65UD+iDG/ngAT6MonpoIbhe1AcfirVzLvgy2Fp1AR8GTy3gfLtJRrkn +PA4gI2LHWO0x0UA+FCHxkWm7drz5ATBuPAHH05YuweOc0qm+oMPTcmH2oJ6 mAI+nKD5oRf4UJbqwRZ8eKx6xo+LArB+qPi2yaRLjqHKeVw/kA8S+NCHxkU/ qIeJaVk91J1l6MOCGmwd1Qt86E/1sBt8aEk+uAt88Acf0tK46As+TL1xZ8ag LXbqY7huJu93L9quVHJ5EdTDXDfmQw2oh1gaFy7gw4uVrB56CeqhKNTDXaqH xuDDFJof3MCHseSDpcAH0bhwBh9iwiwV9X4htSXUw6Zr/gV6jIyQngrmh8Xg Q8e+zT2jM2SX1+F68n76+PWky1bD9fMTyhfXjbWp39dBvgMo3y6CfNtCvvUy XMq39/praQrku6fCsIDtx+zU6ZDvfMp3JuQ7pvvj9jH9HOSpcF1o+KbgdYcV zqqFYN04eId2vnjudzbqXwXek88zpVOoe7WPUk3wITf5UBh8uE7zYVPw4fxw dh9xgnDOs7NfgReBDqFSOeLhPrx1zrZj2pNv60nwJ2L8dsscU9LLo8GfTRvZ PBkG88PVyo9Gbx1XWh1K/mB/9Qedfis+ji1RJeyH78FPjLJPv6N5MtUb8Duh VRb3vhEjXQZcd81nua9FOtUH+r3yidJ2b3wLyv4w3tueeelcamJ6tWKYIW69 N8Xy6y455MOAu9XKNT/mgrVqT/7w71nSdM23pF/7vmrLXobfUyv+kdm3q26y vTfDuc5kK+PyjZUcQH+lQMcTB57GKrMAv++4+MGlLtGKDeAd88xc+eGeqtyF fG02P56/r2NBGa/7YYFzSt1fb6a6Ql6XA5wyvf9oI7vB/XJKswYLPLoVVZe9 Mnxe/HVe/go9bdurbbwN8x22Nu3AEW8byhMmGeY7iPp3LOh/RP07A/BOYz/b Vgp/IbkAPovy7Qn5vu4oeY5qlUveAvnmO8nyNYN83xXI6Ng/ZVG5HOQ7vUVE m+t/FFRvvtTO1wryTUv56iDfzytY/3rgvFRwe+ievGlVP8H87AN4TIa2n9al TqYOhnxXV8rabWyqrDLuA1TqVMp83VZz9TP4MCeTT3Q291zyVcg3uF/hqPPm RdUaUM8BDRt8LrdvgNpxiOF3W+3ljo2HZ3dWA/oY5ptxCfvObiDoz+fN+leU L97XfBrHvqdbCPnmltj3dEsg39qX/PtnzGuhboP+fTBvfOY2Kb7dh0K+NdLY lVs0pIjaDPLNWjU+L/lRH8N8uzXYlOLBtQHy+iGG+XakfPH+1IrynQ14Vqrn CYDnzsj6F/e1lOPp8sdcLyofgHwn1S+yPlv97Oo0yHeR+ZZk0cnzyhsgX592 g0+nWm+v6mH8Nvd33flSbaQ2m2RYz+cWsfmqBcxXs+LnqzCpA/ZX/PiNUET9 i/cpOSjfEZDvyqdenyu4ZJdzQ926D5jZu1CKvOpEyHez592PwzrkkgMg3861 9ww62r6oWuG1Yb6zvSe927ymq3p2qmG+dynfZpBvQZqf8X6zFI1f3J+J9I3v 3x+uv5vpetQf8q1U97jTWBtbOSXk60/9exTy3eqWuuTJp7nkfZBvTarnIpDv nUWsf6tC/16ifF0hXz3VM87Dpaie8fvZDq/77JrVKbWK+V60YvPzOMg3xP3F yZMLislboZ51B5593XEni7oK8q3xokH+lG8Ky58Bb9Embb7WfnnVm1DPI6me 608yHL9ONH4Xw/gtQdejVqC/GuWL/dstfr3xWqoB+CHqX9x/kGTz6yWbWcvL oH89pnds2XX+XQXzfTf1+vtlyfPJvtC/foHnHPOEllC9Id8/dy+b8ixlO3XN fMN8e9L8HAzzc4/cMa7uxcxlXF9lPxm/3pAkwLeEsHxdAQ+g61F5yNfcR726 PE02OSPkO8+27B7v/jnUGZBvQdsxjYqWzi/PhnwXTC9fNkq1V5tBvoE0fg/C +H1B9TwO6vkg698frr/pvNl8NQjw47S+qgm4Hc1XKyDf5o8LOpzcWUyeBPW8 LcAhtJtnJrUu5NVl++gM3uvzy6cBT159R3XfLLaqK4zfjZTvQ8g3gtYbmWG9 Ualr7JuijslU3Afg19+RgLs9i18/K3jfdIuuvxaQ7wb9hWrz52WTcX/109u8 b+pey6HmhryaUL5bAA/640lEsaGFVE/IdzvlGwT5zl3D8jWfZPg7LLe3dt/y 5tQ7pRDcN/VpZ+bfW4mSqgHemeKHwnOlIhebTSiUMVzCeaD4jX19lCrvpcPg Q459oSd150vIWcGHQiMjnDaXLaBOgPcqN9O8lBb0NyednUBnb9LZC3QuJ51r cb69Hq8zoR8T5sm0bucbfLaTZ4BO11v1N2Qan199CzozLGE6Uwt0egt0NgSd vvE6zeQ+OK+Sn6jz0XjlVvuKReSuoLNMUJ1XEUEF1HGgM5LW4SO9tXV6gM72 pLMF6OzntdqjbvN3Ule8f2ywdve8mHQy3j82yL6odIY3dnJV0Pli+ocvQWH5 1DVvDNeTNA/Lr/sY6ixFOvsIdLqBzh7U77iuzkA6x4DOp892lI/MZi1HwLyU usiIaXM62an5QSdf588dYqizAul0A51dSWcH9JP63Qt0Rt965qU/mVxuATo9 yE9X8LPCKDaOfKHf71O/u0K/lxPo7EQ624HOwKgQ79f3zOWGuE94m+nsDjoP bd8RMmSxndwPdCajcTQUdIaSzmagU0c624JOV9LZHHQOIj87gk6+rh4EOvfZ ZR++rqed3At0xpZfY97vRj51Jei8STrremvXJ85Lg0mnB+hMeM4FOmtc3G7b KU1owvWX61l2t9uRMn5FZB/Q2cjnk7Kjb361I9TnBarPnVCfzqSzhkAnzp8j yc9JeP9F/T4RdFYvMft6o+dF5cOgM2jWmmQpZ+ZUr4JOui+WA/po62xlpE4+ f/YDnZlORKTveeOV4gk6l9dzqS4H2crhMN7P1lm//1QtG7Uv9HvBxWye103S rs8xoHMK6awPOqeSTpyXhpOf/UDnn2Oqjdqzt9APOkOqrr1zIMRGTQk6Z5PO PqDzAumsCHrm0zyZA/Q0v5dz2L5v6731uF6NzPtxxLDi8hbQ00XpUPfSBht1 a5ihntPz2XgpTuMFzzV6FMPONcL3oHbRe0rwnozM35PB98QC32ic12H2n/eN OV4tMlOq+SX8lAOA8+fvE+D334NPzOhzoVxRdQydf7Itc0PruP1bi0mvVm75 WEFdkTWl99Xnjf5zHmNUswevSxZUvc0Nz49qbVPKMVOaYmpFwPVtSq3J6VJU PQv4bmp3OOAfCe8HuLO+3HnHr9bqSMAvZnzy3G++tdoF8HXWTM80wCudH5Vr U/9iP/CMpPhxgFcOZHrWEZ5Y/06dVeXy+3T3lTXUv5zHhfgDzA3fA7yhWAQO 3J9evRT21+9HcR7fqX+2TtnCXn1FPFhXS6hd/l7WnwuC3oQceqG862P4vlaZ LgzPDO9xuVP8BXgP7R3hjQD/SHhNwNMsZPhRwEtSuy8AtyL8gICnAuAPqN1e gO8mvBDkdZDwqoBvI3wI4d/3b/DXI/rPdC4Zx9ssb1LGJZ+FHEU4vv+2TvBe 3AkBXtvT8Fyjzey7LfVRWcNzjU7b5i+pBD9S+PlUyOML/LoTcecm3VMCBe8T 5oV2/Rm/1EvA/0rAYw3tWud4a+2V7K7iD/x/kP4eAn58n9CR6qGuwLd6wD+S 9NcW8KNOjrcAPB/prwv8rUl/PQE/vifZO/+hHJUcvyqtBL5VBP4JpN9TwN9A oD8j4LlJP/ozivQ3FfDj+5/ladxtEujPDfxDSX8L4K/arMGNDgtTqkUF+qsJ cHPg7076Owj043utETSun4D+N1bMn4IC/cME/A7Av4fyEr1/awf8XUi/l4Af 39c9Qvo3CvwvBPz9SL9ofJUT6CyYCJ7wnJ309xfwow/JqX4uJTJvAL+w/hPT iXgZbX+UngJ+fL/akfSH4fUoh3b9dCX9fwj4ywN/Taof20Te34b6VEYI+PG9 8Uiqnx4C/wXjS1g/NQQ6Gwrmz6LAP4z0Owv48X14K/I/h5H1z+d/d+BfRj43 E+h3EuA1gH886e8n0F8aeJ4v0K4fHh8N5xnS9UXC68uDpkz/20R8QHyJYP4X +b8BeLqQ/oUCflvgH0T6Bwj0vxfo/1PA3wf4F5H+1sTP12Psd96P6lJ8NVyn 1XE74xx2Ma/cjHC8n6oYbnif1ZTW4ZZw/0XnJSr7AJ9suenU2T7PpGeC+7UL 8F0Px3GdcGxd87mjXtqq+RO5PsI6UOoNPt+FOuHnMfa4ELYxR+wTZRudx8jx 7OX0mR6EvE743ROu/wPlGwN5rW9b6d3D7u+lpYK8uicyP8O5mjp+ribP69PR eda7tn9WslFeeB8URe8HcnxGOvbeYJ2ZhjiPfws4vWco152lHT8B4uk9VXmh Fv+2TvpNgNsSvwo4vQeuBgt0fhLgVbV0duyge6oV79BJZ0U476+AF2w/4VmY dn0Whv7dTv27kXB+v9mE7lv3wH1ryYsu59eFZZQ9BPU/UoB/FeB1BHjpcG38 FsXj/XhQrOH9+F66H58F+y0rab+lsYC/BfAvbcfmk8XAv2fTpqVDJkZK+4D/ GfkfIMhrN/Dz+Wou8K8h/bhfxHkCBfxHtfwxb6bzBv4NxL9JwL/ZSP0FmH71 OPBPJX92CPh3CfhVbX4Z+Y+T/q0Cfr2Af5e2P3pf4D9A/LsF/KcE/Ie1+1dt C/xzyZ8AAf9cAf9x7fpUsT6nEf9RAf9rAf8cI8dXN/JnvYC/gGB8BUG7NF+p OF8touvsskTmjYTnj+mWTtCfeifNgn3glbYRxd3ffhtf7wzfd12xUy55v10K lb8/zHm2z3h5asGWGKk3fo8zNmBmmoeXpSpwneLvsTvQvM15LpIe/L5pAvE4 al3v9g3QX51pyHOaePyAp008z3/OG0c9CvDwvPC7M87THnj49WsZ8OwgPfhd RlfiaaOV16xeej3w7CY9+D1gJ+JpKlgPqMCjkJ7x+B0Z8TQGnmK0flgFPAHE 4ws8nRPRg/5wPTMEPjcQ9Fdr4DlM/nQAHi+qH3fg6U551QCeJ6QHvxfoRTwe UP9zqd1BEF+F4vk6nD8vOH/sWsSWoTnU95nZ8wIDfy566PPOMtzH/hLV802N DDZqW1pX4LniXrDO9zzEfsctJa3nE+77yhVwyDzok1QZz/N/qcvdr6eVWr+s Ic/UM0f6rb9gKQfQPMbXwx8di51ybX5VqUPrYZ5Xq8MLs3eycFYPZWR5vR/y YVXcOVezVm2+OKP8HenKsLzu7u08E/KdR+tGB1i/Ea5+Eaw/pwvWgU9hXcfx KzAfJj/3dPHAK6llB5hvt9A6rY1g/jwvwHcK8G0CfK8AVwT4dQF+MZH1APoz bIa2b2cFeE6B/43B//Yf3bq+9qssRwr65Rbg1hQ/VBDfUIBjuwn9ItB/mOJ5 HVYc5tTFIlOsEk11iM+DtgrOYeC4wfW9Y029JdxH7x14b2ivwXnUVfAcJC/h FSB+H+HrIJ63uw/wJrRu2SKIvx+rred0rHa7hwEPGMTwDQL+qwLcA9Y5W68e Dd5xIJt8APycOa3/+1LhOeT9gJecyvAzgN8l/ATgo6cw/BbgqaZq868i/BDg F4hHAdyd4lcDfpPiNwnanQl4WcJPAX7vQN8pZiPTq36A6xWGXwec33csA7yQ yuLx3A8LwgMAb0o46j8F9zUcX0E48rQinnOAj6V4L8D/INwf8ExUDw8B58+F pwE+m+pqs2CcBgG+n3jGAO5I7b4EfCL5j+e6lKH4t4Dz+03Us5PiPwj6cQfg jahOtgFei3z+E+OpDg8DHkj8GwG/OkV7fPH7tcWAbyU9qNOe9OD42kXxewGf Q/GqQE9rwPn9UZggvrqg33l98nnJ7YJy3uVxMvUizFfWhON829b7fpi04ZqE z685f5QAfwb4k/OMPwhw59gjnea4xSrbBDw7BfhNwL2J5yDgXUn/S8A7fmXx CwEvTz4MALw98aT/qo2n/KrNfwB4+hP/UUFe2wV4MOBzKF+8Dk76qo2vIp14 XeP8rwT4bbh+8fORUgnqbYkAF53vJMKtBfsAfWBdt6vdgt1KR3N5DuCj28fj alnBvkERwfrQTBC/CeI7HbLok8zjiVJGwLNEgK9NZB8J8TWA96N2/QXx3oBP Z/HSVcBXE48r4C0ff8lV+8RXabyAf6mROvcSzyLAP5fW50436Kq0HPCjj+Lj lXWAf6F4kZ+oJ1erRldqbPgsYX91bM3wIYAvIby3gH+PAPeCOknVgdVbccyL 6hDrlvN0A/zKFDO7O4751IGAzx/Vvurs1enVFoAvJLwC4KlHMPwy4OaEXwI8 htqdDHgXil8F+I6pLB77fSbh2G67aQzvC/jUkYz/tADn/uP8EN5de97A66zL q6+nnbbkUlcI8HmC+cdbgG8X4LhOi3nJ+B8B7nPuyvY8o63UkYBfI7yrgB9x ztMMcIdjDB8h4OklwFvhepV4tgh8K/nD+jn2mFux1wqu2zNm/jon1YMPSiDi FL8QcDclDj+n4Drq5QGG47prR3z8PQnX4VEUj+vDksSP9wUzKP4g4H0UphPb PUQ8+wR+RgP+J9WDJ+DlnUtFFaqcV+4g4OkDeJU6LN4D8NTEj+veGrVZvKie JwPu1Ttf9XI2uVTsl7wdP8Xz433H7V4sfrCAf5RAzwBBPJ4P2ZfynQH45Q5M D46jjn2YHmPPk0xD8Xj/5Up+3jMynvPbA76Q+tcMzsksWZfhOC4Sri8CvIcA LyrATxMuOl9OhON1KqNgXXTMxP29aQJ8vonX3+0CHNcVHMd1SGL6eb7cnxt3 C45ptymbvAV84/g1wJsRHibweR3gXvdZ/HXAJ9xj+A0Bz13A+1O7+J5AY+J/ LtD5BHAfancb4LmfXrE+8eqZgvXThHBstwrhmu8bfPt7D/iXTOx3PTAvHo/8 rvQ7IPcF8Q8Br0F6ggTxzxLBeZ1k/5ij3qtnZjKuJz9GMvyhkev8h3L6JvPU L9JNwNdUZfhRwPXEf0jAj+8X+RM/7s8XIx7UM5S1q2BeEylfT9g/v3Vt2tGu lkXl9IL98EXg502KzwvxH68y/KzA/6IC/AXgd4h/J+BO1xm+AfAMecY63rQK kU4DXpXiDwNejfAhAj0fBPhUAf4Z8If7CnY/kKWSegjw8rsZfk/AMwfwSju1 4/fqGe6H88BehovGxQAB7iPALwJe6ADj3wj9foT5r0QJePYCnrzR/eW5Q+zk 9IAvasLwvYI6dIP44E0z1n3YUEy1F7TbG3j2k86RgDccVcF2knNRORrf42rI 9OBznMWjWTz27wHGo3YFfCq16w/4UBfGj3U7cEd8Xj/UbRryJwZw813MBxy/ oT5Mp+g5FD7PCt/C2hWtK6oL8MLQ7k3K1wufi21n/KUg3p98xuvISOaDegDw Y+QbzjPlx7J8AwGvTPNDCkHdpgRcT/VZG3hiGjC8l6Cezwj8SQ78qygv7JeH VD/o2+3hDD8I+ANq97Kg3R1Yb1QPiNuzelYXAH7Qm8XjvMHrH+s8FcUXFYzf 9QKd5nDO4aWg+N+9Uhdp/S6ej6RbKfg9xy2a8bn0kZrx+XSHNfFM+rUC/u3a 8Trt+Hx6TX6fXDptPSL9kh7zJX/k61rxHk11BbTwDU11Lpr8JRJ+R8Pw999r 65dr4StqJfxOruHvjJTU3dXMq7A+QBvXaeLVSuo1eVbU0mu2a15bp6nTp4Re M68NTfXTtX3T4zmrTKeLfiR878zwurpVWvhhJ/1JAa7NY2Y2QhMvrZ+piZfT D9bGdZq4T2ndDFPaPeyk09T5DdfMy6yuXtMHM5cEHv4eeOP47xBjlEh4/98t 04wRG2unVivBe+NZMzN8C8RXoO8B+wJ+k74TuQx4RGeGewA+hOKfAj6I+O8C PrrXsOKpT95QtmG79H2EGehPTTzp8XuoLtrfo/HvWx8DnlyAX6R2HwF+R4DH kg+xgu+DNgAeRvgxwJORnn2ArxR8V7uMvj9tA/jZKawe8HurT521v3fj+tG3 UlMYvy/g60nPIsD1j9Lqg/aHS2sGGOIK4Qe9tHGH/ob4n4THgv6ThBeC+DOE 94b4C4RfA/wR4VM9tXlmCOLbQL57CT8J+R4k/Ch8D/44wsm8p10ZNRD036B4 /H7nKOEuEH+I8PagcwfhcyH+HOFFwf8ThFsK4lcD/3nCVwD+mPAtwBNIeDjE XyE8r6e2b2P6avus9NHGZwm+e8rfyxCvTeOihSB+JOgZS/yLoX/59/5W+D2p oP75OQD4Hf1him8BefHzATw8tftlD/jMzw3A73x5fC/Qw88TCAI9Dyn+pmD+ vAY4H197oF1+/kB0P+06x99d4ucSBEP8VYqv1F9bz8V+2vkug3h+jgF+x32b 4ncLzjfAcxXCKT6D4NwDBed/Pm8IzkNAPXz+HA71H/GGzRuugvMHUOdN4skI PvDv/dcIfF4NOP++Hr+L5OP3sOB79hCI5/PMZKhD/v14WsE8PA/08++1IwT9 flvwfTTWFY/vL/geWVRXXhDPr+8HIf46xXeD+ZZ/bxsO8Z8o/jTMA/z71naC OlwD8fx70gL4HfRjFu/Z2xD/epzVTx3Bd4X6robfRTLUTl8C3gP/S/xwdl0e bVyfVwuvZq6TtHCfDLoy2rheE69mrtfk+aZHs91vejR1mtnpBPkK8P+8V8/f e+d4U/g+lOMzAc82bOGVtBaRUmFBfFnAu1N8K0F8SQFe00QceahdRdQu6qS8 FFFe6IPIt/jvkWuN0n/x1I5/1M8Qn5YrczErqYjaDHjyZ8jyDc8htwaeczlZ /FvgCcnBcBniW1D8SE8NnR2b6p21+WXkz8v0qC09NfXL9/sZly/5o0N/Sm+u tmTThuNSigGGeIe39d2nRmRXp4A/6z4wvB7wREfbH7/oZ6XWB7xXLMNbAH7N ukQcLgeCztcU3wHiP1H8Z4jPRvFVIL7YV4Y/6WuI1ye8B8RnH1k93gdn4J+e rGR8fAjg6bPXi/dhMPjzuWim+PqZAPx698wLr8wpoMYAT8QI1u4iwHMFlyo3 43V+1QF4vE/06plidSa1LrTb9RLDO0N8a4rfBbhFhaHeGfOay+bQ7sXyDH8B vq0inqbA41HfIw6Xl0L8l6rxuJoO4/8YFsevxoL+Bvfi8s2sukF8SJE1y4e6 ZlRXA568pX28P+cBr3WL8dgK5o1wyDec2t0LPHUGMZ2jAO9DeD7Ay5Cf0eCD 3pHh6aFdiysNz9etm1/NBjrbE/8k4L96l+ksDnjQU/P4unoK+NzLrL9uYl41 mJ/XQKdnq/rxetCHWbXi+jGfmhLmh8DqbR83PWIuD4b4eVTPNoCvJx8agQ/n KN+7OK6PMf04T5YZyOKxH0OJ/zXklbuCdrsegnFnSfNAOfStGqvnXoAP2hQ3 f16VQgFPcaZXvG9doX8LxvNflfZD/NNyTOcg0G95jfmQC3h21mPj7hbE7yAf UuF1geL9ID7Fcca/CPQco3GxFfDa5EMk8LcOYvnOEOR7FuKDaL6qCPwLzOef nbyivFyR4j+uNVszNGH8NtW/zJY2w75aEwE3M9uSXRsPtjTEreZOXv5wfVV5 gqVWfG19MgGPvWa8mdkAAZ5Jm1+H/DmZHlVbj5lZdwGunW9THfoTNa3a1Ozn Ssgdshri8rzgEVK/knJtK0O8vS7bUIuQfOrw3Ib48612Baq1zqymBDxXlY3m U+ZXl5eCnnP1GM/WXIb4KMIzAU+qugzPALijM8MvAU+yIv5rLVfvVopQfCTh FWwn5Z7b3k4tmMcwflFon5sV91WRnXIY4r63JrlPTFVcfQf8cxdnLjAgykJ1 szDET3wqaZm5lJnaHvBlacZX3BdmKYcB3pDwzYA/+MJ48kF/bejldyN//fLy G+ivP9IyHn/gGfqwUd2DlRzl7IDf3pPFwuZVFrkn8GcnfC7gYzN7jbA/bS7v BnxX32e1TvR1lG9nMcQtw5tUDRhnKWeBdqeM93rxSi4lLyM8ivBDBVtFV9tf Vp4D8dvCYhyqjzJX5+Y0xI9eaRUy5kpJ2Qn0vF221cE7JoNsA3j1nYt6nR9V VB0D9WxX+HIWu4Ao5R2Mo81u+asXX59JdgT8aJkZYa03lJJHAP/QT5bzvFrY yvsBb7T43tQloy1kf+AJafxpZpoXFirqjFkVp/+LVB3Gy/yGbgvTdUiu7gQe XfM/tq44WF7uDX4Wv1j72eZzNeVKmQ3xrBGppq2/UEaOhvppFn5r45Y2leVC maEfm9Y7t76uvfwI+H3XxKTrdVGS3cxh3pjTa8LuXnbyW+jHLxTvBPHtz+hD Z74oI7+G+tlRrNrI8ZZl5C3mhu2uXMt4HgF+5PrHTMmnlZVfAn/uqbP6Li9g qdYA3/zCt4ZnSJ9aXgbtvr2bPXiySwF1Ceh/suLOwmnWpdUX0C/Wlm+swq68 lrwhPnzK43wO1cup56B/R3c4s1A/q5x6CvD87Rn+HPC9w2qN6GVmr74G3O11 g/BSc4KV5dCuYwHLAaOX26trIX5x3osT7y0qrx4A/Pn/sHfe8Vx9fxw3QhQZ 2SVKQ1NlRJ+bkaKlvffU3ntIaS8qGpJU2mlnfPpcEVG0aS+pRFFGJRG/7r3n +n3Oyflw9fl88f1+/Pl8vLzu+7zPuOece8/9jJs1T+mJNuGC+KTJvBmZucSW 6Iu0B5PuXXu5ez7j2SH5VPe23PxoggW5BPH/EnxmxrqkluRmRD8+dHCrIg1b UgPhh5TffDNXaEyi/gkDX194HGhOaiPc33mCcb111uQ9pF+7yg/6GBRsST5E 9E1n3m//ZXALciPCFfr06vZxiwW5A6nfaDnG5xqijznUf2zqKEtyGcJzBzBx vkDyYJmecSh9mxXZF4lz+Lqb2vP7Nif7IdfVzXqYEOrbiKwBOPt9Bv8XCdP6 ZzqTezTg7yFHxEa3/VhoSR5H+Ova++Lu9mlHetSF+efUNI1eu/qSrxCeV4vR z9GE+exNQ0JHPP4sGIl8hzkW+LdDrpsCfEwRnryO8dmFfhf6OhP/JoR7bGX0 7xDup8L4b0Di7LzbZvdbDUtSB7muT01vjb07ncg+CA97rrBox/HO5LY6MNfz trmWHNGdXIz4u22huAGhgsQzOybSrE77zmRtLZif96//7P4ZS3IM4h+zj+Hj kHiGAl4L4WMB10D4rWOyOdcCjMk5SDwyQK+I6L8CboRwdRDnDcTnJeCbkPjP GkXzDFtpktmIT04ck4e5wKcX4LZu5n2GqjUmpyN88WSGP0Oue3KLfaSJVm3y EsJ1lnTYQHrrkfcRn5ke2xbtcGlGxiNxFi1m9E8QvcLGHTtjlJuTT+rAXCts 3MbA1SbkV8RHBsT/A/GZBvhrJM5rW5n4HTVg/VZvihcK0Pw/3srwNMSnkXtk cKiGJtEPaVe/Ynd1kPHRIAIRrvp40zAZ49qEOsL1LdUGzyvWJjch7dlLvmjG Tk1Tsi7CB1gw+kEIXwX8+yP+U82W3Q7f3Jici+hnAn1rRL8X6Leg/ZfWZwhG IPqwVx5qM/Y2JNM1SveZjvi8eznFzbvBN54Kou/h5NlGZp0q8QPJc9NXjN4K 7XdA3xzhiUS9Rs6eNQldhB/T92/7TqUGUQ/h9YD/R+S6J4BeHdG3B/pU9Pv8 1pd1tnlo/V6vIfkfbVkz+0dTQg7Jwz4QPzruxQI+AOGu4LuC4ch1iyd5Xkia bPLH9/9ltRN3zXtgQh5H+DHg443wjkC/E+Ep4PcCFiB8APh9AZQnAn/0fsH+ bsJshG8E/DTmdwTGYHgfhD+OmBXf0LUJGQA4+/3MHdO2tOMZ2pPJ4Hd12d/b rbWtCaHdwZIkAGf1p6Yy+u6rYC4/neHeHjC392J8tBHuD67rh/AicN26HnA8 x4B+M8INAN+H8CNz3Wv262RNjkT8VUfrRb1c2YwUIPqM7cx1zZByrQflkkF8 Am92nhmj8lOg4Q77RE0pju/aWoYY6w7rgyYxnI9wf792YVYHDMmAFbBPyBAT uRPtVYkxyHWTxjM+exCftJdMPDpIPYZPYPSZSJxnJ5EDny5rTzZF/JNBnHcQ /ZFxDL+C8NQlOVNvnGxD2iHtJNSN8b+ExEOkMnG+QP27DPVRnW9LOnrCPCu8 9TjzOAdy92qYf3CxKuxxvi1phfC2KTYtDyTYkh8QPu0K45OxCuYWwGcwct3l wGch4jMG+DRH9I+SGb0som8IfO4g140D3BPxebfkfZ71lobkHcRHFVzXEWm3 u1Mz2suPbUduQtrt6W9F7y4ktSUbecLc7zvD5yG87ifGJwLx71U/aMBi+XZk KOK/dETwgRPHbMmbq2GeWI/Rx60qnacgfIEhw3siPmOB3gPVu+77nN++I+mP tDe1kUw86ki5ZPOY8v4E/jKl/mVJuZT/o3z39pVdqd+vX2CuOf1JSlPy2JnL 08YTPUp4O8DDEa4EeDHCCyNT6mUrNiH3Ivx7G0a/AeG3gD4O4deB/inC84H+ IMJ7RDF8G8LlAF+PcBcQ/1GE5wL/8wj/BPg+hH8B/BTCiwEPRngTcN2rCG8I +EuEJ4I8hCH8NfD3Qrg6KO85hLP1+wnhb4D/AUy9bEKv25rRR6H+QD8fU+/m CK99jdHXPMtw9ruUt+nvbSqRzqrMdylZ/sZoUND4Z6NIgTbMFwLuYQjzI4Dv 0Sufj7EyzYkahfIQP3tIo37IGRdiWA1Ybwt8zBH/jKOUvgM5tRbMmwOfzgow 5wcz+rbqMNcFeh05mPc+yHC1IjjOAOBjqwPrfQ4zvI4KzJulj1rpML4fsfMX 7LO9V4DZjCOjSH2kXBZ73AcMXuNCOteBue8hig8h3yB6Hy9aT5jJwNxoL+Mz EKnfZoA/R3iNIMbfWxfmHWVH/45/HNnYGOaDQfzJiJ4d8UyUkTwHMv4fkPjP 7aR4B+KyIswnF39YlzihG6mqBfPXcmk0/4Zwme+U3oY4IAtzDXlGL68Bc3VZ hici/DDw19WE+UXgE4Xo4wAPQvTts5l4+Ei9jFRm9NqI3gqU9wHC/Wow+mKk H8WD8qbWhPnZz6vaZOt0I479hNtb2nvlfV3uDCEIxP9Iz23PTrYaTPRA4pzn yvDP+bBPA8B7FcP8meBjI/txfYlJSDvn92b0DZF4mgKfYoSHAF6EcF4vhm8s p4/DFSYeNA89SYbXQdoJWy7/77A+KJrR/0TGGW3Pd+kdt9kT78A4o9PjiAY1 3no/KjhTuM6C3HXOQhCY7FrCU2d7JxtM6ET2C4b5xTkMP4zww5sb527SaExO uAjzsAEfJhuutiaNLsB8wTalM+7vLMmPiP7zVoZ/QvgZcN3TyHUDTp1r7B7L I7ufhXkc0Icg+pC3D581ONKQzELiWSgzaUXfRybkcoR7jnWpszqhE1kX8cmu F3b7uYz97/sgzDN6fmi907ILURPhNWQjHly2cCKCTsJ8ZYPJMfP3OREDTsO8 fRuCSLrjRGxGeEegN0Z4HWOGfzuF5CeUv7zNfisiAeGd9qpvnm1lRXRC+C+g 90P49j2Mvh7CL35VGxM81ZrwR/LjmdRp8m6/zsStEzD3AnkIQ3zCTjU0H/no A+/4JZg3G7jxjPNZY2Iskk9nJQf3VrrGv+czMLfpJsf/tKEd8eM8zPcecZJ/ 4NWeuIC084iCg+00AhuR7RD9cG/i2Kkv+kQ80h5uPNPymD3FmBQg+qjHNy2f N65PzEXabda8Kd3j1pkTDZFyyfasq3piVzuiXSjMlTKGPY2s0ZBcifgfGV5w dk7dFoRFSOn+Boi/dshthfD3bQg5JH6Z+YzeFNF3vMzoFRH9YtX0zWM7NibT kHgeAX0DRF9TjdGnIPqzPZjy5iPxvwXxayDxpIDynr4Mcyf/LWHKylZEAKLf lPDqmkWaLJmDtMP5hUz9miP1rvO8zq+cSDUyAmmHw26Mjfn5rDlxD6nHmtaX 04YuMSOaIPEbqXQgn681I14h/p1jD/Kc3OsRBNI+P8cz/BzSf+eskKs984gu YYBc132mus/wpSZEPuIvk2ah5uzbnByH+NsC/gjhd6/t2mll2YP4EQ7zngu+ enrca0XORvKmd52JUw4ZV5dr6A58Z+ZKdBfAXGHLqrxkQyPiDlLvhx1SYlU6 mxHDkXiCd+04c+BRE+Ieol8quNF6/i9tMhTpF3L1r612u9OczEPGz3G1rqZr 6juStgjP6t515t0EZ3IFwifWZvRtkHo3ArwA0T8sqqeZE9+VtEbGsbaRvlst 9RzIXIQ7FjP6BggffpXRZyL+V+verd+7e0/SAIknvWOL+2uL+hCdkTx4Nk1Q l4noRqgB7qyv/7PoN382U6NWwqy2xMK6CRY5rfuUcOf4xMcrGqbzrmjCPIo8 FLKpUI3cpwHzVSsbPx03tT75WrN0nxiEmwL9VYRPB/pwhEecCMtbptiM/IVc dyXwSUT0M4HPMYQrgvifIz5mEQzPQHgguK4J4rMY+N9D+M7XrZuPOmhOKiFc HnDUn+UaiH7kkIv5bt1MyamIPuqJwUvbLG3SEtE/TIyaJd/dkmyP6J8+66Hj e0iTGITon79irpuH6OskMT4NER4J/DsivN1TJh4e4h8M4rfExD8D0W+bxbRD K6Qd1s104QVpa5K3Eb0O4KsRPhjwZRi+AOHLAR+H0a9B+CAMPwz4RoT7Ab4V E/9yhOsCvgLheoAvQbg24OsQ3rhLk+K8yXqkshYSpxPD9QBnf59d38jynb3a KmJwHUX699lZ3nLA6VZdWngS5+oy/APgxl9uDCsaP5s8TShAfGom4J1g7pjN 8E4Ib2DSLMS4cCu5IL0GxA3iH32ImDufrGetAMUztT8TT00dOE7lukz8fVTh OH8199HS01xBejWBr6uezsRThMTfG1x3eIfSuZcVzI9EMnwRiLP0fVHpn/Tv v/CHey4g/ZP+Sf+kf9I/6Z/0rzr8HXYF+0XMn8dn336rqH2D4OFLu2b9//mX x4KdXRe0D59lh9NLuWiOy+elhczv1rH8/anxY6jfrTvWS1b4XKHH0nkBhaFO 66W8DD5JEzqP6TElJ0RX+HxHvQkB330/qpCjwfmjNZNh/QT9PurC+in+FmE1 azcjaoBzOn1GyEF6N+vh70OFzkMtfy1n2yukCfEdnIe6GQP7R3wYW1P4/NS3 A2c8iLVNiPGaovUl5wEHv7dQVzQhNME5soMPYH2vMW2VhPUDxttN6tytOfG0 DH82HtNvxOwZ2abEd43yxWOcI79EcZoWYa5VPn2H+XeMcwwbExnl9J/U0aNI Y68+Maec+uf7jJz2x+gSuuUs75Uz5kELOjQiIoG/qiXcrmo9ulIkXL+dGnVY 0I2QIaaWs76c4+bv6HOsLnG7jPyEeTHvt7B8rlbSNur9FimX8qrM2feyWj17 G+ajv4+3HbyXxbb/IMtl565G6REKoP2zzylI3p6ln7SMSaNhltDzi51LGuq5 rNQgTQDXZfV+L+vuaf6VdwN53rHAwTMtLFWetEKeu/FmGX5+HaVKzgxDnuNs ekSY+2uTtQFn/Vs5rf/S+6YeOXQkfF0F4kKPpIM6ZP+RcJwxQB8yAtbXtXzR taPBK5414p/ebveR752yBbNDYW7p2WBgYK4eeXcI7B9qPSK6k6UxeWE47F+n OCHih7oBOQH4Z/9aQs8rxpJ7p/idy+W13/ggkZpX4OYbUi6at1aH3vvykHs5 cgL03qCN9Shv54ZkJHh/Bjd/g9+XcyS6yMPv2xQ+vzBuxqWe5HTk/aspbXQ6 tDC1J9Vrw3zXIeY9t6eIfmJzWk/II/5RwKcx8p7PPcDdEX5Le6rh4AXdyUmI fz1+0rio4f1JL+R9rTkg/nhEP0k7dGZhnTZEIfIe1zsNxr8m8r5Wt1v3OgyJ NCbuAH1sHTj/NsuHTxPFU2vBfNL7mGCKP1aF+Slz7y0V8efKFyE86OLe2RXx aVAb5jEdH50QpbfY0snri9D4XOwud6LQerbdbUTf9dCnqZR+BdLO9x1pMFoU 90TicVvocpjiOH9Jc3HFg/Ppso557sPyvXNqHE1+PlPKy+DkEOj76h4C35e/ qO+fb9sBfe/LI91jlgP1HaExig5Qu513of3sgt/ttqqVq7pw3DhQ3XlBe7id ONy5NLSgIv63od+b8LhlGPaE+r2DIcvh+7jercBh1H0cN27g/Ec4MOe2WL7F 4uRG6twWrr4WuUG/c+cROb6Y/p273iT0+yAex5btGkL9Pogp/P1Sj+OtX0+g vl/KtT1cSILz0NBhBf27DzKl/mXZdTD+APn3aj9akfIf/MQe8l/om7ZOVP/9 FWUH6dMFFuqFIvSCkbB/7KVx0eL05xq/pPVcy8tVX9Xi51pfOL3bW+j34zxq Zyw+Rf2+26mDn+emCOkTQ9sFb4hYYNfyiZ96kpB+8b3L/d08l9qp5Jom5wvp W3YL/dzr1nhsv8D5L/0C+8dmBvf8J/x1cmD/lXZ2WRXxx+VHXP7VPf7q7i/p /IvL3ykI9r8xu9NpceYH519d2ifO5y38u1oeMmaP6ft7i2+wf+6oLp9E+eM4 bhzmOv5LecW4PnIfibsZIPI+ItVL9X+jdx8Nr+v7KiwqoNb1OO6VCo9LvvNH 9abnP8g+wJCPnRypfQAc/4XE+axfm0wqzmfL4P3bN43uDaD2b9uOh/kNlfMz KM41Tq7l5eqPyz9u/F/oBefHM79HVyo/7bJgfZOWvXMpveZOWL9MN9Ce0nPl 9l9g/yUNH3+tyP0CVy9cOa7eq0v9BmTD/IStfDbFce0fl39cfeUj7UTLe3kX UVzS9YurL668utQvrv/i6hfXHrjWI46nIeODW3uznIrUL9fxlmv9ukyA8+93 /lp+dapfXH/E5V9c/VfS9Svtv6L7L278xNUXzgenx40PuHrE8epav/3/ofrl en8U1/gsrvuvuOqxvPPn/tWs/1ZW/Uq6/4rr/vtvHZ+5zq+k47Po+sXN06pL /62s9W91qd/qPj5z7b+4/RNcPeL4P33//bfULy7/XOsX138ra3z+t+5fcV3/ 4vKP0+P2Obmur3H1iONc64vrvqW46hdXL4nfYf521u40UfMiXN5weq755Jo3 BySeyNNW9DiAi3PmNjjOsbc+OlckziOD4Hg+/xiylIpnUQZ8XfV1g/JF7d9K Oh5cfnDjZ2XFg7tfS+Nh4qlq7aeq5QcXj4EPHM9+J1m7/2J+cONhZeUH156l 9VW54/Pap/B7xSlqS+pR7xXf2Zu+4k3h//UqGiu9Bzj42wU9gvVvhm2k9dMO w+8vHVTcRr8fhXuvaSf/stM7oXg0zEbcmqu+wK5zKMzdhwTcpvjU2/D8Z9TN r4Oo+Q/uvSau86iMmbDeSefnN1HzYVz74bqPxPU5L65+cfwd8p75km37V1Lv mRO6zPffWN7cMN2J+v4bbj6Gm+dIet5lbAjHeflYyyZUnLj4q9o8TVzxcx03 xDWuSjp+SY/Dko5f0ve1yoq/uuRf0vNAafup2DyzurQfSc+TpeMnE3/fV/C5 m11WN09T526qe7lCtsLz5Ld3L4ucJ6Pz6pg6zLwaN0/GzXtxecO9B4vL2/Ot k/SE9fyurRyXKkzE7h8q74T1Tka9bCm9sTfMjZeFd6L4d90TGd+FeIjqukvh +pPtsurDXK2x72mKB+vA3CXYJoTiuHrE8aOO8LzXZIjjHFG/izcGqffrU+93 puq9tx7Mr7SZwaN4lgbMNzi8nCmqneR3gd/P91l/Po16P78xct0a7w91oXxw HHduQlx63HkNnB537k9c/pIur6T1XPMjrnhw40yHo/C4NOPmvvrUuIQ7B3Qy DF6PG5zUvi1qnV6YDo9XcnKDXCuyHp+KnF9eqD+PPr888IzyVuHxIfOYzvfJ uyfbLdgEjz+mP4Y5U+PPSGR8c9r3mR7fbL7C41uXgbczKvL+3kV1eLz67ts8 ghqvDJBxT3fx8csUx9WjC7JOLwzX30yNVwEt3kPjhmLOMtWU3+NG2xNLoHHG ZJWrmYWI51DZR+D7yy/jwFPU/WUlH85zUrCbG5VnmVL/srD7RZmBsL+8z2L6 /pVxDOY/jVJPUjzmKtx+wvuOj6fajw3SrsYYH6LbFW6fp+NDuN2eH+RIt1tc u6o1HG6HQWG16O9OVLV9+OqeTwskbzNCzmRX5r6rczicB9O+z+j9xo4CmC+5 zU8QNb55IedA43c3FLnPKel65LoviuNfkPFfdvT9CtU77nsUy5H93voXJ9D5 x+0D4/STkXHM/c4DehzDnc+tavnHnRcWV7/D5R/X/v9r+f+3tv+qNv7g2nll tX+u+ceN/9L8Vyz/Hsh9NupUYMJ/sf2La97VdAyc/+u9bAu4tH/Df/n4I+nx n2v+cePJf238qSrtv6zxHzdfqi755zr/1HwO5197c8QDSd5/yxp/cPeL6pJ/ Sbd/rvlPRvbxEtbKihx/cO2/uq9/K6v9c11/Vffxv7Lyj3tvTfcEvG95wn0z ve8t6XVxdakXSY9LqpHwPvNBmeej6P387fD+fN73tzxqf767Crx//uzi6Vhq /xz3PlsUCefBvF5T+n6Be+6Ae76Ae0+Pa/1ahMDxOGXUuCNqXMW1q6rWTqY9 g9vDcX3FxIq0B3HlDTdOVrW8iWt8w+XtJRLnXO/xdJy4+z4un1Utb+Iaf7i2 N9x8FTcvrWrzzKqSN3Yc+6+1txdH4fivmnU/JSpvuHGsqo1v4mpvuPU717zh +ml1uZ+KK29c+yluHKtqeZN0exPX+PZv7aeSvi9Ul/Ym6fmbdL0g3nlvdWlv lbVe+Leus8Q1vi2MbFGnQIiPHVn7aqcbY+1krsH8UKqTgOKqN2DuO3DceYp3 5MP7gcN6fKL3A7uFw3zaOIWhFC96Cb8nv0j7Nf2e/OsL8HuPe++1zqLee1x7 GuYLJ8z7QfG3KbCPQ6t99O9cGCfDfMXOvrT/uqtwPHvWDGWe2yK/l6FeNIf2 uXQSvm6x8b2f1HVx7/njfP6t+tlvYP5DvuBfEY/7Wnh/NVrpOb2/Wg/pv4s+ nqb77/YEuN/17u05mOp3nsj5AnnXXPqcAu79PVw8uPFn4Qv4ukfrTu1HXXc7 ct39d55livoOzEukf9WXlaP7l1003N8LYpX4VH/fqQO/3xsb36Y79X6v1Efq UxV8GiHj9kfDrQX/hnjeIPe7FuB+x0N+v2yI4Tl6PrBoCvJcwOxTHnXfH+IF P4+o3y3djnoecV8Pfh4x8PD4i9TziDGGMDefUHiW4rhzAXLIuaR+XReuoJ5f TO/O/G4vyxc0bhpH/W5vCvK7cjPq+k+hfldu6FO4XPrrl9Pzatzv1uHKi3v/ /zxynstmwwuCygMuP7hzW9rIOa+ZXqHBFcnDMDU4Dz5miZ5UHnLs4PMRc4e5 /XjzfCbn/OC+/4DLTxLy3GrGoYY8UfnBtZ9PjWA+jRcUJCo/K3vB+Tnj0MpH VDuprPxwbT+4/FxFztG4Hr9zSVR+vF3g/PSdXi+Vys9kDTg/c4on9BaVH9y4 UdX6l1VDmLfUSD9aFfPDtf14IXlQmrnLriL54dq/cPmRdP+SdPtZj/SjVEdd +jxarCnMaz9Ydbgq5qey2k9l5ae6jD/VpX9J+v7Otf04dobzc6ll7MTqNP6I q38NbgrzzB0GgRXJD9f71791/OG6jqju7Ydrfqra/Hk4kjddv6903taPgLnF lDWF4hzPB0XAPnpr3cdSPtnhMO/wxG4yxXHzh+VNYN7zF+/gP5H/dch3SPg3 N9tQ5cKdl+f6nEKql+r/Rr8fmT94rlhAzx9w4x7uuzr8LTDf0PJDZ1HrZT0D mF+TP3ee4h3rwfxe/tMzFJdVhvms/mNuUBz3/ZwRyPu3WyxObqR4msEHqN/9 8EqpRX3fBtd/h5vAXCeogR7VT3F56458x+OgjQqdh0U7YN5co3lHiuO+B3JK Hy5vbgeHC1R5cd8pwuVtJpI3wuhuHMWVkby5zM9YTuUH994yLg+4vOG+IySu 9iauvOH0uLz5IHnb/vL8XLpdIfNAv047hv4TecO1N1zecPpNdeHy8kLrhIvK 20Rt5L33npmhdLuSgfmGc92SRPVTXN649lOuecN9TwyXt92bYT5I82CXirS3 VcbIOuJ9qxMUb1IT5g/I1TcrkjdcHnB5w+WZa95w4xuuveHyxnV/Hpc33Pgm rrxxvS9wbW9c++kDpD+e0B0RKqq9hSvBvEauVnxF7qdcxzdx3U+5zkO4tjeu /bS6tDdxzUNw7Q2nry7jm7jmvbg8zJeHeZ5i5F2K3zKC+Rn+3FMU74n0U6tm R+IrMn/jmjeu91MzJA+zGsQ4iXN8w81vcffZOYow37sjLqEi/VTS45u47qe4 vDlqwfzuoGi+qLzh2huun1aX9UIHJG9FjxtXaN7LtZ9WVt6SXeF9uZOeo2VP uS+024nsXz3u8WwmtX+1bRqsHzm+Jb2/h/PB8VSkvtRrKPFE5b9tMzhvW5v9 CBCVz0lI3pLm5Gyg8na/Nlyuj51UAqhy4fIj6fLi1gsfzJD+2P+iv6jynkPa z1TfTbOrYnlx4xKufnHjM65+XZHyqneNO0qVF9dfJF1e3H0ft8/MtT23VofL K/dy5ITKrF+u5cXN97i2Z9z8rbLaM9fych2vKqs9cy0vbv3ItX6rWnlxz3n/ rfUr6fJWtf6LKy9u37K6jM9c+y9uf3s1Ut6TZgnrquJ8A7dfUV3KK677LO65 GK7d4sYf3DkvfeR7Mu2efaHPuYch59dWL69Nv/eFO9e2yA3+rlHk+GIj6rtG bsh5mdoZi+n34Zsi3zmssb/pI1HvLcQj39tPWLzyG/V+Pvr7Jing901qnYL1 R8hR9Lkw3PsMuO/w3D4B+3RZWUSfC6h1BdbP9vSaROlx79vj3s/HnV/AxWOK 8OOtX9McFw9Oz9Ufp8dxXDxcz3FI8/DfzAOu//7X8iBtD9I8SPMgzYM0D9I8 lCcP0vumtD0I5wG3LsOtm3DrNdx3PHDfGd6TDuuVFV6foPS4dSiuvnDfU+W6 jpN0/eLeV8f9nhSuvnDvn+POleO+m4GrR6754fp7dlx/Pw53XRz/FAqfx09q NeUOdR7/3k2Yj1LrcIbiX17C+wn7I1bfp/YTKouHIvsesz3TH1ZmPFw5rv++ RfZtRkZNfyJqPwfnv+8WzAP251eqj7jKVdV8uO6/4dptCLIfuOadqsjzof/W /FQXH9x9Acdx+9W4+x2OO0fB4/PlVz4kNT4HILxfzHf6O2b3rsL8+R2LSIo3 iIW5zMnnlyjO1R+nF1yH+Zn1Wy+L0uO+zyYuPS4e3PffxOXPVb8TuS/buCjd pXjfGJivu6QfJsofpx/Fh3n8ebl4imcj7eT7mny6vLj7FG6+itPjvpvH1Qen F5dPVdNLOm//Vj3X7zH6nYPXTY6ChrnUugk3ns8eBa+bhkQ8or8/jHu+2W8j PP7nvKzbjRr/cesmrvcL3LljXDy488K49YKk/bnms6rFL/WX+v+X/dVew+Pk sgF7RH6Hdu0jeF7decGlJGpe3eEovJ824+Y++ned7JHfKRuz047+nbI65+Fx 22Tr5hxR+5Nc9/FwPgQJ8+SnrcdTHOeDe08Gx4cs/nZI+LupuSsvjxo9fJbd xbkwjxy9eALFcft+uLxJOcODkfdhfJyO0O/DbEfu+yFqM+n7/pwQuD37H+sv cr6B+52y6qLH9Udx6SurvLh5NVd/3L5uVWvnkua4/LQbCn9f2uXY4e3U96Vx PGQrzN/evewtiuO+X831uvVjYX54SohXRa5bWXqu+eSqr2rxSDp+nB5tJ2lT RbcT3HgiLo4bb3FcXD5c/XF8cF+YN4pe3uC/yHH55KrHzW9xPlzrparpxZW3 6lJenB5X71zvg7hxjyvnel2u8YhLL648VFZ5JV2P4zbB7SpztQ3drhwnwLyb r0aD0nh3DGf137rD/H5WoEiO8+fqU15/XJwvy4iHa95wetx1K0vPNX4pZzju /SIpFy/H/a4QjuN+R6myfMTFKyv/lZUHrtfF6blyrnGW9z6Cu59WlOOuy/U+ WN77e0U51/v+3/qw5ToZDPMu2+fU/y9yru2zsuYVuPoVl/5v53Vl6f/p+MvK J9f4udZ7efspblxiOe65DFc+AxnPJ+4qqJCPlDMcd06hqsVZWXnAvXeE+/1W nI+49JK+Lu59AEmXS6oX3d5wep8I+Pmdgv88+nmouDjuPRCunKs/Vz3X90v/ rbyqjauVxY8iz7WLOhfQ+TmB5O3drS00x+lHXoJ50N0tQ0vTF5Shl3LRHJf/ 8vJfZei51juufst73V9lXBeXB65x4vSS9hEXr6x4xNWuuPLyxiPu64orz97H YW7x6f4wcfLtp5F+sWS8WPVcuaTaFdf2UCDm/i6u8bayriuucf6fHk/EPc5U Vnv423EMx3H3WXHdx/+p8RzHecg51llhRvQ5VpTPAPwtwmXMHj8sTT+rDL24 ONc4xcVTEC4r4XL9U/nkGo+44gx96KeeJLRusguZN8DNcylnvj0B5r17ew6u iE91uS7XeKpanFUtn4XpMJeTG+Qq5VL+T/NdZ+HzRH1SF36lzhNJuZT/k7zR SZh/NNxKf28Zd06wunOu5cXpcd/9q2rlrS4cl09cu+Xqz9UHpxdXnFL9vzuf uHFDXNeVtL9U/+/Q475XIy6O+65CZflIulxceVWLX9LXfX0B5nvvtc6i+EDk +wmZx3S+i9Ljfn9EXHrc74xUVjz/NT3X/Fe1+pJ0e65q/pLOf1UbH3Dx3M4x TRb+jkdUV/0vvW6Nx3LPXJjLu+ZmitJXNR+cniuXtL+k8yMuf3HFY/MV5l0G 3s6Qcin/p/k55Hv7J3Q96e/t4zju+/w4vesmmL/QneQqSq+5E+bLdAPtRelb IlxvVT8XcfpXNf21DTBvOSCpT2X6c61fXySe2mfu2VUknjdbYH6m5tDu4mwn XMvFVc81z5Ku96rWbiWdz3XbYR7XX61zRfS466rsgPmQj50cRZULl09xcVyc OM7VB9e/cP0d5/9sM8y3Pc/rISqfOB/c+FDV8ikujrsvD0TyWegU11NUe+ba znHtWdJ54Jp/XJw4jmvPuHaFa+fiyg/X8oor/7g84PS48uLaJ3b8rCsXtFiI v92w/VOo03q7XVayEH9TvLeI4vdUYP2TrSMyROlveMF839Iv30XpVbrB/Ns3 +V+i9CNawfxJjYnFlRlPVdNzzQ9Xf67tYXV7mLc//bJInPGLS2/ZFObLRmbQ PKJD0WFhPsR/un2YCP/mSTIQN91UR0mUnmv8OH9c/FzLK+n4K0u/+noxVI9L Y/sZUeXyPw/rdbSUvlL6z74wzzOZ/F0UDxwA9wuLSTVSK+KD6y+b3sL1sqEl qRBWAX+cD26c5Mpx1+UFwP1oz8SL1tR1GxrD/GvRRscwEXp7B7geJ4SdM6P4 JGeYk6PNzMSplzTHjcNrJsP1NUG/jzqlHzkO5jXnPqY57v6O6xfi4rhxQ9J6 3PgsrnLhxged+3A8C6360/HI34H5jZRdNMf1a5yPpDnXOHH9Hef/HPk9rG21 TOjfTbtFwvzdiYfRFJ8hgPk8LdfYiui58sry58rtomFeEKvEl3Ipl/LqzS/H wfzHLJkL4uQ1kN8x9K8VFFYRPVcfSfPlETCvt2DvNVF8MTI+N+ljS4/P+ldg HhJ+4UZFOFd/rnpcubjG+fUGzAf0iT5L8RNI/TbyWxZK8ffI75we+rzooigf q1swPzfw/YmK+B9C+kvP9IHhonxw+slI+1GL23ShIv5cy2uK1JeHl3W0lIuf 436PFadXRfqF3IrYG+L0/6/pFyDzVZeYeTHi1Es6nnaIf2FE3wrlh2ucXMcZ cenFNa7i9LjxFjdO4uLH8ao2/lQXPsKBcBH+ncQtFic37qrXQ8rL4EaOMG9e 5LqsOvFNCHcJnDJPnD5c/QvsYX7t7mNvKZdySXGZUv+ypFzK/1E+0Htl12Kh +/Kj2jzP8UQPLJ+2E+YTMzp3E6WXNOcaD04vLi7pvEm6vJVVX36I/ttGM3cp l/J/mm9QhX+3veHkO9up321PqQPzGXX9p4iTf0D4YtuWInl194lFuM3y4dMo 3qA2zGM6PjohSo/jixAedHHv7Ir4cOWPkfZzytx7C8VTa8F80vuY4Ir430fy 87GTSoAo3lod5nIvR06oiI+4OC4eV0Sv3jXuaEX8dyJ5e9zj2UyK90Gu67iv 9TiKf0Hq68mNe5vE2a8na8B8TvGE3v/EeMI1Hq5xDlODuY9Zoqco/Y6uRzSE x9vZ+apKB5Nd7eb3gvm7aU98An9zcxeYz1rTKYPiqj1hHnSj5WmK1+sG891r 0l+I0mv0hnm+jclSqb7q6rnWr7jawwhnmHtvz8mnOK49D0Tas7rGl13i1Dsi 8esGXDpemf7/Nb2k63eOK8yPnfNaQ+lfIuNhWLLaG4pvQfh+zR6pgSLG1VNI v7D+tDdRlJ6rv6TjkeqrV33JIv2r9qmM05XJI/rC/IXgYa/K9MHx68g40Me7 2UqKt+sOc+PFL+L/zRyXBxx/qan/s0iIEx5r3XJa97GT1YX5QUF0V4p3N4S5 dZPXpqL04uLiui7OhyuvauWtrPyIKx5cO5SvB/P+Y5o0kHLx8+Em742yhbhO UAO9lOczsTy64weI8xrfTX8tgud3SYW4z/rzacnVSI/Lg2MgzIOi1/u8qUDe xBUPTp9mAPMfXim1/on8VJZeptS/qvc8sbrzb8j7NqH5w92p5/VSLpqfRd6r 0V8XNrsqxinl/w4uU+pf1RtPqhqX5vmf4dI8S7mUS7mUS7mUS7mUS/m/iTsg 70+eUD27hnp/sqrFKeX/TS6ufarqrq9q+3hVLT84PVf+b/Wvau2ksvJZWe2t supF0vmvau1f+vxC+jzov8xlSv2TPg+V8qrBZUr9q3rrjqrGcev0mtthvkCh 7UJRHOfTFjnPe+uzfy9RPB/xX9Zx9gSKJyP+ekq6SyozTpyPNE7xth9cnOLK g6Tbp7jilHQ+/2v9vbrkk6tPdclnZfWj6tI+/63jfHXJZ3UZ56X9vXLvm5U1 LlWX/l5d4pT2o//m/LO69Pfq0j4rK5/SflS5ccqU+lf19rukXMqlXMqlXMql XMqlXMqlXMqlXMql/E/O7X0b7n8R4LteE3qZ7POINyQdLn+Kor7T1RB8vytt +MR2im/zeKeLzm2k+HugX21deNO3kxp5uv24qxS/CnjHSNeuz2dk83KbMT6s v+NtjZXt2suSe5oynPWxDzXwfB2qTGYcG3tVmJv6uT92CdYkdwOeCnivJZ+d VKZrk/OtxkHc1NRr3hQvLXIW4KzPPaD/YAnrR/XreIxX4xlPgPj772sVPvlu pkAdcLZcFsVrh/h7a5MNLsHlUmiTbGlYox4ZEMJw1ueyldMhm/U65Fvgo7Lj wpp8th49Mm2GfOzkWGPUBJj//uPEcT4S988Tk39eOCfO1V9Ghi/h+HE+pV+3 quUHF3/1yY+E2391j7+Sxody6G34JzsJ6xWjE93S4qVcyv9ZzrX9i+u6Mhz/ xBUP7OMSyvp4mS3tmvWbr8tTmOtWvwVR9/uDY+3DZyH9t9kfeo/iGuqNDH4I 5heUopdR4aP6Hz8pfRovKKt8ep9URu9VTv3+X4w+qnS9LapfkM/oj5aq/3+e Uf2ZcsbDlvd0OeO5953RXyqn/nstBVq/q5x6kfn3aGaN6i8oK9D1u7LU+nX5 Q+/jonhY+UBLUge0n7EPF9Oczef5pT+KLFB+bzW/VI7Tj/GWtN5WovpAV67+ 3OLnms9AV67+3OLnqueeT67llWx9cY/nvxV/8mbJxs+1/XPuLysl218CV0q2 vjjHw3W82iJt/9UpfknffyXdf7neL7jfjyTbHrjPNyTb34XikcH8DdVnvuu+ xirJ7kJiikA92caC+q47y6c7eyxd1UGTvPqE4eXKz1+0c/a6rcB1ySdwPCwP R7iy9RWrhFEq5HaER1kxfA/CGwGfKwhPG33UODniM28uwhWBno9wG8AjEd4Q 4z8UxOmF8JGAr0N4DIgf9YlcEHzDVvaHwB/wFPj3EWTWBDywo/iDK8z68Xmi nFnLnnE8pcYjJ1Lrx/Lqa5VT75UzdeZc/afl1q/9sGrQhCR/nmw59YeAf3nj 3w/0NcqpX85Rvxfoa5ZTbw30OuXUnwJ6ZY7xc9XLlaHHjRusz0zkurj9Cpx/ +caHiq/LxLWfA4+rG/4Yr0j9wzsiHuQIku4y/bEY/p0dmWmjTpPU8yOdHuB5 2eE3Gpc/yJH1zlgIKM41zrXAf7PLOueJH3XJHxZ7rgv7y/ZZkbfBSJnYWkH/ ZuB3pj58XV+n6SddIlghea+wvwyv4ylB4w+89IsV888Av4f1+taurycy6xK1 ujVOFva/8KBg9PN5psTwc3/nL3uH8W+H+FtN179UvF6P7PqX/k9uM/5tEP8B H/39Gg1VIHLO/p3/zdulx99h/Il6XdWNiYS/zH8i8G+F+Gdsi8y2W69EqIgp Px0R/w2CmAXjik2JhL/0zwT+LRD/Gu8+1dpvZErMufR3/g+Bf2vE37z215qL hjQiRpz/u/77+FnQYIUfH3iylnD/1f45OUzVqC7Rq4Lth+2/wxYvGpfywYDc gfTf1Sr9Aj7FFfFqX6iYv7g4Gyf/yMm2c3NkyUAQ53WQn7gx6pt6LVMj3nvO oZ/Ly2D+qtrzCCn/b3J4H1625DmCpJ8rVbU8SHn14jKYP3G1T9yfJxjnNbsc Cz+mEc77RoZA90GLaw6rG9zTInYHM/cplp8YtqvLuLrG5EUHS5q3BO+5FRO6 sU8nyRPffipuhOZ7r1MTZ+jnCvZ3hvUXH0ceUd38VfAC6HWB/rNFgOLpLsU8 o1ALSH8/+oZObqtswWfEf54i/8FkhVzBk8uwfkRbQcsTPWWJTgWwXvB4Rb+m LdMETmGw3uuO0yiPFzmCVMR/4Dzy3mJtJfJ2aOn+RAEc/4sV3Ts2qKlC+naF yzsdiYfVz7PePCm0hyLpjeizU3iZfjbfBblIPAvcGf9aiH7DW1jP+jvet1j7 UkGJUEXK6wri4SHx+Ow3yDc5+YlngZS335ef3m/UlQhXRH/o0ZB50xJ1SENH OJ45T5j65SPxm0X3cXvdxIjs6wTr5RVmuW2sV8hrj/g3/TRp7qiTdUi9MLgd Tr38/czyR63I+0j7NI4acUwj+gRP4wzMeTuI7nHz1AkHhNue1lZvUl+OOH8R 5vN+mXw/sbghseIczMea58xuebce+ekszEdZTf7RLO+r4DzCPacu6xHUux1R 6zLMz2bevzY5K1cQgOh7xSUVrtrbkFiLXNdUKzNT29SSqB0C81qNPBe2q2lC TDkPc3/9h0nbig2IVoj/90DzTYF31YmvQM+OA9H12o/2lv8gcN0QRo8DbcD8 cIHV0YefVAsFSQ+m0PPD92B+7rDeOiY+S5McX+NgsjD/vCTg1NwPeuR0hBes Y/SeCD8H+HKEv72zb/+BZ7qkA8JfPrcIyXurQQ5D+KC7jL4Twn89Y/RLAWfL +3DQ5Mue++qTx9fB5U0+43ZH+6YJMTuJKS/L97aot+RhlgExBXDcfgj7HP/o d+Y9EF3wHJ/let2Y5/v6CGffuwjPgnkA0Bsj+pw8Rh+P6Osg7z+w/CuIRw/x kQPvGxgi/Hkh43MN8TEAPBrh7j8YfxPEpy2IMwzRq/woPZ5bzkw8LGf3u+pM 0EgaeP1JeJEBs9/F8mWD3Gc+e/smXM0Q5qxeD+FN5ze37/n1rU0thCdtf6QR USPEpi7CR2eO2brNM/IPf7beVRGeCHxQPfAPR/1Dm4Wbzw16F65cevw2Koal lvcPf1avAXi59uuk/A/O7isuYp7L8LTBc5kcZB91rkt/O+h5QY5BhFyTy4Lr T0Try7puzd6rdYLOv+PF/6UPv7ZyrGlBuiDpL31MI4e222WpQzZ++nc+R78z +bn5l/GkAZ+4v/RpBMrV8C/LJS4fPVDvV/+yXCnZvu4tEnMEb/7S56srE0/s X/q4fWXqK/ovfRblwe3nrB7s09p3mQ3Fe9SFOe+K9YhyP+8oB//L8xRSLuVS LuXVhDtYl8o9NEO5cXXMeR8FjD9Gj+e2YtFj89AIEyeGc82zR6PS8yaD4zgf CecHmzcFXL1jfDRx7QqTTwduecDmB3vdMv1TkHXfkn5OzPsbUi7lEuB/N26r cBzfuOrFxVU4ngPlqv8/d+8Fvxdk0HOAD7WPJ+Wi+TmwX5pz1/P9hwU6ZMqL p9coPhXsJzt0OtHN5YE5ufl5fAjFl7rCPu2/yq6B9tvTk7LXHmpE5oPnRzaA L+YXPBLIqZFRtzPCKW4L+OgDZ9qN6pHNW+/IcFaf1tnd3UxDlmztAPNRNvpT CtYok9qdYR6hZHa2/wZNMsoR9tf6sHXVUQdtcs09mIe1SHp4abIWufIe7OML 9D/uwvpL1r5zou495aUi/hn2R2Km+WQKeAhP6OVtnTVRmzxwC/bfozzf6NQt Q1If8S+2S1h1ZJgOqQrKNRfUy4ht88hhV8zJbz8fx1LcDnn/TX9Ak3iKhyL1 a5i6y5viC7rBXMOeeFydOK6873vCPIpsGyAqD2z7XGGweFyxYxPSGjzPsga8 u6GeU0etDMHk9/p8Ue18J4jnQWrh2xOaGQK3gyExwv7ODx6OWfeuAdkF8W/e Q/lRCk+ZSCjDfyLbbmfINR3zWz8zTSNU+HnZhuUv7z+JfCxoBZ7fsf51DXo0 5QXl8UZ8LJ//KsOegqjDebyiDMafjb/1UWfrDz7a5JHLsP+q4L63VqsZEws+ iPa3B/oumYJjbX7rHe+tCRf295l6PMrwix55B4lfdRm/Fv+UNmlbhj8bf/IB o4fdfutfpMPxv5p6/3nBFSNyKeLfWG6p55VVz3k5qeWLPywltm6r3/qrd5n4 2fzLdFyaa6XTiKzdhalfWdAOzdP6LzzXqgkxu6tscHn8m367FkD81vsnwv6d mt1OaRNiQtp3gdtPe/ka+4evTeWpljP/zsvdi1PXpPKe34Xz7wLiX+UE+xNG iifj/YyJq+X03xagdnb+b/3We3D8kb0n5mn0zBAsB/ln81N0cK/yIYfmREPn 8uXHv4tbXYPfetck2H+Qg/tBsqcsGRUC12/NogZ3W72tTzillS/+yKDjtXem 1Cc07sP+SnvqTVLt0ohUc4Dz09ivwdtT1nWJlWW0n5L+tbt2+86/9SZI++y0 f+0U0wdNyIjOSP1apvumL1Eg7pQRP+u/8XynsUt/62d/YvybAL2dZoFF/kBd QiN2Gv2cXbEH7OO7viMprDd86nd8WEcdwu86o6+NjJ92jiH7hPXug6KSJ53W IR4CfbwLrB/beniKsP6Cb1Jhxjsd4mU59e2B/51y6usNZvQ3yqlfdWNV/uE3 NYlr5dR36jE8avfsmsTZcurTgb+gnHqP7oz/yXLqx0ffmSKIVibkQP1ORO6P hV9PxAnrRxqNHXBjuzaxHPgHI/X7JMl5u7D+EmgPkWXoncG+vUpwkHP6wIbk KY0Eet+e5fzpu+bsn6hDWCM88DSjP4zwgY4Cs4aHDAhDjP44wp19Z4frmWkS fRD+ztig9cN9emQ/hB8duPH04BRTcoUmzJVe5E779FyL3IroO4D4hyB81J3Q Zq8um5JzEK4O9CMQfnJFmovGfVliOsLXgnjGI/EsBOU9hNHPQvQbQDxzEX2e A5NPND/9gX4+wo+fGjnykYo6cRnhC0F+1iI8C/hbItzWhMl/B4SbgvzMQrgy 8I9C6/fXiHM9NdsSOqC848LTV7wp/P+6r69GltcAB3/O3My+k9cXofb8Wn7t nULr2Vje7eVz6xih9eaT26rBYzLd7U7l+qknCfFZhVN6uHkutYs/o7z1u5BP wuKV3ybvnmz35atpcr4Q3zDi2Kdet8aX/D/8l8U5Hlx5KytOSddXdamXyorH qrkdxL9v0Rxe7jg9VPnljVOWpl/DKxrnuQ1wnI8eLm4pqj/G8712nRDiN94+ HzJp92q7TZdh/mrd9KEU73YO5tlmv/7kfabwWf4L3E/TOnbw62oqT97MvEvP l7J/LaGfF28R7J3idy6XZ7zxQSL1/hLXeJTBfEzv5qW8BbuyBH176dP+uHbC tT2Iywenr2px3m25FHqO33zbliCqXvYi897wyCsXheuR5S82MPWI+jQDPprI PLxzaOQmyudTZ6HvjnqMtM3sNWEo9d1RiP/+Y3nCwvdG2UI+eobrr755PhPh FnyWO7xnuIeLZYOMmj94i8wLe1L8VHwq5OP0XWd08m8OX3ewmOJp/Uc8Rt2Y eNaCeOoMhvN2JTpzCZW36W5nRycLjxsWR36cdF9o1+ocrN9dVNOY0rP+l5ny Clh/3HsaOH8cx+0b5x2RCVr8m/dZdsNhS0AL4q5mzVphTuuxeYO4+XjbUvPp oWlbej7/n2dcHsrKT/NgIndLzabkjfal558P8o9r55mT4Pyc/HWfzg8uz6h/ eBn1i8tzWeVqCep9Iah3cdXvD1C/Mdu+GYSuVCCmc6nf5IGl169QPxV3/R4H /WsBpn8JQP4rOp7T9+tmW21ZvbjuC+W6rso7G1b/es3KYtmi//uMjh5i9NVn 1z8bz9i88Irm4cAFOP4ZKwfWF46f9g/7WFJenB43v8LOfzjquXJJx9MXPA9l 5o31bTvNbDSJeh4Kcfs8G5SzPizHnZ+C/d/94YO7Lup/dR9cXxNNHtP1tfkI zIv2HyiVFwOOm3/i5j84jvPZfvv23I8szxpkG1zs9SRm+1yY//5jebnmw+Xg fxWnfffS47SvxS8rTtx1IR+PWhj//1+Xa/5x+YR4YOcSf9w660RUizoFrH7M cFsF2beCTjfGwtzeiV86743RtyvRo+uOF2DdgV0fYeKE1zWELbuuwa13cP0F 548bD3Ec9XfD9Ee230FxBvYsM35cnFzzhruv4fRc88Y1Dwv3wNxLkE5zXHvm ul7gWo/i4pKOH+dvk8/MJ1tN+ipbpKNNBLdJlhc1nxTXdauLf1Wr37LqcbDp AMsRt2oQfuYVq0dc/8Jx3PwBlwdcv/Y59HluitB683T7l6c3RCyAeaQan+Xi ihMeP9X4JeMn5n6Nux/hxmFcfXFd93GtR9y6TFzx2F9m2ls9+zmabjU1ifNx ocoVaW/lidNj0E5+WfNAKP7HffgVXV9HxjDlOlaQEffe3oPX/cq4muVeX1eB epHGU752G7us0a4bpspERqx42y3bfpJqnizYseb/7aeq5RN3Xdz6kes+mNRf 6v83/sfB754HONa8HbYuVzA+aOZU6nfPp8C/qy6T2HxeN4rj9nux4wnwV3yc e35HtAx5yLfp9D98xjiWfL9xFPy77TKb+p5ZLeq6FY2nN4jHr7R4PDqIPR42 z9admTybVzDPYV6wfq5W0jZR+kGI//VRz7qL078/kp+d8Ss9Kf0w9nu8VgdM avlpkN+/tKbfx4D2H2QmlexLrNYXOp8bOZHfOuxHO1Hnc3FxQj6//1gfiNu3 tS3LH1cuF/b9okkvdlwYo0PEf79Kl4st7xZLprzZpZXXY1Tp5bUfU1JervPt v8qDR6My84BrP2wedjxTNGuk2pZYk8fkATcuwfUuI1NqHoTiFLcPvX/7rnOZ +7dc/f+p+P9tPrh1XLvLl53elfhr2u7UcLszVx1Znxrr8ktdt/7+Yzns87v/ Ah/cdXE+XP25XrdcPsbtS88DLk775iX5wV2XK6/S+Yl05JafZPXS9z3+olzl 8jG2ta1ofmBes8zy/lWcYvMx4XMrr15JuXD3O1w7wY0/VY1zLVdl6bnu71WX cuGeO3PlHU/A3HzplUJRHLeO0wLvmw2tf2R49zvypFGzyfT5Dtw+A26/FPd+ DsQjm/JZDj0H91Dms8/BP2+dpCf8PsPI4xqOSxUmwtzDxJblWfVPZAiXV62x 7+lw/ckwt7e1ZfkDcF7P2j1k06MDvwS7N9rfp8p7Sa2nMbXfsq79UX+Xua5E QTC5Iim9F/a9NRz3BucgUo5nOXv8GiF4nqaXSvnXBXleqirwizfLFgwyY/Ic Bd7bHL8lsZ7O45qk+6pLUcLx3Drifij+sh1x/wwTjwf7few5Ga86R0wUfPY3 p8/Dch1XufJy1Yu9IZ9Tvch0L6kXrnnGtU84TsXS4/Hg/XFden6evMqW9S9f O6zFrbyR9hUub7n6lxDH9fdylSuyMcf+1U9M5dLgl1UuHC9XuWTqcyuX8YgK lwv3PB13XgCnx43/wcOF95fuhy/Y2XUBtb9U1n2BbudrnPksZ98fbv9jyP0B BtGCkeD94fJdd5sNp+t6WP9xXc8Y6r30t7ye4Lpc8yCu+2ZF77N0uQIdSspV vu9sy5bc77jGj2s/5cv/qjLjFNd7VjiOi5/r+SCuehzn+t4O2z6Z9/E+hpfV r3Fx4sZn3PgWAuYDCbYa0zJrdiGG39pHzwe4+pwAPu/O3jxU/1AnIjN8lTvl g+t3kua494iw7zuVs73llMHnbWeuu2q//B3FaC3i6WINOh6Wjwtg+C2E6wF+ B3BcvXffBfObP7d5/9EOI+vyUb3LMaO5uhEFgjCgR30SAE9IgdtV45YHT1Ht iuUFLjXiG5l94bUG/Pg7hgeNbtl12lMdsk9CY5pD65TIdvyy1l9wf8m0YfuL 1y6Gj5h89LDFg3iB/vqvf/rg/D1625bO7Uv0cD9StGX70V0kDw/bBNLlKlc7 Mdbll877l87te9iWyiO7lHDo+Vcf59K/CxTZkRv3cCqdB8qV/n2kc/Yl/Hgv Wfo5NXOfGsBfNi+gMNRpPbI/oF3yXGAE4Ct39Ix/ujqbt/jUdPLP/YQ8G1Rv d9Ks193m6sTe0vT2nUve85Qp9S8Ly9nvD8ScMvbSnCBHNgPfTzgMnW/qZ/vZ t98q4e8hmE9boyy/IF3gFgp/Z95h2uFjTVxVieXI9/bHq2WPr2PfiLgKvm/P nmsYxpxrELDnGlh+7TR9noW4Cc6z4J734cZh3P1X1WQZ5BPQvdWZdr99OtWG /UfITrou6lwG1+vi/HHx4ObbuHl1bUPmvGS78743LGJ55DrvreOo9+rR7wyz 3/UNnA+/h7+/ZtAlSo/juPf21RPhc5qXTG8qUZyNpxGIZzuIB3eus1z7kB5m Ze43wu9dty1571rS50e4nluEz9Wa2rJ63HwDPlerz0fPp9A80qaE494TEFf8 f5UfD31u5TU2L7Ncf5V/iZdX3rbU8wLGvAqfOxDXOQWu7+PB96lBJfcdaD0V mRde1joL95wR0gfW4IvFR6bsdR8uP7h9/vKdjyj7HIG41llc/SW9DsVx3Dpa 0t+fZM972u7t9TbfV5PwAOc92fkbq2fnb+z536Fb29itNdEj/LUYvWqsDKTX Nu5Kv5c4DuE+1zvRnOvzI879Eaw391wzsFa0tiQD0+bT682LgMsvn50/qJYZ kbr3Dr2e5fqeA1eeDb7Pf8F5yeDXBjrkQru51hTvCvhHteWmN1JVyDUhoTyK +4PfBUivX8vicJtcwc5WvxyEfdSBz2zEJxf4rEN89IxgHwukX98yDKP7dY6d 8P62L3/uMLcf1DwT0o8x5Jeun1Citw+Cn/+O2WlHz0/eJTI+VuRlw9o9lImv Sx49pHwGnWbaf1jAjS+pV58JbHXO/6Dav0ypf7/n7Y+ZeVezKBdF3VWW5P4r 9ddQ86WNoUz/2tyrn2ZMnBKpvN2S7l/OfGZeFLinpm5RrwyBVtMlt6h50eMx zH12HFm8wu56HC/bvPAndZ+1FjDj57rVR+JTW8cIfEdem0CNn67bmX6kZT/i /Lk6bwUurdw60+/9BsHzMba8q0F5O+l6KJjsUiLCl8o8Ei7v5n1MeZXKWd6Y SKa8+5Dy/pzYbp+ZmgJphZSXdVBCylsLlFe3LVxea1DeI6C8A7yZ8nqc7qDl /OQ5T8n3sxNV3oc5zH3/WHFxsd2v47YG/Wt/oe77Hs6p0HcJOuUZfKD2pe8D /bPdATYLgucKmq/WpPXXrzJxMvuEOnx+3/HxVJz7XjP36/Bi6s+QX//Mor7U /Zq9bsRv2qDwON8FXPfIIOF1RHPbzz+GLKXWEWw89UE8rZF4vJrS8fBGgHjO eTPrC+XPL5vPLMoXNPz8iqDWF4f0mPXFNIdE86PHNcmPUwIvUuuLJAdm/Jmi VrO7NfV9vKi3HtT4YwfGGTb/09w911LjDOvfAPjrA/+NBox/qNbJgUNqGZBr DA3OU/59wfi2fPw45yP20bxWDyMmUP6n68D+k5zNZtDP6UB5VbvB5X0EyvtL Nc7xzNi6hMBfhS5voT0YP2NzOg6/HcQ7sTrOm/KH+rXHvJJ+zfrHgHXo6p9w Pot3Mfk0Avks8X9nND/s+BHe8dL8ZUaV+LPtM0/AtM9voD8WgHa47VlYdMvt 93nzjqTT/a6tOpyHeNJ+ApWH9G1Mnu00uis8v/dG8PL+Dnsqzx0NmTwvmhuq O/qJFvnap/U5Ks8WjvB9ZKpd5BIqTrYdDmPaoS3aDicy7dC21HZo36mkHeL6 NVteTbo/PuYVgPKy/e466HfaoN+lIe2Kf8luqXB5WX4TlHd4Paa8TxXvT1k+ Xpfssv7smdLK2wMpL8s3IuUF/Z1vUFp5PVbzyyrv9BXMOne62fC5Z886kCs7 K7WjxrHwbMb/wIXRDw9+/CyYtfdxFuWfymP8jzmreAft55HvOvT1ofyLgX5D 519FjkMSBea5E7NErTvYdjsXfB/GHPSLmCzGZ8rdGOvOu8J5SZ/H5Qhft+8H m+8NHJRIiybMdbusE37uZsHfO6fGUcqHjcenpUKrpp/fCFzLGQ/7fRh2nJSv Jzx/sOL3H9OkAXW/ZuPMv8PEeQnEmRbNzJcy8oYdjNVWJ/eqPgmj5kunwDxE XqvZ+e6b3/OWb7vYlvJhy+UFytWx1HKp26LlmtR7/ccQ25+8x6/KV66W4Lsr q37CeY5oO4auXzbPWiD+5RN7yzU5pkk+HzKYLxz/z2W3PAd5qZDRW+H4lzkx 7eFlh9Lid/qjXnLmZ8xYm5vNyypn/CNBvbDjp6lAaD0V2dL2eOvX9P3RLlpo vpq1wLYgVomOf+BxeD9nTMGLelQ773IMtP+RG86v3GJF9rs8rj7FIX+Zdzal +nuMKvFvngv7F8Tm5hX89hmgaE/zb5F9dy+wNyeXf1n5meKyJ+B99XVFm+n9 bfa+n/2pY3Le9W8Cd3Dfh+Kxz/t/PMHMvMXUj5m3vA1dnUe/5wP69ZZp7wfd VOxObgX9mvVvDuYV+4A/61PrZP+dKz5pkfXDGJ/4p8x8adTAuCCN84pE+v0e idR8yQHMZxJqJavmBbzixS1aRs9n9JIY/d4VqQ07WCkRCmlX6fmkIIUZx05e iTtp8+MzT0FlXR9qHMPNN6LA/G1SjxE6On5fBfOmqNPztxSwzxZXI6F7G51X vIWbIqF57KPp4fQ8ts1SZh4reMlc96W+156QJVm8nuY1+9HfhQPlmtnxdP/U N/G8q6Bc+8KZeFJBuTQn8+ly1X7M6GMmbNVYVZjA056yNEm4XPdBufKVSymX TMM/yrWt3mZ/y7eJvOlIuQIVmHKNRcrVfKrv+POuCYKCJXC5PjQb2N529nNB Z1CuumHMdcMdEpssjVQg8x+43qbnb6BcaaBcjUG52PiHCZj4v4P42Xg21YDj Ya/rY8Zcdwxy3UTbJdo7d/4S5IDrDrzC8NPguunbNaHrdhDA7QG3DmLjeQHi WQ7i8XvL+BwG8Rg370z7fA5n5uFdUxONr2c8EeT65tL7G1D/HTO8pP/Wucrw wGX3DivV0SM/eHtHCfNHrjYtjJoZkJcB1whj/K+7Musa9bdN6Hm+9Tt4H8Pz sSP9HKo3CX+P4tiyXXQ8g/sKP+eytW0UvbwBNQ40RHxU3Vz+9AnsWeLDlpfV Z4Lysj6Zvh5fOstFCoonMT41wLhnE04+ySWNSZdXq+lx71AAE4+gT2yDoebf BU1iY+lxaRAY/18M3f8hta0O4WQ0gN6f7/cKjnO31c3TlP/U2/D3GEfd/DqI qpddZ4X3VRRs+6Qu/EqNM/q5wvuWX8PjbgZ8FnVfgO4vkYNK7o/suFfY4FDy gkF9yf2OzLjnrsCMwyN1O2jpunQkzZqm0+NwB1Cu8PsRGUvTzYnkfl0sqXKp vWfK9a53h9w3k97xLs2oReeNbYfbFel2KBgD2qEe6NcOg4t8+q6sQb4e4Qr1 Fyumn/LYfrrnEdPOu+zvEJw3KZHnNPw0PZ68B/M6F8uN4yed+ioYXDtXZB5w /HIqE//Pjwv4Mwbm87Z+2X+Sip/lBW34Bsrzk3inAGfLVcCMP4IFSLkMHqk/ qX/8rUBpJFyuIcy4KnAF5ZoHxn9Dy9T9PwtlCcOwPfR4tR+Ua0nbec8m6sQI mm1z+/I35WKJH4gf7l+NSvqFSwjcL/x0h9D9FG6f8rZs+7wGxluvFx1HvWpZ h+yV846Ov1zt0KNlyTwnJREex3ZMfUz7wHrHknY7aRyz7ph7dtKZLzcTeYfa zKTXHaoCeN94dHt5+vd3cPHA/UhGxitddD9i9QtbHfIN3GcvYPUzR8LPO2qE tSuk4unxEl6PBE9pTtf7p23wfuZavabO1PpILRuOxzP5U7bwfN6rMz1vJF6A eSObh+bU8u6qHX85yIO7N+zfbnYwvf5ivxN4xWXruO057cge7sx3Atn2dvWG YHqDQV8E5PqKtTccvz0azk+vF8MKROWHLRfLl4Jy4fIWlQXnbdW0yfT8HM2D A8gDm89BqfQ6gmgH1hFsfjbKFBwZk/6Fp72IyQ/X+o3bicQp8LQTFScbjy+I pwMST/qskSO75rYleiH1tWZRVlqx0z1epJjri2t5t3vB5b3UrGFXqrzyOXB5 9TaPgdbFkV2Z9vwatGe2vsLo/Yqi8PxZTH3h4mT1RoKemnvvFAgsZovWh4H9 +VfhEzf23WxMhiXcoPfnmyG/Y7svwasLdV9j/V9dof15ZfnD6x0rPjtfYr9z HnF2lf+08///bjwbz83WAWT7NYbksHLGA/JjU1Z+2Ov2epOi4NSjLaEHvq/e E1x354S6jkTbxsQezY2kcJzxg4p2fW5oRqprMXpoHmKvXTIPYecPR0Kz521w tiQDwPzhVW9m/vBdd9+NKRsIUnmhTTw1f2CvO+CO3xq1YDliMXLd0MHMdXXB ddl5yHowD2kG5iHQfrWMScl+tZ4wT9bga4H7L3ufPQjus3rgPsvOh6+D+QY7 H3YJhfefE4b70/Pzz4GMP/P8uq5tDZ/FwZR/6jGGz7kfsDkibA8vZnjaSZoL 39c2jLV9tuohfV10n2oz2KdCxz0PMO4VgvXIgMcHbF/3kSWMg31vCa8XTqrQ 6wUBu16A8iCTH54F5lcvwDxq4bUVfayNi3lfb21LEl4fvQV5YNcp5cqDjO4f eWD1R0AePgjnYUxXPh/kgS3XjWUhj7ycaxItQLnY9Zchsw4SsOsv1P8i8O8K 4rRPltu4fPwewcAx++k4oeuGjbPlI/lXtx1qs+JdLeIhJv/NkfwfG9P+uOWI 94Li03CceiBOdv0L5cde9o/8BKg92vHg7AzBJSR+mdNw/FD78WjI/9v20ydl wBWTuAReHZBndl/iJmg/7L6EC/iOU+/31HowTZDhNY+eB6LzyUAwn2T1jkCf APQ7T8HPhafUOptPjRseCPfcFkdzHx143Jt31aw7NQ7YI8/3o2e2/07pX56G eX1ZOfo51D7EZ2VKZjfKxw+8f+U6/7xg/4BM3ijP7fT7V2PrMPvM60PlDzzq o0ToHvx4ldpnPniI2effue+79nmyJ2GyXXMHvc8/kclzz4hE2Zny73gHZCzz qTw3I5n5Z4DC8Z281dE83ze9x1Pzz3ygt5pq/mlOrxxB0qdmtD7Yi4nHRGVi R8/Ej7xZ3lPsqHjswPsP+pdCB9a2eCBo19eefv+hmw4TZ4ySzaSlRwt4aydF hFBxPgPns5zJ8+v6fpIj3drx71Hv4wUhzxe6HPIeQe23s+et5v46enyD+1CB 7QPmvFXQECbOlGEyftMEabw1T1N/UXFuAfGYNDJqJUh+wJs+/CY9r2bzuc3m cnajpc8ERiCfuWpMnAYjFVvFvVcmrj9aFimcz11+TD6tkXx2A/n0QfKZQ+cz kXcQ5FMwmdFPGrvfIm3bW4H3slb0+0WaXvBzhB4TB9oL5zPlIpPP4j5wPutt na/gOvclbyPIZzQ4X+Y4pO2gI8tViBv1d9Lny94jz61yP4+bIny+bPC6jca2 Ey14Ty4w58vYfN4bzuRzDpLPCSCfM0E+yxpXO0R9TJ1Yy1tQcn8BXHf6Aei+ Ywye0zn0X9fJRfalIK8FvxOVBxmQn8t3/IN/TcsRHDWeTeenNng+2H3Q9cyG uTUI/jW3S1QeBCA/Tfdf/bpuaY7guU8TOj8bwfOX9KBejWrnGhFh/MXzqOcv bP2+2mlkNaVRL1IX1O9IB/h5zVaLkxsp/YdGzPquRXSRcs2Z+YKr4xVqU3o2 /vb9mPhTkPiP32XiD0bif7Vz4I6Wv1SIiyB+P1WGb10SurlTyF3BxaZdr1Hc FsT/GsR/1Kcf/fwoy4KJp/HlgE1pNXqQ/tuG/6TWm2w9jj9HrTffCiaDesQ9 x/SaxuiZ8b+R7ajxLfMofRdQrkuG59rWffiZ18hjFV2udNCPND4e3bRcP5fn r6pP96PpDZj47Wc659kO0yLMn/qfpOJn+9eY5dl2we3qkCdB/3oJ8qy0qWm3 X056RLuEth7C9cLzYeqlA6gXtlxXzzLl8gTlwj3/hcolo/NHuQzqU+V6xctb yZTrECiXwPqyWtMDbwTdjq6FynWV7zq8wWAdIu0JUy52HNYRjHK5f1yDVAfj MFuuAbO1Tjqk6RGRSLlW+zLlYsfn5vvh5wXb9e7S+3I7wfx8amyztqec6pAF arPDqfknyx/EMVy5DsPh/TeNknkvzLNtWL4tmHmP62KoqouzsSLR/1Bj+twB 298zmP4umAz6O/t84egq+vkCj31voQPwH3Iym3dQ6Y4gMimL9mf3N6bT631t W0Owv8HeH5t8cZPvZZgriAX3x6/IfXbsaPP8P+P/f7ng5ya1S54T4e7LbPzz QPx+IH65s/B1fb5ZfROOn+WtQfxsfhJAfqYj+bkL/Hcj+XkP8nMW5IedbwwF eXAE8w1cHuDnVjIl5cXNH9h9zrRzmrHzwn8KvME+JxvnAOY5FG8FJg+HQR7Y 5ymbbennKQL2eQrLYwfQz49I9vlR0F2Gz7WafFXPIoHXw/nUY4qnIvtmEWB+ OP4ew/Vd5s7q0FiB9CgcQuuh9akM9dyNWZ92A+uyDbYXZ8b0ViOsO3jT6zJ9 kuFLl5vNGJ+rSmjU17suvJ/fgNnPJ9j9/ChkH/5+1wZ0fur5MP0xzLvjg6/K rwSb3OToc0DwPqSMDLsPee8t7JNyYCTtw+6fM+NqSz67fw49F4g0L3ku4Af2 52W3U9e9IzDPZfbn2Xjexd5ec6ttiuAciAd9HrEMPI+Axj0Pg5JxD24/WSXP GR3BPNyo74ABa40eCuZqLaPn4U5An94oakPymmTe5/pnaD3sr4Lx/1HifxT4 L2+4d8gnq3e8tA2DIf/pwD8D+B8/Bo+HtYJ20nnAPVfdtpAZxx6YbgttV6RE yJ032k6NYzgf9j2ukJ5MezAB73Gh7eEiaA8mWxj/IcMSnD/fq0fsKxLQ42Tz TQyv3WHtA2vzfEG3lOs0d1sPvx/rMvEBzUO3wvzd3cs0V1vB8NGFnkeHjvkm CHCQpeN/7MbwpOfjBVc/hPEsB4+lORvPpYWjui67UCj4BOIp4Sq1HLqoyZLn EM5e9zXgB/yZ/GQOaqzrPkaZ0Gr9gM7PD3A/6jeU4UVr45lzYUBfOIThtYG+ xSbYf8JrJg9aoFwJo2uaXmifL7BswZQL1U8E+qbz4frK8gil23k/cC7Pwz6o ye2+muTG9poQZ/WNAbdYCfP2yYtp7jgB5t18Neh+5z8Y5qqdhzYQ7ndr1rvN 7nJEmdwA+t0s5DzjiLdPoH465MW3Zx2zfgp8gH7cJlifudpGJFdE2qHavt50 O2T5sJ62j+Z2v8/TALw1GH/mde3uVdBPnpy8ZT3NTwULn2PNtOm6fQ4dpxly ju9B3Pf6f8Tj0duWjccErKP9vsq+fuNfwCNNYqDnTWycbbKY9XULEOfB9AWC Vx+e8pLbdz1Vmj4YrMdZ/x7Er068o995NRrGQD4qHxmfJxifEOCzJx3mygqv T1B8DZLPnzptTgnvA0xXfN/lwQIzIhnsA7D8qhLDVbxh3pvhJKpfbDzsTmbE L8EuhE9ebNJk/rSmxBXArcD403Tfl/jhZ+oRt9w70XzUJfj+cuTuFkg/MDn9 q/MefSIO6AvCYL1mjCp0XRqOcecngeuy+sOCjNd9GxmSj6JL0f/+0wPlhe7X gW1tz4P7NXwfb8k/wO6PpcPnieTkBrlS+zww1y/h7Lzuypqu0xQ05fjsvC4w WPj8hRL/yCz5vD/477/upfHAGnyWJ1+A9X73WmeJ4jbC52sibfhdBt7OoPb/ IW5sXsKDwfvJcsr+od2myxJzat+n3/P/CLh7QItE/eNFgoa359D82Fb4uUN4 b9Nu9HOuLQzP6Lmf8iE3qzt2pzj6PGgf2D9nubeOmpkOrym5HOH2GYMbjtnz 7Pe8GuZ1lzv4nz4ew4tD+Lj7U+PVxzckEwA/hzy3OqHr6Sys97lN6TXJxbNE 63G8QQZzTqGwZ46yZ7wceWaRjAJ1TsEqmeFhT1141ko6ROwSRUWK923DnI+Y 9S3MYtOMHJ62vG1xqBCf/+XyUvlrKTw9hAcNvRnXWJkv0EH4m2ba+qpnb/JM AW8Frmsa/M6NmGFO3BiqRF+3JeAnPmZp38lWJGVHMJw9l8GWa05d5lwGy6+t eWbRYfoPwSxNmHvP3Og19Zk8WQOc42h8DHy/Wn3Fg9NaamR+688q9DkOwJVv H6oV3aIJ6fs2TUXYZ/bn7ne092qQatqw/6U2izTDD6iTqoAbX2fmw3szZ2RH GXwQRJsfDaHmwwXX4Hn1noGr6Xm1aQR8rsrDyzqa4uxzkHjX9Zc+eKiRxerM cxCWK+gnmt130SC/Aw752DuV+EB8jGMJTwLxOK7R6RGr+IGX3fAGHU/dGIZr LlWNHu2oQBhf2hD2p3/nEh9jsE9yP+Z136s7AgVeD7suo9bdLHc0rFs3aqon bzvgv8D70teN660bOS1acO/F/9o796AmjjCAR0Qe1ihSwBDloSgUGrGgoNCs psEqOOIDtLYytHR4g21RKxYEzBSkw0MCGKgPHiKoKBrFVkS4Qy3VqVUUHKNU tKZSBWmNKcgjFrC9uz3MHomajk6nM+XP33zzY7N72SR7931fdbY6Lzdvu5Qn LMOaIGdp/NN+X3IXrO9K3X9ZXdOT5phE1DVFeNCyIU7nKUelGikTP83iKxn5 ywf2rLwqSJgB2JUUz4fnqJzM0WP2W9uDds5EGcF7Gf0lCwRFZF/7E7Df/SpB hPho3zQgcnUuITgHxk9JM0rtel8IahItSX823e8+ZdC9/D1LXLRm1bcEH2T4 U9c4kH5veA6Z1ZKWluDUjTm7550nuDmMPx+qKojNX4hHOwiR12W7x31vtEU7 Nucb6nVtW4D616rYhiVq8bPq+INz2AIgqkbnRxlfmd7iYIYHVaB8y+abLVuT F4KkYxSnz/F23ZN6cHvsgWUAdY63wIXi63MMciM7gnG3VodB4jztszrq3OZX 0diL2c0RuJ8SbCDiaf8XO09mHXnHEG+C46Hz0w0y8qrGBfZj4TUUvwnnX3G4 j6PylmPBVueK1Pt+buOXmpSwZ4LZGdR9c5oXktwOmKZTHM2L5w3lxdP+imNF b6+xvcFfZY3622Z2jx5Z7gc256L+vSQXAulWioc8pvYTxaB8wdeJLNCcfI7s P2ID96V7ysY0XpgZeE1C7VdI/QGWviedv0Z7TveU1wVgJsAxhfLYQo+VKKh3 vJgDHPIoTzxG8codni4H75gAVi2HrOfvvI/ibKv1N49zncDlj0eS+9sEBcUv G9x2TTJ5HdQ6yfQJPh3GC5Ya3021ZYEgGJ8J62Pr+aSGOT7owli/fEnW5aa5 LMQrYsvEEXizHOWxkMsZvBB6LkJOXw9z/36rhs1jg0wpej0kxNXtenS2l3/h OMWH+mBeQPv2dkKevt0i/WHGZOAG1532P8lLn28yzw5cPor6j4R0737MtwEV VahffsOuql0iBHK4vkfheenW/asHCm2Wgkl6+mS+Hs1PiXmymKkC0Mvg901/ PFV4zg2vHIvyloi2+uJiR6Aw0kfy/u5HrAzeMEUIlkuovD86T7DPudOTy1mE +/9G5Qnquq++aq5r/qOufi9G3e8K9pEU4vrRlevq13Wc/xXuwqgfflFR4PtP Xq9RDurZMMollvBo4//WOOWM9eUYTogjPNr4y/q/2vjLmp9X7X9Z87Cckc/1 MKdsI7EP9DDuG1arApL+50+5tnnTli+va3/V5/VdfVHPq47Xlrc+hoNy/43J cwlO188ZOPWBa76bBT7tJ6p+jq4eiTf6vdpm9vW7xPeERF+U37odIFH/XqGs jTU2d2WDGa1OGuoysVjMukxR0tLtYW52YO1dKp5+Xu66n+CHSQt5eDt8npDm 1vn1A3dGTsZHmKLcK7I1T5wwGgQw4oOhp4XBG63HBS8fxwIrGNwEekIh94f8 msFasx0d43HukkiSl8N5e/iVWB6Zqod3yKQeBB+Ezzf+7NSYbBlfj2GBj8j5 1La+tH8x9Jsz/P3Q/zvDL+ahfvR98aSKWV/CheTKk0xuTmBRmwfN0b4bAbM1 95FZMcRpD5f03NLsEYUPi6c8HZrHqXU8hSc0jqdxXY1GHvOuZi7y1szVPNrW 6wrj/cueGBj6rD5HYkfqeWB/H4NS42IebttzZf/MYfPw/Hog6Pjf8KTHSfsF Kn0TO247X6p8th/tc+Q6zBPWN2pduNWbYLIu4xQ9va5aGc/3fvi4YZ76vuR2 Gt2XlkEOJDWbSj4xAMqCZJJr89DxT7ZR8SoYT/svLUHrht1hrFec3/zQ4ftt QxW9vi8Uf7rbXbf4Vg86/iyML43vm2Pv1cx/e/q60Bf2sGTDPNHQ4wE99L7a kHUlSs/GGGwX8pDffZWzFn906cFUcHU+xcPhOcBbyT4+1rn3+Y47o/apn/Nk pGz2DeKOwKWhFpj6uc0iZa/RwZhmrPNQLnluo4CfF99Hq8rsc8xASMfAbYJj 0G99pvCMadc1rCWhbTfB7aC/v03vj+CyB9jh7LBagh+C/vzdMq6VmSHua8yt J7gD/NyRBB5u6Izh4qutunaon9uI+jfmz61V8KPg7+UkxucUd/EKiXq8Imrs qKaEqeA7+Pt3E+SN/hc+F2Y28//cWX2c4Aegp8mvKO5EMQf4b8rIIfhfK5I9 zg== "]], {}}}, Axes->True, AxesLabel->{None, None, None}, BoxRatios->{1, 1, 0.4}, DisplayFunction->Identity, FaceGridsStyle->Automatic, ImageSize->600, Method->{"DefaultBoundaryStyle" -> Directive[ GrayLevel[0.3]], "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" -> "Globe"}, PlotLabel->FormBox[ "\"Set of 2d points classified by thes square of their norm\"", TraditionalForm], PlotRange->{Full, Full, All}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic, Automatic}, ViewPoint->{1.1167496040116924`, -2.9180066067925687`, 1.299272013342361}, ViewVertical->{-0.13724171707899346`, 0.3586052197604935, 0.9233455514885734}]], "Output", CellChangeTimes->{3.750913717646402*^9, 3.75091374841578*^9, 3.7509138361640577`*^9, 3.7509138921794167`*^9, 3.750914049361356*^9, 3.750914105571582*^9, 3.750914149363557*^9, 3.750993575180914*^9, 3.7817973736116333`*^9, 3.781838324099594*^9, 3.782572408689893*^9, 3.782578070648875*^9, 3.782578182639337*^9, 3.782579615188912*^9, 3.782651963114646*^9, 3.792911053561141*^9, 3.814362985228273*^9, 3.8143630390576973`*^9, 3.814364147946212*^9, 3.8144969464867077`*^9}, TextAlignment->Center, CellLabel-> "Out[403]=",ExpressionUUID->"0a401c1b-558d-4127-ac89-113ba0b2d2a0"] }, Open ]], Cell[CellGroupData[{ Cell[TextData[StyleBox[" \[OpenCurlyDoubleQuote]Consequently, these models \ are in principle rich enough to memorize the training data. This situation \ poses a conceptual challenge to statistical learning theory as traditional \ measures of model complexity struggle to explain the generalization ability \ of large artificial neural networks. We argue that we have yet to discover a \ precise formal measure under which these enormous models are simple. \ \[OpenCurlyDoubleQuote]", FontSlant->"Plain"]], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, { 3.750228610184701*^9, 3.7502286246362343`*^9}, {3.7502286862899218`*^9, 3.750228766510928*^9}, {3.750229948226974*^9, 3.750229955698866*^9}, 3.7509398418670387`*^9, {3.78183162070331*^9, 3.781831620704649*^9}},ExpressionUUID->"67b450fc-2262-4110-90e8-\ 2b2a615ba344"], Cell["\<\ By the way, classifying n distinct point is not particularly hard even \ without neural networks. First make a Delaunay triangulation (i.e so that no \ points are inside the triangles) and then draw a normal (perpendicular line) \ in the middle of the triangle edges until they meet each other. The resulting \ Voronoi mesh has every point in the data set in its own box. However, this \ uses quite a lot of parameters....\ \>", "Item", CellChangeTimes->CompressedData[" 1:eJwlzFtIU3EAx/GjlUrFXF4oFGG6mho5l+Sa0uZOtRapc47qoUSs2MsmOHXk sHSkmUE9aAmGUoaaUFrWGjIkY5IXkLClpCbVvObm8bY5DjHE+v/s4cfn5cc3 9nqRRhtIUVQKGeyb/ZAUt8jQ/bYIIZw6tyCGBsOQBPLi2qWQKhiXQ3n36NL6 EkOr9C88sMumZWFDTcUWDKxyywUuhv5oD6Vh5OaiGV6YyK6C63XGV/HEO9kF FqhxGBywZGh6Bv59d8MFk+WyLahqXKASiFRpdRAUjjzPgp/9X6/Cjo3wUhhb 3VkG1Z+KLc3LDC3axb6HN93jmS0MQzsLHdlQ7RUMrBKHff8dO/X0iofIZoXq 4GmWUQhXSF+8rYT7vw0ERa8y9K/hgOAdi3P4cK722o71niMJkGeW7DjJXNrX R2y9LObAP/nWeKivjEiAUqW1vGaNoR+2v7wFjUpu2PYGQ7cJOTwY5laoYUhe hAY2NteVQZvOZILTIvMPysPQPgV3BuaNfN993Ev+OjkHtnJ4MTC9LTMRzo2e SYKPi5UnoKAn8QHMubdWD8vTxjqgb762E/ZqZb3Q76m0Q57K+QW+jb4/Ab2s 1AVrQjLW4OF83ybsUGpZ2BRpD04hmvjcvdAYlfo7lZgWz1+BAp/ugJjI5h4M h/O5hiRYcmhWBBsGLHr4bPBiISwwqivgo2SzGcpcw8KTRGvVUhqcen03A27s EcvhE/anE+a13J6Bk36VREYUdTWlw6OZ0zFvhCu0hyrlQ8Ux91lYVCc9D6Os PYPdxIDl/iH4D00ftx8= "],ExpressionUUID->"c5927222-a0b6-4197-ba9a-f7e976a4fd40"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"{", " ", RowBox[{ RowBox[{"HighlightMesh", "[", RowBox[{ RowBox[{"VoronoiMesh", "[", RowBox[{"\[DoubleStruckCapitalD]", ",", " ", "\"\\""}], " ", "]"}], ",", RowBox[{"Style", "[", RowBox[{"1", ",", "Black"}], "]"}]}], "]"}], ",", RowBox[{"HighlightMesh", "[", RowBox[{ RowBox[{"DelaunayMesh", "[", "\[DoubleStruckCapitalD]", " ", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Style", "[", RowBox[{"0", ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "Medium", "]"}], ",", "Black"}], "]"}]}], "]"}], ",", RowBox[{"Style", "[", RowBox[{"2", ",", RowBox[{"Opacity", "[", "0.1", "]"}]}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{"Orange", ",", RowBox[{"PointSize", "[", "Large", "]"}], ",", RowBox[{"Point", "[", "\[DoubleStruckCapitalD]", "]"}]}], "}"}], "]"}]}], "}"}], ",", " ", RowBox[{"ImageSize", "\[Rule]", " ", "600"}]}], "]"}]], "Input", CellChangeTimes->{{3.75091510192107*^9, 3.750915126271587*^9}, { 3.7825687960248327`*^9, 3.78256880788172*^9}, {3.782568847360077*^9, 3.782568913600211*^9}, {3.782569063151991*^9, 3.782569091682454*^9}, { 3.782569157508842*^9, 3.7825692227028637`*^9}, 3.782569262456156*^9, { 3.7825694974995203`*^9, 3.7825695540750227`*^9}, 3.7825696766234818`*^9, { 3.782569994996533*^9, 3.782569996505885*^9}, {3.782572892268887*^9, 3.782572904134757*^9}, {3.782573000840877*^9, 3.782573058729452*^9}, { 3.782576399285407*^9, 3.7825763993897057`*^9}, {3.7929108067540092`*^9, 3.792910814374017*^9}}, CellLabel-> "In[404]:=",ExpressionUUID->"663a0b57-964e-421c-b46c-c1ff6f1f85c6"], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxd1mk0Fer3B3BTMpRSdDuIZi5SN5RMu3JDKZRkqChT3JQiSRTlkvEikRBJ KaIyRDLsY8pQ5kzHPB3DOY4z4Jj9+7/gxe/Fs/b6rPXda+1nv3jWs8PK6Zwt FwcHR/Xv8//VPYKgJrGFk/iEyCFWdpmGn44E5yYqcxDTWiOvq6U2Y+r9ikIH 6jJyH30urGPHRvRmFtc5NUGDnw7Vo7kTN1xm9KqKTuPNrU0NLzUWwNp42lha g4NYSe9Zk8EYxVOOj9oGHywg119nw/+w+oa+Vq6mmpYMPGca3igbSMWYEtYj eeYCygfFvb+RMQLTNeGSuTunsZCn5Mzdcx3w+r2Z6hvSFP5l5KU7XUDFYyfm CNHCDHxgUKqr9noeQ7kYx9d/Z+Mrw7HnXe+r8KS5i3OaKR2DZFWFzym2wcsQ JS1lLzZ+lCn9kCFWAmd6/Jr8nBbQ+fN9uQbeL7hoZp9kJUHHw0kZg2ct26Dd OkK9gD2JbwTDMgUEy2Hi677LbLFlPBepTQhfGoOa+w0ubzdxEH1c+EJS9WkQ 19XA4IsZR4vm+BJNYQaM/fLJPqLEQkGFm4uUrho0qiqhJT4cw4ikm2csh5+j gMJ/U3WxszhPvpCol8uEJqFiAw3LX+iTf+HnodNzwLq15CfzgY6XeEW6nHsH YC0ftYIoxcSA9p7+lFEaflELng9dx8S32u+lyWXfsWV9REBP/BByX+MlOU8x YYO32u07Swx8UXU69J7FPDyiDYeGPCOjdSBXPnnDIGza5f5Ned8oHrvxPpN6 JRNqDF6GTtVRkSdH9JX/j0aQ1zic0pfWj82Sqm5nR1iQslXjlkRKJxYSFEmB z7uBn7Sx+oYSGUla3afaUwdxn/6l5Qbox3nXeU9XWyZm9BrcX7NlHJvE6CeL sziI/Zocqdmf6VhKPpffOjKJ6nxvXmslj+AZaXOlH0XFwGLyXRHq/4W9dh5J 1wubka/Gh59dVINX3+Vy+sRPYvbuC3pb3Lqw9qX92gjZcZzdqppytPIX1jfQ CCfWf4PyI+VKJyoa8Iiac6niRxbeWN44ukgawiXnBClCSRsuitQEZ3cPomqr 1BlliSGsd77ic41zCJnvrFghjyrA1aE7KegzCbmDJc0qBwcwVSlZUedrOSZo S7UI7GnDh7R9tXFZNuh1fUBoLI2MtlPpO4nHWvHTvWedqU1NKENm3tNfbsH1 7QqXgkOqMTmnoALUO/HEtf1VKt290GvkofqwvRFP9bkkbr9Lw+C5YLcC41p8 LsLID+ksxXk/D19p30aslmPRRr/RQW4zhrHXJKO94rs/3kj2wBV5se37XepR fIKbqmoVguvCsjI2xjfg5qP1LPvaQnS6HDOXal6LshfZwyc0WmGs+1+CaEsc PjFaNx/z+Cfuza+Q+DmRi/N33+hzUSugfj15SEC2Dh80Nl3vViSBYEhlCOtY DhZ7XndTze0EYs7SQIv3Bzhu0pJ6gUZFzcuD0fSFOhQ3jbaXeloK6hB5d/dr dxwOlJvbNzaEUtVeOiqThfCqoFxa7+4E2mF88mnRIhQdZbG1myrBuncmjOue P+w8RYwRSR6CdOeNgcWyufjr7n9t6uOpOE3O4TcgFKFb7oGUXV/qIfpJ82Ta wgHQdh0sk1Eow1QRZZuo8hKcF0u2guJJNNRcdtAcT8Hjf2VUEfuTYGwiNH/b oRrImIizrwjkBZOPsoYfZPNQJcr/H4XzJDw8f3mDgFsF6OUoX9sZM4NDV+34 Dfc8hwD/0Fjt2GmMVLK6yl4MQKkQncIavyokb6578fHCSwjqfGZvsW0EZaQ5 CTspjeDuSf/0eq4TNZqICqqaP2GMzKop5MsB3k5t/7RQInCOFWjfKPoJXSq9 cx9oCrgz0fYD+8wQ3t/9mR1hUQa++2lfBwoz8Ecvz9fNPd3Y37vc7aE5Cfp/ HozfbVUNhyz9hUfLf2GZ7KbxH5GBsD1QolxZigy05Bbh6bAakHKfelAYWQFr DRJtRp7VgYbOC89yoypI1tWXLfu7CL24xXgLh2mwn/bHqWGRRrCVPx/VHtoI V62kuxZmP4NgzcTt1+IcxAUeGSvfcBJQpZTpm6b70ftcc9rNxUqYyGrIn0ui w7oeY/9CIxLUtHv4ZG6kYHkpie8MswPUeMMX1X9Q0FXZK8JOrxEOR9oFOv7H REWjVwVqlY1gbqW3mzbMxMYXKWS/R+1wK5bgV9rWi+mJxYOBnk1g6hBdEvXv ADw3SDrLiOoFKLNd66oxCvZqHUMKcVSoZRkTvtr3g4Jl8adJ+z64FCyxWJbH QN69eVr65r0g23lpn4EhGeuEgsbSHNvAccHUhBFLgq0ZJ4ppo4MQZSCP/OKD KNSot/Geex147KrPLGthY8T4BjjUR4KZLIeFXFUKct7c/MgsfQjeWV1ifk/q BP2jdXSdkF6YlGnuE26dAiV2SBJeHAL+6dPPPW3YaMg4J2fNR4KE+IPxjZq/ cH2n8QPxqj5g+VxfqlEjIXHCW+CjzSRUbndp/XaLgc80fDOu7x6BqcuGlrWC bPy5Jffplwv9YBF5SOLS2XF0oDvoZqZ2gV3dv9801lTiEmH7J8p8P8yvs5js b+zFpL0kMffyfrhrsn9GZ28/xnElKB9Q7IVNGz24zwh/R/MtBTI5P0ZAId93 +b5gM+aNZ8rPOPeBNVN7IMq1BNzPKxz3Y3aBmtmTw1bXOIjBQeono2RG4Kdb QSK5h4rxtUU7JFoGYUzReN+fFiR8WiewFNw0Dio7pKRO/N57ov0+TzsLKsSR nvIV7PmCDL5yx0BhCnRcPbJO9CIbBxeqXLNGx6A8cLHuyo10uKpnE+eRSYbb h7bPbC+joOD+zw1dWgOQxfWWT8GiCjvjzG792doPtw9Kmi0XZQJT4XBVSGIf 9GWLp8YITYNs/T9OWwgj4Km53L/drBEJPOzI6pghcO3JshX5exJ1NQ68s66d BrdQr0fTllxE+XXMC+lXhmHnv1dsBI4MYYjo5rpdsxSot1zqOfiwD5ty/6JI ytMg5LOuoax0Hqb0knp23aQCiyOILivViRwZeXd41Jnw9+iuBAKZiu/styUL R4/BeGBpxv0/sqGgjllr2MSCDKHSC6UKP2D4/IsHisEUCGguzH+jQ0OtGTeV WCkGfNlPi+naM4vWb7XXNhjRwOwA2wT4SGhqsul7/O0xOKaueZpmOwK1gelJ js1UKMwyUYw5mY47MjmHv9xggXbA4qRbUil+lHOkZP0zAUeLcsw7+NvQo4gr 71QxFfIuViaI0nwwO/11mB6TDtYJ2aFdQ01YcCNx6oDOJEQRPFsnIhqRXxLq XHXo4MvD5RFL8IfB3e3eXXfGoUM8TY4zmgWsaafg8CAWSKoeGjSRL0OV+NZn xaeZIHBad/xW2wgK5edPdxyfAgsPcsVb9wyo5+XSe/i7L0BTMCDuZD1SjiZo ikaxwIUudSfcow8/FSt1qEXNgssRU5d39H4sylCxaplmgZLq3oeli4PY3j7K jnSdBLMwe+7svEZsDrd41bd5HBgcH7X2q06C/OO+81pkJjgeE3BPXN8Nt6Xf X1kzMgtsfavbORI5KB6qln5kZg5CPRyjvHp8UT95zzE/jiWgWZcObz01gWvX xbB4ktjwWO5iVpgTCaWV2CzWABNmxXZki4l1A4NTS5yTMgcRLxtO+ff1Yo3Q rH2VwRzkGKgvRhNo8HqvmvBj69//oqDHZ13WuKKuUfZSsM4c5MtKlFYHDKCx hmDZiOkcFHEoxkoPN4OliiSVYb0AYgWT5t7GTZh7eCLW4vgCyC4K6P6STAH7 kKm3s248RA41020BtRO44qOMrtmFve9WTW975VSeyoCc9n/Mn65ZhtRSi7B7 4vRVF9J9E5YfU1bddraV8PVeM67Y5PQWEcqDjlXThtK9M3fQV83p/PG2k3EW iCsKll7//W7dkVxK2GK7DI19J8e8xBpWHf2ltTqeRFn15QrHgDk5Ch7M+9vB ToibyP/Enaps175qb26HhWUgwUr+qW9VmdirqVUXW3CJpGzjIa7k5Wxs6h0O zsCKV+7/v17pX5n/f72S/z/BFNsE "], {Hue[0.6, 0.3, 0.95], EdgeForm[GrayLevel[0]], TagBox[PolygonBox[{{121, 128, 116}, {172, 169, 166}}], Annotation[#, "Geometry"]& ], TagBox[ PolygonBox[{{18, 14, 10, 15}, {45, 55, 43, 37}, {70, 73, 61, 67}, {78, 62, 56, 50}, {65, 64, 61, 73}, {66, 75, 80, 69}, {89, 87, 74, 81}, { 111, 107, 96, 98}, {185, 178, 180, 189}, {186, 179, 174, 187}, {190, 5, 30, 192}, {195, 136, 167, 196}}], Annotation[#, "Geometry"]& ], TagBox[ PolygonBox[{{181, 1, 6, 2, 182}, {9, 19, 16, 15, 10}, {7, 2, 6, 11, 13}, {27, 8, 22, 13, 11}, {17, 26, 9, 10, 14}, {52, 53, 32, 23, 46}, { 84, 91, 85, 63, 76}, {94, 108, 103, 90, 71}, {97, 93, 90, 103, 104}, { 106, 119, 99, 100, 101}, {125, 112, 108, 94, 92}, {122, 102, 96, 107, 109}, {114, 110, 79, 95, 126}, {127, 133, 119, 106, 138}, {132, 145, 135, 123, 134}, {131, 147, 127, 138, 118}, {153, 155, 142, 151, 130}, { 148, 117, 144, 147, 131}, {162, 159, 152, 142, 155}, {152, 157, 154, 151, 142}, {146, 157, 152, 159, 161}, {189, 180, 176, 179, 186}, {187, 174, 177, 171, 188}, {197, 3, 1, 181, 199}, {191, 25, 113, 136, 195}, { 198, 139, 126, 95, 194}, {193, 38, 12, 3, 197}}], Annotation[#, "Geometry"]& ], TagBox[ PolygonBox[{{200, 183, 20, 24, 5, 190}, {26, 21, 24, 20, 19, 9}, {29, 34, 30, 5, 24, 21}, {36, 46, 23, 28, 22, 8}, {192, 30, 34, 88, 25, 191}, {29, 21, 26, 17, 33, 31}, {35, 54, 31, 33, 40, 48}, {57, 88, 34, 29, 31, 54}, {42, 45, 37, 39, 12, 38}, {41, 52, 46, 36, 47, 49}, {68, 49, 47, 43, 55, 51}, {68, 86, 78, 50, 41, 49}, {44, 67, 61, 64, 35, 48}, {56, 60, 53, 52, 41, 50}, {58, 65, 73, 70, 63, 85}, {77, 84, 76, 72, 74, 87}, {79, 110, 101, 100, 69, 80}, {86, 83, 89, 81, 62, 78}, { 92, 94, 71, 58, 85, 91}, {97, 113, 25, 88, 57, 93}, {105, 150, 104, 103, 108, 112}, {118, 138, 106, 101, 110, 114}, {122, 121, 116, 115, 4, 102}, {148, 131, 118, 114, 126, 139}, {129, 105, 112, 125, 135, 145}, {151, 154, 132, 134, 137, 130}, {149, 153, 130, 137, 124, 143}, { 160, 165, 163, 149, 143, 141}, {156, 162, 155, 153, 149, 163}, {173, 175, 158, 150, 105, 129}, {164, 172, 166, 156, 163, 165}, {184, 175, 173, 168, 178, 185}, {196, 167, 158, 175, 184, 201}}], Annotation[#, "Geometry"]& ], TagBox[ PolygonBox[{{182, 2, 7, 16, 19, 20, 183}, {12, 39, 27, 11, 6, 1, 3}, { 22, 28, 18, 15, 16, 7, 13}, {43, 47, 36, 8, 27, 39, 37}, {44, 48, 40, 32, 53, 60, 59}, {81, 74, 72, 59, 60, 56, 62}, {51, 55, 45, 42, 75, 66, 82}, {72, 76, 63, 70, 67, 44, 59}, {115, 120, 77, 87, 89, 83, 4}, {99, 111, 98, 82, 66, 69, 100}, {158, 167, 136, 113, 97, 104, 150}, {133, 140, 109, 107, 111, 99, 119}, {144, 160, 141, 140, 133, 127, 147}, { 177, 164, 165, 160, 144, 117, 171}, {169, 170, 161, 159, 162, 156, 166}, {176, 180, 178, 168, 146, 161, 170}, {202, 188, 171, 117, 148, 139, 198}}], Annotation[#, "Geometry"]& ], TagBox[ PolygonBox[{{32, 40, 33, 17, 14, 18, 28, 23}, {194, 95, 79, 80, 75, 42, 38, 193}, {123, 135, 125, 92, 91, 84, 77, 120}, {124, 137, 134, 123, 120, 115, 116, 128}, {141, 143, 124, 128, 121, 122, 109, 140}, {168, 173, 129, 145, 132, 154, 157, 146}, {176, 170, 169, 172, 164, 177, 174, 179}}], Annotation[#, "Geometry"]& ], TagBox[ PolygonBox[{{90, 93, 57, 54, 35, 64, 65, 58, 71}, {102, 4, 83, 86, 68, 51, 82, 98, 96}}], Annotation[#, "Geometry"]& ]}], GraphicsComplexBox[CompressedData[" 1:eJwVxX08EwgfAPBQk3R6nqvm/b3LddyU1z315EeXl1K5KCKLlIVLdFpel1Sc x0tnalG5q9P0otPpyFjxW27XCxbhvG7MW7flbcOaedme5/nj+/laRsT5R2qu WLHi5P/8/6h8eZkycSV3r49TOE9DhHbBFKbePS2ubp5Rrd9dBa6vIxUHnNTg Wr1wrZ889BYcPVpW+/kvIdmyuIHZuow7dXlDuWuX0PIxn7W/bgHSfMwCMlOV qNkUTHnXO4sZuoteWz6bR5+PudqhpzrhRsmtsE0yBZpRhCVnPUX4hYf7dblC ju0PagSh9oMozYprrkyRY4ZToTgk8D20l+ueJSnn0Pt8AdvI7TGouT/OJnfP 4Ytd5e8qLIbhG42k9AbHObTmf062uy8Gt8iSl8K0WQxRFJFUezigdry2JMiZ waZylV68kwJ0OExPSbMUz5mp7hAj1fCMs0D/SJtCnix/46/pfai67bAyXzKO YQl/0bKylqBHmx5xqUuM1cdsh6wLR0HwKDsxXHsMhYFuP+w/MgyGXKNYhfco xm/dvxQfMApeSYlm+SYj6JY1vepGwDTO5v9s82fgIFakld3W75nDmm8TLvxJ GMCqB8kmP4e0IKHWHzL/0Y/frGqsMJqV4lYH2sNdz/rQdGvQRL+0H4/4NSZs Vvfg4I1AX1dJHTL3NMWeV3ah50qBBeuKBGcE9d/v4XWgaXLKZabdAD6y8ZJx Etvx8zBms2q+Ay7GZpDr1rWhKrv4yiSNj6SLJxa03Fuw7N3j0RfnRLAqdoQ0 QGzCeQdTcyp7HtOJiQ53S95gic7Gyy43O4BbXkIcvfIaL/B9vM/2NaGW9Fuv rl2v8Dhdn8VRdkLG6y3eJmwebqI266rtG5FRXTpvUP8HXtfqej9YKcVsuTe/ 81Y9hicETPfsfAJX9a7N5yyXoQP11IWztzvALihi7083U7DKZc2Q0pkNzaKp 7ir3DKAuVBLuR54D0yfhR0edK6Hxt9SHeokzaGSr9KwxqIU+5/K+V4UzOBUq iVcb14HhYcopK6tOFLZ5bLL2RYg6o8lMK+wDwmLMwuLuRqjXqSLSvN5hn9eJ 1oscHjR5XI/hBcvBQ5XZsMeyBQpIN38xlw3A2kxjumiWD/XfV40vmLfgpfGU 9RJiG8x/7UL6naWE1ZqfieIl7UDKai92XJrCf65ujWes6QBHz2AhRIihYS+B 8Ny3G9zzyi10R8bw6HFtg+SZfpidKSAyHkmxgFxdWkMVAPuldmjq5vtwmjVu QFwSwJpDskNn4obhZL9dpk+REBzqdkdT9bS4/dPelUHlQuhuRgFpegxND2YN PdUbBCcNxpfUvPdgsPfYep3gQSh6ws4R5c0iwSYs+2HIINh0sNQPNkvBiWDi LzYWwVO2fpcZbxT5Ex+OprwQAT+x9ED0tUU8yi2KCosZgqHaW76q839j9P4j J2SxQ1CqU2Gz4bAQ23cYZ7kuDsNlVzMLh0MCXHod+58awgi8pSl4vW49GEBO 7vaTjkA6fPyOaraElavtn1VZjYHgL8IOeuYA6qVxCdH+Y2Bpm7B+2VWGa3/3 MM/kj0GAOF6vb8sboHw1cKlfPgaprdt8P129h9WTtQy/0Q/wG/mH4zviFkH7 WZu53jYxLCfrumxK5KDiARj2RomBLXs6UHhVht3JTfTt3AnY3qlZ2cgSo1en Qr0tbhJOVf8qpsw0obKuyHlOMglGbq3Fz/2bkPk4lLGBOgV8HXLeJEuGu7Xn 8yOdpeBaymEzP9RDThzjxM5bUlCk/lhrbPEHvnKxZbrzpXCn72rgvxk16Nn5 oXTddRmcNq305VgMocxEbN0gk8HBnf5BW0yjUdcuOiLSfQZs79HsKRMCPH1A jSO1s7DPuoAioo0DJSrXkx8kh30VjGPTmoP42i0pSUn+BH4ahh+Pb5bgxVyT vEvhn0DVosmkp89BYxwxzyz5Ezy3WCfLLX6JFWO9reeLFHCQzbv7L/s2NNx2 eMUjVEBpdHbqm8wW2FBhZk3qV8CXX2y/r39Qjgn1w76eG5UQdcGX8XZYBA2q GH3vHCVYeUTmFjA6sIx+5ww9ZxnKyjX3XanuBkFSRNLDCBXoUMmdEyn9yHKn FbHyVEAxUOkWOQixpjcmpHCVGnIPSPKDRvn4X8NqWu8= "], {Hue[0.6, 0.3, 0.95], EdgeForm[Hue[0.6, 0.3, 0.75]], FaceForm[Opacity[ 0.1]], TagBox[PolygonBox[CompressedData[" 1:eJwNw2e7sQAAANBLZESZGRmFyh5JsiKSGbKTyPh+/9/76957nucQ79/92/rz 8/PvL/DXagNBW8QKWtBILIKCsQgVRxM2IgKiLidgcVpAJ+hyuiB/POp3odF4 GnL5437UH4XRWIKrJKkIkYhR6XiS4hIliiiXCC6ZIEblEkuRWBqLptPJLJnO VmpkrcIUa0ytSDIVrkJmk5UsRtJsqZyMJ2xdAo5iDsgNOQCH2+MFHLDHDflh DxyE3RDghLwOj92LeO0A4g3aER8S8IUDSBgJNn0BrycIh4KA3ZKiMyEYy9D5 XCpTzRcKebpYoPlCkU5huUw+hIdDKTyM10PhYAOv4vlqC2+06niBr+K5fCqH h+uBar+BpUJkkW4G6gxfZMvtEdEtjwZsW5y1B+3yQB6K7ZnYnY5Yscf1hj2O HfZEbjgeTyR5MpYmssSM5fGQkfjpYMRw4/VssJ7ulNlaEWe7h/bYTbXHZ71T pt2Hpuxk5SiLiqIdN/LxY2pH7XreHK/6+fN9X8/Hq2ZK8mYwXX/eJr+Y89JC nS/4eX+12S6k1ea8VRcrabOaXzrNulBvCa1GR2h1LkJnKdyEZXPe6fc7jebS d1htq3z/sD/tz/pprx/UlW4a++35a75N/X6964b5vajPk3ow1JN6mRuvp3HS b8/X7fJ8qsb3ZVxuwmG7v5p3iuX+A0cYcBQ= "]], Annotation[#, "Geometry"]& ], {GrayLevel[0], PointSize[Medium], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100}]}}], {RGBColor[1, 0.5, 0], PointSize[Large], PointBox[CompressedData[" 1:eJwVxX08EwgfAPBQk3R6nqvm/b3LddyU1z315EeXl1K5KCKLlIVLdFpel1Sc x0tnalG5q9P0otPpyFjxW27XCxbhvG7MW7flbcOaedme5/nj+/laRsT5R2qu WLHi5P/8/6h8eZkycSV3r49TOE9DhHbBFKbePS2ubp5Rrd9dBa6vIxUHnNTg Wr1wrZ889BYcPVpW+/kvIdmyuIHZuow7dXlDuWuX0PIxn7W/bgHSfMwCMlOV qNkUTHnXO4sZuoteWz6bR5+PudqhpzrhRsmtsE0yBZpRhCVnPUX4hYf7dblC ju0PagSh9oMozYprrkyRY4ZToTgk8D20l+ueJSnn0Pt8AdvI7TGouT/OJnfP 4Ytd5e8qLIbhG42k9AbHObTmf062uy8Gt8iSl8K0WQxRFJFUezigdry2JMiZ waZylV68kwJ0OExPSbMUz5mp7hAj1fCMs0D/SJtCnix/46/pfai67bAyXzKO YQl/0bKylqBHmx5xqUuM1cdsh6wLR0HwKDsxXHsMhYFuP+w/MgyGXKNYhfco xm/dvxQfMApeSYlm+SYj6JY1vepGwDTO5v9s82fgIFakld3W75nDmm8TLvxJ GMCqB8kmP4e0IKHWHzL/0Y/frGqsMJqV4lYH2sNdz/rQdGvQRL+0H4/4NSZs Vvfg4I1AX1dJHTL3NMWeV3ah50qBBeuKBGcE9d/v4XWgaXLKZabdAD6y8ZJx Etvx8zBms2q+Ay7GZpDr1rWhKrv4yiSNj6SLJxa03Fuw7N3j0RfnRLAqdoQ0 QGzCeQdTcyp7HtOJiQ53S95gic7Gyy43O4BbXkIcvfIaL/B9vM/2NaGW9Fuv rl2v8Dhdn8VRdkLG6y3eJmwebqI266rtG5FRXTpvUP8HXtfqej9YKcVsuTe/ 81Y9hicETPfsfAJX9a7N5yyXoQP11IWztzvALihi7083U7DKZc2Q0pkNzaKp 7ir3DKAuVBLuR54D0yfhR0edK6Hxt9SHeokzaGSr9KwxqIU+5/K+V4UzOBUq iVcb14HhYcopK6tOFLZ5bLL2RYg6o8lMK+wDwmLMwuLuRqjXqSLSvN5hn9eJ 1oscHjR5XI/hBcvBQ5XZsMeyBQpIN38xlw3A2kxjumiWD/XfV40vmLfgpfGU 9RJiG8x/7UL6naWE1ZqfieIl7UDKai92XJrCf65ujWes6QBHz2AhRIihYS+B 8Ny3G9zzyi10R8bw6HFtg+SZfpidKSAyHkmxgFxdWkMVAPuldmjq5vtwmjVu QFwSwJpDskNn4obhZL9dpk+REBzqdkdT9bS4/dPelUHlQuhuRgFpegxND2YN PdUbBCcNxpfUvPdgsPfYep3gQSh6ws4R5c0iwSYs+2HIINh0sNQPNkvBiWDi LzYWwVO2fpcZbxT5Ex+OprwQAT+x9ED0tUU8yi2KCosZgqHaW76q839j9P4j J2SxQ1CqU2Gz4bAQ23cYZ7kuDsNlVzMLh0MCXHod+58awgi8pSl4vW49GEBO 7vaTjkA6fPyOaraElavtn1VZjYHgL8IOeuYA6qVxCdH+Y2Bpm7B+2VWGa3/3 MM/kj0GAOF6vb8sboHw1cKlfPgaprdt8P129h9WTtQy/0Q/wG/mH4zviFkH7 WZu53jYxLCfrumxK5KDiARj2RomBLXs6UHhVht3JTfTt3AnY3qlZ2cgSo1en Qr0tbhJOVf8qpsw0obKuyHlOMglGbq3Fz/2bkPk4lLGBOgV8HXLeJEuGu7Xn 8yOdpeBaymEzP9RDThzjxM5bUlCk/lhrbPEHvnKxZbrzpXCn72rgvxk16Nn5 oXTddRmcNq305VgMocxEbN0gk8HBnf5BW0yjUdcuOiLSfQZs79HsKRMCPH1A jSO1s7DPuoAioo0DJSrXkx8kh30VjGPTmoP42i0pSUn+BH4ahh+Pb5bgxVyT vEvhn0DVosmkp89BYxwxzyz5Ezy3WCfLLX6JFWO9reeLFHCQzbv7L/s2NNx2 eMUjVEBpdHbqm8wW2FBhZk3qV8CXX2y/r39Qjgn1w76eG5UQdcGX8XZYBA2q GH3vHCVYeUTmFjA6sIx+5ww9ZxnKyjX3XanuBkFSRNLDCBXoUMmdEyn9yHKn FbHyVEAxUOkWOQixpjcmpHCVGnIPSPKDRvn4X8NqWu8= "]]}}, ImageSize->600]], "Output", CellChangeTimes->{ 3.750915042037402*^9, {3.750915114598048*^9, 3.750915128205143*^9}, 3.7509931625139*^9, 3.781797268223213*^9, 3.781800967415924*^9, 3.782568808670589*^9, 3.782568856820804*^9, 3.782568916249919*^9, { 3.782569080159049*^9, 3.782569094284519*^9}, {3.782569179509037*^9, 3.782569223494925*^9}, 3.782569523804628*^9, 3.782569556577291*^9, 3.782569681636908*^9, 3.782569997064535*^9, {3.7825729002039433`*^9, 3.782572904711018*^9}, {3.782573021312562*^9, 3.782573028780957*^9}, 3.782573059161256*^9, 3.782573129810775*^9, 3.782573195034162*^9, 3.782573249698794*^9, 3.782574191102653*^9, 3.782574233643366*^9, 3.782576405927072*^9, 3.782577884103077*^9, {3.782579264829056*^9, 3.782579278451343*^9}, {3.782651835089452*^9, 3.782651841603915*^9}, { 3.7929108010943213`*^9, 3.792910815575088*^9}, 3.814362936382698*^9, 3.8144970244879208`*^9}, TextAlignment->Center, CellLabel-> "Out[404]=",ExpressionUUID->"62ac3295-ef78-4612-99b7-93b1569c16d3"] }, Open ]], Cell[BoxData[" "], "Input", CellChangeTimes->{{3.792911408816634*^9, 3.792911411664201*^9}},ExpressionUUID->"26ffe5b3-7ba6-4597-998f-\ bcd61be5ef18"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["", "SlideShowNavigationBar", CellTags-> "SlideShowHeader",ExpressionUUID->"cbfa598f-2162-44f8-9ca8-0f1035076f65"], Cell[BoxData[ StyleBox[ RowBox[{ "10.2", " ", "Random", " ", "labeling", " ", "of", " ", "data", " ", "sets"}], "Title", FontSlant->"Plain"]], "Input", CellChangeTimes->{{3.814458480629573*^9, 3.8144585064328327`*^9}},ExpressionUUID->"2e20de8c-50cd-49b0-a826-\ 3c90c367dadb"], Cell[CellGroupData[{ Cell[TextData[StyleBox["", FontSlant->"Plain"]], "Subsection", CellChangeTimes->{{3.744002663399671*^9, 3.744002696764913*^9}, { 3.744002902088481*^9, 3.744002905941862*^9}, 3.744010525517058*^9, 3.745480091273404*^9, {3.745588739210264*^9, 3.745588741285788*^9}, { 3.745590699642372*^9, 3.745590703264373*^9}, {3.746291860142119*^9, 3.746291861190962*^9}, {3.746292028069665*^9, 3.746292054923457*^9}, { 3.746546106955564*^9, 3.746546110999503*^9}, {3.7468490368241587`*^9, 3.746849041420682*^9}, {3.747411897438089*^9, 3.747411901496002*^9}, { 3.747412461272674*^9, 3.747412490036854*^9}, {3.747584004609747*^9, 3.747584006696958*^9}, {3.747709115881094*^9, 3.7477091475197687`*^9}, { 3.747710619791629*^9, 3.747710627094282*^9}, 3.7477106575929003`*^9, 3.747710697743372*^9, {3.7484873581016483`*^9, 3.748487365674474*^9}, { 3.748505877235465*^9, 3.748505906480434*^9}, {3.748506002231324*^9, 3.7485060104975977`*^9}, {3.7485407111189327`*^9, 3.7485407208364697`*^9}, {3.748540943386221*^9, 3.748540957347314*^9}, { 3.748543294073736*^9, 3.748543300651854*^9}, {3.74958599168602*^9, 3.749585992538477*^9}, 3.749586033525942*^9, {3.749615078009986*^9, 3.7496150786951323`*^9}, {3.7496954807027082`*^9, 3.749695481608212*^9}, { 3.749696350605179*^9, 3.7496963659731903`*^9}, {3.749748113795589*^9, 3.749748114698409*^9}, {3.750228840936438*^9, 3.750228849455237*^9}, { 3.7508521786855*^9, 3.750852196661455*^9}, 3.7509613767842503`*^9, { 3.8143636576907053`*^9, 3.8143636788252497`*^9}},ExpressionUUID->"53f1766a-a1a5-4078-b5e7-\ d73cd74ae9fc"], Cell[CellGroupData[{ Cell[TextData[StyleBox["https://arxiv.org/pdf/1611.03530.pdf", FontSlant->"Plain"]], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852198932138*^9, 3.7508522161131144`*^9}},ExpressionUUID->"c714eba1-69ef-4177-83ab-\ f6ee0a9fbe74"], Cell[TextData[StyleBox["Generalization error is the difference with the \ training error and test error", FontSlant->"Plain"]], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.750852294111231*^9}, {3.750852465735532*^9, 3.750852493737524*^9}, { 3.7508525769434233`*^9, 3.750852587041448*^9}, 3.7509360915101633`*^9},ExpressionUUID->"bd2edbc6-0b2b-40eb-80e0-\ 772ab4dfccd4"], Cell[TextData[StyleBox["In practice, the generalization error seems to be \ small, even when the number of parameters is huge. What is the reason for \ this?", FontSlant->"Plain"]], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.750852294111231*^9}, {3.750852590990642*^9, 3.750852622666761*^9}, { 3.750855392462048*^9, 3.750855393313971*^9}, {3.7509467332749367`*^9, 3.750946734486287*^9}},ExpressionUUID->"1ab68e21-050a-4b64-90e5-\ 9d8f7520fc8e"], Cell[CellGroupData[{ Cell[TextData[StyleBox["Model family? ", FontSlant->"Plain"]], "Subitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.7508523061460123`*^9}, {3.750855312438998*^9, 3.750855313153433*^9}, { 3.750855352539312*^9, 3.750855380596526*^9}, {3.7509467492096357`*^9, 3.7509467492134933`*^9}},ExpressionUUID->"aacf73ce-fe2e-4276-8611-\ 2db1ed79ce07"], Cell[TextData[StyleBox[" The effective capacity of neural networks is \ sufficient for memorizing the entire data set. Even CNNs", FontSlant->"Plain"]], "Subsubitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.7508523061460123`*^9}, {3.750855312438998*^9, 3.750855313153433*^9}, { 3.750855352539312*^9, 3.750855380596526*^9}},ExpressionUUID->"5168c140-ea22-4a1e-846c-\ e8d9163bcd8f"], Cell[TextData[StyleBox["Regularization? ", FontSlant->"Plain"]], "Subitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.750852314821372*^9}, {3.750853650431027*^9, 3.750853650434354*^9}, { 3.750855117102941*^9, 3.750855126039562*^9}, {3.750855162878413*^9, 3.750855177518148*^9}, {3.750855219736595*^9, 3.750855255749405*^9}, { 3.750855321017714*^9, 3.750855323042954*^9}, {3.750946754300234*^9, 3.750946754300795*^9}, 3.779932928278414*^9},ExpressionUUID->"22ae7852-2b13-4ad9-aa17-\ d7a2e0c5ed85"], Cell[TextData[StyleBox["( weight decay, dropout, data augmentation) \ \"Explicit regularization may improve generalization performance, but is \ neither necessary nor by itself sufficient for controlling generalization \ error\".\n", FontSlant->"Plain"]], "Subsubitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.750852314821372*^9}, {3.750853650431027*^9, 3.750853650434354*^9}, { 3.750855117102941*^9, 3.750855126039562*^9}, {3.750855162878413*^9, 3.750855177518148*^9}, {3.750855219736595*^9, 3.750855255749405*^9}, { 3.750855321017714*^9, 3.750855323042954*^9}},ExpressionUUID->"dfaa705b-8b74-4f34-8b0d-\ 9dd3678a5f91"], Cell[TextData[StyleBox["The training method (SGD)?", FontSlant->"Plain"]], "Subitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.750852314821372*^9}, {3.7508536541160297`*^9, 3.750853665145534*^9}, { 3.750855728817477*^9, 3.750855728820393*^9}, {3.750992893053134*^9, 3.7509928967371597`*^9}},ExpressionUUID->"1cb6c052-7a27-4eba-ae79-\ 16cb21adcb7e"], Cell[CellGroupData[{ Cell[TextData[StyleBox["Batch renormalization helps", FontSlant->"Plain"]], "Subsubitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.750852314821372*^9}, {3.7508536541160297`*^9, 3.750853665145534*^9}, { 3.7508557303151703`*^9, 3.75085573783372*^9}, {3.750855863340105*^9, 3.750855863342112*^9}},ExpressionUUID->"4a89f316-4785-4214-b47a-\ ab4097de730d"], Cell[TextData[StyleBox["Data augmentation helps. (domain-specific \ transformations, random cropping, random perturbation of brightness, \ saturation, hue and contrast)", FontSlant->"Plain"]], "Subsubitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.750852314821372*^9}, {3.7508536541160297`*^9, 3.750853665145534*^9}, { 3.7508557303151703`*^9, 3.75085573783372*^9}, {3.750855864230122*^9, 3.750855870440647*^9}, {3.7508559010381517`*^9, 3.75085592333571*^9}},ExpressionUUID->"f134ac09-ce3a-4d2e-8a45-\ 0007f05b635c"] }, Open ]] }, Open ]], Cell[TextData[StyleBox["But CNNs for images with SGD s easily fit even \ training data where labels are random\[CloseCurlyDoubleQuote]", FontSlant->"Plain"]], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.7508522583002567`*^9}, 3.750852319693863*^9, {3.750852366252432*^9, 3.750852390102212*^9}, {3.750852633830488*^9, 3.7508527539987383`*^9}, { 3.7508530003565702`*^9, 3.7508530003569803`*^9}},ExpressionUUID->"54f9959a-739e-4b40-9b96-\ 74e35f697400"], Cell[GraphicsData["PDF", "\<\ 9E14ARda;S<:9LCUl^G[Yo>Pdd7@o_YnY2S=cd3G1TJShNZQc`6[F83:]H0d/Q8M6^E`V[3]=>A/CBMIg>`RZGn]SQcG^MS2=fUfZ GmDHYhdbNW9Z?=nX[C=Z=mg<3gEUNFlC;>nZhH=H W_dK[M[]/K[ZQ?XhM/8e4=S2][9RG9LDfhU``BHdC@HQbl;@FfmiQ@QPFRPmH0FN ?LPke[ee_WZ:Q;6:HFbZ/5Kn?>49L>B^[@MiDg:c]4EKWJ>`2PQ>WoGP9WTmZ>0/ [oiX`/hDH53;EcIGVaP>jTYMO//F>X[XX^=T;6b8j8PU6:MZD<=Ukg/GTn9RSCF60QdgfR6Z[;?dkbRBG80P9JH1fNbD3kdN[BN4cac3i eToTlcj2nb;4SHSYKFkK;Tf8ZGoTRf`?n3O2EnhHbKJdHcT4mAhd]d`=6UoRoj7YF^_d@K;k@TfVnQ]ARJND4>:@ljXnGE>YmkT2NFUZ5RVHS`lgXPnnNg6?ZgV/kUcH`kc6H5g]/RjoGV`7Q=OjkDGQY;;CWHB[:DOSF>;29i``e 0dFDC]h2G`_72TZA7n9PYhne4L aEDL7PiO68`BXCG?/=R1e3Q4kNmT>LWRU>/>ZmRh6e[5RbE=>_^X8/8o5Bbf^lPV ooC:mkNK`F1iL8FD4/ZEF2FXG4gAGYED`1DdILe7iQZL[Gg2jlQR5n91RND8?PH_X CeMjWU5Q8cHYlaS0O:KQT^UEnEVEW;0U56;APbknjOE@mLlf8VF;gAZfd`d3/J3E i2K3R1[^0b1^S^4Ld0YUKD26/UBFCFJZZJDf3dQWe4>g`V9F h<0T4idYLZnh07NU@ZIR^[1;:2]`>0K9A9OBF3XhB0V[l;QA8Jg0@HYOVIVSSHW:4`dT2DNX7VL>M7WT0];QIL`L@RG2n JZSX[4GLc24d`V6Z9iW3=Wg@8F?V89Z>bYGZ=NK@CAlhI4`LSJKZL:UjR3QL[[9X 7C`FE8e6>7ce1W?4YPlLS@VFXmX4>goB1@lK<8CBR0deFic1E5Z>RLDHD_CMd07E6K<>XYUAjMWWU/nU=JkJV3V4Y^X`^OT0]g?WV3`l^`>PBZ3_0HdgC J74W1Dj@1=cj=HkfTDjhZ>Bh5F0]O<@5=KDYj8I7G0[`kAjJ07CY94BjSH5^I]/Q 8AGhVUL9ibiFRE?>:017Ia9XXMH7^>TH2:AX;038h^DBIl;JE61^ ;hO2nCPh49o@X4^Qhj?@T8GX=UEN/DhjLXkDOGCWPMNk[g_`7io;:20YUKVAcM79UHFd:IFiTKf9Z2SDP<21_HVX:3@e3H^ =c4iCH`83Dd<5dP;eAbJFe2KgP:Fc0P<20i=S0P =C@`GB0_@G9d@Vmh85/`830P>CH`83Dd<5dP;e9_M65dIB0`83hn2VE^I6mRJPXf 830PKf9Z2S`l82m@LVmSDfEd85/P;e14AR0_E6EhM20_BFeQIfE282m9KF5WID

20`86mRJPXl?20_C6E^IgAX83TP<21B82mDNG1U82mH Cf9ZIF=d82mCMF9dNG1U82m9KF5WIB0_EfUTM6PP=c8a82m8IFUWJ7@P20_AVU/M6Eb82m6K65dIDAUHfmTI@Xn?PYcM79U HFd:N07/_@MlE6GfogmXXHI>@TS_2Df:3Efajm[FeEEI5EeeegD]^kY[0dFTmmik K`V@Q7@B88gNKDS_8IeNY?WlgnM>6999Q<1_2gko;oS ?fH1DgCNNA;oHmJmfW6N^OR[PaaiiY;m04cQDE=`d^BNKf;77::[LfK_:G?h]3:OcYG6aWBSE`<=gRVKV8HW4d^<2jc `eaYG;M5G6WVH7k5cmf]e_;kdC>njCkTB9naQk/nGa``JL3Sghl l>`W`g?Oje?@MLCn7Z=FO=k?72jT`g?McOaj]_dSXPoOGQQgj6K/dKFl35O=6SM A`;kRlm`2NmG_LDGEH9jEZg`H1QfUK3NED;jE0hL9853m0231d/XQm>UG/^onkOO ?Cof9PIVRTjH7`l>K_G`in;E@kckb@f<1f?fTeI/OJ@5nmHFeUn2fGZ8geLBo;U[ R`nmf`iknJlgZmVVR`AlgZ1U[c/O=K^cKliXom]?PIgV?o]Vca[Q_LEk S?Q?4YnYeSI5o2N:o`@972U1_LFWAmFPNONoH?KVUS]JUV?kcDnfOidH/F22Qan`]H6EJL_b/jd^n;;U_lTkXNYHE 44^W@QKJ9oR_:Kci1F?9c_lOmknX4C9DVTJ8Chahca>OVN8kB@8VBl1/2IXWPGH2bBDKJj4G?VD?cIWFbCQTM9VS8AoaYRON>?V1/JWT^mi6A==59m9hS]1 ?:O[ZOBN81jf[f<0K9aF]PGFl`fMGjJ3XbV[Kfi/5j8cnkWM=D3lYg5EB2]>aeca iWVfK_icaMlJClP=SNN:3FoP5?a7?l;5<4L]739Fg9N:B8OiAhc9O0hN;G/dh;TkRZ g=jLKmj25V0N1=8?dk^=mfaY?4ll9dRcK];`8o4fQfj9>NhF==Z=3^WhVZgASoli hkhgUWIhNNVm[bCOgcWe`MMG??SVUWl>0?Dim7HjHl?lC^nV?_E>jYeog7COWmOM mfKVXflW?Oo^nZm7>KCl;k`dQJFdCdgAfKhB/4cJYdRS=:VK:8fRYLT2LE/XkW7R 5Rm=NHhA]mR:?BnF9_5j6fVD:P5a4SYLVTDme9V_^;WSf]9]d2P9RYO`A?6:UXKc a6^9=5lTkSLdW_WBJ;kDGb`=Hj@9Ak58?6J83ojL0Fk]c4e13T959__/_j@NIM8VUFHE6HV]3N=QHVES 9d?LEU6fkBJ0TKQZ]OQB/Z<5TbAaYeD<2Okdgg[V?oK6G=1^WGU3g9AKTh7:b T:[R3A`DLd@Ba6^L==chQ`o:_C1bcOUl6nA8oFJR14nN@]J`>c8kBGNTjC94[gcb1:Y=4mLLO@=ZMh2 aoh]>>1Ohi1nG[H>?m8:2DfCX0`9FR612N8M9h7Y;EhXNCQWSnK`dZB/nU:l8Z@i `3i3?;WoYd][PQNaMoeAFGciohFJ_Q0gnL?eSPI96B`Fkd/O_[hK4=l]X[? MPU;Tl08ZA/W[SLbWYY<0K7RTRCEUhT;AiLRmO6C47LHj];J;=oTMZZh;9=JF8=WmWVWh^>O:1jGD]OO g<1T6AKh[_KnNkCR9^4Z_gbJIlMX4dIZFc@6[7B2d/UZhGP>/B JCI26WNEP?=aJ@km>5oNDQHX^5`R0N7@dI6E`b5TledRCiN;233:E>;Q;^?;o 2ol74m`]IJ]obf1IO/g6I]jRfnD1;7`G6d] ]a4g]=HF5?YC[DHmFi@EbIVo1/AnX2a2]N 3lZC5@d>c`Xnad_m55fjeVmA]3I9n8CjY8VUC62AlYmJgX @4G7`lP]]fgm=:V?9h6O0h]Xo=j/eSlGcilSjOQV7RK_E1oahbNF9^5a=fHOG2hJ F8VEY[SjHcBTh/XlJlgneIK[[MQ[9:67gkiR6mJ9PR[j/3/l_U7XA>RTdRIAj RjGF@ZV=jCR3R@XSVbA90`^CL:K08B`]Kn3lL/fOCKi9GQmQ[<7R^e22;;mCiAGR 0^01MlF::gJ8eC>UPIh:GVTE_bKoVbdaKkX67EShEl5WaIDfF`89G9Y3S/7F6cf] oogfa4?=g^>amkhdCP=QSL3ZVN:jF[Njn:JFjLGC=5GL^GBGB]giN=6UFDiRdSG6 VM6lDh;N0gg`Xi=lTlSf6P=`o^/o I06COIBlPlWRcZdVABXWR/bCjV>UDCnGH;;`oT=On_ngKTl]Bil/8O7R`jlVG]`C m1M4M38Pjdi7b66>5YXUZEm9dlUjKgO7dIdVo_=eI_6=NoJ]oiGMZ6Jkga@WRPjZ 7;98OBoeETP]k_oiT[SB5g8=0B_AT[]2Si7BBfBiC:UlE:YW29^llDkiKkR fO1b/AgeX_76^FFe>>B[^18K6=V`VEKXWO5j/^UeW:Y]eC9:TfWRln8 bZe=50gPe2gDfKlHhXjA^];D]dNFTK[blXO7Sm3jML[>@ 8c6]]cBMYb>YUJ`NWRXhH1M;]@Qa`ETD8KD1B5Nf6c_;5Klnom<]/NLBLET_OVU: Bn3<@/kajbM1_e;g<[C0]4Oo=4<2^0m`LlPB5kIdZITZmI:T?Ui@O6Q[U5>:P`jo N_2^LI=ojJ8U3GnZ12lG7f;m[ihTHRS5V` 0Y[m;oGVO?nF/X0iLZZ_14fcUZRYDVf5eJ]1jZXIgXNDga;4oFj>O@K5?_g4[ i>`cTPAYaZePZG8;6d?WFe9ZJla;gZo8=004NGKjR8R>a]k7aYT6E:S4LSWQ`ATF/faVo5b=2E:7Rg^ RmAF[2Gem;7aY@jKkGgkf:ik;>?4igcZ^Y/kVaNB/bI868@LG6NLAb8YlNYD[f== dn0OiONbHIb:SnLFK1VSEfU3O0;;mL`fVbknOBG/Y/=T=fOZOmNWD>V9NO`EDYnP U8/a`Pc5L=cm/LJC`Ab;6XO6C;FRWobUZYk7NI@T_hiIOQnYVS5Eed V`9;`>O8:G8^oUgbEYZa^;?0k3nYNH^iodn2AAbkB[k@SnI25XN6CH6b_dcQMHka Yog5:M]7CQlWSVJIm699HmYRcAae1@oLi5`J;2eVZ9lOQgnC=:F8XdSP=m3k3[=] _`hYC`mFoFKi:?1HZT@8ef@k1UbfojcS:CVBonInd@UU@O1P]2JOHmO4DU=hb_KV _nFI7a@N8G]G5ljFccO8=So[<4XWNYa:Gc]40QdU^Bk_mEE^7 ^CmO?NlV8K>;9XffV:R`96Ba12A:bjTB@;K;=Ni5^IM;hD>CEf0>7S65am65d?4L :aDf=BM;_K@OE4Ef9T/XdkXE@h6naHK;U2D4jM_oC>UCVd0GR3Fa`_VM@B;IKV22;/ofn@ PnDHDnL_OGFikm_7`bX?OaMDF:Sk=]B1O`W80D9P/K3dPLhgcB]NNLL;G930F/;R RcE9>jJXZ44JgS_XC3R[?9e8>WaIZ` U71RGG^jn;fQ8MeBSOVmA5UlB1_T04?7Po?UbX95Z=S[U@ULK``E<[N_k=Z=ooJNkS;lei]=>f3o^LWK;H[?^ni61n]^C5B[iCM]lLcSGOk_ZVfl3T Ymn8K?GKhA;JGoc7N=dnZlOU8`O?UUiMfW/cACZ3fcS3 I^NQW16C4iik:nKn5b>J?c52FPf_g6YVllNR7Wl]hh<_]P`NoO?jCOH?EW37kg?C2Af^NOW]AQfOV??67VLnlV?Sb>cmfkGmV`WbcNK^]:i=gMH;;^E@: EmRoJlOUHoWWRfL[Tg?BK=UiLWkdQajoGP;CU9o_A[9cSe[QIVnnRS4Rm?OMOSO/Vd>5=UT9QoMojJDiB?/[AgA6 ?@3V8;ZDUgjY?NlOgO4]ciMC/kIm?R3]mnmGlhL:SXJTI3bcZL;k__3h]]n=dc2ndS029GCY7`1BB1JTR5EA/b2`fS 9FQEbdkVB2Wh2Tc2BCQ6_3R?J?3FTHe[>6gl3P]YR67 gNHEg;5i>Ib@Xh;V/SEc@XhK<]N]d9SEcN8W5794BI>EhPkm1Wh/V6ZVe3=on2Q6 VUW4:V2EI>Rnnd2YKf9CbagiU;^OG2RNbaEG/hZ1Fnj15lSl_P^gaElaL/Mh2OaJ_:Je OG[g`2UV3c:`EfNLo?>>m3VCZn_=lh]C_o9^flneaOPJ[HN;aeSa62o^a7HGB?0/ :b=SV^J`N`h@WeFMgSDk/dgQRD_IiK>]B>;0Vi7AnI?hjQdCY3W2>oB0QPWKM6/K 9OGWB`_Te^jNP9V`oKekg`iY58[d_`GB_]HJC]EjTlG]nTB 0PM/_7S?U30RoZ=MFToXl=BIQ@UG=49f8NN`k_]okZ4i0PmGMo 7MZ`gFORlITd72Jn/dlglDjE D9;_H:JATSIEG4M9Tj6`V?HM=iWO5G@KdJl:FWonPlB?Z=U`2NPSCKoFcFMRn4?K ^`hfFoKJQe5baf@GIPfJ<;CUXcdZ=omZ]Xmkh@>Ch`P0c<62SOdV C?IoM;Bd62Zn8lBGIf`eBMX]OOK3B`G5f82_f7WbjYc8hO`d8F9T]M^VBD_F250@ >EUc962:n>2UQ4lhAAgScNM:Vf7BO93hOTO34b^l^XW2k3LchIE?BgG_V? _[M0O1IHFSZ;M?4M;RdW1CeVIZNI_4]VmmEeW:g?BiJkf>`n=>_AUhIDJAk]N/m0ZCa1j/iB cf[@@/D9b_kRFm;53Nh:_[QH2@:4m9CjVood6L3So?j3AdlD5U`ZGSUZ?89hAn:J MT>2O;WihSb>D;/jDh@OE8E=8lJPmFBA6o3VF8C1K_3[^nGP0Rf;k`MYf SYk?]ne/jciTM;ffXbbeaWWR`EVH;KEFR?L:lDfB4:;fURJ<=eU_hj@F/bg8HL7C WG7eV7gUhj9cALF4Wm`R<26C7JV_ 4jCFS:X]5ckf`/DeYORm?Ec@QG?5RkE4VJNmlCVnVX?SD/5mDN?GB F>/=hlB?G^3i^= 1lb>HYn?kEP^9JdI[ih=WcW2JOEHJ=6]LJD^T][ca6FA^4:b`Wf1EF4WX_Z85260 eXY`n@3/UdRMI1F584m1JEO;aA<28BXjJ4FRVP:J@Q;CmTGfIn0OVA7CY?U@JCAA dl[PZCK;5=le4Y8XO_>DSlYii5N0MUo`8UD<3TQjjTfCDOa[]OMckAdWi;RfOL[n e`Tib][T^^lh8LMeCGB[=@1bT3b5c[TUlEMcQNFPV:MLGmnlamnim4JgREHVUR4cA28eTQS2FRa3k/RBe//e@jgn]m8lGD;V R>lXk/>=kSLcDd[fI]lg>MTSFon6@422Q4lEfB6gfbI=@/=4NLSV@jL>9ll?h_6S R^`An?>=45:^0^J:1jj0g16ck5eM?7j4T;M9c^YIfGNPNTPPb8Ea`fMf06S1Uh?: cTB0m]5RLET[HN^U7JYmn4_WR=LDLAlZ?_7?_GddIYV]`nX3I3JNmUJ/8S47l8FBCQ15CBiMjJjGYNRF8=R6cH8ch SF[m`c87mgF]icE7JF;DdcAXPH`^m>>lIDVMKd>?CYL5DZFfCL2C;2O36 VFG;KV]_OX=VQbaO]SDg1DA9ZU]cm?=LKnJ@42[O9 KB]E7`Ti8n;h23:@AMEXWGQan9/U03dUU1mBEDCJJk3DVBMgWQhhgMKKiI?5SXjO CZVAjWSQblD20d?hK94V`kKYMnnhGiV2Y X:XYnTFWQa=bf0aNlFLWi:Rh[N`]WI33KXYOb`j10h/njT>25@AAU>^Ba8ddZ7WR ^kkE/fK:TY7RaQC<1kkaU]m WSHSU`0ib8ZMXg8OL I4W9/GKcVJKUFY0Al`2=T8P=[gF]=?Y6ibVVTnZgR9:kmSETBMR_ToBG:YjTjGn:7DYLjL=9K;OY9Ygg6jjDIZ=QI9jlcGB96PN/BBb76h0BXeFj1c/cJk/Q^<7<1N/_0QA6_R@FI7>MjHoEl1jD9FBmP6AIQn7>1B=DEXjQd_9Ik6S4ZDQeAjN> dCI95_O58T^U5VH7RW0D6G8Klo8HW4S]WjE?QdMFeah3Gg61OoVL][Egb`f9W923PN3G?NU4g9LedAU 6cPQAeVKg>;_@3=KlYQj>H0LN8Ji6g=o8nN8aG]VjmnIcG/Wefa5X05MGibg@0kR bb>TbL49aD/ofm519hSdOia9RSP2jR_L5E6P9Bg;o6>hVKj21NT2lN?f1LLSCZ[K 803AYFiOM0Eio__G?hG0?5EK4Q27P5fKm?VE4SA9?0OSm@eo:?FYefMdO2:b oJgjN5IX]Z89>bc@TE6nP N:gm_8oIDh[H@=0WkL5Gd2E6;WR7N1bAh1o5SjD[MgkV[`6EPjTbQCaXbbVBEmW>affimccBR^U?2EBSL2Z=6T9hIo9R?2F YM8[YRWH@SZIJ22SZ>9F00N7^nUhXNGHkW:@B/_?G[ 8HcZa?7RBO3R2AgTmel22SGMCJ^Vg/EL]PO9^nW4ofVC]Hi]T0HBX`L8AaZ64_4V[U:R @]Blnd:l_i00;RLjh@:0fT5R>1Q/Y@C1ZW8 BbOTZ8REKZTf9_m4o6>M:8]3d2AI/fnhhi57kcM6jVg/f=TL?SVWeF?DIB=L@WTP i<;`N4`Gchbg?bYi5>JKoIe83FCSboDY2CU6 U`Lij7=TXc/@T2M@PZ@HM;Qe4YjVj:G>PQJ?oK`PCS<@LIFO:SB[ERNeNg:BITDQ ^lLbT0W5UeZCTa^fFoCJgfaS>gfVf1>niOF?2H;7TU^WOWSGkiCJE`D7MECMm_UO 3S1;UieO^_alG>[a6@]CooQ1CbfB23lFS9`iBmZSfl0PN1d0fW0Vf37Y` hi_o>_3eR?E_MiWGoRWH3P0i^2PIhXMmHR@4k^]@JIgOMJCIDCR/Z`d3>IM0PSXlfHIOTmIT_UQAYJJS7ZWRM]IlOf O?6D6V5W[a5D5J@d3kRD8P:/[fLZIcPhlLWGbee7Kndo/ZnbA2RGbAMYoSEn>FA_ TimhXfCWi1<]J_O/A?6HZH34UE12PPI1JV:^5;n7Cg`n`<@/=AUIITWZgRCGC3T]XLVBd]d[]IXOA1I:jkOB;3UdO;JmK]g c=:e9XldhKhkl=]?^nen mZm4?jdH2[l2fR=;1OcP;=mao2mO7>SBklL_nngY>_2K7T=]GiCGIc8YW?4B0Tk6 alEe2`:O8@gVe[_mfgNo_;0hbJaHJaJVVg5A>ekh4:b2k=//IHm@>=QgA^_OVXCd T[Jmk[hCLUcGA0h=W933`B0ENNV471FadRgE1/RAl4PWYPTPQdE8@2ff2A`f2QT/ Kol7Tg]VciM328^`e5ZQMMn@4VGB2NaF`mMn5>K8dD>3YTM8Bb/SVj0f:c9_YYha kWNHoJM=i:X9FQ/A1ShC=>`>G<4JF1T5i8PYhnDX>_VN4]k8QVPaFl:HDbQ:BfW5 W];/G>`:DjCcjLFcnNIB_SUfd4bN?EhGndb><1=83fa49Eb2?[>O;V8Z>ea01@1fjWncX9QRbjZLf;Z^nA[L5^Ldj7B^S472kjJNR/1JfOnU0J 3ZkMaPbKKhhhY]9XbeGOoeflAdT`?_IUVZ:2RJ2KnWF_7fPfK:D1Schbg6YHjVVJ>XXLTEE@?mhCUPXHMOY_7E 2j]j1Dj69Y_K_V1bCcPf G[a/_2HL4G31dECK5YA1[6UennM`BCTf;SXFgn4EOT[;=J46Wi_bF91aV8l[LW`T 8CUS>6c4ES9nBhDH_A gPTiK/9Xom^?03VB7nj4D0a4Mc`Hl>@QoY6i48V>:?FQF:`UIQ2caTO1^WjA]F:U JU/olCK[_[6??>^USb;@8=8h<]ie^6MN4`S4MgY?Yn38c57R_eP2TJ?Q_b@503V@ 0Q]I7^@h]_o@f6OOF_3`6c4?_aUmed][WgYoALLgdQij:k7C1bKk:R[PNlgI0Q>E 2>@PXH=`NJYhdSn21Z>943gnPWePfS;go7R5@a0Q29Mk[i5PhSF@jkS]8`bR>A@5 S]<:WmXg8g;9finI0bM/>JekOR[:4/3>RccFFFSn^]gh96o VgdWR]dA9d^]SW5Co31RbXhaAREadZ=XM9Tok_Mk4I1Qa0KIe7cY1@Jc6nb2:F8DE B8YaCgY08DON5G1hLLV:O]G30DF@VKVZXjE:U5A9TO1HkdM]LgfjIW`C^6aaNCaQTe:?LlVIi:EbG3I710@KDVV8LZjm _EC0b?HI4idiDX;9klImaf:1dh504fBKYONmD:k2bGCg1fJ:=f<0LT0C`SL8o/NG J4K>=;Tii]@E6W>9X_1VdkNSooa>ZB5Fn8DCLUCHEM^5>A6<_]Rij=5GLE5c:H8[LU:_/>PGMdIH4=7ZSRio@M`lQ1 0/`eDaYd80c=E4jb0o7OVM9dP[@hkQE?X6LZ`:nOfIShJI^7EVNik9ASCb>39IO=4UbinPAkNW7:kSMnl? V2K]IVQejAH4fB7fIlRm`jEAOfVjljE?cOA4/`lQ9^g773cT<>`KOFT;:c0fn`LY ?ggdPh6A4Ph]0FC8aV8o@/:7BlR1[^?/cF`kjNml=UQ33dgCYBhLBjKbNE9g/;R> lFm_]VigJ6akJGHEaWCjG/K75J3Z[MK;:5@:eV3@bOVA2oDd7o; YLmlH0Yo][NdkGckOXmAFVfW=JU0W7BLHm0S8jCYP:n0=6VoDLQQOiS4UKg4WihY^80cJYWD Y=;UIVT1RGMgZcM=[oUVcEkERDNJ4GV?73eeeno3be=5Sm]kHCJidgdbm jW1chNd99CUUZ[S?l;gG72TnehM=ZHoXYcI]oK8:`D4o;Sab_N77h^jP@_fZIoiA /W?fCjF/WRQQn0<]O`SI:>BmZR=[cNfM7EYZ]h]FDjeeY^ZR4nH3n^9FlYh0WWVh 4b2fK?_nUM^BH4/ci2:9NJ7h]d6EBFA^kMKK?ne^eZgG?W?>LOGJ?i]CL83mW`[E IGNS3bOT^56;>B77SEZHIITfXhmMeLicULOKcg96R`@0jT8<8< lITR`FGbRDTU>ccUoJI>i2M=8N=FG^T L5[2nXl793obY`RG^i2Tb93PYDYcm@A7fB37o]:@`nBN71gjVc4j6KUA`cM;Zb]F GB`n>9fF_UZlM2d[V>02REdoE49An2C8B3P3 X^a2:eDZYL?_cH43i_QQH`WWV/>UD8MImmg8JZRPn372;?52[8>RAG7BO6cE^afn iGC:JSPiN:iB82d[gI[O5=i5gmEgU0Li5ZhK9lgY=/j270CJ26S2^Hel[9@AK5m1 H7 ofH;19RilKfd[19c7:TISLP0WHm4ImD`Tj?;Wc?o707YOHTe^@0iP2kCYEUdVfM] afFFKAd/oU0aVA`QY/9hi5k:_0nOglA2___5QcVVWE>PbRcOJ7Y>f]cVSfUboa9Y >Dk@hF`aDYX@m8lBfB9njhB0?PEZR@MAHZlLao8g[gj:5f:NBVV5cU9l4/92TY/i ^Xj;;C7f2JZ?6SILP_[3l9O`6Gh?7OahX5VgZnCP_S^Q4GoDaLf^HonReXbdGJRl 2dB[b?80kFPA;P]gQA=TXA@GJJf6`^XE^53?R1 LgK?]TiHBSJ8Ff=jCEgmVcm=EIgE]X>UmA1YPhP8ClSK/eU/2cHnZOF7kW:en2WE`L6El[CU4J6450ST@;5eS/Ga7BkQ=9KkT mnAd6LJ9F:5IWfABElL[`UB>J6g2@nGCLWo76[l1VZFE`Ni82S7di/1DFe/8GB7TP76OUfkY?YTaZ_M]kEoK[DbUTR8C> 5CS3[DNZk3TTJQRNB<5DCYK6Y/==TJOY9cDkhGZ4YV[h4CY7eb4=[K<`TO:mg9/jC5fD9GK46J1iPfjFj^> 3Zh:78>4 70h6^Ni;9nBh[XW:=W12S[8f^LGO@D8ZoKhG;NHoGWO^gR`3^ANQcm1jHlMgKH`kePL^W]7`li0g@[hQAXZJ7FI55[HOU 2BF]TG5H8UD]9DKT5/^172Ib1CViPdQkTD1l0RTjHeJeg3D8:=DWBh8E8XZ;RbEX WTZ8Q95M_<>GAS56]D2TZR:W1l2XI0jY:mi3HLJMRI[bkH?NXieJCMcD9U311F`Ea86Oj3I?0OMe6UAbZBMW@@g>7oB8/K0KWTa`CDUUa>YU_ b`4o]/lNbRWoGbK_M>nJ[:VI/71ETI:9h:LKT0>5Lg>P>?jbooc9?5>TgdKi22Ge/Z[AOo:UMWcfY03;aV@Pe0JjBZhc[29 5HQaP1bWc8cHccGA^1WoAGLD>0e/WR>e2ABBdce5ZJgPHOlYhX8CSb/LXCUTckm2 nNCm?/AL7E8A2in5KXA:3:ONWD/jkIiGC@TQ Mm]725VBg3YG[cOXdbB]45Qd8cdWjY7WHLJFk=JfObW[faknmf0=K4]RKiJV<5O; E699CFA9d=oPMdd:3173/EZF_BdRjUa/LjGec827T;LmoD 4g8h6>Bj;if@hkXV:]_02CW:f^@FOlL>>I1e/R07n1M86/HhhlHO6a^f;A7kHM6KQB]]WCdj>7ZKe D52U^>[UP3hji9YNS[dmQZ7CB=;RI6U88E[R85U:;i7YDWfNN4i@?GJ?M0V4YFmA h9X@3hZgDRB8n2CNelUNl:]ho;^>i?giDK?4N:b^>KM_BCTo4bVRe:ZAfKen^V]7iXS8I5BHhTO[B4THLb@JY_Nn0_9^5>l`QeBWD0B ZJmXOeF7K3aIG2H[GcODk3m;B`OnP=UgN5ZMeSS4l:O5baCL1B@Hj6h8njJNYmS08:d H_AWBS[Pdn0C2FlC0@V5ZS>6dMGahXL8Cn2QZOkBP5n=k9Db[VLjW3e X=Z1AbiFCd4E8T4IdR114lVK7iTj_jBeCDcVH4gG`WU2OTd=M??`>Tj@YVC^0?U: ]UB3afE07bE2Q14h:EI]8ab:Q1n5Kmg;X/ 0EPGabTUS9^lEY9U<01h1W3]g:g[oNh_Gib^E0Bmbj MN?UJ41N0cWk>9lWBc_kcbCkRn4hN9WR^FVc[6=YBDV8U>OoI19G;mBH0V8>[;IH Pj>@c@E hUB1HH9REAF^Z4RY?dWLQb78G;GMJ5FUl4VC8>IRC/5DZH4S1El=jnkH1j6?WRcI YgKk`ijTQehHXZ]n7eIcZbF49FB/dPJh_MOSL3P^DPU`FJ10PW0CBUK[96bfeJ@Y;U6eLEM]OAc^aO=WU:NJY=gb_ahI57[IiSAB4l6JER>5jY5@hoaaK5310O6 b3QUH:;4CX:E:j]IW0RE;e=HE_1UD>PHbaC:YbfDmB[DkV>an8:fJO8cO372ld1g?7BLP/EGHQl:>Hhh@XkmGhjR>0]G4NQXXJjnmGCbEZ[_AVTD:IVDY?DeLAj/f6Q2AW2oR TYAS`ef65PeL5kh;UYCK9:TdFnY;KJKI]j5H]Vf4h4h^L4 76MZUAe?aeZ<_4EZP>:oCKAFTI3d[=X7/9f;=ekRd?67 aNAPS@Zn=35I8jgZQmaWUTWUM1EcH4F6639i2PXib9P31IDMbJoX7IKiEYH4JAd4 I24?L2Oa7U:]EEUBG0F=m[mZUV^GUCdg1ACj;K5MQSk5h 7/Q>9FW2LTAG8`Q>o^hXW<4FY`]i=2QLif_@YfDgZON5 FgSGE_O_oWbMV?oPknc3M]Pi>b5R[/o3i7FBJ/6l @ndf]:4X3S9;DC4alJH[M:SLHb4Ze?a1ALEEDA>IkZ6nmiPMfJJPN:HnLDKc:lfn _8CWgan<_9F:XPO0H27F@8[11PUM;h60UPg:FHES@;86oYlZ;:9IkA9i@DWb`1_M Bhk=i?`dgnoAZAZJDNU>IP5Fb^B6Y6]V1?W5cNM;VkhB?=WWXH=_MSohc?];YBFc >CYAU0Q1X=[TJ1713VQ ZD:>:nVdQlc?]RoMlO5@I=_a38QU80N oS9Y4Z4JYl20`:gg_VGbeNEBm[6gaoQn3NhJ8>fYnTZL2blID9J;O;=hKYI66jDJ fbJ]f^>JXZhclVD@2H4M4C:kdEf03BIaTgmlbF?TMW73A=XUN87DV:;RWl3/IQ?5 ^e/Uoni=FWLEok6EkaX^;HI8f0QEh>N:mNPU_P=[QgBEYSgZ1E26[fN]P7i=FW`X WUflffkX=j[TD2lTIb5R`cgIF[91ce0iN/:8ZnikXa`_amaD0R]4QHSML4M2oanP 0UQJmo`7iXQSHD:`8S2?b1CABL361ZFVj;G:]6;1GGO4j=I8 Dgj3E1aPLT5^]gN3h4_;dT/>n1[kC/Qa3N>DnjmK6G:/^nMUW=_Xl41J@`b@g4IL `LcJo:816=`:F4iBY<3:Q=9W:fEKof][Hgnf`0H>1h37eFLPalWTLYJOiE[9hDdC ^gZ`n51dP2ZRUP1_3C_T8<`=6`[8`OI;hbTk`U_`7BcojcTH7Loe_GfIOPAcDF05b[1AGW<<81<740dD`?ljD0?/8cJk3Dn]eP:_?/Jna KW6Pg?UBIfn]1a:UDYKD/3RLX<[V27W]^B8h007_N8la4eGWT3i[YZ_5B6Wd07;d To3;bJ`/Bcf>c5PdcO]NLV`A[EXSeE=d:DgH7GMgHmc;dnZeBnolXMVTfIeRgm`V`_Z:Iohj^E47 B/2SG3e14bL947SRM5PWkOU]`WnPCac/g<=aoN6eCWAi47n>OFRkoS4XD][S2n:G bk[Bd]26o=3bJoGK]i_Kh=4Og^Q]=^FJ0cnI0nN?_SM`]>:aUUC/GB;EPAbXP@dA gegMBd>>j3Gm9119;_`oDdDBYL4:lB8JGBik0O9KQjP40DDAhTaeQfe[`4iMWdj?59JD6T> A`6A8m9Qd8N1;iAbek>V::M/ic_kS5`T`F_5?eXZhie;DObSQ9`eMkaZcaK9]m@i ORjd1Yn_15NCoo>U1B_CGomZ]=Mmdn_N2@UiRPJ`JR>Ic/OATPE]DRZ5HZbP?T_f _bhgAZCPcL9U][C[Z:MOPAR8fac8En7Lk6=:aJAU7X=a39A`V>MBNF@QHc6NMlH719ImIP[4bMGPN ;mjWTUNE=LPeg[7cgdalISl9HUD;S@ZJ>[LV=]cSl<5H`^1Y`@US9D/jSZCTZ6ka OLc;XE4WU4DFjFH4R2U@X[cm7Lj8VS9B@EN8=4FVhTHADD56XIHFW8K`ek`fOl=]/n`L;Nhg1 5hdS;]j:/Q6NaS]4CVjOB^4oUo5bC;Wo^MkRcT[=P/f4YmGC>d1TA]gf5hO=DiQa 9KN2Y3oCI`iT>F]A1_PA_0NFV8=k`R<_VX;Lg0]indcih@?6YXTW^NQ?7S^j8Wg= P>4[g_e/o^foVbP]^=m>E9n0i`9Y/T3ZP43@gkeZao=3G/h;^Ba@M8@3BSdFUV6/fbTF2eQM>37F?6l_7Zm cDYVKbjYY/ACl25Tj@:L2ILOS/mhZKO^RCOac=R>f^c<@F?4k3U]^/oX[i@3X^g` >ZRoEQ=F0b^5W_@ CYUmao^X54Kc2:W4ccU6DbcAHOJ;=W;NZalW^WfQghPI9Z6URa TVB;0b_f:g3oYl>XkIjRbCE8T:6:2Ni2ESdP_/dcmPjcCaLM:e8kloRngjQADWNe n948/eXmLUb4mO0oY3chVZg1=Ii=]/ke?foMFC0_o]20:M_odQfEgNWBLX@d8QUZ X]KhdmYlU0[2Wd?dR/GM]ooXHN/`XO>k@1gLK_R@2Ok>dR0JW=jZ^LmlJ?HM/KG1 OE@F7QCo:nnh>EQXmQNRU/Hk@1CKnoKWBdUI@5H;LY1AaJfKA33RCN6YMgJb]k7_ V4DII=AJa0o27mA8Z/4E2maMe>7gmSJo]6=:A=3Bj;fmUb;7ZS^L9cTJX o3kc>4];16oeAfOQ3H8G^UUhXoSI8U40=RZd`NDh^laanGUMLmTJo1bO=K0>TPED :XLRS]NGDCFPVP>8R99Bi=4cAe^K@Z=OjLJ]P9/lD`>Z2=BVW:Fe6R6O=bnKnUM1 Xog?VdDlgHUJeKRn8@UH]BZPnJV4>>GHBXk]k;P5Y6V@`LLR7DOI3:V2F_8DmIVC Bd88X2iBH3BbX2PHTXlaC^RlFmF7Fnhc/ZVRN]H O<_==jFV@[<_^f33UY97E7;O59hfFoJIoWln^eYl9l:KTnkImTemXV5nBeZHnnQ[4C^8hlj@QBQ[`F:2HPXiVB>Rai6Ff aQLRDZM9RhGB364ae`RaOZd[5?mEhPmI5eh=n85T2_9fbg8cK1olXV4@=B:T5LB;mbKoHViGLbMjj=WlSYDn>f4=S9Om;b17BFk ]NeW7bf6gcmb^?g`HGncM[oIOI`j;6DKVlAd80OgL`8[[;`F:>^S5XTi:KNG Pb;<`[AaRY19??M8E/Q1c8k21:7A7Gi77YTiGWBdA14OngMAU31]iWBNNLLPZG_B dCO;ONc85d>CFonFLdO/RC0XXC7R[C1BD7cm_9X?0ZgfgZjahh@Lec1>^OnjUB77 QPjM2:haSgeJlV<8/MalQ7VSQI>1a0oImV_8 kK_cbkf@K_dgPAaD@DGZ0Hl14Z<`d28D93A5UhSRVb:YPL>_[S1en?DU@9 lR4GF247:C=3DB]mmQEcDTna:L`eQg8^CeoDgj/]V^CLg^gmU=g1aCe0`/M[HVl8 60JObC9e>e2/a>o4lSC];OohW/m7aTZkiBXBdYAJ_GFRLn>`kR2d0ngm@_Xe@dRi6 :^54nU8JWX88HcebCaA39SROf_of@jU?_oTQaO]^Oc[i0`8ka@nLN=7N3lbCZUKb Q@ZH;eIoU>L084N>8agDmYT^KP7SUJn;gl2EdN8gP1daZ0cTP7fAffGdN8g6`P@6 X/2[PEB0]:WkR]IGYmX;>LFj9GBnhXe?RGN@UIb^:W=`AkUd6l;HG?_@Fl@_[PaI oi[2hfKkcWOm0_lEf/[/?fb>F_hXRfQD/YU]OnKMSlebK@Ek4mRCY?W>2=CDVd1B kL_5U98;R@S88kY2G1E>2oWAD7g8jM22_2IcUJfCXnMaWegHIgjbjjk[<=K_VUSo gPGB7VX=`QMk>WeUd[jc]KL5P6ck9ThQQeEg6=le^0/6LT>XgFU]W[Hed:j/BT>j 4k5/U8A?DTNOCP@@?nI:EE`mRm/lJ_:?fM_KMi1G=MVidikX=23Pk^?3YY/SY@aU KjHmiadknW4?Z^_>dVaIeZd@QY4d`Gg]fif2aNF5Q4Yng;K_Q1aUKG;]MfiUb84> <3Z:d9K`OLdDRP]`Yh97[A^T?SI8Af``BmWHhAgKOafNXDREgHJ:gm7DhYo?]DeD m[lVLNg0>[L=eQ8Kc1NQo5RH>4P3]cKKDYOE;]2nFQ9b64/3O7b7gc:9 4=@SC@1BacRY6ZWi29FQ1a=KBAK_`M;Da:BF?=jMg@IAP@/Zh7bYPSLNb044iLKH Gh8M52n:L/9U b];Rh?:S=4ET2F6^QCC_TXWkSRBJ[U8?[okWh_W]Gg^`U8?l JAlWBd;K_]VdHnTcKdi6bTaoB[SYH3^S8ngG6i[1ZfoIjU0`KJeinem3=OW2oB]b AE_NKj8cc>7R6oRi`R/>mV>59[_@Y6g]8giXW18h@>P0`e[be=kMYJkI/YD_AFa] kml7@ceMBNd?CG=XR2/0[//hZI_coYLL26fbSGeh1iNfO2E6kP:EhM:g80MEB/VD DLR1Ul=nA;JMbo=BnRV1bVN3e=]T5D=OYdjQI^?4Lf981kDml/Hb:/U?5gJCZAV Gn33bhM?>7P/fmIcLOmajD@cJLI:SMlS0Ec;e:j[PQha:mNK_>;6]RZ4I_7b8A92 6CPbJ53HHee9Hfj]RB4MEO>fB567>GSUJSaOJ7kLE1@OmBPX]NdNMlQ0]go:HLL9>A`>kFn685O edXU6g0YWU^dHZ3O_H>U9JR32^2PH[I9^PF`CAHL[D3U88ID`L7LV/g`Il;FVb1] a]Nj0`[jYeF2?`iXCdRdY3EnAO_`l;V5/Y3Q;XN_7^T6B0D/llNDmW9`A6^kmB7^ aWX:JRFnN^RSL?cD/J1L3Z;`3BIh]SGk3YDlmP=O3X7?ChR4M6VhZMa5TA50C60` T:>4nZPiGFQFKZD>;549k`BZnV5ScmWSYF04d^gCIMFdM:Bj4Jd]8ZDUWPH5[_OWofG[dg: 5RgLM^@dlGfcZlP/FKgWSJl6hEOA<11gFTfEcKB6PBYG@CnMd:Wl]O:U]dVgC=BY 0BM3b5S57/7;kni/aTOK<`E<3U?HbG>3Idb_N@N>VVQ=L73;T5I4ClRDHOHIigV7 >GC@IZR;`aN>EYlT48;D0eldCjHXJmA]@H=f9V>e>Jc=c>h3I/g>U3/kJaJ`1504 1g05l`7j3M=1/WPRW^30iM1?kC/J6OX4g`j7Lj?DfJgi;jQ3^[aK>GS`kDm@BAIG3nG4Jj Q81/PI@coCY^nj2GBMeVMUd`BgO^N:W;/9Y]QXUO^[@V?PF>CEH77LWD27aiYMck /^gKNCH7l/h?VS59@^I8d1B]nh?cQ9^QBfKX/aNjccDI>@Knm:6OU1h3_G?Qd^G? _352ke[@Tb3BT0088AnaMlf^oLH5VERC]hEBRZE> AS9D]A5B:LZk`l;O?1GenmLRO_oJRLWcd=<`6knIjg_?80GlFY1^QQ:F@ZIkg;?^ _FiVfEYCn1?1D8=dkmQLoF5b_aDBY1[>;=6CH^Ia1I=<6BM>mG@JJ7JK?BHb6Ob?JmX/B^GFKIJTViPd4l?cUHfEUffc_e=f 9c[=U=T^9VINf5niQOdC/LgOaU9VJe7VK4<[=iCdi4@TTko8[fCM5ae0I`:FAYLVQ30VfFTiHief]/ JOZX>E]h9V4Y[0?VV/eBOheDi/hX9eid>?JR[dI>4`nb:SJ: ;hD`^8]BfHYE?:TRYB37BNYhW^hQ?[3UUc>3Jggi9RahHbET_?QCW6_ilnn^OjOk jUNjCVgL4JKUE94TlF:jPM4D8iFoUl1hiDJBFMT/jYVGK342A[9[n>cNdVZfI]e2 ^HLL0Zg8UlZZdkGZ>VkoP3SOQe=K?YgNj]VHNQg7Z3ZC3n;QI50B`Ml/HBBH43=2 Rg//JoWEgiXM^f=OOA^4Cac:BYB6dU2Eh<]RkC<<6@Z82Q?K?1;mE>OIMcdmZ5;h 76TeDNYVB:Q51HA0fiSTVQWR?P1baK^OVR_E/TcBa/Ub6`GX`Fl/ZhWSLea8TA3@ 6BBn6mkhioh_1biol/dYdQJgO:Z4YY66[>8?38cX1UQ>QC9PJP/8KRKX48hRP`IY0LiEiL5CUD831g2NO7m?n?Y9WQf]F^lljEJN/^E:JDOa^ /[CX3ZDT<]=/;dC:NhcPE25VZS`7D^4XL:mNS_8lkBKoJ9oZU6;1El15YNgC=13I [=cfIU4:DbdERW66L?VA[V:A6A3c@N?5Qgo=dC9f`Ic7nM:BkbjeN]CbWW7g8mommO>mkoOLmg[G1?m7AdUm[WH602b7?0b@@6ml:Y8MXHmL R^IcQ7j^`V=dSBS?AnH8Ual4?6CZ=f]J^VHUCa0G=7Pil87R_Jkk@1`h9Wg[el[Q @HdFV5X=2bM89FP]A;7Q?hmGVXdgeloa;T?=RPd3:[?`a7>223nL8[SRd60@gT53 >:1gcK2QOQdFMWQanGe_AW/l?DH2H0G?T9XD<;:Hon1iOSGjACdZnIWXHP9B/CUn nHlCL_bbKL[ocjd<>LXO/O=MY`E^g0;4KEYghX9X68hAG=2F4aR6A/2N8Jc:6N8iAV[=N^QY^SF5jWAJm>JWgMC3@;HVg03BY]0R0jF@om]hRSBJ ZMR3d:@GQ5EROl@YF5fB`IfTYK/J[QJ?CA80HfZJ16gmX1^>ml_;8W^g]QdL7IU?oKFk6^O>B9fKZ4_B6>TEY2KQ/^:7Wb>1`lEm ]791UNZ9F=TJ;IJ78l^G4V0mY@UX8KLjEUXAE<;5HFUmPhiL /[AbQLOMDkQd=mf6Za0 1CBXFC=[Y>kgdWRK=VM3?/le0QG30HoA;Zd8R@]6500O5E/3<^7H1]4?ZGicUNN=b9A/J Vi_39kjD@=`hm;U0dk6mb1XS^icL0KA`2FY7FNFB;khghJ@4O;U ^^8GA>QZROR0djIKebfJ<7>DYX;:1aY[A6Z@I`ME=UPPeA2VFb0]?n>bo?=7IVLY ]hcmM9OMLD:>/SJimS]>b75]ncSongo60T/Oj9`RXI/T<4g;^Z5^i85F<`a6RXlk /=>QiFMfO3eE`[M;h3J=5=0IKb6FUI3VK9nLO0:9G62UdWWRQb/1ZU oBcaAIO39:ebJ7`Y=V>X=9l^KU@WFBTNC;/4LDQe@F0C<@CFRO4ZlX1:P2lZcGQm bMBH9BicA@S[X1H2F9Y;9U6WMlag?mQj=_]?O_Mn?dPG2eB0VT08;gg@TSX8SH4mOZ[EkefDE0D bkgG;Z;BFjR1M1;B2JCgGTT?8ABUR_BNg^Rm>?lk^f6cfAAfEhC8WGgfFFIgInJK kga;i_g>NLmk`[Uj?68mD5SB>4BV1kW0Edl48n37L26MQ^0`E]M4fYA>Nm`WO3XI N_9Wf]_gU=fP33:^7A=knWkUhXa/LS5jIKbAIcHVl]iNTN49`44[=6G0cBZCPM 8<mFLoHbL_lnQ3iMD5_2LXI:PBHP@PP@;[PN h0gZ6C]@V8a[^o40dkb^][8nJ5ANTO8icnnLo6<83GGWfn_XI>XY:@gL8iMj8187 E2WA8HcB7gTI^84oASKKNC08H[I@Z7STb3^c f455:RHkGEdjdfTFVOYc=]LP>8EnPh@8[iH;J060Y0FaFE3/@6[53gP;iflPB=L? NcL8[W>XZhOS8mG[@nASOm`>icS`@3a^ieL;?6V82jM[SPAb`6lNjVBXR2L1;F1F P8R[NgSV:Yi/FgifmiL;`KP>h;hh59^3?XVd^0o8nE0Y@EA83a99UcmLR2]hHZ6W UlUSgSc7NCP^M`@Go@?6QP0kG4U@E<=M0f16W`SZ4/kEHi0K2c5QoP/79FlEmGD2 UnWE3mS>_M9[efH^S?@[fJ^0739C:=T@T4=9@bWO3DA^QKa5iLN:W_OF0[F/:L/0 YC5RWWX7_7Lh];O@<5AICJLAR?=6de0?B2jLKT670ooom^Y`n;ZAl8P@2M8UT:fO @WKnY>m>9/4>ckMNI>UKh:4Q^dXO=;mh2C4EO01gQgK=;Z0^D;];87WndoBB9Z10Q1gT0]lb@0HO[0mTj>1eoc_ag A3iP78nlj?d2U]f9B/ac6R6XVi89ma`/O^m;Oa[^aiDINR?20[l=X1Bl1m0WAl02 ]nA@H]m>@a6X@U83_>;02O0`[:ANhNJ?=W[i]Ci[O1;odKO>G<;D1=V8l7G0dEA< EQ2Mg/KMlSgQLP6i9H@6P]PIRHeSd:P=0nd2bAQZfi:=0caNPoe_OL>ZFR0IfH5^ IIA6_SAUKQM[B2kPH^7^NaL=niGS3I1`lPPQP4D5H^_ei`nb0]aA`JgCQj0:lPK9W:;cgH 3_05BF^h`7n5W23;CB4;`7/27PJfmPUACZ0lMG 3:n^2`B2g`mRBGY0D`DLdEV6miR`mj^EK>m9f@[U6jPP/nE79fAMYM9S:K`oe?3< ORE[T7o0MDWQb=<4?XdRkYG2c?SML]SSBUX[C>d?1OZbJ`g/N_GUjeFH/oif2lLD fg?Ld`I1;[P1DOg43RGTX8:2PQ701YP4dLID6W9`=XnPLJk8KjNFm4>@2773HOQ? P@Af@6SH6CmYE8F6>bPEo=/5`Jb:^iE^9AGiS7kQFnX;@]e66PhJ319PBkPd;^SO GO0o2o<3fT7N70POOR7lkdJV=V3ESm@_kZDYk82boPfYX@CTT=Y1nEL1>IBgUO8m iC?2U1lUN]ic2mBbbm8iXNBLl3hfd15A?>7>f9o<24T4OE980aC4eKQS7OdJ 2[/gO[DLDR5Nge3a_Y/;?fkNNF;jXR2cLJ301I550YOGA]04 >bbBYl0]Q5:d;Z3D1[8;dAPaQdbFmAfFK?4RFiO?4bFZn=I`nPi8@i^E=k;DCHF_ O>k=dk8L`RBIG`Qo81LH:CcPThBAmWXJU4JfL7[Pa:5PcHOk71ii^Lc_J`WN=1@B=U;Y5K=l/TnS7Y_U1ATmnE<60AC aZbT@AiM7Dl]l9@ZE/UVnkJ[^BLI@LH=8AQT]J`UHfNbnDZ_1HBhM;Ii0O<=AX;U 3[i^4AS?F4ASj0Q>A@P42N5hW7@DT<9 N79`[VHQASP/TBhRN^I5cbSboU9fnJNL/_6oom kE8=6bLbMN<9bkbJ<7i84M@WR7Z098U94;b3AV/8Mdf06JhOK33aMVCKY8FcicS/ a8>EeaidlUQS<BdbP<;H4DW/__lG: =[7;3GmLh20FScR8Y034_<2jBb26EQ^;g05`1 I/^n9Ck/L1?gV6gJhj;g2>[ZPYR4[d1/3R]chRjUOkBhGbQ BSl4i53JE4dM1NA@eF:RomoA0]M>UVL^MH]nLE[Rf4VICgnHnObde=OnVo3?Ce>O nbc^cBl_kfZ:D3J;=dNol9o[a=j7dV?k^hedijiI?`Ecn9o6;VQEmnDnP/OL^>W6Ki_bColh=5 OJb`bbc3gcgBlI54g/5XmC0IMFRa1m]g4UW9ih8BD_keFNcH=g8OWIcoj9B=4ciJ ?gjBci^OU^NEgZa_g_]TAf6WZ/kkAbN=WnA1@k3e[>M142C`h^HG0R0F;VBlT;Bo @R6BJOoI7Ac:4aU>=k8ZAKnjK3HdF=W>PRmV[]EjI1gG_Qj:0WK8/D902_EEXIT0 =^blkYJ;c1lYW[V0WNJ9?>a/m_ZKGJ6BP8;2Ech>7oEo>Bm=CGSl[Jbgoa_ddEL:Il57eImQMHe[9glBnMckRHno4cKZiNbG ?Ximl^fDBEmjOoZ=@_n3IcS[1PoFL1=JPVW_OkVD[9Ic2GM;ofhSOG^?FD53iWJg WJNWk7cmRa3C9i;nlDk`hblW?3mef`8_jEB]Golh n?]n_n2P5mjMdLDLaXBOcIoo07PT3_W5oVB9oMg=n96<3kiRaKo83jllenh?P7__`Q Y>dc4/d@]3WjfWObm2[of9LoG>EAXdbcR`hOE0_R3SbO>SS?C6Vn`VQ_/F:?dIG?2j^/`a>MKeLf>oI[ 9DFkF4DSUe<06D2>I8Qm79E6>kHT>eW9mQaQLKUWU_POoF7U/CV^igfSL4oG98II gk@TMZBJ[kcV9S]bU]Ff[DUELoF2o;5H8dYPG6=9fiUo5^A6;dogZ?eZaMWigR`d 4dX5/TfFWN7QMCb^ECKW54PoDGSUh6Ao1BZ?WgD9>CkCiM2?:ho=mcZi<^1fBR4k e:CQNKWlY7CDFHUJb=W;CKIEV0Y_@IQQnhiN2ddj]<1mc`bGggib^K@^W^eXPVOb iMRTHkU^J]eEEWV=7FogNJn>DFCeOE_6Ob]fbfeQMTo6Qjhj1]b^J08IdT[ZcMki] ^3=]NAgKMNAjJ?[nQF]fcW3nKHK[/LD1=n8:fD4nT5Ff/1^gO2/ac?8[;Gh6MENK o19=bjjobK:gHoj:QF/?o=_Ya;lGGi[_bcIT/H8M<]^NJlG2UHi]oHZTjJIY4o<> c5QF=^WKk0UC=Sha6LF2=chkkN3diB`ZTndi;5G9J3eLmTWUYFH_Am>43O`CEWLN _`ON`5F^>@o0;a/Rgh2fRD`GR5NCZKg>ZVjbfY^06O;M5=ZPS[=MQeQNF^8][10J`^`BdfKL^^_ l0Vbo=_lo:hO8_Zfoic49e1mUQdo8he4Mcb:=KCmYkSSDNembnYKK5;]MK/WWinC k2bbZMSEAUImTYdn8_]4eDIUFfEQJbGGhXoFYL4JVWa1n7>WL:0KIiY=N[2a6H6` WnE[n[? ?fjLJL6/j7S2/nMKN=9hhIiCcJN0B_4M3;mLd`@2FoNi:lBE3ZVDA?ZZ6i]2aQBbFiG/M_U Ei^g?2D?gM3BVj7TZ3oC[NIJAm_:WiVimMRJURESFWOXh9?F>dh7WE]oEL^JM_cZ N]DhQ:fWj_PCQDflhlkBKl5:ZV3GZ]Wm^a3:[4[9?[EWKRSI/gDg5S1>Vel9b=6VFLB7`P;20/82 `P;20QeK@42>S^gCnU/1>E[KA7`R;20/82`P;20/L5L;28W/82`P;20/82O`/;28KhD5Q0F41H@5kYD51>A@eI:M6G;/gklo:2QXgKYeN0d?3dMS`hH=8OO^ LN:4VX8o_1cTdnmW?ceeli=C=hen[fC/Y:979nDocUjh L>6RAH_VcinoK=Vb1@/F>3TihBdJmnBQ7^CPm@XS2ceXI13IAi9E79W6ll:JIRQ? RLYIZ0N=Z^DYI9e:5XVliZJATTnDiP`UDaA9G47fdOnJeUjE0EF_[nP_;20/82`P ;?0GFD103UD=fiTQAfi^kV;90`132SW`3R3TGSgDPab`<4_M_9XLOGQAAJ=41=9AlXWWBNO?VBEdLDQcbieoo1>@XMNTb;91< 4lT/UlcCBCnEm9?888V:>a>80LPAo8hOd2TPSUoYUD_mT6Y100`52DTP?b26;_fZUTkJB[cVT]HUdLlTP U2acGojHeEm@mE::o/82`P;20/82mm<20W:XJ^g>33Wbl_;T_Aaci/bA/SP@HKTW 3oDQAgBn?`f99h=L6UA4OG:YFc[eR:MNdM@gVPK6dn1TdTZA?:D=IEhAObTRgGCB lbOCU1NW/=XcdT^YO25VEBnmj2l/82`P;20/l6L/8227Z]K[c92SX:10VZ82P07o 1X8YWLG;TE`BC?J9Y0o8DD`3ljQ?5_E=X_iaW2bZVDBJL7BT=Cl=9Nfk_<8aT/lm 9=X1I9Si`PNZGTOAGeQ0F41H@5SP?U]0@0iE3MjI8DMQHB52:XR0h1Gn3K0h@285 l7SP6B^g/SH5dQ3TY>BB8CPH>GL2:dTd<8d6h`W88DDM2:c0LJ7TJb[eCb>M:38^ O6::Z]MAm5O60Zca0Z^oa>X^/V?E[>4RZko8JRjc^_?/C9db`c]QWcYf^hZYccAV M@gBTf8eYmRUNWJnW]EDbck/3>L[>L7KjZfTSUeDKf2W6UG;KUKbZjbV4JCW`ZZ_ /N@/4T7gH4L`1_:?P5DTVQ0:^TVTU7IF>7UD>>bg6G8WZC4 V?LnBog7>bGoo3Qkh]^i;gj@ml:D`_6CDeoj8n_G]NbfO>R=GFRDGbV[ _bWoEZ7=Z^^SoS/mm]DYfOml;nGE=n=ONRWjZFOSGWXmmZ?o/9>W5CXoZ;Lh@Fbh McgjmHHjEUDYkJIP1>V7ECOn5lUA[>4F:mPMmmjg?oMfF4bfOSCDULal^XjN@gXN I1lbo>F:XTeBnibnF7=G8h/>[BdP84M[VgClRH0L7M^WcFl5i6SC;9gl`a9WScWM [5g9a9</k:3kAgR[ojLeIcQBf[0TZhS[iaEGVFWFT0;E_^o VoW5]Qo=ONFcjFBj^8^]5`geh<91Y]WT44Uf_Z@OAEKn=?aRN/5OOHdNk_T5i53e nP[8XJ[5d5m03SF_f X=KIgW6E;>_3]^bOflEj9AVidi2EI;^HQRbQHFhd=W3/Y?IVI_Fg5Y1m6=V2@IA? 1QTd:8kj1I;IEaZF65;5KQa_RGK>12H_7caVJAMk;og75Q^mn^oK/6bmZkGRYmcQZ^7Okg XS0J^I9d@lTQS^bCbJ:0c72E8AbDBU3aRbkA:EYAFL52`S8XF2@^khET>>^ 9V[M@D2>eSKYo9lLGKYV=ATTT5TV6AFAIA8=RZ9^YF@KAfH5CdeQMGoS^3JocDoO ]XH/8dPoWRc3b683fH=^54iS//Mod]jUPMOmYij>TC@bQL`@8/`3KiV<0/UT]YHS Q]BbbiD]8@O;g;FFk;c8H0?I[RD[=c8=9Q]gXF@C@d?GT_U:6W;DbNl_?FkWWi`EkEi5nZ6TTDAF/J@OB9A5V__9[Y3jIY1f 5YTFT1El7BbS^?>OBfMNXH0LZUhM0CUD]ASj2lRQQ]4Nn91CcWkNo?i>?iWjKRG; @S853jND[012BRInm;N67;0]Bm/FA6IYG7d>Z4K?k <5LbS^H>7biQUd8VjlQbEWLkg2<[G2o>/hgI54IF6C@TVL`PmAm1U^Tdg9l//bMl P;R6@_oklkIR]U/hfL5KUDkFNN`]mRH@9bZ7ZI1>A@eF;X;b276TIk h4?f;GKg8X]DECYnM1A0k2nlUL0WMP=]U4Td6ha87C`@`7 IgXMnlCYn]beAkjJFcE[aNDi7SGO>Aon`IGEg/8Xl4_Uak:2KIjTVDc6b?_>9M/8 dXhPPb2b2A_g;oU^OfTK00l9;3:HMg3A/W2bQ>cNAS93dWXVVHGa889UmLmoeaBT NfFmZ0W_QD5DT0I4D`ol7X15dkW_Bam>XF]^PB`QVjE_^YBDNjl>mclkSh0LZUij 0CUD]ASj2lRQQ]4Nn93mBcfl990SQhbP@XlM2Qb6:3;d8j^POkic?iMgi^ai]@mg RUf[TE0/jQQ71K97OD7QJ]:1j1bDj:2j3bPE@7g3bJ3XRGMUOCYX/9_ek5Hm^e0_ kLTC5OBR>Hj`B6XVPP`R^AI=o`oF[YRBRlEUmG31PYM62=Og_B :J^/IgDg4amo9hP;1l7i<`3G2`;8VF@E@3Y/iG[F:;VJMN[o21FEJnn P1bZFPcm1NA@`fP?OP?WZ@N@]^076TLL^SiTUGP:hZ@hmHiWRG:i;8N I1;d[>8/ZfS:a6AEUmQYI:NfB6b`U8`?J9Y<;Cm/lTdQ[A@BMTGZ[TC9[6JM_L_FIXZ Jkc>JJkEB;?]:76E=EiVSBgTA?2FECO=OoZ?/iDgV[0=^mQ`L>jR@5h9TE9h>=f;IlY?8fZM^LNAc3an/T@^GlFcO_>e/heJFDg8[_oB?kC_H/FT/_HjBZE9QBM>k20P1`M6:O=[`CTJ=;M;;8;9kdP/QZ`h^:T0>W`4kEg4c9 IHDkF?a6E[:GaNJcd2bFD0Kl4W6/j]2RUknf]ocK7>I>i6T50HhT8F RdS?AL=n^JIMn?1o7?eQ1B_H`FX^l5fk_/E>adiD/RX8DeaT:@D1G6=O9iKj9Y16 9YW2ee58I_/=G^IR7@eWf@VndK2CCGYI_5ekJOM2cnYIkPdcEQomM_k9WiLNoGIQ QM>J/WT^n5KfH0e=7PoV6aI1E/Td:86W?d2LGaM72BF]?FD5D72ib^Fa I]aBWenfMKK[bOTnQkmg?SeSEOf?KZMoL]Vod?=4M:9/O_W6eMofkeWPNNakUnXO eiclg[Elk]YSeK::Rnc`ZLJIBc?88HKj`[f3:i_;f@_@kag8 YRiValmaVMT6KWVIdjI:cSG4ZSUdHHN[f=HS]K?LHaeNF=]cY0l=mn1Y>5I[JJPC 6O[d71?Ynl/dB^i?S]oPWMEoWChC=_gUleNdfNWG?0>ahEF62SoUUEc1PhWn_iJ/GolYdTl9AJGJL1F /]m81ZSm54FFK6d:c28MaFZKOiJ/XEgm5_U3R;J21@CTD338GMl:b75G4kG^8217 Ji]dlTmHoOWZ^FhKb011KEC/;B;=G=;>8b<`8L>@i_WlV`[[IaEWm/aKm@>I@^eQ 9ATkTh4gf@G@b4ET/WoBC9JaKoOcgdKbcLhbRRbBb2j5Q/F@C@RIn9;QNQZfPRbf O?`3>eG7S_6]2Xn:UTh9O<9n?lGRRa=7_198S_iT74RJdFBD`_MdbdbbcJ7QJdWC Sg@RN1J9VB]bNWYUZo04YW1VW6LlPa 07T[ZC@0IHjgdo1dVfNbGg`_mXWG/molMlCkof5eCm9=83bCBHa>V KG_nTm@9kjDo>cGakBmI=DLY[>7bKj_lEfR@gJ YnRSl3RGTnm^m;PWf@JB_CNIQm;H]NCXAWJahmmUiDd@[WiKFMZ[WfajOl6f 7bWodVTe3`lI1i1V6?MFFBhQ^aBjI44/TTVlbbbc26[=39562^Lm>;88Xj6 1@lN=Ke?8L8CCOnUPS]<77=/;eLFDVF@1V99?`G0lG?Ze] :9U7T74LjF83GD=V/A?OI@e]a69^iQI3R3]LT/:9OAmPaYL?LL`M?dFfY8KL?6lJ 7T96JfW0NTWEI]1IhG998nd2GVIA0kj><=9HBg[1=7@M3Ee1aRW?C6HECHNkDRMa 1CAL^N`ETC[R5ALJ1=B`QBfAiK>:6kHD0G4VgYie8bmg^ JKIm[g@U9fldkOFbQJWJ`6oPmnV;W@KJ[nYR_ii6^9>F=oG>82_09f0i[2NGS75M P8XC>?;DGD]J8>/^8Ze0ZhU/mbVfnhSl4A6GVFhnJPHI^Y1n46OeV>8JKB<;98<3 O>;7^HU/l:>2o@?8gYdLhE9Kf7EHoTY_nDU4FeD;23[`Lf69Rb2cUjEJ@Xn92kD`g;c:;8n/dY>jBFLTTSTK@RbLJEQ^bNj`bBQ_bi `ml29l2^7iNi3QS^B[YIi9Q?5RQ9W4UM/jQk4FU]9H^]I;f9io?fQiK2M^ZcWdc: b2JE[:9X23`]llQQgf9_MZ@:ogTA2?0WCM`A5i5I7Yl=o0eMBHTOkA`J_8ejUU6g I=91@V/8ec]1?K^O^L:6>HCABU5>Uhc=Mh:a8 9=]d/XClE2jWW^XQ>Y?iG=^JZ=McLcfiBY_a=QX:kI@2/XI>IRAIiccf1/M8ecUJ ^92gLCdiI9198EU;C0Mm5D=D9/9Iio>Ld5i84dhQ`f3BPM>PfQ6^>YUodMjANPffifB0kC?8i`FU6NP863F1c64Ua:XTd15A?c`A;C:0ZC?9 89g;[FREd>QT6Q963ZhmAk1m5Ka_bkgDFklH9KF0P1bZoQ84i53EH^P_88LJ AW_P@gHj^jgR/UN6@1gH:>6Gb29SN0?T_Abbk4]FOJ5ZiVX?T0KB?i`d=_3h25`XO@[i]h@]0lTeXFC[ CL/@K6D6oH<8A3AbAXj26fP[C@=397]V`T?jhn0TJ5cdfFaWZTa`8oIfH?:gNb m::1FfQ/0]N/j5Uli7^Tmm[Si`NGE1JW=9]3C@DfA>hfgVK`BjlUBCj2fjXY K8BO7jiA8EVh4OWA45Nc9mRfgfBCPd^cP0`2NG0=iBKkK^8fQ;<;ih9AD6O]7deM BdUc:nWTdP2HM`^Ia93i?RMN2aQU<2ngDF6DC@P00J74g3/TOlSWELjm/L=lS`8@09B28kOL1`f<;31?g0DW0S_A1b L2J[co^JbQJ3c96EoAa@d`f^WVeTUTGm/cV[@On77/fHhDIRgQb^3hKHSJ4?UcJe 0ed41P5M/e>T^?cG:6B0ML@CS>;]?990kFE 4CO9O76bO0H=Y;e>/j_GKSJNblT2KA8gjBFTnb^I9W:NZUT`k?<2nZ=<7DM:iHDi JgZ?P0[F0g25Dei3E]iT1TI^78Hg=P4oL2KmQSn? T9TOVLBBCik=OfdhVTYVgPlIagnRi4Yl6ORMP5/6o1:_6L5l:^35P11T5TbULDUPQ Z471Y0]61`19:@ogP9:QnB^=2R8mEk9:On=cMZb:eD^l78fGOni_]iK/TCFLb?dl FP1PRM@[V_XR]bRB8ePXh05kD1ao=H6S`ig[20P1`M6:O= [`CTJ=QT/7_iL`CL;mbmIFoKMdY29kgc;@n@>X0@DD=mO ^HijgbCZSAd]T:c?;@VDWiK]>NGDMHPg20ITDLcgcEhBoh>U=`fi_3:47FQ>mf1K meFk[WNQdD]8Nc>PN7LU4/`1QmP06h=O2: f1aO847H1/BTbFNX/4h2Y``b;A=OWj:]8?2jnf/`T3/Y:AGB9ZU?>@1 7Z`Q=]n4imjGmKaMGom7jDjF_XDUUnjNm0>`47 KZf;Fd7jZ5`3^MYBSSl7Ii1m19V7dfPFFlY>ZD?WH2L[O?Z2K0bK3=S`1FC`LIBgUKBWP1bZFPcm1NA@`fP?OY^6a `ejD5Ejof=0/h/5ZKYK?2eZ4L4?oUeS:c^J9F[I^IFf6YQTfm5CBPoXCO2bAY86k iTfSfSPejE3@6iI;80LX6HSb@`dkQk6am1RZZ`6F1ffODZDWU E5EM^23b9ghXgJUU?FF=X`/ii938IF3bPCP:W32076W?]BggbS:;`904i93hRd3a k@?80N2Gn8lf80Y8:@LG^JlW>jRMHo_>X=h8?@0AaI;]VJmGbE2CK35X/4?7GEPM4/2cB4b@Q0]45lIM:i`VVEBMg15`>d4LU/8k^_KGk?LGE9^/6`ZM^;<^NWN `FBEAMJU?:;4YMS0UIEhaWZFf[`VjeUo@h:G@1JZ^eWhhZOhH@>0hMNNaW>G]855 ei8Y2lE_FCc^V@D4i53EU09bZ6Xam1N@@`fS?O0QJT2>MA;8PMbF=>Z69nk^/FW6 do0KHET:Yl=>GG@eO2:Dc>2k;^0ldYh9e2^:m?g8X7J>YgcW;H]G^OM7_Bf`ngC0 n]S>aB5k840@Ho8h:o^==K@POY`kgWAkcT[f/Em>b/nSd;jED8R]79/e]ZA4WZ40 ;kfJT<>IK5Qe 9/P1D0A_C=K4MR5782O:LWi_Go> 6@IQUHN^h[RV^XTC]^lS?;IBaJi91E4EA[GgM/gHIl2OBN6@0f6VOWWD1dcAF;:> /OdoR82e>HZM[:nHjAW4;Fl>/PO`1U0786/TmH:kS6gNXc2:eMn<7odj0UPiW:P3 bK/1NAb<8I?5QZF26B@Nml`20W:XJTX1>EBe6?X;b:66dAkh4?DPAcZWCGK=TnQh X85KgEfVKk6SSJb61m3aP?@Xa;S@b7gkJjAkA516lllXRgD]HCWJOIL@>B]HIOcfPO75kRc[>e/co5VnP6B=Ni@4NBW TVoo4ELDR/`>R@P3mUn@E@0i`6kM=>H]I:K8miBe`F]]dl_QAPj/]Pg9CIID0TM: =>TRBP:J:nPIP1c8clehnWfX/A1H@B`6Y=VlYciXDmGcEWJA 7mVR3k9nTP]3oc4lNl/^@]D^W ;oB1FhHc@7[RVb7keI;DMI[9`33bW`HaO[fOTJMZiQokNcPgVPa`9n 2E1lhM^1`h>@8ccEVoAO EW3J@`/M6bRh7f1^H;]YKbQm^ga<>?af:@Vlbm7;SGQYL06YR5Cgc0j]Y0=MMbR[`ine4O>k8DLX2= P5cGm?7=G0kinHl/lP`Q6mckPgj98HRGaI:^?iTdc6cQFI8>0I08O>CU>4VmGMA` cn5V1hl2GP^]Ve5Vc/@?=g1:<>9gb0@7 hgLPf13e4KLT3W0LVZb3U= i2YK1RFFcM5cfDU1d_?djV1?7_47hkAO9Pf3WK>NLcahHPScL651a N74IZ@994effcDG:OkS__dha=1`dE91?/[PW2R^a24EagROOTLGDJRARIK9A]J`9 o[6@I0R3A?3O3>8kD3:7HQRRCQJ;^PiU3BeZo;7:RgW?OPBXQQ0Eo7;h>B4VR8=2 Q4eh>FB6_BL=0CUD=J>07:YJ3?d5i533J0mlR:Z@hl0l;g0i45P1f<2>QU_k2>Z5 m<>mCgn6LkWDZT[JXNFn7UbQ6P7j0MTd89H6`<^aQP`ZIkW;Wc/Gb5[R3GG[41Zh TIOLjWZ4=7OaffOJ@IZ@DmQ<1TR2gD24^Yo[n:iQD/CE<91DZk]n`R^7hf9^WE?D dXBS0iP7g4jDMN>J6dnZ33ULJFSKGXjdDZBM@UD15HJf_1b079hT2fL00RD`9lPQAc00dE?]lgU>e?m]AjLDm30P<3DSVN0<:ITS2kKFMZg3dQN1l 90g1fY1;/Y5/h<299[<`d/WT/ZjJFkR>N_lR7lb;c8`]Jh=;F`eW]1KKmd4Y2BQ7Tc^19@a@96VRj TK`>bg1fi9cl49@Mc7eV:[`LTSXh:688:GRmF:i^J/kBR^AkR_JO]8207:XJD40> EBf6oP9bZ66d1ci43LR1a0@Yi83c0K9GRJ@35Nk]Cg`T[@RVL4KKOUhABRP=YIR[`2I3X4SoiW80fE>=Pe]U4o24/MT50kT1T:WVXfUmL`Q3k3 >];:XKjPV?hR8B[hTl727VHG@^=JEiQUBE]a``_>2BP=h78TTEHHJN;f>O=Y]B17 Vej>I>012dTQ4YhD8m7Ud0`T/oAWYk2JR`[FT;jELSUTPADYUb><;;b[dLD0kI>7IBVoAU79nn/WEo5[LU Q1`Q^[j=Q/075LE?XE/:ioYZB?`0`i1`5@bF R0IBEj3bFT;VT;IHAWJ]Sm;a9i_7O`9J2?A?`4?6Q@H5e9ldUY?a[/D^[;HiGjK= 321FOWH5VBCa?1BXm7NC03l4TZ`hA4ckQCGNUQdJmOEPHJRlBWCP4@S32FY5dB1? D5jCPFg5hiiI@40>EDdY88NZ5T=o0CWD<=X37j8Zi3Rjf1NIRG3JHo_3GXHRh;6T 3O7B/ZOJ_^?;OD;85SfalV;^7X4D?>RSMW6?]YfjNc^Wf9>/DK`6g8UdjPWa :fR?XaQm`N=CF7dKm18ThN8JPIh:[PSBGG6UT8dBC3IelkgUC[BYbB9;HWWM=5`P Xe3ZRJP@g5J@7XG2NCkIA9>M;iTRV0:Z2N`_NMXUL6EefebN^6BmWQNA6Aa8iPUT UTKFLCAl>QVe?T[7Wi@n=Bf@RndK8el6_a?4Ag1fLdSSh2XOnH4:PA;YEoQK_IAO G;<4WX8=1A9<0XNHYC<2HLF7Y7W=dRP<14>TT4ooi ]X0LZ]Y@@0iE;HKn0W:XHK@7?TAEb75lTFl85d?PSJ0=b`1XXYGZeX6CSicl/jffcRR^9VLJCHaCIXKbG :oNO@bj/mgZRgFBjTf]^`aT2ZNXNf:[FDio=SdiRagR6Y^c1DWJ4T@f21MR68?XD B@>Q0Hi@BoYCKk:65Zb?iR7]j7:d2cUBP@NJ8@OT^>=96eE^lijMbV[JCY8m;844 H1@0LR3RPa8`X7MjXa[;Bm=TbjRmgLBcePUVeoFH:Vo[0GJhJ8O?;dDZ2b:nR8l17_^]7biI<;kBdY=Nn TTf^I:?/QOl2dR2`0QDDd8cc^KiXm`2bfcTM:V@lFDKQDG^[bK2P0;5O3R==9YVC @[T^A`9Y@=@^SVaFT3dkd7B9YOfA@0C2;K`LD/P1;[6070Z6_EM_1NA@eI82LZQZ hDoSA0L >CNm2G:`QSnPdJAPQf_WZR7mOB5cHmiW?kYKSem2@eJAoBXJ2Q9S6Xf6Of0ofAEA ;lQ7A5=?426PJXhM6JaDE_:;o5@gD/[FTCeP0<[FHdL3Mg@3JDB3=C7a?EVgBLej<6W1QM2254W6Xfnc4bfh1;8SkY^mbYn[BL0]0:852]oc XZPl5?;R9k8nYbhgIgb`S3;XK417_HPWXF3m8==2c=bR?Bl784g@7Bl7TS90>TG9 Vd@JOGI>Fej>WNE>?21RD4XFTUXfgF9ihPVTh2gHKjMANPI;HQEE[1HYbNLQcBYK 8Oolh75FakMe:H>G=aZ_:9B:TnoOGU]67lEB/dT;MDoPXXV1HnOAefGddOK6/YR= b3P65dFR5P/MGGQ;88e^^;co:9UGY4jZ1]Ih/eg8TE[@g_cRLcD/8227ZTHCT4=E Rj6oP1aZ6>f13e4?LX3`Smd1=nUBb=51H0EN3RWTP9M32SWPiI277?8FZ3_;YCbT Sj/=cDFef?6cK4L5RbU]F1cPKC06^c=hY2PjUTiF4I`1R;]J[LgT^8HdK_[7gYV0 og/QLd/@3H_Sj8SGN0EG8IbCClbg??EnNiXNO`Ib`>fC`U=UDKc3]?S93mR99S1c ^nkL[HJc/XG]WN>jbZ^I^d?j^ma=IWY]8HB:N2 OP1AN/0fB7^5TDGnTfd7ER0e1QehJF15XWJ>Q5=M>5i>Ok5DPEj2PS;P^2hM<0bD fV8bUlQR85MX@2AYNi8N2dUPahmP6KN^L_c3;[KQ5f[H_^E08M9ZfgiLJeA<0fT5E@P`nZ8BVNXnH?KUSFL?O3iO1CE1FJ3 e`9egd0F:R1;A8;lA[n/L2`TbD9/;HcGX44D38:dh;/2;F]i8[0R88N2/OkLF`4i E;FOP1bZFPcm1NA@`fP?O8RZT>?d@UlXG@1b89H1=gPBUm[@P[SFUROJ3Za8^A`8 [:24^Xc;PL1:hhl]0R^g6i/L0S7OcfOKmk>:9^b1?E5V8UIaUUDe/S<=K>/_80n4 lc[/1P7LMh6j<6JUI8K2[7EO[i@Gg;iF^SN0QZ6n>ABjh7G7;P>6Ia[8[T?O09T@ 29JUhjJ`dfd7EXh/F`=ic5aN^Ak5FI1W b[=[hlQfdhB?FF<;Q`n[>`LGD>=decAbA18XE=LPH2GIU:6kIK5aO=^@0oAD@0hI ?EE2QT7Z[]G5jNkHMVGfU3F27_mG8:o90UTWje`L/9AmeJFGdUHY;BXV0BMO0]^fKbM=nTA@c 2?ZdFkV@2a9eSH;8k>Cd5M8nKKjbl_Y0Z>:CJCIgOh7`?`4QoD8DFIF^AU808Xc3>I WKXZfklD[<@>7OGQBJ3F/FB3`Qc@I91/m3eCbJbfINk][OaM0F@?7`;^ObD^0RQF HMTj9MdV@X`MdlYW=4R?lVLP1b9=V1l2G=P4]hbM`Thdlc4Taf[JQF_m8V0Ci?U2 n@Z@0cEU93YJn^^kSF=UQf@WblXUf]R88K:AB_dUmo;jjlPRjnTY [:4=n^S_G=fd6G8Pb@EiXh1WabK=HYD]D91DPWG7Sd_0VD6^3J8fb516TGOHLbee Sm6Ob7hk9E^?]571VV8[k?2Agcoh2NEdGDU[;IT_XT4kgoZJ1BI;hF;M7bd>Y329 `U]4KEa7?8GD60RN@c@N58]dXR8bFdojj`g7gdb47RdL6XYA:[K[l8TOG:2bSXXc >47XP4V@<4P_0e0fj6IVRN9AZZmV?o>Q37;07bFl70XV^UM_1NA@eI82LZQZ 2L5cT0>=Ze]R0eIke]mdO3b=A>h9e44CbN7Hjc=I8[9BFSbP;LI>=33g^7Bb;RJ[ HY1n^/G[o6Ph>YNA:G9KT7j2H5Hdj@NSS^Z4 ^d0>[0NWS=Ub6]o96eReOaTFMdMi51oS^E_SNgcB2RWO?3eie5gU8oO CL=m8O8fjWffmHCd6]CF=]MGIG^?eWlj5lVch:jDT2<:/VCbn_8V:lQlkd[?2fNJ Pf8][UokKoJ_mX3f;1CGLGDBR2@`C0n9`7hdM?fHEbj_BfGe;GFm3UKEOnfnU]O^ LH0ITbGnS@:N]`_Io06i1_o7jYZ_ZOB`:0`7RkD=>M84Uj?mJj?j=idILXA`kj8a 2=^hEi;LP?C5Jc[?hXL/S5:_0:_0i?Q_QBMlYi1FQ_XLZQj3A/kB586^T/HCT4=9 @lUg4i13gQYoUoHA9aOL4P8Bh=iO^UgVl[O]5Zn_W^N3<^G`LTP2:aXBmP8PQm6f 9jJ`USa;oEJRhaA?So?2HfQPC5T3=gbbS_ZXnaj0c]OkoOT?o4O5TVGQFBh VhKPMSFHC09k?Y;lnZM7OL?HcWg/J2D[gGdm8W?_ncm0EA_4bieT6D^mlkW/1PZG @gW3g^>>8/A1eTBRH8D7oCUU0P09JYTmhITYhN4358`cFTZVCTJ?o[^7kGl[hCOA[;J1eEiLBFJXJI]:F_3m1mB[`9Q51[4_jZhn>iTe]W2T B0naJkW7FXVG0n^Aa;?`Qa511l/Ue=mCJn`L_C7C1]QnHCF^fENPG<03j1`22N80DQB8L21:2Xn@1bY?1K7SDN0W:XHC@1>M@`fXNb7dXDY=WdTGdCPW_ZiBJS>9UeQ1N>ZV:bVXFJf>g@_dB63 Kn;H5>3@e/jQhHFSgV8=C@@81T5L_ec25D= f4UjFjUo2ODYiX49XmGDmo;L090]5DcZAoKKJ4@TMDNPOc=O>OI7GQd61D42BFl] FBo[jK3QmDmUXeQ5_FLGj`3BQ/AI6ANH@TH9G1I@Wk11BZJ/6aZeS=mg/f2hG^XKaUe 0i`0]MFKm3g977hQh<00[W]V2^]19P]e@cIa6=2_P?XRo167Kg_HQCkkRVa>nDIi D^YZ/RbS/F14o4[6h6@RS`?2XLUTW46VNNCXCaHhjdg>W[9A;7?[`Vjf:lWHSoCS >O76Z8`/R_Pn[Q]:n_iL<=IR5IT]9Cg@B]M@c`eLTAih[`o0dRJ950HXa=4dj^9/ ?eKN35hRN@43f?Te8C`NWUh=EY? QQ^hESVl@h=fDZomW2KD]I2/0E>G8o]Vh[_/N0_nRNa04Bnn_diB@aHR7ZULnQk2 M:K;B9nU2bn7c4SgX?6gP1c8kYN775;PLMMGB@bg=NA0L@4c0CTFZ_DhLJ;9Sj[Z ;dm03UD]eQWjWeR`dY<7nW]QRhM36oN]L6jS=SXd[[SFcGK5eA]50P0f9VPO:Ld0ibZ[ZifJ=R8b? _UTaN0@:NjgUIM>AbP71RYi`;b0F8bV]`_<;D7XnUP]EMDgVH@;PLedB0b@/H4kVFB>1S0IVZ5_Da:[VQm2=o7onE2a]S:4AlYi[9Sf>;kQU;_ BFFdU_EddH0L=o1Ei]McAdC^Hkh>` 0d[E0h21TV6Ea;G7nh7KFL:Uh07cn_QCCfLbF?N/HU:6M6g8hoR61R:01GE=D7K3 RC;969W5BK`B2VgW8Zkj0NB`NkF_k5cH`LYZSm35_Nemb2jDc8>X:e9aPH8@Ud7> 2aPk60jm/QBNG8>bJgebN6WPWTFT3e6b3Ec=`mBK;4im]YC]JPjnb2IG//4>E9C= `Jo5AR;kYQ51?K4S59:i99EV<=`kn4TTDaOl=^1:0^i:XKjXNk^E^VAbHG`M5b8? 04RcLFc;KndMFO4PU434C1Jm`888TJRdaOF6^=`Z[iI4=PRV@;PL38IV[>URDS0Dn JJ97bZ`13/?InMhKb3Z;eoX4Vl8TVjaAXcb0[<^oin;Kk1cg6k1C]DOW^BgSI0Jk @WXLmLh:T05:9Q:Z0cKOgPWD7F4AK3YKN1`FZQL4o`22;d0bDJ2?mWiTRHHSbmh/ >jilPcU79GDMid63P_PO1`^983KmaZE5>;h2hg@mTT5Noe:F:/;:cblUPb09?CD? FB5TQ9E3RlbEQ/3i:Cnc]7gU`953Jd8FT0Vd>22GPBQ3915fBCQEH[PgaPaog?c9 [W;Q6]UHZ5^L2DiJBD=Mn9lk_C;>[BFhV9:i7XEN=YV25X9Tf5;^a[5e8lZPTB1; X:HeU_N^79Nc0JMTbE6[8i3kHTN[/=coKH3af=NV_ hL[fL6[eS^1i[l1Sd7GAQ?9Z:AMGQ`1n;c1K2WTlRb^>aY55Y73PI8HBfgkaj<`G;aEdP:M5W:0FKgQ3YL3ZGI0 6R2HBA`GB3ACjPTHS;PcoUCVLSb?21d0?6jA82=SiX70B_XV9DfTd4d4EQ@=7nZ7?S>]]M85TU0ZIW]QZU0b1AD@CkP;0/W2SJb?o/0QQnc1 9J@R/a;6_36O1[UcD]H`;2>MkoSF1OaY2]L1K_>akl3WP8XNX9S6da1@@gnP0B7? _/EfobjKBZ71CUm>Nn;]YF@2SDd41E375QVeX8;l@[K5GEY5KFC7f_3hVb^hLl<:G4Xho=?8[90L4LS8 hT[/D?hd?cjg>HZ1DG2Zi4cig[oKj70^iFXM@kd;NOP92Kll:8?lfB8>^S0QPUHC SSocI@Q?kKA5<4R2O`b3bG`^F;^_ChEHZf`=lPffYb9:Mf80ec3GlBO]]C@`P0HS OPd=]c8JSZRI9mV3;R8KL_F4I:N^_e[bh@oODTo4Pc;80Lj@6>X1I`9Til^h]l4H ?ZERjPG5egSZ4T2dSRcMn]QiS9V`LNH2E]iAmblY[M/mK ^]Q/n5`NiK4?9J/XcQ0f:bI[>6dT763M4/ki0DSF3:JNJdWCP`aWdF3OhLlRQhG] >BbKZWESgD__`Gl5me4:MldQ/8;8V^iZB:>[6h9_O@Sa2Bc@JB47hY^8E>I`Yil> o[/1AFM980LPQ99?h8fT>i03UACPhP3T@=hmJP6hTQG;4913N3W4gh2>;?2KliXi _FfGLaQP^Hj61I6M1iV_8O/U=3AabUN]AiidlWLU>bnbMR>kYF@66RA8VlkH0]kj GWkST0j4Un?X`Z[_ghk>3Efm6/^I;^6 [97HP[ZaHJB?O5;X>iF@9M`8B9a4QRcH3P]8gleRg8E@Q8>J7WG/9SPW=Nc6W@oh _iRCWF`XngKnO4?7YAY3WGWaFKQ7X246NX0UjZ^^YC7ikoo43SC]V2RThVcie59b F4EF7]`7JO 5J`igY_/DOELRO;=XG;]k1C_]Z2RIn27CWBKK[=4IR E11IPjX1Yi/8hOII1cdcgO>5aHY[>7?_kfEGI@niL/EOAaGTDT`FLI9l2N@6VZ=o8KCO=mbi/AgKEF^B[BmK3bfZP?_g@UjdQN/=PcWLk?/neO9K[dFnF7_e^nJUiJgK>MclHU]SJ 0Rc_elo>QjH9K[[PDNSNU5[O^c@bNh^j?^>WJmOMlh5Kgfgg2Kimg9`IEXW;?OEPmch]UKi>ZO]fZhdP0Q=DCk?Y9MZ^>;0TOZXa3d;Enok OU7Eck4_WR^TNnkme ?[CLOo?Z]O;C]VjcZ/]/be6f;[EjRDonAmnT_3Yehkln>OCa_W?eX_8@CFbm3n/TOiCa=5NO2MQn[F>Zcll/iQNon=ooECo8W CSg`hOcJfF_?[XUWNaGQRV`fEWGnQVmLfC_O^7IgF4Pjh4R4d8QPL_0UZaFT^I[O d3WT_O/E:mdU6h96mFg5b9[l]dZf;mDe9MQ2jYa]?Gc;Y@dQTB>Ek/XHV8j181gnf [=KJg/K:6WQf3j/o8bdHaaY[8IC:?fVh:B>:b1m5fYHZG24c20ZL;:^DYAJaKKo; /W4QEb8oQ7]/6WWZ41j//LEGdPoaN_;VAFVjd;VZ9TC1jYZ93KQf7Ba6=PV[ZFO@ jjPo3e84fg_TLWCJKdk^^nJ]>[HZT6dma?JNI8eLPXaEggfGUlfYGP?j8A`heMn4 6hY]g7TY=^MVIRTkf15YY?5RLlZ<`T5KjhTYM11_khT5>S?TT7Xii207^4T@j53f :DDVj2m;TXFS0`baN<7UD1IR:?HCT>>No:Mkb2K1EZkYEV9^N>@YM3VRA[aN9bYKWoZUig@AmEeF;X ;nRSJQS]KcA46LQAfc:Xd@W?[XkM@9D@_:Za=URPR[7J3R47YPFDZV@gl4A3SJ=8 Q`3HW6BgSc9FfNU=Z_HiRX4?Z`Dj;NB0Ybj4jnmIYY09e4MA105d3VCUii8QT_FD O9ED8m936UL9El?S6X1iI0[I>VB1/O@bmJjYP1aZf4e03SF<9XHXF03K^S;HAV5D Ig/;/05Td[4oY>dhD`b3NNB;?f@ b@jAFi@3b21mRKbQ8@J3BJ[8?2BG:;NYAB@@`fk2LRQ Q]744641HH6kF^3Q0:9g?Lf7YT>WQAckEgZ_8a_TG4>P;d9BH1YeVE7W6_a?9InY I02IoAC^gm2FJ?:SK@1]/@@bQe@>BaE9/XYDSK^n5eb>QnHo_SPAH@5Q0F61nfn1 cPTi`;;H^]0I^Fl@mPTWPg3BSB6=B>X9WF4DYUCb6D]jTEaO22;0FWSRKCBGiX0^ 8[;Z75SNM_F/;K`LJ]Q=N3WD<9XH8R`P;20/l91IX7=23QQiWi]_<=VSd7<@jJcW BXIjT3f7[R0T0IElX/9S:1U5T1j:5RGbLPn64FB8^PUQI36GM5S2A_D^YH0LJ]Q= @0heS2J620/82`P;?6@Fj9b@PmEDKE_R4T13P11lJ90o3HXVOJW78iBB47 S7`^_nC85djgO_@lnn>ZQQmGW?]njKU_WLknh7aVa^Zc?jaFi[GQAnNJWig[Oeia lG_na5/l;gjo^V66jijOEk0J=G?T1NA@hkn0P1aZ64d9hj7EBnXP1bZFPcm1NA@`fQRR;20/82``4=V0@4iE;fP0W:X JS7d5i133J>98L82`P;20PnI1@CTD?F22/RQZ/G@Gd0>=H`VQPP;20/82caT5Q2@ @mD;:R27ZQI3O`4ie32J628/82`P;?2@FD103UD_Z80LZUXEBmX09bZ6Xam1N@@`fSRB720/82`P8?V@D4i53ePP[8XJ[5d5m03SF< MWn6/8YJeW2AeEeT3IOD>b9[^8:1k6@3Jkc2j/j[=lUm7/FZZUSSFEKC`5ONN?Tn 7oe_LCQFMd6jCUIMnkMH/5STgl820W:XNYT4i53EH^P_88LJA[/?@li/fNTgJE[d jalW??]^mU?_5ShaYDSY9c[W?SFii?U?2bMlE?32gjSGlO2Hbm3b]G na2/Y_YhK4;h1ilV_?eAf[?_I3lg:NF53a=Nnbafj_Cm`@V/oXKJiNj[?[InOSLmf>c7@n==Oij7;?dVD^OoMC4n__?1H@T4?EJb4PQjXF@gl1>M@` fWdHLZGhefneQbk[>MB5S7eh0DCc63:;9c;MSVN]GgOEo9XeeI8jbSaiT^90 5o]5dWV9M9PWmS?4lemRCmc]:SQ0ha1n3aH`84M3ch81>AYZVB:7KadS6nOZn9dWjm]5/_cK:UCHJdBaOW>?4<58MB88N9gO4O 67lS_T8EUQohL>`TLEPQSRTRFB80Ya1aV]K4Kno@oed_QbXkXa;c1hW7DPV84^M4 jIPR7MJ:KiShS1@WKWZ=<;FaRf61fQH`84M]Veci4`=bG=TnMOkGP1aeV^FgoA1P X>9bITVgF?78TWJKY<QT[< 7BD^2kG?Z]AYQ ]?o_GECiFAFK7MCdeU3aCA2kmN:B:?KaHQlWWGWRkUPUKI:TMI9L^dYJlTbDJe>T EK[HYT[kF>TH;^eFBXM`JI8QcTWB>E;JAHSGA77MmlW_VVe8ITg9_bL4joQAbdbA mB;adVbNfVD9SHka2E?W1J;feSY[/nSm4AIkFK5AoigGF6e[M7@C`c8dE2;6I2SXAJS_@4i6V6donmMe>5S :WMWl1=_[7cT[EGgoFG=KJmTmAZHLOf;>GL=g=SWeAgg_KY@>/J9cAYY]E;/X_CD S5]324HTB`fF7c9g_nk5ZgU4E>W2cjn;Y_IN18YFko:@5C>[i >7Ca[7G;@bMn<;l]D^M:[oP]eW_Eg[k2C6f27;jTl:`F1b9UJM9VYGAL:8jSFWIE 9FMZM5Ej[:;Xo57[3b/ZZYd_jgmI]//^=1PY7C]EfFgaVDX;F7Xc=_hK;F10SXJN =@=b==AR]3LPAb>iB]NGkNN8A9IeSYNDb JAhY7L?4UU1;_[QUB0neI:EI8DXMd@]6aQZYXdEOUiEESYVELE 9eD5bVeEQAjK:S^_3YeAQFLH_nEOUm^X`UOU NP1EDUXEeI26ZZPfkF[;e:?cbgfYnG=]Q;8OeN6cZ_BLOQiVc2OeJoTi_3[VHkUb 3g[0lN/WRNm2/Dnh13UU_GlD9flTZ>ShWReLdBO79BiIeFQ[hBCAh``Dcd]GK>I0CUZ F^CWgQ^@hnL/EWadW3S6RR/9/42>J;5O;[J/OmN9 5lV`:SGg2/<__U3IeLEB?E>X[`jFOSXk]Ll;Roc_7=_Njd?Yb?K6PocU5ZPM?CQM>kWJTFJFYfW hW?DXYEjHgFnB/YA1`kbGo26f_Kmm]7CdUikOm4ScbnjmlWh>iiMonOG__oGV6=c `mGFBQM:SOi[_eF7:ZMP]NWc0e>3lPMn6=_kbAU=[QlYKZ?5HhI=co7R/l3aSZd3 g[nh>4i]gJi:Oei1E:gDT2=8k5N90lCAMf70n?EmUKcVkHa;o::o@elakWE^UU5iJWHSFO[^PcZk<7h/8H53Zb@I[7BJJDhQFS8hI`Q_U?5kT9bU[YR@?aR^LWk lGgAnVOo=EUlUdZgB?6:T7JQHQ>QfJM^XN8hEEYGRX>L_YlfIXQT;kZ^T1A64]M8UBSY4R;MjOh[J]Ul5a`Gfo/>P5[iCM7 ^M8^F3cVRl]llLVhkCVeJ9DZ[QJ//Hbf]>A@j?=_S9>0jN8e@abGRVNHN8`@VBm> ihI=Db6[]ShbL:Xhca7GJM8If;=DO5J:EiQd3Y9>ll@[XNOCJ^WJbgE^nAHfETL9WK;YAdk1R6HcJGjR:Cj_Ho;1^SlfA[X_5 Ik7h1X]oZ?R7JgCZ42;]T/@S@CaSaFnJf0M:eh=3YjSMQmBQBWaEn^>ER29ZElV? XaI6MWmd/3P6fOBJZo_Ta7TWjJ?c3Y=NdOIoD/WOZRo;Mcc6UNHJ93ica3iHO9I: mm7R7?FW0IJQS[WS/J4B05n5/c=I70;AHfWNHfKkVe>OniNZ^6QYI]i@5DMnbAYj3AR@Xj4FXkd1>AYQ ]?ol;[_ESo0URRjHhP:7bjMfk1hSk^_4MKG>HNTD:neCa2EONRhF?kGYfm[3/hkD Zn8OmXjK?kYI]l5R6b/mdnAj2:QIdR9=944WRDRdB;Pd1LbTR_lJjCI7^Ra[dO_0 1i?DemXK`:?/AfUNjiIeAdae_7be^hM9mUKPUBUaX^oK9olb=:QS[d3a 7LMha2=I^RGYA1h73SaF>RlBffUPVoImCXaOLSW]TEF?39bS0e;N2N8N;3I[aGFU G9/PC]]j?9cQe6NQ]5XQM^WRCFH@Lg6hSUGI[=CFJ1T]W]?4LG77N`m>FV:f`04C SH4hU?V]iAGKWQPK_:SicB7R5jjY5aeca7jC>6M:aiGB=TJoMR45>5dj[aL7R3M; AFJ9kGAa;gloD6d]/?C3QVFj9eiPQQa0[;Q;T2==>TJ8ddCYMSW8@I4JmEgAi`<7 3aHGIWnb[A?4?U[SWhjQHQL[3YWR]DEl_P6ZBK?E8Q^TFicdN5nJc;ka;YFF[TX_ 6mdhE;iK7BeBGgkmeF=_;QJ_iG[NMe/RCQa_QSQ]5/o=hVk2RViQ4S1G_4/ONGmc ^kjX^VfEg^_52c_4JbCV/OKfOYKSGMigh4B=O7[6RRlG=TP_@UbWB?]U3WN[dSX2 IfNSDVJ9>f0YG_>X_H;5OIVhYXQ_Q5b_LWMK^SDf6V@10g8db5`d=R17@be6N`=b =<9XooUM2/4KUbRJj_0?/e[d2=OCVE>VW[WJI8Tkbmha>K mUSAi=H@lEXX]S7R/5XjO2j]_aKK;M8nAh>4MSPIE/XelO[II8dhQh[;?>ValHe? eJiZdj;e5jWL[oIl6SQ5NS0Gc9Af/N:L[a5;2nA1]X[_>VV5;]TjJFW:i;EKXfL: mg3ai2jghjU?eKY:V;A_l2CR1N2XJ>gOh5Dk>W;4lg?YUB[GhiB849m`LFGZI>I: d0CJ5ZWB8DfjK9B^jN8oBVAaam]A/F1PYhmElEg=hdbljoUU6Z:h4IFPQg1Y6bdf /M8VC3Z1F5K8]N/eQ6/>4S1QPdi[YF>R]0^CeT/4WI>NHjGM3>NkE;XY772RFXa9 7MKOY@iEY;kj`DOB2Ho11;6I;DdPfjbCMQ^ULkIdPV`C:KHA6TBe8fbdG^aBYEfD ]0/B^mWR>U>lMSckPE[gYGVXYJZ:I:8Y9C4iN3V0734jFJT5GPh`C;@hJ/QAF/e= Y8MAI_9RIGfno8J7QTVWD>TN8Rh9hYH/[V^d2l9k]AJcMEh]mTS6TOBD9jiOBOMd l@XBfcWR<;V9benUjMja/mCNH_=P[5m;Om0OZYgKXnioO8kHaFPH`jQLlN7P75/U STWRa0G3bNE<;I>^hjAMO>_K8/EgUTRHf4A;/dQYTZcEncgFg?:h:RiCAcCP;0n: VBOG[m0N6897SZWR29R<4>L5LYg:ZaUKDFDo[7_mhhEJG9MCRDn5 Ogne^hkhV_DQ6=^G/h01>BiWVL]mKT2>beWV2YlKT><:a_VMo:]4WBnhU632T5Ca VIWB;EA/lkQ_jhFckEJi;UfLeXTk>QhZlj/[3?^k4M>2W>hL:kK;=EKAde2bN;;n GB_]dkFdJJM8;NR1Ql4nFIaIS:nCCU_d96E?Z2G8jOJM4fN[@o][mjof7]ka`KQ1 dVVaN:k@cPeP@`O61U[85C9N96R[HI^Ve_fNRnin;4IL/?O?R`K1O9TeBYD^63[8d@NdTGoaFJLWC C^Ujj^b2hhS4VFAY4jgI^KPD>ZfAVlJ;FnjK@fXO?YnXKh[G_OcQ41dJL5/U?H?5 0LRDXU=mKE:U1NKU6j?dQbhh>UI[V1a2H??44LR1i`LKITU7@1f/S=Z@@`lVJe=DWlO7B1NbZ]MX<>H;4UPYkDeA ZTjhAeJ8Jja6OLi[m?`>:aF8f296fTEZR=9UZGR?QABd47_DlE05na;om]IWLReP =E_GoK41@/B:8iZa?n8jBaFjMaRBfW5K/T?_0 biKNeMMkilR=>2_Ra2E5k;?eaMUT[GS=4/nRYA6FIYJ=/=j?aHUGUSQb/V3BYXYc PSQC6T1m?AYQ]=mf5`@WYdX0=gW4B5TneaBH^g3goOIE<;X2lAQZMQ/U^i[ Y3GNRCC]j7IJY]NZ[UBVFbXNc4L`GJ>TEJIhY4]796@09WQWFk=BPFB@N `iUj]^f[?LR/>oXa9f:dE9eTRYZFDi9LTbS=FN2c/PKW41O85EobCiUnYdO>i8dMaoQoiI=h4lEh/?C1_Z:i[`l1JhlXPSBQD 95DkoifY7K=@?9MYi63?bDZ@Y_`gDma`/:`B^d@Qe=EidlME^CVF;`9bC=5L3]PP S?=JTVBcM43=FG/ibVYi>BY>1]oma4@]bN8E9EdfBEL0ccXMB@5VT>E4D0TH0:O2 Jh5dS]:HTiQ;>h0U/6f=MTT1nI[SHIR26BmiWb`SHF?k_4FSFWW?THi9dW6C^?=: l8/T8f9BDN8i@cX^41lV[d2=YSaAfZOoeM8>VflDQkDRG3ePb0SRIGLoBfo7C0WD Y3:]kO=bR7@54n8L@nhnGEZVRO=LLLWlh3?;]nlfdH1E`I50lHkEEHBj[=4IhZe1 CEQV=Rjn;oIJ6Q/K3KF00CTJJS43LSCDH[@g84LSS?KKkP;TV2`1/0NI:5Wf4YYO :Bj[aBeE?<99TUeM3G:DWJmddG>ScWcTKo>d7ZWC5W7kA]bgR2]5C2J;;12oKFm? D0O>VZUjU7hk6Q@Ii7g_?1d[ImXU;/1b4P@2[jmcE_mGEHT>[acjBA=;N92d6nko ahGRBZaWXoRTB1>dZYP_iX_Mnb8[N_kajmLoEZ6[Emkh1kX6J4;I7>2:jRV;Y21deJi4[kcN:L:eiCYNTBjCi1_8J9 `gB=G_b2==NR7J]nA>39hl2_PWMUZCR@6d8RPgU/eZmIMcdC8OK8/K;@C]8k=_]B o=?eS>lN:;JIL/nF;Xm^LGTb/m<3L5=QQ]1K^Uia^`:O25Y5j51>`6:iBNf^6G5@ JM]C_IiHX/VI[Zbn@ChaHYK8R^7cRPO?b>WkfWcY5Z6S C[hIh[ZDBEb^ci2>TM8FG/C/P;_EMo]?GB9`V/L?i9PZoPQa@1lUF95W]@TbV[2?26 C8aO=el0<`=UU/gCJY6/3]@o2iO;PhiHfQBI9>QFmKY5VKU02X3Wn 8PQ2/6kR@JBN43mn/3@f=QYZ0@=b==AR1^AXZAQS]]mf5jgaT2gnb8L9= ?XCidWVi^5;DW[_^4^WaDg8eb64IZUZIPf?Di<2c8g :caJRB9hZckO_ZC7oO=ecdRKMR4/`_8oA;Y<45^Eb;aDmBPJ?6flM6BmW:AGdfeI aVhA3n[Nh]Q?OOieUIEWKZ[fk6935ABV`n93K7YdUm/BH079@2b31XRBO85kcBIo9nkI6co_o>HW6dN810X@d ^eYL:LH7l1R;7n?^EeEX/RZ/ARaA6kl=^o?YFM8E;R_c=A02RP_F8h/TT7S1?chQ 9MWj:eAFQZOMLZ1Q91T/kQ/dCaEna7BiLQl b3QES`]aFH=di6X@HJ>P=52jK;SWSMDjQIcDoPTZ^BHR/Q U80H/@gG`:IeSUK/Y`1@Y`dg?fF]nZ8fkYlSOQ4VO^`gh[QE^l8P6SV>K^5YY/YH 1W7dkn=GJIjZ>`06j0Q/0gK29=WcgVQ;6f>S4AH`84M3SFI0SXIJS?H6i6R4dGkK GECY/N6fo_=da9cD3hOIVT61mijE=A=R]m=YMD0>531f_XiX^5f4M2A?8Dlj4o]H 9RfVB>]mKknW2WABY7F5=O<1oS1UDJ2>c^/9UnX]LCX6hCiNI>nKPj`]/=Rc3mV_ ne5`:j8h6?U[WB53X[90A2ngZn:;^V4k3bXARdPVfJiG9/S ?W4jCZBIQ22O1A:`jme9e]m[g/jlZalFRiI>LM863RN=FJZCEC7>nFJeOZ^iCJG> F4UahH:@@?6849LdlL3?P`>Ok1_Pa0aaELWi=CX?Mo]cZ:I`@1@1AkF;dJ`HM5JnZW2Z^`7nf177G4F]h9oTB]_=dVJCN15oFMegX?Gh=kdfM9cf:GW0XhSFPAQZfSX7 jOCWVmBJVTNZmYJYN@V;]??79E9CFHSS89d:jM@6;95aDiGk@XnZi5aD]dLRY2^a @TimUS@1Q/487B`]E?E;N/<=cd<`1W9@9MUD/Q0^/@_R;B[W2n^Q6]/=]H01>AYZ <@=b==AR]3LPAb><1IdXJ;2mV5lbCPI7YfkN6YGHNV n?GQ_h@]eXX?O=58j@aKHd8GCkDYYhJ>QjX`0@=D7@iE;=8EGQc`cn?19SF6L6Gn5YFI?d8j[m:BXIeCYIDYF<>Lfgj>^>`IA61S;@O5@Ahi/n7CdHYgm2P6e:F_HO;dX]^L`P`PHOEDc4d4M?;G6 QkVN11KBQ66U`_34RN5>C^SfOd``mfWm2^C0bl7j6YH5k4CbJ1Qc]=b@o]@oc1IFJc4F]e4f=B77W_LW;93^B:>_<4DX4ZEY]VI_fPe^kZef jg1HCHn1:F64ckMm>6JJIVljOb7>6cGMP[9j7E0VVBhm@@jF`Lac_RmFNT0jaN/E YPGfZFk/A?SSlkl==KLY;=Y_JJc5K8_>a5coF:0hQ8XWh2Y5bm[LR/h9efB/f99]12=U ;^bD[WMJfQPKSK>00CTJJSL3LSCDH[@g84LSS?KKkX8JnKPVGV@F/=Z=dBBm=ZcF VBc@:0RBP=?YeBI4le3E]Ug_RM<<[D[QaFbeG:nVfbe1@L^nZeZEL24RB^E/:i`E YU;cEOKFlk79:WN[B/mGbeHV]kmmVK@QOB==dcVLHSCZP6SZ[?HME@LdYF7Wf1UX ;dCZ58lfD5:Q:LI8JUd95`l6LPdn JMfN/NPcV9>5CnkJRfchS^LoBY0k5nU5?DinE^PML3E4B>oMoiYB^goXXfQ745R1 n;69g1=a`FT`Ai`>32F3/nYAO^kXjAod93]6>bi@VO3nD^O8]62>RaCW@75GbEUE [B4jOSR>Z4NLN6N:3dVPNDbVdSHLgJd^]jVmEe8FEO_:Emgk@[3hhE/PT0C;M:?> W;D;4HlmKi7_FoD0L/`GOlhbg1]d@SPMB5//4lnA;J]13Tbd[5_O:>T5/XZDi/2H eM:Dm9IPlWYNN@OaF7A[cIfZTVYN53iDGg`oA[aSa6NMM2JXTB/]4>/0>ldE_anS dR_gfU/aA]=1DLmXVB=^dKZZ85EnD93cfcF;hELmR/mLh_VDWmlhl5?DE9J;=j@S C]eI88MU=kEaae0CjiGlX3AColAIl;B/k?^2YLf5m;`5dV>i]hlBQflo`oeV?7jA1@c8dE3c6I2SXAJS_@4i6V6dggHGEOC3=4g/9>F`5KX: j4P`Cd6R8eD@o^7iU3XPajWPf17RRW`UjIoTEc:5K=Dld_Jh;5;T1]PP:jD[ZYR; aGFFM9TZkGU>ee[K4SifZlc/LXCPRk32KJCMVPbXhQQfBG_YWZ?ALYSeha=U3lQ5CB7VYPQ GR_4YgS025GlTbXoMNRW7kMO:Q13m^Rf=hN?dJ8@[:1K`OdPSh=_GhH4iJ2ie]fJ ]k=_khlh??9L9/e`;OZAJ3ZFX/V;JW0Wc>fSNcfjD[Xc[`5neXP=GXiUHPoH>iEB >@FKVhDlo_Y2^H5oYNRC@UH_NK^MTLKjY_no;F?HLe7Kb_Y1@A?NI_IoNhUhT_>; T6blC]>@;l@SU1=dFmDTBc72RlN;d^A62c?Wl8I0Bk8c HBbR=Q1Pe?Z_JQ1Vc8MV_=KO0WSB4WD:^FJH`nAI[JmT?8OLHNcEcd]Hfj6?N?e3`d;8e2P8mN4B[4i Wk3Jh/i<4FfReFWg_6QIJSGD9YVIVD>73QdaHPB_`hH=6cahl>SAXhL<6L;f[o;H ]jn>[<3j3?9omHWf6HKBY_`F/8@N/o]DjWI3e[b>OohM5jc7]5j3D]FPV^>cY;P aRjKa3]4cgA^i4E^eGZNloX6@_eK@YNJnM@ kB^`GBV^B4jYXD7ZndY`DRF9EWjZL>;RlN8IXUk3RS]5YV=jK[1K8QeEUcZVZ:4UiH03QP0QYWBdNd1AIWY?m>Tfl CRJAdU7iD1EW@ami;EQjAHXCZRHKaBm>ih5B0XABY7oN[lg/_E2IC U5fXS2>P:jjF[`hFGh0LkX8TCIR4^PU7U3BFfbimPoj[hSFG`i@THVmBI8G3@?Ja iaRKJQT[@8kY4[180dR]/T:FBZK>2I9UD5kc_k3^/jB=H=h6X;cMGIXo_1/i5XTkV?4SjPL ZDoTiQ3?8PjHMnN;ZZPJ4P?fk7]S3=8^D6YQ]P1VH8a`FRMc0GbmVmhXB9Oon3n8 Y717hTY6h8FYSN=M@;YCFDfocAF6I?b[CP^@5LD9=O6I]MUiTQH4jS1=QLb63GRb 5fYeZ=c@2C06lM_L^ejYld_oZcmD9BO6=:^27?Dg4@]6EUFlHV7c[A_P`KfGjcUA UcLP@LQRjDAhWGPTSLPMdFGHK;/Fo/[1WRRN@5lU`I HY LM[mbGC=nMaETW3oP2BMN=:NUCF2hOb8d0V10g3T[G5eVThEEi90n6oIfBXNhfUC _^CNTH6QhPENYB/jI;e?UIKIhWQhd>@jNo]Vk?BY>ZL6jZ`;LJD4?DmiTT:kIlSD f^fCkgTAJBalmJBkT^72FQ/5/;WRWSnnFQBVm98G9OWNIn2a0560@9PJIGDi:M;EgEg[0XZnooK3;F29LKOjE@JVD=H [Mo[i[e>YZjOYfLU[QTdBmf8K/`A6l3?K?6fM:/ZU7Vki=A9l`KDg?7RPH;[>Yd8 @kDMVg2Dc67VhJnIlfP1AYUik7@hC G34/Im1^AHj6c=nM`bJY/TY6T:D[Hj>Q5[103_:QL29aS@4HF8JK8HMihLT=PHfO ONFG0^A0P8FIm7l7L]C7<^HfYUDimdWFn7Q7]IL3OYC9`QH_1dT1cRWg_TSIa8JN Ag?kgjfGPl0:eI5<]f]Rd;X0Q0V0JFd4[SNTU]170W:H3O:cEmXUNn9[1oG BQ/Fhj3:6>VlE3X7jaT1iBSmQ?N8NRBB3Q5JLAX]M;lUdV6>E[d8X>c52UdCSBWS eRlodQP0[gkDGLc;>WlF1@mBKT6Kn4J07:ONdi=n`HnEBg_;P2bEd@Y?JIj3aJ]P K_3End<2Y@f>1JhOd1BbWd2>6N9HnE=`I09XZBkCSboW:T>ITI<9R^Ai=l_FJ3VB;h3URY8]` IMaC;GQDJI3_BfMhg9LPefF;4lKm5f41KY]V2Fn4aU]C1mL<2bO/@IH]okG 6oJT:nSm253WgVY0SWYN8oE]APKUIO;=N@E8^J9YSCBgf@486dmb_jC[j6Snl:6>JNO4L RU:4[Oo/c[dnURj3aFfZDno?V_SnZje_m3l7Zad76G5TgokQhXLB535gY4Oa6nSP ^kBnl:UVDn`oGE>nfg:@fmGAoJZBBl27Z^@X[hO7J?XX304l;@QOhhCQOXD4E/F7 MD>>_B>V0[dhO7P/F01=<48o58L]o:@>b95cjh]0:@90Y[WhF]@`^51IKWlc/Vk8 TG_[@7fd Z39<@f=EM7BlnfI0C?P]T;LgX>:NiKNj]a@iBM:?iTfDh<=Ki`HN4S2 CEB:1;UQnAnON9c2G9da?9Lc207ORM2a93>A`0[c4B]Fd1M?;0068mk=N/[Toc4cPWkn5EBl@ZOQ /j9dbKZSOh<^Nj?aceX0g^IDWLN1ii>IQE8Pj9I[EQj>Jf@=e9[JT>?TPGM7CmNI 0^BC^Y/XX0PS839Y_imhnZhmO2>U>_3ThkF`U65E5BMH6V]1Yh8:mMdQ]Jm@h=VhX6U4T?A;O?e9TecT2DhT4efj^: 7j4ELBD3IZ2?4_h`BKi3^_3lKVPMDAP6Tgmc?c?TP44J8Yg1cbB]e0j/A3b6VZSg FYebf`Ijie9=Yg@M:Ff:?ZhKbM2cnJ6:SanK4HiO8TA33V[:`9dPo4eQE]L@[kjZ h/:UQZ8BLRW>_TS?/eX:S97cABQ_10[5jj/P1ndA1e^^:lPc@G0gXoP8HC:K5D2> EGWlEiEEHCa;inH=C_fgcglhgbB6Cb0921@TD4me=MSe[gaDfFKK7ZP_14bYS`>U Q7ZkK><<`ME`>SRaAXNl?Of3AUbY3kfbG3>:TGCSeX7PF=/`jA8/WV__ZQ]bW9`M Rd`L?G=oA/NN`_57oDflXE=4Zm@KOd>_SFRmULKWcC20]@F A3NNFce8`nC=P2NVY`=h_cc=13l^ZWXoLIQg`A95e]6JfKcRWg?FNi8COdQ?i^_A`o[LUJ;[jV h1ebCeR0;3J:Q^^TN1>heMVGLGZm2M2][dW1:RQ;Xb>=RckS;P=b=?ARnIWf@0hb EYSLRNTcbI:o2Df;IBle/dQG_9R7^9:im_E lF9ei[9aL5EBA_f;RhWYF_>c[[ETm5_oVZh_3jH04UAImWH9dBVOOUAYZCV8j^l? 5aEDod2ofoC?4K=ek@`Zcj;l09V4hQdJLQcmX2J4<>mkJ=Qd80N73miHYi=a2>iC d/GaL:e032[^nKd781S>lQV@IV:@MP@K^8_Fhn6XlfjV9X/>4A:8FJIM Om@V@jg;ld9BQWG;c3LnQK2:<2V7WjGefJjQT//BlHScNmRTIJY3B`E7bjegS^HWiXgD=NcP]1<>jccFaYMT 4n^FRgc_QfUSLT_2gmJEmKPlH/@SOf0e=Vn=k19EMUHEoCRcjDead]/dVi?je6FA GSQ05g7lHEYU0R`DcDFf]e0@4:LXA0k:ZI0]`YfF^RgI[geX7/KA/P?Fhe7kBQ:l oTSL5VbL[o>N64cK9M8BiKC[;@gMhO[ >RaLo2b2B67^>Xd0e_X_[KoAf6jd1JJ85oaZTj^OgdPEgR1W6KngJDJXkaAPVR`d i6356ZUY?eN]U`?80HA^:>@`@@^VFS;bZ2^=C`WE?WjZ[1oQV54WTKZCKIK`hKg? eEVg/CjWn?L<>BQR3U<8=bHb28Pf/^AJD2> nU`O3FV3VQ=IPNQ_Vk`LW:IV00lCg@^O_=ni]:cJWJV`a5D5EFPg5E]GUc9d7?SG`@=0Z]K=Jc/;^dG=FB0oFiZ@f026H25J`0ZV2YU[W^OGE8 IVg0bCcY@9DmjfI/OoGlnnQDV4[4hZ94_@d/aiU[OWn:C ;Ld^W2YFYbYPQaJmA`H:KR/7876^cSAY2SNHnH^EkkYKjj2?dP>di<`kGUhU=n7i XF@KH9;k>IEWbnmiP`PDZMbaf/D7:I6UD;L9m[d/GfY/o48;S=De1d48@4YP7]L` PSoTD/4bdY33]2A_aIZd?Tmb;PR/@?^1c/OU5gJeLST>WcA33U=PYEjFYVIBDa8_1gMh^MG`LSC^T[W/GZ[db1PKjYZAcg>lMK9hhMU6fF=Qeo]Ec[OF_h9SNKTCMBHY@@eW2/d3c/Va3A>K:8[? g_R0b]]ZgI]i6eOQVNTAWfQURK_R?IhkUXZ3:SVE9/4>DPNLMYR]S_7547iSCcmTGG5d03T@cgOI`clMi3LR;/PGkcFjj0iY5WkFM9iR^?= j_=Ze0PE]Gj^bGn;L`=8`nf8D>mdJOmYifZ@@iFOEG=G;MD:6;16HK[b:bIB@kS= WT:dNcnJZKjYfifU/WN4mGQXXOBHZC=4b??EJVV8Hk0hCN[ESc:2U^8BI8UbahT9n5ZjTEJnl KAVK/O4;;C2Z>BF7=6oL33V0[6Jn0GR3`0[G9a XaVI52hWB8ff0f9:C4K@e5M[;LM:b86;0lS1?5FO:neB6aa4d9EMLO3VmgjnLAHc m[ZL1LR36=46k@]2GIXR6:>58[VI/`Af9:6PHUfFmHhUZW9]6mKWdB1a`k<15mgT dH:UPeQdao5Rom>2D>8>eW^a[EZ_D1ci0X/OfE3m3^D8M;;Ig[_8?D;E=d@IJkb?>=U01d X^KMm]ag@I6D0MdiHS:T:BHkj:3TP:2f`Ld:QlWncbYi4AB2/DHMflI?Ykhi1lij RRMdDf;7TlCnVe5e@8j<^`JP@_n>A6/<1L/cGVJ44O84mD3iJ/obL D@OT>:dfkElT?F1mP9@PkI1XURMnDM81OK19hWe^LTP=mBdmZ]dUZo/l?eDlRLd@YZnNbB;YmnOOAeX>QcUh_DRK1<8C9V;K85L;hj3oTmWj^MY:/nK/hRPU2CQJU Lh0FcG>UHjk>U[YVP`@`6l9;9obD8WhcZ=lG]lIjNJWM@Zf4MLeFBdNNKeO[7AHo_MkZS:cZ3;4JdE S@R8o8a=[2g6SB9:f_>4MTFJ1P/U4RiM]cn5WMnG2SScdS8f?L^76O GWZP0hH2f2NOO88bf:obJ;@Df>kd59>G7Td3078fnJZYf;;]HSOPgdYHK?]EJ=N^62ZXT7S9=IhSg374k TYUI]I_EU/ZTTRaA5B8;J5]A6MKAY?B5@PDP`N_dT;UZlai=8RgAg0=EO_ARD=P: Sc]QBS1OK1@gWSQBF6=2f9__OkNi2Y^inl>3Yb46UJK3LkXa3UFVI]`DLE[_e37S UZODo1Qej0QZff[C]g_n>@SMS3UjmNf7HfBM^:G;CH7BoI=>?D_VQfcoJ5QDTahQ NUf<9P35F9eQXY8ULORcjEJ7D[FiMOQT>2Z/j9V9^4o2cEPT=]?5iO]AMG0oe]om GJC0T0P<]Ba?okR0V/dRaF=hYfZ46Lgh ;Cjeino3Hac^V2=]PjEe^WSWJ5C3ki[RlVe`PRGNnmB5d5SemGH]A9JgYF1HH4b? 1kRiT@6=S`Fg4SmNP84Y`k7KN>V^2V/^/XY6cYZ_7ET]_Q3?SCZ?5OhK35hF9^RM hQ@2Z7ANYYdlcR7JCnFiE9YbKBC[VbXeL6gQUS0OTMbm/K[2Z_DQZkdoA=cbY4U9 A_4VnPEhS6YML_J=KKNRmSnaMJH5J;7W5jmPAPh:?0GMVBEa:^ bNeR4HXN2kk1J>U@WeL2[>`5i>1b8YV;e?D=_CAeabbol`_7nO_IWOGDAn:hD7>a ccAFZ:`8kFaT826RBVV1/OBOWcP>Po ?377_MMDLH4bSKcf3^VfGW]CQH;_@DPofMbREUDVaABOdXZPJW]aoRd_4_VPAST; JRC:ZII>KJdih_:51D83@?Z0]8@[:AH;<0M9LZ?efk79f=Z Fboe^ZNGJLTbI;AK4SlUU@=mLWR9Vbo3iDRmk_5@COVh5SF9M6VbGUYVB]/5hW0^ ZjIh>>TNBGmhJKK>/nR:H1[5e01Mb;lC1jOnbgaM2MMaWUH^KAdXcL4QBgFF:>0= [0Rh/T6>PaYcbdEFBNoPkWg=8cmd[RX@XeI_V:D[agGScTne>jPT@1CLgIn8Xb[C 4=7jX@jE_BL>4cEmhZii98b8oNOR^e5LF09@cQGOb2@BJVaLa[GeW:QS4ghP1?`E T4U06T0JB45iVTo^>eYJkAXefkYWboKV9miRd_m:0SJRV:4A9PV]m=22^WhV>=L> 1MYD;O:00SbUECZKV31j3IR^?F`8o^1XL]Qdn`1;QkDg3XbHN94`UaYYlHc6C]^okIed@]QXb[Y8<9a997H9mgjd^G_^NZnS^TSDn8n43oIVeN 7l]Hf^2GA]2H@Y3Y>/6O^c6[6idZbcfIF`L;Z1Sa9QJ/R/iI9l;GggI[eZ`1Kgcl lLNlVUdMP`H=`[n1l_V_lVPdi;R@ooUdWI?XaO:1R`Bg<4o^3:PNTMN@1gUNG3<[ DnMnoTXcfi>IPQV@17l46cMeOK[nES9JG]T2IT4WEJ8iBfB5/4iWMTJPVBW?GCWFo5CF6:eI8WBg4^Unm=JeDB`eUaQhUg^7AK:9hT8bc@89=[ 0;LQdiKM1^U9bEX:^Qgm5:G74mIOXE=[5jlQa3mKQoRm5dQcImS[KoA/UddMQkTD^HbL0jlA8c0cA1>8cXTUSJFS@dmnSa;DDlMS@lnWDlFMGl5F;HIY_eWS=?`c3^Oc=YUKVgGC9@jdi1PQdWA53EG`V6BXWj]TURTbE=lcA`hSYQOM5YRHjY]H=60PVITh]R1ShL_1JihXCoI8TdVBd^XKLm JNjlmZ_:fA1elh?c=6jT:S7I>^hhU/VLY@@N/_UP6l[o`CT<5__9dSa:ngmHdFQT ^5:^bM2QFiCB7CKNLBG8XCK]o:bI5h4WI40b=47Jk9XS@0<89=;GJhCHZeQ30Jcf bFWl9n=d;[nPUi18AM]4Na?Zl/0J13Tk62Q?h2L>H] EjNknmdFN6:miXQ0^ZjWIBiI3fEP@Xf4[TR?eJiJK^K@`[US47b4BXZ;MM>][jP3 5eCIaDJLe?G[ehlM>oJccckSMNC8TOPg`1kVKMknl/ON_G/K]b5U0UIhRj AX__4Q6XFHBmF:DbXFOZPRUMcjeJMkTMnGcOU:3USWM?eOGPN^A8;aR6a<:oe5a= @:I?XWP/UMI1dRIBEf8Rfi@ITb`HlPDlYh[M676_V3RGV8/j/;o6Ei0=NW[2d]T] KePXgN5nT1o=Z;SQL57Qf`N1@;cL:=jXEP9Ph_Bc;GYIk]1;iGj[3YE2 lcS`g_1`_B?:Z?Pgn4UZ8I65hUcfeSPB6Jboe2b/_GO432Z`41__E8f2HEE<^o9fnNe>h6`TKQh/HM8d/[DJ1?SU`KAH]8bbF/X;=X f@SFLV6D]R6_6K14b03eElnP9[eEbSNZi6b=cWWkhl[dHDgmD5G5GF32U^0F8EXa B1b]6aNN[`@NZ[R`H/V:hJIZ>:Ub@jKh/e3=dkYZ0^DhC8C556V22Q6NH CU4olETVO^@>9oWegOGWedUJhCaR?LhnSWZ@Ij@hK[ScRY2SkdcEmM;H; 7WiBn4eRHPB9_2QOZ67ZhECfRS^DKZPP7j5[`^m 1hINOEi=91oVH]HPN3j_Xb90`WeG>]foI=RokKj_fgAIfZ`KKQ`>^CjFVGjEGFR>^PEmU5eEjG9FONeLk9Fh8d`4;91@l42QHAHEgP@EadlVTbZQ7SJl[ _J@6FCYenH[^3ddAmfUj6N:E;EfcaIgiU5D9CR[>>eUbbjA3V5jN14bD5/^KGOnn ]?ZTPgM5J0amZ[XT9/cOECQedDB76bN:e`:MT<_JeVjiC^;`hDVO15N4Zk9:_bFOAJ9KoV7>ZT4QDac 0iAYbT6gJ?DYlZ0=bJ92VVmHXmIEejem9Qh5P@5hWJK`VQY8K 5EXg3MFMegjHj:IT1Y6a@Z@E/gRPmdkemXX=UEj>f[^0?LIhgkZhbbd/jiRkCOGJ VdnnNC7i0g3W7_a eAAT@GVNh2neAI:Tai]RGj=mPJZLQEEY^@Y;WR3Mi/]=E?i5WHccBaCNi0i2MYFe :ZEf]:@`gTRC/l8kB_aWJb6eP?RkWeEOkj;W4`FE965DhPX_Z1:[M27ecANZZ53] :lQjiIn17[do5ILiL]e/lLFN94eoA^6ffikHnnUTUKE=QJa5HFbQ3PViINQdI]AO fiC95hLEUa;:`d>cm0 /_;MDKa14ROa_YOEWT[nOd<=UIBD1>@PY48`1LP1O`=61i3SegXD51@dM4SVmRLB LnI;;ba0=3mH_342:@0caFFf_T]XDb14`2^BQ_Fg9fJL8Aj1hS69DPR?_Zb>jhRo lOPE;O0?>ko9VVe8`;dcDG/T6NMZSXC[E;V^:;DVdj3fmjYEjB/NO>43LIZVXi3M R?QCaYgD328Yi4PVR?lbLIP]7F5O1;No6GiDlR__Z2mgZT8M@K1nG2R[M//RnkeMmFNbTW]B;VV ;VbM<1MUmE3Y>EFLZMLfFAa6BS^Mh?U9X?GgF[JcadhI;Jh`B:OXBlhColHT/J>0 nhiQMCP^T_odaWCah/;VMTX4bWBYfc>?Iee6l3cQcjl4JQCWDDO[i4j5h>SJc]IfU?h9]koo_bG oUDS:iI>BTZ[k/lULF/ol;SYGn8hAInJkT7jC?W>4^oG^_QHC66mLN:<7PH?MOSL ZZOO7]kfNUBN9TZkdG;=8Tg=`^7PBjH<[W:diEWEQTUG;?N5m7]OB[gonI@o?YodYoka3oJ?NKQoi6?jbOJZ__dCnciOWmO4__gB 7^fOl]0c<:EGg_ehN]mG]PbMN?9/NHUESH=O?^3O@`l[GQRHf>^1W9/OC[foGgd/ DmWV`Gia3co;4g/VoFT0cl@71V3Qn0OkaMcil9[kWlah/7oRh`j?MneRd_[;ZcGm@O WXYm^5oTHoe2W^PGmWRof8Na`83h_Roaa50=/VONo3YY?^NoV;Hn6Jb?Tn^^^OYU2MOG]WgfNb7oYYilo>OgcP`jOjo7OcRja9e_Sj3 >K0/?>B1Ih=JGQlQei^09NTKSSbAWX0@]DP_EkeCkWm9AFFX@dL]:YN5Ij_A1VYo 4Kh8UI:MoIMgYkWePZV87bILO7@0ADoL@7NkNLd2]_k]gbYoJnem=bb>R1c`k_cN 3jeio9FdaeiJNLlCLGLoW_7DjdFGEUmDEC^>Mh M@U@oZ/>7R`9REcic5lVf]l`DQ`3aF61^:6L>Dm_N4jSL5_c7W4?m?mno0belG=; KcDf;Y@LUSliMS0EDl>V>kFJk@6TaiT4YV[n0F;?jQe[7A=NNHOIb9BX@UI>SaADVSI ]Vc/ogCASZL6ZM5Q?gdjno?G?RPL=Jgl/fUkQdh]BEU;6ifDE8?WDg[h@VCR?5f9 V>P]g99F:=71ceV>n^ROG[5dFnL6j_[cgNh8eF`jb?b4Nn024A0TLlLibOg?>9CZ g<_h/14F:3DQ0JdQDg9>YjfEW]BohXY:Yf8S>V@GEEB/Pk1UAbVOY0hOEhFUO7S0 91?D^0ioWg^QTZCSZTEJn:ia8mB`_>:dmKhXnM2Kk]U4kSfPe=j6@`k[3Wm_flPm ZF9MG:=_]I>Pi9J DYmGn4JLnBXbXnS3`8?_S2mjNgc9?bLD_SWVj4OCEFBf>WA67NCWX0792Zj8Q:fgQfa;c2MlHL7Seg1kcC6B_DQYeZGmGj_OK^JXn9SLU]R^_Wl15mjb^_ VPMYKjg;X@M66ge3>j9:CZ_mAlTB[EfE`;:;fW]DEhXY:U4E5JZlg;Ame3b64lFE ej[eTS7e?R<>]B`6h/n=ElND>5IidL_?_;_:LLoVJDF9j_dKmCGQbaa 8[jah>`?aGD]02gg8Pi@7fcI6NS[:=j[`bMELNG8[@MlQFeEG:X>UZR/cdWY?O;9 c6>3IYhL?4M5KE3[MZXRCB3if@iEdHFiLS_1:B;k2jGSG?6LdbAP3?GnK3aF3Jm6 W[4Na_7P62PI20>BNi:_?Ee8VH5YoCM9Fg9ZH2>CX3B]bOEWUbGF^JoaXF41``:61@`;61H`;70E F01gdeO?_3=;echPXn6JcIZaK3mJ1:FAOdQc:;_ZVode3U=59bof_7>l]4AdW@aO 53W@eTPEo`WR[b9[YUIUCIhBnTSo];h3TVil:VNY5>9 ^hFB4]_Zg^=_SUJ;hUGL>SDkL/^3[dC9SD]e^@CDhOcFRlMjLJMJBZQh;?Aj@7eO 1c30XH5 30/H5S0/H5RPQPFPb@EjgC5;o=K8SL5R^d5j19T4CY6Q2iEVB;lR0d8ncT;]dkQ^ YMIWdhE_d7HcRJhS0DOZB__9hW9`dY:J?ENLAX5fSWS7j9`Y;i=H0@Zd>4JdSS5j b2^5S6K_cjkaDK^;EJ6A15O3O/IK``:61@`;61H`;70eF:1DENTAZDgKYWSM>D[/ UfWQ5?G/8/Z>9;l`:_8NY2DZ;]7L0K4C[52Z_XJPI_cfdaXk6Fl<2QPD< 2aPF<2aPF>1Z]@2Rn]=lkihZ_VSShlXPKX;d:`FoEX/7]NNBMB5JE=3]D<_7@F4Z mnJfE1`VDFC7imI]7`f[;O22XMCgaJ__OBU8ZkZiaf^i69LhlJAVCKRh848eCEcn ;FdcGgYGkBX`5bHnlT?34WJ^eW=Q79MQ0L<2QPD<2aPF^;X]X7HFUXmJ>4=^39NK P/AQWOB^dhl@]oJ419C;`Z;ZSCK3 KlfAP22]hHn:;>EnO5I801Yg^_B`nbd;kgU^Nf[Sk@1c30XH530/H5S0/H5S0/81Q0L<2QPD<2aPF<2aPF>0Z]X1eG/aE O9S6XATF<2aPF<2`P641``:61Oi7;?1o[nZCZ@YUKVAcM79UHFd:IFiTKf9Z2STP <21_HVX:=SLdoMooW/mc0/l9 ?2O`W<0gCn2ookkIkNWeW<1c0/l9?2O`W<1c0/l9?2O`W<1c0/l9?2O`W<1c0/l9 73^1iileSQgUWc;jWOl`mJLFjbMmjBCoXhmN>HUOgE>>S9aU1Cn_C8[ioohKojml 8RMWWH9lCWo:F6l1LAZCS[^=UOH0S?km@:OkOVOYf:c3]E5dl?FenZbi/e8TFdDg oeIDf^@UfCYL8]@fei7LH2[Y5I9:ecfo`8CI_]0=F/S[fKI1iVQOGB2:8LcNQi5> FLl3m8ST8fePb<]Q_I_[B6hbUKmmXN7/[mo[0JHO5i]IN/fJO`NVF@KEK4WE@Y5X hLFeJ>1@5k8KTXGCBkRf^HiThjTL2edZmUZjk_hiYTog^Aj=/kFEVZE_W8e[5]6[ ]P]9dgk51;`dPUXO5TGITUkg9U[K_86TGU?I;O@KYYnWn]ROk`DM[2eQhDL?Y1LQ KIii;8;V;c0;Y/=EhkEEEKi3EJJna/]]HLM RP2FbUn]UKFn=Rl:l92`DAM>1ZXV?lSd:I`<9?i8gS6iXKT[kgJkBf^HhDIiF^2_j7:oc; M7bN;5FOM5gGZ49o388GiH`b3PEla2CQ3gOblE;STTkch1Y8K:GU>IMdhYVXHZWB I7Z2Ia@L9G5A7mf@F7_Gm]j8>ULS[;Ja4_gJdWh:^_f=Z3BO7T]le;56M3a?[=6Z ZIg]WA0VK1NDRJ4YA`1Em@?8@RH:`AXKWe`1YL@oDbBMAn:E:ATGRQ`WQFMVC5S YX7=BNETi8KVQRAg_I;G=]NAjRoJ3^OWG@^4/>S5V[eDe@EBAmjaZZE^5ADTSBnY /bWZaO;CFCRCcJZShMc;]dICT25]OTO85Z7b9IhYj7j0g=3@Uf_1[G=]NAYPN;:ckPaLe@R[OJa<_oHl@9fZ4AC?QFYnimY<3e:O>jS:RH9M?L`ZTH9E=9gCI=`knY:FLZF56ND/PC>jGd 9hEn^0AORZn^@=E`ACELRGjedS9`[TI;ZQJDj5N]7;fjoO]A=lQ`JF3fMYcBELKk ?>^3Q4Ai:k>B3I?7>Rdo:6c^/M3LAYY0WZJage0V`Z3RcPA[e0k_KORV1dM?H[Y7 3c>;0G9W70U=ESD=:D4g=3LTZNVU];JiSWP3Gc]l;UPO33HVc8996;UC9N:GXD`B B]=5:_h]6nA<[ZAd=QTU;nAAXVkj6iebBcRPUFHdUPJ=02LgVAN52oT`9Faj/eJo H_^J:@n^UI@@h`08[jbW7WD>B75a5Di<[l@KSI R3:7RXkAK_17mlA:Ladm3d8A^E4XZVJBaTDA^RIS9UUM9:]DLCN6B8^[:e0eG54= Ej9O[K@E^8]^PN=67Vf;f:fh:ZKNBBSN0hAUoQi0fQQM1@KVB1Gn2LA M;iIDaNZUXB0V@59BFhkLVM87lla8YkDnA];G@aD3C]J`9CXee1^4nMZe=8@E:9O /GX/M__g8al27hnRR:Vge^:EZQ7AK?L[F>Z2XkS<6L86bj]?^lgE/M@D4n7LZS5H C@9B5b@SjN?U40gS>@MM@ZU9P:YQ`hZ@4_dJjegVG8djE/2Dj=M@?YFhoO^Acc2d W/`88O4^56=fNRkbhnaei=UGI36m9]emBJaN]b5:6Ae0E/U5:/ NfU4dWEnQdZC1;8T3B]2EA?[GGI3Ld?BMMiQ]LeEI9bdV@n=aAXP8YiJBEM]V>2I 3VMdLQ;9?8]AZQ6C8?[Pf1=dKBa??YH5L^AZa9f=W5aVWlGML5Foc68A:0n^2jK3 `9fQeeKA3Ld=bJ[k:kbf^H[PIPa=KQ8@mP`G5VPK;Dh1FC[Tfl`h EPP8NNS5eEANo;c6Vm@KiZSjY:i267=ViLQW;G/dc4bn9XT=F==k8aZ6^ZI9TW3@ J?g3>;Ei8lF9B9H62@SK8R7A^AhDCZKJN=;IWijdTm8n/LJZU?57WYgQ^R`>D2Mg 7I[@IK[@YHh3>_JHI?8VDm;XAdZJBG5RB9/4ZLa_4bf2@9IT`GBhJ[bfRViXKTQF gEoQ]LdKR1VCaQ890Y;[JFohVNYjABMAcYF8?I3819RPM2LOTXl_L64DO9@eKf7> YKk0UU0;M0DG_A?34S^U;2Ja7ZBaQ8>8e0cX@fZI42dMES>V0WnlCF:52HP:C=[gjI@:dC?;B1Ml=>=2H6^5 ^T[/dY5k`R/k:C8RnJQLH/fh[Y2CA=Im8gO67BePEA?:KG93Ld?B]]j0]LdKR7T? SFkNaWE73>@2E=^l0eYm5UU50 R0bZSSgNP:M4VYDkT:51CSFhHXIRUhb1RH:>ba3cD o2[5123gXXAWRkYTfZBACeU3R]0=BCBhU=D^Kb3NPDBNSHQM7:3`D6JLg`kgDB1;dQ<1[AXX;/:ZnAL@_mUb M0c4^VLY6Tlk8IOBdF;=BoeGa3cgJmV[Q_`CG[DI=dS>bo;;P/`h_elbAc6@9MU9 6/eFdVRJcWlOi3M>/g_F_J5S7KWSM4::bL_B^/SS[<_JHIjhY_bHG_fjGSRbUAVU @amglPPdfBCW;Y9Xe3[5aLAL6Nh 809L=Cm3C_m2KTaC5aY>Focl07;^UA5a3508egFZ:9GSVV/iGhW^ HZQ:PHH5d<<1lgmR=I=SMJZW/egL]8nJ1l5G>3Qfe2:K J75F[1K`bIbVeT@h[:CB66elFFm619cV_U[492imciPSkDY6G=<_0_bSZ;;XD:Pn L@ZHK3bCZ/8Z75Qi4DCf9HW>0]:5>L10o/M3?aj?k9K3`bBdhDcb^V9^^V/MMF:l ^M974?ZFomYBZMnDDaRi:A`K6TbCK3h^E@nG1 =E=:3]`I5TX1Z^Ko0E8N21e;_^l2I0;WEePMYl=XdeXL>YMjSe9eQ8lUX`ZUFcUCBJj_8Pc`U/Cf2gJXg1C]8/ieKBJ9[>3oBL`>h4MZ_F j7NBISVgTTKCM7jPi`Af9k1K]DJoTcC;^IDdVZKc0cdW/3^1gJXenYfTFLj]Y=4d WAoX>H7M2NaF[M7_9Wn;NL`6kEV__HBI[Ug4[^J>YXfcIE lR3of0W/MZ2igIgTcW;NdICA]Xe[BY;Pob =io0KPNJNm]9VZgIB^iXjVQgfUBG1oVKCf2g0lfmkBAgU_>>YXjfWJaYDedNi6ln PMd>=?NfTcAK/iGLdMCAk[BY;Pob=io0KPNJNm]9kRcW7DdMKC_IJ==dZTH?l]NN `6h7VQ_KBIZEfD[^J>YXfcIElR3of0W/MZ2igIgTcW;NdMCAKTaFCLhR=]:?K=]o KaaWa^k_>GMFcNVoIdZ3M0Zmnjkf8DaK[Zi=faGEl:ZadS:hXCTRZBI74KoO7mWb ^_3:n=kL]0jKAlUdM>8gn/= fk1SiZA61]3oJAo]Y@9:f5dWWfRQddig/JkSl?FRiP0]]6fBYTG3RU3Ea7ZGgM0L TEBCL`R]VGoNm`e[ITKZhh2lM2d?W?O=e8O@cQ5cCnMYBa^K[1QWR[K>hLg;:h9HYmJmJHEU92ZRHA V_B6iXRTVQa5h4ioj6]>jV>0_?hl_OXj=8Dj7[fJ>`M7[EnJaKheJlBEU92ZBH@V _J4i8ZTVAa6hdn`kBQUjUI^CTPbH=YIOnQ^aoiGkcCVdoNiZhg2`Hin[akheJcYE DT:Z9Q6Jm8KVR:BJ74GlCWmZJdiVi0R_]:O6F0J32gm7FM9nD[1a:?R9dI_Jd;M9 6[^65J6ZROD^^j4i8ZTVAa6oeB^fgHMoAodC;WK^h/JkX`F/JT:iCFiXSTRZbE74kiE]ICUY2OVo^3LcYX^:iRC4 MI2:/l2XaJ[bl^05]QYINi>@2LbVn?B6O]K=BY>K2^Y0eeCjL8ZM^kQYgm42ESFQ g2Hg=4LTeN@T0[LZ]P10>6[df6VU09dQ2A42Yc 8S6Xgh7;_/b9]j7>EOh998iD/jIW9BFTJQ:QBFmXSTRZbDT4KYA]8HnQ?7AH>RS? Y@9TQ4S5f5Rn_oZ>]58@:bXCJ>IGQ1AEmnSJk410Y 098Tk@OCYWV0V]JQgREEdk4RMT=cA59=SR9nTfc[JHjXW;5G>K1k9KQaJa2ULIS@bScZ?iF]ii9:dgLWJGk@FlTMCAe]fjI:?XchA6>Q`TiiQB>N8f6J MQ/2IT>ZC;lR:=i8`UPeZ51<[S`jVoQGI43FfbcNl^ig;89Af[1Ye?8@[1Z/m_4= cA59=CV:n0KRbW6CUH2jHM3JkT8V_H;Y/=EhkEEM4=cA59=SR9n^f;[>Fd9I5CfMMO6M8DJ]hNLZUQ7fAMRV:@=Va5J7X9EPmDn_Z4i8ZTV Aa6oFK5=ND`mTbFQ_K5Y[:R80CLGfYM^>VI3F5/LQ=V5jh2njF[=njSIXbN 26SE@74Ag]0LTEBCXhSO[MQj?YkkF5O;ZFb9166OXCP7M7JfgQ5b?NMS[?RBUETW SBjiMhDJ1^Po67[S?VYJmdA0Z`J:Ro26iXRTVQa5o6k5=^JNlF/=DPeiMeRZR;`0 1fC0A7:n9/`k=44Nc@XFl=n0YX`^E[1Y06=Na`23chGN^8nJcSdAd:Z1hR:lXCTR ZBI74KmK/KDlYJ^5UYLhTIWZSO^X6J9g:kK;W<]N3E6/jGa>jJgQmi48dl44N2IRKhCN>H[hgHZ]iK=;bRd=0G<= dOT<:0_ENiLM<`?QFmX4fU>_AR6Pm8ooTe8eGk[JJ8^P6F?1M;QZ_;J:KVR>B:[9 DLA_Ef`]WefF^ADX8;83FEXF:Q=8gCRHXo0]KH;YJ1NWC2g>=gZ=UKJ?RKhCF=m5 d4baH3YL=EiKACLdAbCEi2SR]b^fU/l^T<_N`RIH;BkdD4J0CFU/nn:JMSh?lJcP6A7LWB NGI8h1l70/6P4J0oKk5aISOi4EURgVCDA7dK1L@eS]O6U3KjBTS2H^o Bjl`7e4J1^Po67[S?VYJmdA0Z`J:Ro26iXRTVQa5o6k5e_;I9NBJi1ZolkA8JlH4 09ZLOQOf6GEKCP:UPIG5?o99hLQ/:CYbldnIA]b1H:Z_1=jhSiXQNR:PE@?5AGQ3 LdABCHhRO[MRJoW/4W9=^:H9GNB]Jjl4b:m;SCoAX1N>Y11n4@b3S?M WA1dWdnlLAle4oA4@:/6RX_`Q^J8Y9XLAOa^aGJIaie`6TFl`15jnL8E3Fald/ke c6S8XkZLBN36Q;PhG]5n5XS3e:cYGTT9ZIY4J=8KVR>BJW8B`A^=SiVf51mkR556 Eb?X^PVJ81M?QZ_7J:[ZQ >B:Y9TLA^5gN2L]W5l`]cX5`8h[kV;fHRH@XeMFLf_f`2RPHF0LPV?a>F2^7S mk07?`c]CFhPj[h@Fmm5d8b`H3YL=EiKACLdAbCEi2B2Md^nT71mEd4CO<5dn6ZlMXZ^Z4i8ZTV Aa6oGK5=NDZK9AVb@B:aLbW2G:`A4DFB^04;PPDkURKBB>g;e@eWA0JCiKDRnbcP SO^XjMhC0JdJ:2k26iXSTVYb5?6k5E_;IiNDFj[1O6/B>b`PK^nd8XYoR/9;^W?C NaKD1GPSW3IJa6^HQeBncJaB8mAl8MJfZf/c`XYZN=EHJAWLd1bAE9>c2:d4[`GI fSk:IM]LMTa;kf9GBiHK?@S;6C`?VZnXJ4gSj_?f[^emOlDGGZ7hV`?lKGQnW^ 8F1d18gM0VjHOc]4Mo[ZdmcO:c[GZVH[JAk2EW>SCIGlf_J>YXmfH[9Xlb5mm0[/M Z3NgDca_j7YV3o:e4mR]Ic?8CW;WKG]7DdNkeUc^7N]E[ZChjij G<=g>g3=ILOJMNW>Hj^YCFm8Z/TWTBn/eRO7oa^lMc]`iQifGOjo;?BIdgaLGYc0 K]ENB=lXkKXl2og6HCkDEbN`FkEGf^^eGIMWXJnOiL=lN@:kEG/Y_UcLMGTFn_9A ?/CG9k1K]MOZZmEMUfNQ[ikT`m^L`6kE=_:;iEfGIj4_7^A3fig0K]EfnV_eGIMW XJnMhl?JW/1^eKH6U`Rk;/m2Gc[6Qk@oPMfZkAf^<7IMo[F5Y_^]il;ome0E_XB@ HF=iBG^9=<`ojWmYR0>TgJXMJ34/MUgJaklCeM5fRVlm/IMce;7g21S^bFlcc?e] iBlDfm4koVihAkgCO=Imeoe`gFnVSljdjkdA [Gf`f/I79=GT0=:>Jn2M1SlBkaZJnKOn1=/=m9>jgd`OoLCK]KdgX/kE2:]][4Bo ]S@4WO[A25_Fn4I[=kTQgTWLo5WXgEUY7Li/4B[C[`^R`dkEb6^;B8VO_BjJCoSM g[AUh?R^o0;OgBn@Oc_5KjJ?c/cONb=Jnf2eSHm8Z/W?TGIJ0nohVoPCke0gkojg nIeaoj@6kjJ;clcF>DN/mXWe9S/RZBHoAiYI4B[o?^IK^]XXUhOYE6SGUCknOhhT 7R[2mgm`OiV8fSfL7;6IAM39ib8ZQnU6QH[d[m^6N/@@Yn<;64KeOgIFklVB2cYQ[;h5LnH5dlm;Vl@[b`]0G/ASaUS>W0QNYASZOXIjmn@HdmjGMRV4O^>EUH6WbKaaKG@9X`OH2=kDSRgB4d No=1Qdo6eW0AW>Vm<0NhmX5R7ajAE9>C20i^_[h1E]HJkH616U1AhgBM^XAJ>//; 0jk6SRX`1`S645YNS3?:cQMgcee/;Ql9X6?nn5gi]SQVdIS8hQCZ:KU:HdG2ULBS3=Q;^eU4?TQ7B7Kf4KJU_N6m7J1j]]O4ABCDhQm81QK[L5d4<]>`9A<0:Lol0WIL0PTGD>?bbXdX1A c5>lX7>_IKO`2aH[klKi5kjlHanM6J7gA[Cf`FXK7i5DTd=8NV7i6jZm5fJ?cX_R 6YIYEoEi;j^b30GE7k^iEk:JTgcnhQ?ddIT9NVm4Jan/]_4ABCDiRL3LI9_NQe3m i4:7=S6ANgFVY?^k?4KkMT8[jdmoN/Xo>m>nm4Jem/=[6AbCEi2@2Li?] F6Q0`Yo@U:AZX:hBVGIE;JoP@^Ba36DgbfX@fJDnbXIAk9T<`_HOo[815/6ImP]c P6/O:?KQ4DTe>HW0h=?F4G[P/03lb;djD]`7::B@OA?VJJTBh6GiPl7cFXe3Y7Zd H[>55`Volo41n^S<5;dgX[D?E]_hR:BJW4APK[55@=iJQQ314UU_bbdP0];40lZS 25UZc;0`1kSfPF8O7Y5DTi<832jf2DS; 5jZS=UNgK[0CTbg]L>d3 aChl8ZTV9a4HG6`1Z24/Q`k1:cDB9moSZ^7lTa8lC[/[9JYlcR4E2_ C?LjEe0@^Bc38i9ZLQ:1`LDFP1[j0/PNbCia7b8F:2:iIjCF 3a=I7d0]cmV`FO9f:bVHhDL3VflAW6Vn<0NhmX5R7ajAE9>C20`^]P2D41MPkPI] 9hM6W]>U?:G^A7@[dR/jj`U`@Tj87AQ0YQYoC9iB`kGYi7ofhUgkj4cggQ_@YPeD nk1ZNQjPEO9I9;N6_0Um/fca1S@VO>l=C@;md>eY?=o>14D/44;2gMO8dY;2e mIf;=UeMcdbaLWNlm_7J8SXRZBHW4IQLK0/` McEEO@IM6aG>RZIB]Rb_?iNm>/_`ndP4LSLj9`49_l0QKMAXX4kTlKF?=UeMc`bb LWNlm_7J8SXRZBHW4IQLK1g`=X;AMX@ZK`]1a;C:U:DlYI5^AG472YTP kTcgMPe43[N1W4VnZE;WBXRIlJ8WUeFngB/P1fAE9>C2J:N^<=KnT/25nT[]37dld6lVC259HNV<;mUD1X]VEXXRWR@B/=[UG`B2@^Z SG2L414NXmXWe9S/RZBH74AajfRkFPEjDlT6=a[0Ro4I=>JK9 i9F[oLRdSLb`V72`YC8/CA03KAH83Whlh_WSB4efIXc6>4:eCJ`gf@f9?;8Zo1SR Hd<;1bgRj^:1S?g`5IXfDKP[1hLXYIhA8K93EY>STa6a3UBoAEN9c2/OSj3e8S`b `/;KH3k5fE/`4FiDWhBP=KH1V<=`nk4XFIcOJc:E5[@@>8b H`AWS@Mk;6QEAc8U;? 6H7:1>GSP8ZYg7X3X>=8XnSjI Y?CIig9h3o0;Cl0G>4O?@_o2aoF<]3^1_H7W19hCn23D:IFiTKf9Z 2S4d830PKf9Z2S`l82m83dPE1569BH1@0XJ49WI41DHD4BUFI5C00DN78V=550^3 PV;G2O8@D<1:5LV2GPIj=l1fFmE4VJ0>Gg:=?C n9a<030DVEoRoTiJ9h0N:IWi8X4RDURYQ7G V6WUjg]FMKV J?VofMlNOU?m?LQjneGa9^c?WT6b/;kdF0?HTFY/M/kjEE@2dK@I0iN6/ CnlP0?850;CNW??PSI`1U`4El0=L0/Y1^iSDRALN@31XNQHIPH5/HIhhMIS>5R EV7FHTX`eIQSV5I<5nHfIQ0cPOV2YF;E/JIH9j`oMPTf4I^=;LAFH8mPFk2G/@?H HN`k70k7`1WR771n^1QLn23l5cl69l8Kh: Oaao7]n?7lJo9i09FPA[PPlQUR0TK2AD41X8i`SmQ172=561Z4md8XH@NLALHRVa S]Q1_4TL9TjC54V691MB92VI]85DBFXRGBHm9[dQTlTjI4Mb65U0GTn^99lPGbD? TSm@U2PV54m:74E2fDhiB[U0ND1i@jEB3JQ^e5RZV;ZMFTnmA7e:OBm7Tc>GliOS bJfCZi5[UN^GNbE?U=NGMiMO;YlWGb5oB_jVo;P2DL50`E>1Xk1FXDKQ]<8mQDU5 VZ:EHXQRVV:9HX?R=LEA9KbBPI:g4TnY@>V`dRFU8AY2djEid[RdCK@jfVGJ<1e7 =jCkdi?YaO@Oj;gd2FDUIE_U:>DLiA[U/lYB1/8`H?PcDQVUS9><^hb?lcCV^LoS cm/f[fUNok`YUOTZKRYlUB:EIYD1UHnZC5E_eACEWJY]ZToD<6XVJV5ZfF[keBj[ SLnWcgNNcieO=?oTo8OZ/;Z9N[SjJ_G3jSgZTaZJ6[hJ6AYE6YLdaSDIVVjJbI[U V^LdakAXFP^e15[UF^NeGS2EVNkX/eQWXdjc cQ=MTRiK=d6gG;MCMd9?BbmH;en_DNnQ?U6O[InT_dNoFgo:`=0PfV2;@I_1Z:6: XKmQWV6ShFd/Dbg[;1mI :ET5F6fdj[3j`m[4VV]MHgg7QV[SHk?>Y]gV]JfY;Mmf_nem>iYM/=dF^djkcoH> mR;k9_/a1cf7N8Nm3_OHM7HX^hAmeA7[j>6hc_63LjS 2``Gl1OD;AQbdG7Q^1abTBiT;XaON72Qe5GKUN=Jjo[8:hnh^ kQo^BilH[ ihgaGOQUo944UhBbQ=54UlAMRF=9[TTEBN<2Cd6eh7FbGo:1i:VDT9BS:C>YdJW= JHBdn;CC@REQR[0[GCjbVWEkUDCXT3ATD`XLeUV^iR>oTceB8`T VbF3F@^cJ[;NIdMUWlYAc17Vm>BJi6k;7LWcbO]n=FHeMgEW_WKnQ_c1=Ni[3Zf5 eZiLfkU>Meg1^^7e_^^?KB1]B=W`bdK;SFDKgfj:g]AAX56`_V1X/noVaT:i@U7Q _Bg>F`i/aF`EK>gMI[>]J]^G8UkAmF;;hX[RCbGLT^_OFGeGnMge8lI7?AhE7YLO2SgGE>mCG=jPgU3K2SI;6/N=aafomh?E3 Na>[jE0cXkWh13PQ>O7RaoPOkihM7LhM;CnKogcdS?JIV[?:Id_?TLhEW9/iWgMnlT;6QO6;RAN7>UMd?[Zd i=:M[[2^g/^1UjmNlKUbZM^mnoaEUj]W[SUM>gfMOKg]Q_f=eQjkWYIOk7iYjKG_ KKgYL;?mU^>]S[h5ONOjGO/_g_JjONF>oidK0h/6n^h^_W_oG]`mjGgNoM47Z@mN ?laj>?eXoF?/hj8W2TlZWZXo[OgEn=MVZKgdk:3GHCCMfW_YZN:gZ^n?oJ1oJ7kHoC7TNW/CoQ?UIn=?gMl2Ocb N2I]I^KOmhCcn`YUKVAcM79UHFd:IFiTKf9Z2S4e830PKf9Z2S8fC9M82m3KgE^M20a82m; JFAc85/P0X`830P<20`830P<20`830P<20`830P<20`830P<20`830P<20` 830P<20`830P<20`830P<20`830P<20`830P<20`83L`>20g=C0:<20`830P<20` 830P<20`830P=cPa830P<20`830P<20`830P<20`830P<20`830P<20`830P<20` 83@b=b0`83@c>20`83@g>@Xb=C0P<20`838a>B0`83@g>B0bCHP3PP ;dI_KWA6JFaU20`858P?Sh:IFiTKf9Z2S4h830PKf9Z2S`l82mmPV8@j9Dd;[]HeSG9BTe4e]C3H;1/:W@9OWT0HWY:VcIPm]:BND;Y]Bf2dmBmW2 ZL6d`;H9U_N>Y9S@LUYjCYmdgifI>ilkmcMgY3fgMKF20GZ11OVV7LfMT7Y<4hQn N]?N?IidWH/3T;NgMMjl8eeGOAU0TgOcmWgKdWE10C3D][Df]jC[l0WRIFgHT:jC YHR_J]^aioIdgMB6^77kcY/bM64oeYO/J;hm/cjlPGG?[LdkF]?mLfC4EgG^g;dW GGMmR7Qeiff]VOhT0/2ZdSAlTdb9HQ^/0cGD0PL= ic[?/N8TRDmfCS:1ijZN^ohi5Tj9YaSQFONcc0Om?_M<_lgmVohBmjlAY_YKg8N7 P^kQTD[g0b=?Soa`Q1g/3kX74=kY:gDogIgWoW5?Ro/5Q;b8gOkCW]Fc_JM FJk]>ifgg6YggG9[cfgI7CI:W<_MeVjCL[JeBji]kLkF=Y^[]FePEoIm=ANmmb8L AQQ2>8A`0>5^Q4640HAnQ3j47XA^Q>1mVcG^NfT NYe1X3bo4688c1MKG6;BcG^=T:SA_:=Nk6454/ 3M3@E:eH2N9eeD[8gh1bFj/4o@f:Z_76b3PQghaRZl9lHh90Tl9mHh91I:WIM6=T PSPYNL25eLPY8:Agh90[Pj=AOjkBd[0^XWCVAYDP;G`[=`[n_o4@OjX;lJNa7`^I io>6OT[5CXZ3;U>MkSj^YA]XFE_M]FOgiAT@Gbk_aVL?O^SCQ@30Mj47I]jGWN=C c8iB:/3Lkcimde9bHlmOhA0HbV5d`ROmic5aU<8af0D 0FGfMc`O0Xf4jNL8787=n>W6cfYHcG@`Cd8oLi6]QG_P9 T`fT67j>Wh>d?f5P3=YP3o2RC16AXNS55P282n_:0l_:e/J2YJF18Z;2_e;5RmJ^:3P:Unnen?>bleaIC/M FGK9I[FHAL5T=>QeFXeJaGhgWo5TmmloZNO?e=@[HU7YOCBfMN1cZgeK0ZQ2K0W@EH[d>ElY`D]OBhJ][ Ei`e;O4hSZSeRAjUORJ@HBG5l;QNEn>[JMDE5L:hCXm5?IJ`KnLhZKn6Y0YA3lBah:_5[B?5nRUUHVkbh9DT`67YCX3MDRFRZ6XDMFYM Ck/R=b]``3=N>9Th>272e[SOd>9[JMhLDMQV5>Xh/0EeKDeH`iDAhVdNQL=eDblG ]WSZfS`9[==^LGckJW7DikIS/kHV<^RMC4FX`C[5k5N^aI7Gg_6FRdgD>MXm]9Y8 37ZD/A/REe:m]4ld6WDD5GXBMCiLZ;JX/:jS6RG]251aL`GhGMWRZf]YKoHX_E/k D3KhKCi81Nm=R4[mabPV@TE7XBGN@OW]`;hL8ToR@6]Z?`MCo5>9T[XfE5kcgnZE B=CAAI]K:2/hLhdR=jD@=6fR8_?DXGQ[XiVVC0NTL2U:_3J:nZ2[=Jb=e22ec]ML RgI:KGVn9IiY`HJjbd@?iG>U8/LEcddN1MI6O3RhW;iJbb5aDcVeMIb651Df=7hj B^4;A9lWlA4X9>jKoQgUn=>FiTb;ZT3l22RagULOCbCZOIkjA3cA?37G^mGW4Gf9 lHJ6A6MM75M]S2P4fdlOL2We1j>:66lSbe4oe4[ZedJZG5hckR=MKKaL1C@k=3hd Lm`>BP6o:c<8M@5=4JnWAX7eTJP;1AVQiBH/Yc4e=SC^L[B3S=RXS5[YIW4QF/hD _EiZ`@LVI=QJE>QENVn8Y>/Nf>Xj3W;0SoZ8Dl[TIHZdWU9j;e?VQlMmZ9`CZCA= DS@;i[n2J;OF]BeGR?f_T5_CMXBleJ@K/W/U9ZLn;;_a`@S3lHUDB6E:Ii8 :RRQ_5HZK5Hi4X/`ZBa/V01]HcZ5V21c0a>eT7/:de=fbeN@O6nQae?GGX^VPIGA @VaHh/GBOHFNn[A2OE5?`Y=HfI;`e7_JVU]@JbV<]]NJR0I@NN/Rj<1DQHXLMLdG Fj?AiCS?4CX?3/7^RBS>d96I0G6Z:C2;WOji/04]Nd5S1;fo]aI=X3J:bTDCVTAK VdCSSdJaem5iCY7SkWI7Q^Mo@Ij?;T7joNUI<O;e;OGa7X_8CU ci5`Ke[2_IlShNmN8F6JPA5P:S0CO09Jl:9fE5D5Hf`7Q=TnF<>n2Tdoo;1iKo0`f;IIeX4n==80A/@T4_8VJ/FA1/:HX9E022OP?XR4? h;1iELlC5ScHK1X7J/L6eCKE?/L_:=K=N4fml3gllB?YlGT=;8c GCEMFQ8fNcfLAK8aJYGJA7aFWmTK_8K@E7IQDG22iI?Gcfe^f3EjookCV8X6A AgLFOfNdO>Q>Q]omI?;4l`OWX;TUi9JhLiLnF5aE??:KGgnc[=I>iCR6e_j_b9723McmZU?=YeiR^HYl0;oQ1TOLeI=nH OD_fek8?I?=F]lo=50ZE`VYQ/o3Cg3MbEBoZGlboY;nDc`Uj8IoQNOIKC^9di_Q6 >fagf9PI6k7ILXcjO5k5/ME;A[GEAV_FB8iXdeOW3a2N;kZ7o92lCePgnAEQ216M cXGmeh]Ka1ka0I4C0k7YD<0L2]`F/e@4a=WOE589_cGkEUK8S0faf;@im?E0c64> M@LLYBF`:dIR/APafd;1/8BBcenXl^D_:5^j[8ZD;OGUZl^FQH9IN@a[A[E8=W/X b4ai_?GG=2c^T_Kdag^kMkocj?2QSQN6=nFE69ni8gKMb^DKVLG9OH7BWH]b=foZ RFnlNe5SjJ=7G^QNhebg;^TTiT11@gW5Ue5TZ9/e:;<@b/`>^dn1HFiB=]W/HI9W Tl8PdaNV9o9bTcUeCgJgR;OfZim3VYf?RNokPe`>>]9fQF?`Dj5=JDR3QEZ5/ZBDD]6MAZeNU=/R6 k^koAG;^hTn_gKD^/OM[mclie7kQA8S0QMN8cUG`Ki7_gGGXDMAgdmc_fB7Tg@H^ J97eHYhPQ5Fb98EEU>]B`AaFZGATE9289>VL`g_=MiTI/lP=kmB[F5bT8eDFJ9WgScb6DU5J=bT6f;E>0]AYfY f:7IONZ7ndj<=SfbLoC<[_O>?__;fFibG[eWjmI^LVKodLkSiBGom>[1EhQj3Ri/ f;5gKe[n6?VH[f27cJIe>H1 BjOjJOD?eJcJY[J1IM;2F32ZQ0:1V8RlXVC5BY5J7=ZHXjYb][8:>HmIdIc@RU8R cRDQbHNni2/KnL7nRSF5RfiIMncHbOg/J?RoOfTi;]kfkO2aF@?chK6DCgFQTJcV GARg1@S:GUF?6he6/1P4]TN[=OF380XNhDeQA^11T0E62>bRaSl=EEDX^]8BJa2_ ^QUcI]67OeDTbdE;I;WTi4WNMDeAXKc2_fA5/_^C=^ZoN9Yam1LB7R?5KG8E`a2> ijIHa/JbN1H@IXX76ln`?31oi0Uj8HNLZ03SRMK20>48bnYiGS>P?JGk?cf1;C4d _R3e@aA>:8@1AJb/ZZZdE3P3Ff:EPiYRQgn@kginT69=>/IXRHm@;YT;[bFoBUkk <1TjNo8T>i[lD]9?GVG7;Qi8jf`0IG8el/U2_Yc5DPgf0b^b7_I=MPJiHfFFHJTL D0PX0Ia_07N;`H[^LOGL3>MUSj0l/j1<_VXK]:/H`c28UV6E_DaH;]D9ZjCe`RI9 9OFcIia2_oHiaiEQVYhD@GXdY=`6/S8>Pd5j0E?a2[4Wgok?llUgROSIBW5fEo[H@2/;YL`;c`X^aME2 @Xf;BAJXn8^KTg0^AFo[jVSKg?WcM@=;?koS`mO?9SaLVKMcDk4ola`m^ BUBUiGX8hd/AnS>e==LBUQP]JT:M@1B4SBXlX5EV<0jHCXVD1EC[5WCCZ^UP<92b L2:5ZHF[Dd44[I_Dj_K__kTc_^F6B=nck>S?aEOKaSHm_S_YaPfS2CO=cC1C^9H? GYNU;^M0;Y>CWCfUem[dNZeG<9[2QRZ;IQJ<[AHQNSH2EF fN50Z/F2;jlG^jSk8NoN_8OcG/kSZ_88oCSjSCS=YeVf6Se2eL;3@;;/SYM5/]G4LZl?lMDZ[/fVe>YE6ZiUBZfaZ]J[C@3[APP`LZlKX Y[8Bd>/dJP537Pk58BZ=6Y2^E@/6HS1`P7UUW;a9IPQ6@N0J^CSg9SO3lL0AS]^Y OUlmQfL37PU>=9F@8h1929K<5H5MUXX:o9YCKl2cPCkdWK:M@CjEJZG2HBHZcR=Z BYRTT13adA0ILY6@UD]>9C/ZT^lW?k`j^FgZPgL7gf57?hT`OK>c[c35/jnT iH@aQ^Y63G_T5KQGS^?aBT4HM3k0^0hX5;E:=LEc=XcWJPk3^`/mWALh50G475[^:/@:XX6MKX5g5F:O@cSR36N8mIDJU9i8fDiI6E>_3CK mB:YB1hmodMfm>9QiPSclmToH@a1]Jg=Z7<5k3;fDd7^?0;2RNTG=ZU[o]NgK]jm[_YGnW?go /kO8hPYUKVAcM79UHFd:IFiTKf9Z2S4i830PKf9Z2S@i=3@:IFiTKf9Z2S4`830P Kf9Z2S`l82mDNG1U82m6Kfid82mCMF9dNG1U82mDLWEUE7U`IB0_@V5cIDI_KW@P ;dE6@TeJDR]7JFa/Df5^Lbe0X`830P<20`83Hi>20`830P<20`830P<20`830P 20`83@b=b0a>3PP=cLa83@i<20e=38P=C4`830P HFeU82m5AT9=FU8[ AfU/K5=QKW<]C6UWJ7@P;dI/HFMc83CPP;dAULf=UKW@P;C8c >20_@f5`B6EYIfQd2SHiFM:@[9]V89BJecR[YSiIAnLP7mD8 3LTj7PUiE^?LQKLVjo9fb;OBhhOCmegF ?6o1`X7j6/RKVnO?6QR?Za0RIi9mLR4lP5TKA OTS;_@LJKi2:oXUMP_[P[]7_Z?Tk_N4oWGda;VWO5_ZP@KSh_IY0`X6@3YemlNaI kM^3?NYcL<_Y@MOjlK<`bd]XXQnoP8jP1JP>UJ4PlT3gE?l;j6GDQ2X_JGT5eEcB PUi0;j;KhK6Y5cef6:e52j556GcABjSUd/NNAJo2a5?l?NR@YjbebE7JPdZPD^QG UZ6UWZDXI_ i5LhXZaG3RVT^;3NGCRfg]gCOfS?LnWYXmCLVI[<9IWVB_ecH/XXjH1djL6g5BLeFQacF[/K4Vm]nBTSI0f@5X;JCFTEI2j87E2jX2d758KY5I8 nOO>4=bK`h8k2VTSU3M0F_/K`KdJdRY8GEF2^a=B1jCUD6n3e0ZY[TI`ed;:3dlG g3@lZO3[A:BJJAE2U[enEIaQ9G?/i:05Ee^7Ih[3OKdjUTl;jm>[TOmOGMR_mV=o<_M3HN3jZNL^m<:PV8?>ma5ek:C6HNIlhamn8glLnAl9mh7IFMPeN4^H[@/H^PILi0JTAEZ1K:=?gh XVYR6Z@8Y0Y8oi^[4jCKnF/KfXHJhM<6Wd[h=3;KV6483H>GEj1jV7X>XRBI4T=1 ?fa19VhASBXH6L`OTANh?7NhOmS@bhKTI6Oi<[dNMdIjVR_EjK3K[1Jc bBQ;QQBmCR/:6YiS2H?AL1ac0:Lj=GjGen^]cQfXYeiJSi5/nA]_39T^6NBjM=3^ ]1oEdgmDcaR/GaM3UURi[jBD_WPg:SlA@nHH]/@@W@FK[hFI1RPYZio]:f^:>D_Z 8a5hX]@WNf;UG`L6B549gZgCU_Q:IVUcQj?MFQdDME22/LfkLOVEF2d`iFESMS=8 B?NH;?B1IeecLQN2ai204`m@BS_4Uh[QJMn/QfJaI:Z;^lQELAdULFAEBkm`TNhbAi>7E[^k ^cba1jn_^[SGBlMDEeLkLXMk^/]l<55Yk_2bfN<0JDN0`/eV`gMl_Jn/_ZW64f^_ W@gH`;MV3@GNfbg7bTl3C9Q2Ae=mI3JUMcJmoYXGB>SbVAV:O>4d>CZWc`l6QjVcDJMMN=Y[`>[l6i `bMDG7PZaVG;?Tog?e4g?[WK5b]MDanA88ah3nd>iY7aBEK7;JhAe9:/E ij/8f0jH3mPLUP7NF?_eELVj1mFjWTI:`0ok4J4mQlkgF:OBW_Kc ?H>?Agb`>G]ERm8J4g86_i9/b?LEF7G4GE7]T8DX;^gVCOQ>^WEGW:^PNi8=UbO]6PQ2mR OA0:?l_m;VngdFOb50JZLl7l73jQ1hTEBG^P1oMgmYBRm5hT8W;3C>PNKjZSgMW^kamMfNLTmSCCg@X>K0Qk>jZ`>`TI>[h33C kH`YeJk1hZcZjS7`WR_XNn0A6=iM3FnH?O06b=FV@1`6GCUl0W1iCTDEB8;fDV27 dV[HJ62W@l1gQn0PE=>550mB2QAClcY9/`8d5`n3oUlUg`8`]L<[Z[^kjC^Qa^C0 kWMg^kYQ9FZ;c`/6dD133e;7P83X`DY55NeBO5k:OVDn[ll;M5BG`[_7`OJL?eaP eE=8QH/QAJD0ZC00JNTPXO1T6I1GZT9JoWl4jEFo1=:[Oa6Th`LY_@CBJh3VlACB 2H>@:ZhH6XCD1`O]Ah2RWdEh47;U9b1_Cd;NoQ>@ooXBb:omei1O=kP@X7XRT7nM 2WW5oa7TeolBb2Om8/PW3e9j2NACP>K95?:Yohn@Eeh4>IQ_e?5V2Q7R=Z4QN3IJ `1@SWTEX7;S`Kd2n6U8[Y0FdSC^5]^6Mj47b8][65j?k8Io9KT82VHf^HBfXSH2I 2?TDlQjJQ4lQ>kAWhnEX7NA;JFP@e3eX^RZiX@PG]L8__@PhiQbE4ZLZ4dU8hbX>H6B[dX4dXn B5TX6nkdbXC?5nQkW8ZGhBe<1[>NU9:m9<5Jf97/2/k3SN>>lYWl[O`O=EM[kQJF 2Xn;FW6Tf2fn[bgE?Z[mC3MOMdR_eMnYocR5cPT63HR3b_dF_GBFiPP:P=J@o[mclkP^2;KHH@E381KbEdG_ LSRMaJT^BfZZjk:NoZlEdIDN^Ub6VikFQT;1A6/>5m6?iJldSDF/j3;kc1I@Q0Cn7Z?X0f=j>Womcg@B7?531gI<[A:M9a4ai61LMJ1LCAG/Z13 Y>?lQNh[AQAV>acHhG@ib0fY>5DZ95MH2k=CaD0`f1O_2hC]`D0h0:FThiRlXf9X :2i:gVUC5gNi_j_eb8PlW0l>2>o;c2TH>LZL3li:SRnC]eY/8_IQlS=m^:G[l>6^ UHL?[jbkjjjj^WEg/FUWkk^A_O71[YMNBSJ_FdNK^Jk3:k/>_kQbiN7hbgOEeMne [Zin;E=`YY7KL^h` Y=MW9XXSG=NI6nVI6MOo5GUnH;mW:MNEjlNK:_GE9_IQoF>VoOYN4j^?U_>H=i^R hf56]YYDR]EBYIG]UOIKOi1>FeV8KeP;YE5FEYAhZidhA5KZ80NMePkaP4j3KcQ88=F<0g91i9O9Gh<[4;HO`6;2@8gRI1ZH[4V0S1 WGU<K9CTTlWX/I3R/ZJ4ALPXNWB6T>QbXH`>W[Mgb?YiNTI4l9QNK``40c?3emQB?bc0FSPRXkJZb/TC;/T09KD>EGCL40ffiIn_Pc9nmH QZG_MSeicoZ7=namhK6]ccncJQ?kN_fdEkKNo7P>>cgaGNnObb8Ufc_G?DIZ7fRN ]aV`H50[H;4G/910J]fQC15eC]dHQYcDWGCeHc86HiVhX^^h1cR6hi0eZP<>FnYH 8FcRmeSHe`dO63i:?BVM5SPMhPE9LT7TUc=H33/7DHH1M4/2dgbMZ@h9P P9GkPh6Pg2Og6H=1_lXOaGf`cW0l?amZ/5]fA0HF2iaB89_YNDb^5NX_GI5@[]jh kI7??W_Rl;lg/W_G]3gnI=]f[^^Ja4^9[[TOKM_e:MImaZ14@II_ik7OgG;k;[[O 12f0=Jj3=IY18__AlEhd53K:K7>4905fDj;2aBOKdT9f^X4R5=9Uj>BX=89nVR_I <4J;O54kIADkIAFkWA/:;98NoIk37>^Ak@k:8:OX4cWd2CddV2a@ncjE@_2eHP@F nLj26AWbJIjY>H`FP56bW6VQ1RgF8PD:b9;J8@RN3ZBGmGUjX[Md<7XVYl7mnf9ol0=NX1ha2B5VUT?8A_@18:]AD[]4<2SWc1BQiO5kH0KRhm9V? XoMno?AKaamnm6C7_kG^bCaom naL?OH4?c;oooU_VoOJ1Lo5K7WeZjFe??ZWb4YDYB`IhZEfIo[kn@nT;?CUP?/:l HNjGF4VB6@lC`WTl3^_H1/=R`f;7LLL?0RL:63RX``0l1<;7 D65P30H/2A>56hAi`RZ14`9Q02B/LY;:>BX:@LY8P=B8?0Bla0e1iP7I7/`gFFEb @Kh7lo6@@_cFU@n]go7I9hnon_Nii97=bgK]F0I1EW`]KVSjI=_>Sa9W?XmoQooP bMSkaT=;UcfR[VlK:4282/gZN7LF>NAnEjVJ_1d@R6X[=aVC9^`fOa0]`Ej8e LEn2WH>k/HBKX7RLFiAHVWPSlFiR4NLjF`a4VW4:WT9e`H=`dj/bD=Z?26<2hh_Z S071QoEc1PDOQS0N8Ro2F0jU:@JlTCDQ@XP6]k7kN?UKH2bZI2nTnTYXUHmd2ILk o1`DH2_38Pj221NY70lB=f>I>cMn:_kUW3W<:FKEVMG/Wn8;V;EWQijWLBK`h5cP @BljYSQBGH6dhS@be5GXF^>:2Tm[^B>J?fXH1>MDlH;TMZJV;QM4Rb28W=UZ]VD@ d6DNAQ1CWJcT7E?;EmPJnbLh^eRm9Gj5OUKi9 OfojJEk3jlEdATPEWBb/fmjFYcnQ?`dWFNlcVOQFCgYN>Y?nC:Il^PF>CkCA GZP:@RSjRnW=24R4FkXGM3JMf?]WcAWCI[]V9Pj][CSgl41NhiJIkFjjohmJ:;D]nmnWB]^S_5UF_FoK[ ]O>fOT1i2>aSMRd0Z47YRX4eLGPS8QPcKAbW0HT=^PRDDQ7U:60;Wm5K`:j=Oc/g oRfgJ=ZIhib;QYPIM0gP?Y?/1d7QGJJCZ51mBaT_BZ6Sd/^n3jGg O5lk>>C0=U^>SG573@JKT45=enbXT1HUA32KcLJXCJIjJ:R>70c>R=P kjGZc7@GDRb>T=VLfA7@CM@a>QE4ZTC3lJ8R^;O0j@X6RX^BFRJ@WdlEJEn;:QE0 `FIKZE@HTQ@=FMT58gfIVZAn=EZ2nD><>DV=@fJfSLe=E `5@?mWBT5i7nCiERNe[X2?m7oU^N/;a5jm6B56:;LS96U6_@dk0^DWdHN06:T30B83H>Vh98go863@VQCgbIA;S X<9/ZmgH^oM4h^lWkid`_oWYTg]GK@mbhn8?K3[kbXW4Uda?o0onhk67OPodHU@9 m3YQojbX@ATafc3;LUCjD69e4V]VD1AHGQmm08BdCX`Jc2AZTFel3/ld6YLHSaXo =;9PnIaBC0I3b>P4AJoChH=f_/=h`:K:>c1Uo4V:PI?2E_W@CJIdki_eMCah[J0QPm1TYl?C0nj14A?0E282TJRH;kMbN@T g@BPMT_MkGLOBO`W5Um[fg3WbPONnWQ7>iFgEdo3eZ?7/7`=HcfKbdbZok@`h2Mh/FEHH6E776aV;AFN? 6VEZ@^fa>dCMHWQML>O[Ma90kIf811T/9D7GAILBAX8@cX< M6GaL7jnO:hU?b237JkJUgh@=70X`4A>[Rn<_DV^EgL2ePTkHN>lH:3cI5gLCckN m=@Smami=G7^jofkC/E76D]/18@0=h` lbS8H0^JY>CgV]hdOV0lJFAe9S4UbQ/TD1/TJ/ISS9SGB]Y>GD30`XQX?Eah1k[4aA`a7iJO9[7CoDQ2OJlGKGSZbM`hSFJD]a6VeIcV4iFD>7JLJ>G9CBTK8RJmD`KZ/@CCW0 klmkVglikbnl9VEcPKL05fBI1k^NiESF 4j8WBfLdQX8FN^^@:0N89U=8T/IX>e9Y;Ed_Qe9CLcfQ3/TJ/8jf4Z^e<;M3m^Ai 6cj^N`P7E@gddH0Room/C@AP8b8>@P@n`1eDm?S0Q 3@@/LGK@U/`^00J`@`3imXnLhg0:O0?3V2L_NXL8UZQC>8h_51L;lI4PTB?617KAAIn/NBj18e5h5Q1 8k:d0^H4a`/R6:W@8P5iS8V3PJc2Eo3[NH:095hW2;RCjMG:gh98Q;eXXNI/<8S0 4RYf0TebTFX1MG6]BE>85T1RcVl9DcY5aRORSfZI_XC8U7G53n9cBA/_hD]8H0T9X3>VX>LXD1M02OY06Ia>@Rno4f/?nN 1?WUA]O0C`ZPeRlCmJ4DFhJ9hMM;EPI`;^L9K]nLE5AL1NO[iiO5j^m OOkDfd_Z>VinL54]fK9]kbNO_?UHo0e66mgEd19ObnS_gO5bo3KH>;P`o5B=b6bP eHRVkG=YoEX66>2]?A1;0WO^[Cf2?PCfg=nD=9/[I036I6FS9[mPY?6]6 DZLdCQ93L2gJkGeFmh6g13X7N1@L;o^O@TZCMIPDbIC0S8?/[^n3POLoFWWUV _kHjocNSaUNL9He@mV`2jJ9c]CREeZ8`KD1=?XbhaR;ZlXWoM9=SdCPR: D9OA1WhV;l==7jFA62A;/Sj5J[6_UE`XI9>Q8^>DK5IVVSCEb]3@32=e_4i>P^RW TAPT_R:N48TJT0U3A8K6HEYJZLSH if5]E2ngk==U>[`DiDlE>aBn]6=IIhZ:iQBGQ0fB8dYTf96o:HIDElSZX;Yi89Ab NYnX2eTkX?f6o H0Im_[[k26HBY`me[ZV]KEfnhldokeQ<]X`/Cgack6SRI5Wl=3O_k_SJ/WLNNo@S UGNF`f;>ZN/H[GR@gZ?ObA5`lbB/J:Wi3nX[1B`;FL]gJWXUJSHHPjd11mF/H>]@ e`^5/@IP9416d1X4ILZL:ea@g_gKfUYfafnWTB]V=2FnScm?]Wb38IX>OmN1N=hV VD6g:< Y]1hLKbcFZafWQ0iQnPDF4<6fPb6fnHSC=h@biI;RYPg@^K>^T QYeGiS]U5aD?TQABLiSI1N8Pf1N@gc92c2I0oA8EN;3PZ8T=:PDL5KXIe5OYE?5dnV=:68U6VXCIR8E56 d^ZdX9O=V;DHbD@ceQ8]ffWlRoTOIPHL2_1R`S;MWAH@[ECbdg8aE@91T?m0Lm;U YN4Ae@;::E0]Ra0>0]/To3>_S]B4Ybomo_/Bm_G4faGaCnjLW3/cd3R3fECaDBFE =F3Gc@K1Hd4C5MdIlX?<<1U088B3oZbTbNH@Wbm88JeI@RK`Z/4b=J9>bk1[`I_Z:E?15KYJ[cWL>fJiTQGJNfF 6MLMRS5ShZnegedeQeUa[U7UHMCo5KLCJ=:SYi@J?HCQ^WAjRdjWIgAJKAMQ85c< R8AUEGd5kZnPdGAAEikW108^>lBD>@P?j?EJDN@eTQjRbUZMb19>0iHWdNT8IE^@ /2kRQa02h@=19hAT784`MNVYYE5HJ2X/=:Ygj^03d_1El`4g7`;`GN3TokM/A1i4 gfT0?PQn_hRiWHT5PLCaa>NiRE/RN0cfS<8>[90]ibZI;n=F/S=^H[jRBEfc7^@? R5f`25ZEZ`PhFCbWHCAdkHc60QH2o;^8Z:/T30:c=7`C/Pf2>`T[XFV2E@E3Cl7?2h596i6V48Z58G@4@Cf[S 5OGhEhWF6o5en0ZbiL`6IQEc8[j<^A?81@3Q]bePgRg`feBITZF12K]h3Fb1Q^LI 2:k0OfVSW4TCAI:6PGN170NHPh40C5bXBW2:CS>UdG_2WjMGO07m;njT[1aZ96^=:o[iU0fU>OmK_2VE^I7=dLVEQK@YU KVA_HVX:30d<@YUKVA_HVX:CCLP<30`<30PKR0:<30`<30`38c=S0P<30`<30PKR0:<30`<30g<38d38g=3TP<30`<30PKR0:<30`<30h3Pd=S0P<30`<30P KR0:<30`<30h>3Hi<20`<30`<21^80X`<30`<3Tf>38b830`<30`86hP2S0`<30` >CHh=36=T=CLeCL`"], "Graphics", TextAlignment->Center, ImageSize->{911.5279541015625, 354.36749267578125`}, ImageMargins->{{120.36328125, 0.}, {0., 0.}},ExpressionUUID->"5fce3dc2-c52a-49c4-b0c8-2353e7dc353b"], Cell[TextData[StyleBox["The way to distort the \[OpenCurlyDoubleQuote]natural \ data manifold\[CloseCurlyDoubleQuote] and measure how it affects the test \ error.", FontSlant->"Plain"]], "Item", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.7508522583002567`*^9}, 3.750852319693863*^9, {3.750852366252432*^9, 3.750852390102212*^9}, {3.750852633830488*^9, 3.7508527539987383`*^9}, { 3.750854946472447*^9, 3.750854974704142*^9}, {3.7508550150140457`*^9, 3.750855023268976*^9}, {3.750946775315881*^9, 3.750946825104026*^9}},ExpressionUUID->"22b3f99d-e1de-4731-bf4e-\ f87dad18c764"], Cell[CellGroupData[{ Cell[TextData[StyleBox["True labels", FontSlant->"Plain"]], "Subitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.7508522583002567`*^9}, 3.750852319693863*^9, {3.750852366252432*^9, 3.750852390102212*^9}, {3.750852633830488*^9, 3.7508527539987383`*^9}, { 3.750854946472447*^9, 3.750854974704142*^9}},ExpressionUUID->"8ea241ae-4cf6-43fd-8b6a-\ b8f1f289aab3"], Cell[TextData[StyleBox["Partially corrupted labels: independently with \ probability p, the label of each image is corrupted as a uniform random \ class.", FontSlant->"Plain"]], "Subitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.7508522583002567`*^9}, 3.750852319693863*^9, {3.750852366252432*^9, 3.750852390102212*^9}, {3.750852633830488*^9, 3.7508527539987383`*^9}, { 3.750854946472447*^9, 3.750854977033951*^9}, {3.814363949019937*^9, 3.814363949922928*^9}},ExpressionUUID->"7ce20db5-433e-4f49-90fe-\ 9f5e0f3eec9c"], Cell[TextData[StyleBox["Random labels: all the labels are replaced with \ random ones.", FontSlant->"Plain"]], "Subitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.7508522583002567`*^9}, 3.750852319693863*^9, {3.750852366252432*^9, 3.750852390102212*^9}, {3.750852633830488*^9, 3.7508527539987383`*^9}, { 3.750854946472447*^9, 3.750854981194751*^9}},ExpressionUUID->"9a156bd2-98e0-47e1-a4eb-\ d471b5166d47"], Cell[TextData[StyleBox["Shuffled pixels: a random permutation of the pixels \ is chosen and then the same permutation is applied to all the images in both \ training and test set.", FontSlant->"Plain"]], "Subitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.7508522583002567`*^9}, 3.750852319693863*^9, {3.750852366252432*^9, 3.750852390102212*^9}, {3.750852633830488*^9, 3.7508527539987383`*^9}, { 3.750854946472447*^9, 3.75085498721161*^9}},ExpressionUUID->"081246b6-94ee-4702-ac58-\ 5bc00fe6fb9e"], Cell[TextData[StyleBox["Random pixels: a different random permutation is \ applied to each image independently.", FontSlant->"Plain"]], "Subitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.7508522583002567`*^9}, 3.750852319693863*^9, {3.750852366252432*^9, 3.750852390102212*^9}, {3.750852633830488*^9, 3.7508527539987383`*^9}, { 3.750854946472447*^9, 3.750854998267301*^9}},ExpressionUUID->"b7c78e6f-4ac4-446d-8772-\ ca636c60a5f1"], Cell[TextData[StyleBox["Gaussian: Gaussian distribution(with matching mean \ and variance to the original image dataset) is used to generate random pixels \ for each image.", FontSlant->"Plain"]], "Subitem", CellChangeTimes->{{3.744010605902556*^9, 3.744010608647553*^9}, { 3.744010679133648*^9, 3.7440106942012253`*^9}, {3.7440107331291656`*^9, 3.7440107586054688`*^9}, {3.745480510458893*^9, 3.7454805891693487`*^9}, { 3.745480627178793*^9, 3.745480675922556*^9}, {3.74559181529712*^9, 3.745591816492278*^9}, {3.745592319185923*^9, 3.7455923384324083`*^9}, { 3.745594707642692*^9, 3.745594771009461*^9}, {3.7455950115254297`*^9, 3.7455951428367243`*^9}, {3.745595203115478*^9, 3.745595361945335*^9}, { 3.74559539914347*^9, 3.745595444107788*^9}, {3.74559600502468*^9, 3.745596126561865*^9}, {3.745596312623126*^9, 3.745596349359757*^9}, { 3.746880915555092*^9, 3.746880927687889*^9}, {3.7474125746222486`*^9, 3.74741259051329*^9}, {3.747573281217079*^9, 3.74757328121738*^9}, { 3.7475806289136744`*^9, 3.7475807524781446`*^9}, {3.747705391373811*^9, 3.747705407944189*^9}, {3.7481902621510067`*^9, 3.748190264055648*^9}, { 3.74819049048265*^9, 3.7481904910478373`*^9}, {3.748190529185738*^9, 3.748190529765518*^9}, {3.748522074685039*^9, 3.7485220976980753`*^9}, { 3.748522301636593*^9, 3.748522304640432*^9}, {3.748932565633696*^9, 3.7489325733013363`*^9}, {3.7502281125087223`*^9, 3.750228224443193*^9}, 3.75022871105276*^9, 3.750850856246409*^9, {3.750852224555483*^9, 3.7508522583002567`*^9}, 3.750852319693863*^9, {3.750852366252432*^9, 3.750852390102212*^9}, {3.750852633830488*^9, 3.7508527539987383`*^9}, { 3.750854946472447*^9, 3.750855000541746*^9}, {3.7509397999758577`*^9, 3.750939799979948*^9}, {3.814363803762322*^9, 3.8143638049020157`*^9}},ExpressionUUID->"0f2532f7-89d2-41f9-ba30-\ 581f226ead19"] }, Open ]] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["", "SlideShowNavigationBar", CellTags-> "SlideShowHeader",ExpressionUUID->"0d9e7b2e-b05c-48f6-86ca-f9d171e6a99f"], Cell[BoxData[ StyleBox[ RowBox[{"10.3", " ", "Adversarial", " ", "examples"}], "Title", FontSlant->"Plain"]], "Input", CellChangeTimes->{{3.814458480629573*^9, 3.814458487829507*^9}},ExpressionUUID->"527da5e8-a796-44e1-819c-\ 1f8b7a6a033b"], Cell[CellGroupData[{ Cell[TextData[StyleBox["https://arxiv.org/pdf/1801.02774.pdf", FontSlant->"Plain"]], "Subsubsection", CellChangeTimes->{ 3.68034367667273*^9, {3.744702618391471*^9, 3.744702626337927*^9}, { 3.745480137699726*^9, 3.745480159883543*^9}, {3.7455905104524117`*^9, 3.7455905303772497`*^9}, {3.745590707197031*^9, 3.7455907080599537`*^9}, { 3.745590769021575*^9, 3.74559077540351*^9}, {3.7465466817514343`*^9, 3.7465466828371477`*^9}, {3.746848987794156*^9, 3.746849020428833*^9}, { 3.74705242095008*^9, 3.747052422068021*^9}, {3.747052458298312*^9, 3.747052478115937*^9}, {3.747052546390512*^9, 3.747052550905034*^9}, 3.747411949039452*^9, {3.747412060927414*^9, 3.747412065317256*^9}, { 3.74741214975526*^9, 3.7474121548040543`*^9}, {3.748093708094067*^9, 3.7480937324979887`*^9}, {3.748093790499542*^9, 3.7480938583793583`*^9}, { 3.748925074401202*^9, 3.748925091666216*^9}, {3.748934025237496*^9, 3.748934033009019*^9}, {3.7500687895028563`*^9, 3.750068791928669*^9}, { 3.750210514685437*^9, 3.750210515904819*^9}, {3.750301736257613*^9, 3.7503017652566833`*^9}, {3.750936813098218*^9, 3.750936816740432*^9}, 3.750937168050982*^9},ExpressionUUID->"8f91b429-701d-4472-beeb-\ 41666d799a83"], Cell[CellGroupData[{ Cell[TextData[StyleBox["Reasons for adversarial examples could be that:", FontSlant->"Plain"]], "Item", CellChangeTimes->CompressedData[" 1:eJwl0E0ow3EAxvE/asrrwRwQbZNZyigZB9N+CjUbUiRK3uZgsg1RhJBcHIhy kJc08pq8HBwQeStJ8zZS89Y0/DAbRhL+zxyePrfn8OUXa7JUrgzDhLCDK9fL kYJbStaXuGJ4lmKWQK12Ox7yBHopZAqPZFA2u2+xWihJV4/a4PSSygF72xu/ oWvrvUx4R8nqmi+B/q+3zVBuVLZCa1fNZDhri7JwHmYZtAZYtX1+BX/nSu5g lCzxG6b3mRkRK1PdxoHi3WEF3Ps6yIdjL37VkN82VQczN3Tz/Q+URLs5FmDt /VHaEKXkssKghJl24eYT687bv4cJA3k2VofCtxwmOWiy+JH9l/ykQq+TTU7Q EyUXOy7uTnUZofCmo8hpty1MBHnN8U5PabbnCutIjsQHfhYshkN1E1cEpamL 9e3PlHTqJxrg4Mdx/fsLJVu60QZYJjd7CGxsF0upCBqFlX65dkoCJ4K50GeG Fws1pYNxMKAsIgH2ePc4HT8xEfgWY5LDP2u3DRg= "],ExpressionUUID->"86314267-d4d3-4b05-893f-e139290f709c"], Cell[CellGroupData[{ Cell[TextData[StyleBox["neural networks are too linear in various regions of \ the input space.", FontSlant->"Plain"]], "Subitem", CellChangeTimes->CompressedData[" 1:eJwl0Gkow3EAxvE/imJZMm9ImMy8MF6tvTD2k6PYkHJEyf0CsZkoQibxQqKU JEdCrpIhXjhzlcTcxwtX08zPNcdIC/9nXjx93j0vvj7ZJYl5tgzDeLGDC9fz gfxbSlbmeCJ4GqUXQ6VyQwK9+QNSyGQeyKBsYsfwbKAkrnDQBMfn8sywvaHa Am01RpngjpLFZS6Bbm+3tTDmWKGBz61lo/6sdYpMLUzUKXWwdOP8Cv5O5tzB IFmoBcZ16BkhK6Out4eirT453P7eS4dDL65q6FM/VgETVlXarntKgu3MU7Dc eBDbSym5LNIpYMKrYO2RdfP93/2Q7jQTq1nOLYDhZhopemD/xT/RkHO0Zu/x SMnFpo2DVVW8L7xpzLLaZvITQu9aidUTmuS0wNqfLHaGXxnT/rCwhieE0ujp yoYnSpoHRqpgz+dh5ccLJeuqwSqYH6N35JvYLoZcITwWFLumvlLiPuLJg9wA jgQuJf17tjsjhfkpLWFw1OUmAmpmnSLhbKcxFjYNM3L4B4aoFXI= "],ExpressionUUID->"4e0e155c-da77-4928-b86f-c8bd5bb61576"], Cell[TextData[StyleBox["adversarial examples are off the data manifold", FontSlant->"Plain"]], "Subitem", CellChangeTimes->CompressedData[" 1:eJwl0FsoQ3EAx/FjikIk80KKyZwX48WaQuevULMzWpEozWUeEBuiJsSSFw+U 8iCXhHIpuTwol4htJWnu8uDWNPxdNpeRFs5vHn593n4P35iyOo1OxDBMlDC4 dr2aILmlZHNZLINnWXY51OstChgtGU+DjPaQg9zcnuPFQYm6esIFZ5d1btjf 1eqBos57TnpHyfpGCIHhb7ftUHnCd8KX3sbpeMEOXrsANTa9DdZbzq/g73z5 HUzk0j1QPWBnWEGmweQHZTujKrj7vV8MJ51hDTDGNNMM87YMC4MPlCT5uhdh 0/1hzgil5LLGxsO8V+n2k6D1/d+D1KEil6BbFVIFM9w0U/Yo/Mt/smHQ8bZf 5BMlF1Yff6+G3Fh4013qtc8Vx8LodoXXU5ofuCY4ViAPhl8lS/Gwuk3MwrTs JWPXMyU941MtcPjzyPjhpMRsmGiBlUp7gMQldHFUsPBEWhtW+EpJxFSUGIaa VxQwMrUxBSr5XhVMvvLh4R/t7QPZ "],ExpressionUUID->"e8e20377-565e-44f6-991b-a32ee3c7fe87"], Cell[GraphicsData["PDF", "\<\ 9E14ARda;S<:9LCUl^G[Yo>PdCP^=30g=R0e3B0`858P;dMbKgE`83`l82mC82mDLV5^Lg1QLVE^HgTP;d=C82m4 IGIYHfE3CEU;2Rm987AbMFDP;d/PIV5/LfDP?ShP?Sh:LgAbIF5]2WP1UIa;Tn=6 L/O_o1C@n/:>gL7RoG2/3U[;6b67`a6kfoHN=3Z`BLhdK3KI8]TNSAcnTWKh:XNo QMmlYOTV?cf3dm5 l^dYnOemTVMYg^AM[L?j]6n:QVMMDWMeF]EML_nDo?KnLkk:To/?bOO9nPo3aiOc oRiiEmAi//koVZ/bKi?e?mdUMIn/Ql_;iS3l?1`o^R4KMe5lJjiFjl]Qf9YG5kaf>cbmGmocb_9V6Og[LCl_;S9FQi?;b<8f3/^6RdeV0alOSO^ONm_3I d=`Tjl8=>Fn>^m?ChO?MjXOTo^nB_kdGc_AYfiAUeBdhdeIYGOF>UiV;eD>Rd`L/m/f[K8VZH?G5^JejoO[`ok3mOgMGG;ocm2e NXf^_TfkYYnm91mYnhg/U4GF^J??K1W^:KG/god`S_SEI_N_MdUN9n_mnK8i3i^3 6c;^kEMgbLB`UMf@]kNb;]:fW54eKFfk?ekgig5c[c6mA1GkO>C@bZ[TLW?N;TBd ^[?CnOYhnWPjC]A7m_E5HVo:]:U2ZG]BQQFNQ1I2QQ5mTbNeoi:94NOQhnVnfoj0f?3GmeQ;=EWSi]OW83WSIW=:I;eQn7Xg_G`nWU^=^L?k/a o2;_I^9i_`]YWWCYMN=CSLXGVomhgZ_]ZEOJW?NSeg5k;k3_NCfclCo[CongmdShokjbONUn7FcXI]G6k6eAkf WV;XFCYISQMdc`F8CWc[:RFW[^:TnkXPPe5Ll]ZhQl XHQm6No:mO?QM5Gg83mHB_1^WY?V^GGBdhPjFjfaGYbL4R]3G[1U^M79B[WkbFXJ Pij6BlQDW^gfUnOQZ[C9E^kc9d[:^dPcmZ`gYeUA;6m0:jbN=Tn/GVbjK?:dj8UUThb_EhZP610;J WXjok=1>0[ZEPeHAW_GCQ[Pe3c@a@aH4HgcMJhJ/4<@H//R3 fkoL9AfSSOYb_kFJ`k?=hG9BiIFgKG0Q8[mah>SE9PC5^0TBlBiW?S`gKSUOSGjK W`e7I:6O[1[;]KEROYlX2@9WDO?K`nK2W31FMUFIHKENc1N;Z]X>l3@;UPS_Pk5B LOi2YgPSgQ]0=gkb0I^X;NNb6WBoGMe/A 6W/d?>A7;/A/O]Xl?F>naTH8M=lL`0T_7ddHT;D/OL`H_BGGhRdM>IM7297E?aTW `E3e_:IN_>63ibHQJ[W`7o1_Q en`U8;h2SC/MGYjDHoYRANQVh?BVd>LRC>7ZAabK/4L6Nd<]bkOkoHh0Jf?5`QC2:PnDS<5hZZg /4RW;o9lXLXE3[Q^5m;ieTH]fBbHbdAfhBLgC/F^iogCg^jFafO/C2=]AKj4OUd< QoUUTPX`c>@c`R]Kg1FXR O]iijlHhGVOclja=Vci?ZYbHDhIY^LS[o]4hXQHWKjo@e/_` lCSl@^2e845nEFmTX8kL>T07:5=9HD3bf0o`EV T[CLNF2J>h/9^K9nChJReV/6PaJU763Ad0KX9aajeNE:X2ekO6Q1AL]DoHc;5>2VNV]bV_g69/^Ba6gS;>G9jFPRZEi_]bmWiH7LVHZ2 G8Ga7W17iTc/e]R49eFYb[P?DY<@=/V=`fcVNQb3iHkG9[]01S[V_1U/?E5^9`YA SRoP0Da^R:e56OXiV>ciRQj=oSAL@J[^[jN_M7i2V;/J;9I2]L9ie]G M_@A>iG7YQWOH^EBVY;_nV^C/FDbedC[Z6ck:Rf:gU4Bb3KiWZAgc6E4K6D6CS]Z G9>M:Y@LWa^6bW=[4g9Y2eUeTBhkIe4ZLmjRYbhG11VBCj9KQ/M=?QnNlQBbjmQB=FE@SjY0`BD_f5>bJ>he?3ZHkCeA_[JRP^gFC[IIcj_<5Y hS3=RoRjMGHC0aJBXh7R`/UO^2i5Wk8L]F>6FiXg=]`Bm?[h`VnZEX^]4Nm2XQfW FfoQV6Z1]Y]^cZh_g35X>jLFI1NNkKSc5XjX5Wh[cL2J8MEOYUZDJm8j6aNN6E?_ ;AcILIVCUDVT22cabgILHTcM9:KISSEfgS35/R`1KNe/IN>mE^]omoa7c4?SNE8` iVcfi:EMHh?BbPP=j7f>d40jVhX?oG1j?=8lEQ]D_bShdW5Cj9LQkn6hiVSj6`EYnkK]2KPWJ4bOkdkk lJE7;LOYhh62WY@gmLJ2>Ue>P@I?:HA6>YXjW7O;n[HXj5hRC`DkT?5Og]l503MR 70Y_9LBEi55m/n3A=k_M8AG/IcT=[`HnSjCFCVRoV1: W7@4Q>M:YjfifUX^LdaIVX/oR`bVI/4oB3N@bo6c:CZK>I_X5A0C5E:FC8@UEh:YQD:n^6;66D35Fnb2=Z@Bl7^`EoT@/YSQ]lXN2^ejfY kg[Lj]>^9L:eHCKK9E@HdYH^kM`Joe/b?mQ1:a:9TBmJ_N5ZjY=86WWN?]9ifek1 Y`:V]CV1`6F^UBjSPPe[cEQNnGdPc`QX8jTXBK>S=:icCB[6E7Bi_J9S>[g=j7@D mPMQUM2a5;cM/d_[I=2FgQ`]jO5F9KHKA>S_^G/aR/ 9hgGO:1dBTKTST?HZX4:JBZI Q[ef;XjViRY>fMP`4_2ZPc;VMT6UfSJH5Jb=4S7nd/J2i0 B`EfB=DWB[LaEnRkYiO8?iY;6m[_Z71=fBclA>daJ>V:Rel2hcSeImSiM;2?AklT R<1c36YXS3@eR:VVE ]@]QLG3SQA1Z8Y:TjeBgK7m52VFV^R]GU6AMciZk2i> nbO3ElXjmn0SLC4<2gC45^aFjmg;`h<9lX8F M_fWna6ZaFO:k25PPWgCQiNSWXMSol6n U_G_4V0mgeVWfOiZoEEX=g9JdN>8=238CFILLNVLGon>h;N:5:lIIKV_;oknP^P?iUd;[HO4V9;=chQBjMCTDUgFLmL:B8i 83G_OIW33me2XjZVHF]coTgNdUP7cPC[/6L6bYE:?a3Yl/F2?H^2?9eo0dM8235e @360Q`5`ImG5@QJNNYHEeFXP]aB@S;jjC/bnS=Nk>To;3aFD:JWFG5h]/dMkh DTcQ21;Wa:CG;`ebmJKBY[G>P6P>_1^N3h44 ?OXFLf]::DPYg9^[R_j?QhjF4;N/Jl;DUo05HA;@Ee67DCKdk=YlAX7cFKmNE=l9 VP^ETHi:BAlPi<1T]`OPkG53O7?^W^hIk@eRY=DF]06CM[lNCQl7LY50CnN<4bgE X^iBBFdd4<`0Z2Jod_NB1D[ZMU>BPYGTk4SNMA`2LiS9lN9o9dU6g;OD7f^d89c[ ]02lLT<;2_FJKgOJjcLVBaV@G3XPfR`LmTdUKW2d;JX61EGfWMFOL hbcTb?UU_99BYYc]cW/ZgVR`FAL=d:k4oFgkXi7;_=UnAiKMUUY9FBBKe6GV=72M ]hP^i:P4@IEZAMlil>F2K7jKj8:j75URG4QnL8lh70jZ=YaeNDE=gDL2lEdkofV1DQ^VH^ILJ@J6NGY;LSXiMc>L]24F6^ dMJ_DBg<>ET`WD^9iJn^:9Nge8oWGGmgL]9A4;6;71cEPJg=YiC]k7:L[I^ZfeRjnlGBni9UgQW?=?8LdL93E6mBN?iD^3c;FKP[ST /iBNV:DW0Ia1n/4n=QM7@:RgLaejjMXQb6c5K ZYfR0=>LR2?M534860];7c75j>ib79eNE6J`LDJ A_Gl]RAEN[6ELiTBCT/P_SJ/:DmC_m=RWCjCb]G=hdD5^iEP5I3/m=TGKhcT4Y9K 2O`a=T=boUnD6R19D@GJ8in;DDnF/S`EZNFcNJ<2ie49L=ml>Q4?a1@]ZMNlaZ67gjWYgHc35OgZVYYIb6>W5Wj7;KJ= R/0T7`:4/bL/I`i[ZcXX[=m@Ui^HJoB@RT?505Kb`Ima 5/QdgVWh6i?dS1DQ[Of<9j4=e9=0U/5LV;c`6O4Qg0` :6dU@9Zi4 /34MJXUf4o][gh4^Z1D5f0Pd2YR57X>]ZoELg5iIV>828 ^A2?WgbMjUS4lmcH8H;e:m8dP;H8lFFC61GQ1^81ESNRiK9HPI1i:/ SDehO4;e_ET8gX7]WhnGCEccGLWVdlLa_dPPd;A[omhK?]W5Q_ C53EE6>cb[7D MfZaMJDTF2EBEDDheGW`=d8FgP@_ITEXOIUCR]^nB?X:>JTM TKXI2g>>DIC6Kc4:_D4NPBHj;]f>EQD7YJEeb/TDb9i5Ikn36^4BDk7TQ6?9dnNc HDZ;:=e@7PRF[nX/F2L8_;SbH@7@3HYVWj`KD89 3`kn]l?Cmi;Z4@C;^chk1bg/MiDl7?CdP6diLZn78>B[A>l@Q4cn?VmoP85Nc5S6 GhkX0IIj?TfBhiHc1UC>`?ohOc7BgiX:IFiTLgAbIF5]2VE^I6mRJPXh830PKf9Z 2SDf>CD:IFiTKf9Z2STP<21_HVX:?3`P;e1bKf=CIG@PFb0_D4A682mDIGQd85dP ;dI_KW@P?3`P;eAiB0`858P?ShP;eQ?HVYUHg@P?3`P;dI]B0g22aNHSYK742>C <_:XUFKoo/inHGncoOO_9O_S?DfGPJ^P;1=hBNViU=XckAegaR/P:BjDdLg[]fco `e_9__d7E38M@1Y[jaCC@aFHN2de:A8DlGe2C@fYGB4ERD2_=ielFAVJQaP/Thh; kC`H5H7KX7D3KC``JAcgaRORaTL8Y;Ud:SPFN92H9dT>c5>N1bF93ma`D2nd:f:D VWV^]KKBI/0iYBZS061U9bK;B]EICEJA/n5 MHhiIkUeFQ`j4ZW`ghU=cZb5XhWG4Bc/YJ_?47 JTjTNoBK3meL>3RkgN P=nVBUIiYO4JOXT91>R/AbR4_0/08dd[F;dZ6Z^dh0QXZ<5`Y`a3c;Ihh`n4Pdgg j3LYnjUdWEB=2nRf09C9];Zn0E5PjAOX^/c=baoc3AW1CQBIH`=_7[:/==L`/kBhJL^g94JiKP]^FEL1abiF]WGYJ2CA<^djPdC;G5dSVn8`6E8HJE19>I@=:[?A01mYdN]6jlAcFlHb P;iEG3UFKk^D?5UMG;hVXiE[/PF0Vk:`0Xi7TRaAQPmVdY2/`5jFc3R5[8lZL1hn EK=[K=KI:G_SBY/UMlcf_T8bRobZKAI=A=7WH?QSEFgAG3E:6L^`g6I`l>8I0ZbY7>Zd2mWbmF`M`:h:0U J:k6LAJEHiXOJReN=R@P_NKCnhRc8R2DNa<19g2N9>0dCQ9@X[/Aj0Dl?YE53hIA :[AZ4co>MSfmUJUF52GXL:J4Y=D[[MaD:jo4HMG:4cSEjjZEglbeMKf0U5QO7QPe ?0:O1_D0[BUJD1U@?`kXaPl71BdN7]SffBLkM_R;OGNhD^@QL4A9ACjO0OkdjL0B NYQ7oV`5/4Om2PS[BEd<>YTncXRka_@jH3n2cN6d8Yl==?T>DCZa2IWgEVCoNN@E]SLFON6/U]M` S6@BI^=PQOT/M@fc`9ogHC3`E^fa/hJ_ARj5AZ[4kSPZ6kYm:jFg1o@0m7Z:[fZ9 cLf/5Ym=>;bIcl/3YeZJCB`>>nJ1Qnij;C;f;BUf98_HfB8B/>]76g1JEWmUfbmf 57b:KCO7kG5gmobniG/Q5KlkKWO/=gKhV2SD`E/K/]4>cYeFQ3Ue1>QINR5dfR0bNfcM>bTJH1dn[Pc>mcDK2_fM[?W 6cLD/>T5G:iGIh2;gW]6/AM83gAkTGBA^SI:Z3aTD8_^4XgBZLc;6ZEcH<[S4OJL 05hBT2=P=0h4S=`jQK`TQHb1j@c51TbHef/iePQ=RJ0UjB@4LLJQeQT?Fcl YiAl0fB9L9^2GZ6=bS@IL48M:`cH8FX5l0ihEL_H4lPdDCDL7idjg:5W?>8M2 Nc@1?BP`OCkF7]UEBYc5XIVbg^4Q03EEB?IMmZIh@51B[:`4CWFJ@eI UW5VT2F<=0Fma?icd>PbB9LS[YOhk1`bfX`9i1_`[4Af[A7?BgafQVN=hn=cIBcb fAUTQLg`1?C0IboF^H:b7NQPUW3cEaoGMbdG:9@h7U5FDg:=[ ZJA?bn`5dX>nXPmDRLLh7XoTV<=9I0Qh7>MA2W@8RZ4nNXB0BK^N9C_dLkh]f[mS]TAh9Y2;6dk>ci[=kO>=_gnnf@Mng=k7^bnYgmc/_nZgQmMJZNon :SdjU?=hUWLR:l6[3BPN]oc5WC_^1YBJjcKkiiCPi4JZ0JF6CZNTfn3hi@DGamgm a]i3`2?jcG_kmCMR;gZb_BlX?1R:dJ0gW_F5YbK]WVLdYgQ4;]5[O2AcM0@o_3dj DSLbR:4CX[B[PD6l`U?L/n1LKa27OcU8_IoUA^3Io:VkgShl:SfLcG/LK7c0l:RD H0gQhh3BT_1hmCl8Jlgb2VE^I7=dLVEQK@YUKVA_HVX:84@38X:H7D1@D472`21i03NlnkckgfNOOGIm MQmggo>_Gl=UQg5V^_ZV^N5gnEajk^gZjZY_mcfWCmFYLiCRR`A8P0A8P0A8P0A8 P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8 P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8 P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8 P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8P0A8 P0A8P0A8P0A8P0A8P0A8P0A889`8a;[MJ]_B9Mef[USFkjeEb`M?6S@h;YcJckJB 00V@00V@00WTC20n=]HZh=;oKe_jnQ>e:eG>n@3^9@4B804B804B23/2d?LkURo] CCdOMYN>3BH14R014R2170UPg7kOeSOG_CQRI;hL2g8W2I002I002I10F1;85an_ =RnHekYRjG_2/_e/=0V@00V@00V@@H42^E? D;3SlHZ;RE79RaJdNkQ1`c3_5I]?0RA00RA00R@00UG;U5DkERc[/g?UlP5HEcNQ ol0HTR414R014R014R014R014R014R014R014R014R014R014R014R014R014R01 4R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R01 4R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R01 4R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R01 4R014R014R014R014R014R014R014R014R014R014R014R014R01Oa0XZ0Z[6?d? [j:Z^;F]kZY[KJ^jJU[K`WZ?FomcjDoh6jmZ[][FmSiEbmXFDbGdoU_oD2MNW^_HUMEBGVIOg;IELn5^e YoPeehChNNY4=LWCeCe4WJl_ADK6_ZRn[BYa/o9/^O=/h;lN/RHB804B804BR2`2 nEF2eB5HeiiG[8Zeo_CHfPWJX/J[_J^GBVlYUD;U_J_H1J]MnecNE93IDMFdX]F]Jo2Z;5oFmQH7oT@09T009 Q201[6U7g9Sn/LnX7a]8DLBA>JMSehBB?PgE]Ua];^DAKfMObI^^Mh^VZJK^Ad;` 2[=994029402dDBPR4Zb^Y]?iKNfmE`?AZBoO6hl6ibZ:OTl?Xca:TldgEK/:`V@ 00V@@8P@n;34Ke`?^cZZQOUfZJORYZU>[WkDlgj_1XeKVieNn;SJ@4H^hPgPibkO550RA00RA00[h@N=SMdLZiSWc[ F>^MFoZ=ioge7<6U1jEDEEM=Gbh_SbD14R014XQb0_?b_JG>eY42WiCn8n?Kn=77 cUo?;K3_gdSl;<[_DWJO14R014S0U03VhO6jgmg4fXj=OiDnm26Xgc ]X_WmodiHVG2Ye5j9k?K9402 9402V@TP9ockaJnhbZP:2WkLe;>njmWLIXPh^/=RWeL9fX^B;a8P0A8PPNPTh8V[ RUba^JfGN?k0?5/PEf1dg]g/=@V@00V@`>2hBJZYZhg2VSWZfL3XfMcVR[F@?F=6 :Mcl9T009T43T4_38nQUieeY[h]?^Ud:i[Hmho/0nIjCETh9PS3b2 EAGGg4O^[i/m8`4B806UHZVJ]]i=kd k1T9T009A061F1E[mA8adobQ6eQ7N>Q`dn^4O;MAl3=P5dV014PP8PTPk_VWYOoT @QcDbl`SFlUDmdEK^CD5_UB8Tl@G2I002I10N16hCmFRCcgWhXfNKi3kcS=QSoGf O9402I002H@nPO:^b]Cce?=6NQiS68R;3egoIY6SS9TKnSm_]Y04B804e?f^9]Cc e??6NQjjoT93BD8L_L]=Y7COf37l5I402I002H@PPAK^ae@YEEHUZI9Fc;]XVfmV OogS:`PO?HkQQn0?W4dR0A:8NP9Clja@F4OgAMVOgMAio]5idLXa]HhT?QDg;NYo D`A00RA00Z50h47g`eHcn/B>iWPman/MSMOWm1acY[HTd:h?QElhfd02913]13hY oDOGcR:We0LUdUdibFg^Xhg_m1kh]Z[4mH/I6ndoYGO;4nM KgX?`3L_@BGVjSg>Ti<02I10=1?h^=AoD3Lgcd8294029:3N;YZZl^_89_]: gJBNYih?RYj7GInX2_3GA`8T@08T40@2R5UjALN__mYIgeeY42annCN=b7KbAn5VFo?WJG1;8V/?[E EnXeZEdWjiglUP@<25E>EK9:dYjW?Pn6?SLi1lKbT@NI;a:8IP:URaICkjeO <`Ef?ElTh2d1i9Ko/J4DNc7?6`ZbeD@6/`bO1h9a3ocH@8[R__B/0o7f7^Ma912> 1:3KMbaOf[]]hbKQf7bf>H@8578EDMNJBoUPb6fNPll7g]`33kTO3J5O39]20X4W h7Jie8Ji/i^>k=6C?WR1aagaIjSVZ/dHmUa35i@eM=kXN1acoWhYe<7MVkW/8ehJ /H[O Eeem]6?KkYd[U`oH^F9I_ad[U_EYFKm1^3BOk@`Q0_eSWe6mHdNYcocLM_41:LiH>U4^`=Qm4R01F`8Ch^MAce??QjFNQmjo e5Q:kLnL1DR01::@@4]g1j_GGM`3ZNNYil=Fcd?G8mi3IENe:?`E/l/T@08T T3f1OBE_^ShZoGmL7iGl_B_cN2PoAnjlMZANFlAhNSW?AQF[oo550RA00RBPe5]5 cm2>YadOeWIlE/l/SMd]nO1/7BT@ZC:MoN;cB^Ikh493BF8/WBPFN>`j2D@Q0J`obR`;nIWj3oL` ED0EXW@P0A8PPHPPD4@U:JjSX`j?1Qg^Y8omHin9R=lg>d4294029EAYf_>a jaomf`l2I10m11Xkni9?Nm0 aTN[7L]nogY/Xjj[LO@82_JD14PPK0V0go:R[ZaXHFTY2=9X789O1>/K?DkmC_7:oghcf0G8mlT@09 T42X47Rcb57ZNCo:N=[]TFngfeeSn>5ccEfXB3RfP`A8H5OBNNYijWWJlgjn1k2n W[5d:5m9P0A2PL26`XNXiod/hng/?Nj?3Y/OLO>@iiT_4R014/Q=0[^:GJ2NYijW ?AnPNn12@dUJU?nmg?b9lm`T@09ABZ2jZjkElhf53U??1dS6dfj?3[_Mi3[GLSF8 DTTCWMefjFiG;7f?ZWmOMOE0mAYI_Z>C37/MC0:WJTZnIn?VZZlZBXb9W68IjRcN 0mkO0hRUbSgI/figC>iNJam=64H4cMBBAL]]k ^DefI>O=?O24Ne0DBIWXjnXcOOZj?mZiKLoN;I]G;WYnB]WWQ`k?=X5cMJF0=g::ae2olAk`oQi0;9f6k^K:[Ooa5GT4gUfkJ]c^SN]V5k7bm1ek;^cG/I0HKK4oP`neK]/mjiYTRmREIPP@2Cn1XkgP?Ng@?J3kmHIENe`?o@NHJP4WQ_`mXGiX`OGcbX9nG9B20K0VWeY21U ]7LbV]c8cAog`9FVD^J=aYFY;O 7k::ME3WlAk`oQjhe5Q:i4SG^9PHUKahHO^e/ei]L4naY/=5g4mReO/eTn>5ie]=QOAfnnmEkgNZ9Mao9 CbCP?`8UEAV[<][ce5?ndU>/acogDPeG?Oomd5UC[Q1hKofJ:JK_G6TPCa[a1o[P744]WF>cc:U57dn6;14R01;`QT4oUEeNKBgUo b2CFhJ=^JbEEKWB@nSLkBi>O^TRcWkY9Zi/mY0gNn?^W9jBio[kYcLNUdOE7i3kb mY5g6FOC3T_MKQd=FGQ/ZP]6OT^C<_o;;Ta:^o NO_XPS=O7UYbi7S:aXo>7mSeg/fD;G/_YZck92eUmNMWDmkh<_G0RP=Wl4iIVI9Z OHMmVoOO:G]`nL5CGbojhM3gLjk^>Cg][j_?SYLI5dO8l?@WYL?e=U:Mc`:AlB`0 giTVk]HZC_oS:k`9i8^?EbD:5e7HlTD2`B10?Al0?G1KYimoF/JMO>V?V`noO^cH PAg_Gh6NoVKQZH?7Gk^njoCDoeUaK[a<^cALQZKgTLMQ`c^bdFoKo]MkBK_;@jAO fURIU?[l_aKo?_i`FEOoG3PkMgY1iLM>_Wmk?CM>5MjGnUAG2NYJ2jU8 ^lmkn@om35fKFJLOViofBNYTVG]eT3aihc6Y5fc6eW>3]^_??B]CSlnjnNhMgJo7 0:3kmG?8n1_]iOiP]h_WloiNni6aM08S20=H:mK=Keh`[cGdn_hMFgO19fo[T/FM /LEWO?oV`_U]^;hnP1LQbZ^67akU[W>i2od8?GU/o[W?D[K_^OcEjdNoCIdR2g=; Yi]N`hbjgm=fS3NTCY;I?gFEUZKe/9ccNlIOc:hl96EG5_PTbREGn7@OmS[bf63m O=WR9NmZN9VThV[eZjoDPji7^K]flP<9n8T0i_/P=o`UPb:i7^Q1j4?XANQfj=S;>;4c=o]Q8m0bZX_cYjLlJN=jOfUNgY[^CNB[fLhmhfaM?`T08=@ cE^[UPo6>jMCVIC9jGS^8h6L29ACUFS?ic2oN_eAZ@6o>Hai@`m27d8_A^@lml=B nGY_J@lO`D=;3im8NO?37dnon?]RU2O]bnWUcG`P@n71KL_;d YdKUcjTYf8mb>IGQ?Q9`BP3nMo7j7ngi[Yga]g;RRNkNl ^BJW<]a70Th938jKY;j^:34Ch^OAW_OHlgZL6V_BSR`nOXBfk;nOOohmYW7X9Z=SGm8N]HU>a@3;1h50lZ85kOI/gSP_^occn7k?iPec D2h8cN4YXXQ0>eMgj_OKnQeSl9QgakPli]h_S9:W7Jealc`WA?YFSn]SKMigLbo_ CMWj`BGhl7=o@jO^Q/mYFe^bnY`>Cml3c5gSgT=[2L< Ieo4L65^eljJ[_[n516/bhl4YPhOTANj7_[lEfomoKBACnDhOno7Y[2Z:2;@`cd/ N_Fl]T/_SYBAR3MgN?5gGb=>SId/?kob5Ul@cPdWG7j7Om_d^i[/NTinHGI?359kBoO83kRMSkgljk/1laNA5k SogiTdHW3l2>kl9B<2YC_?7@b m2md>Va`j7CXLnQbj77XjT2Mfj=;;WNBAVm=U04m3dWOAWnC:_U5G;7j[GEonNi7 iA8P0A9@3k/jAXNN ef_Q;1lk?JilMX:lk?OH;kYnj4gHc[2WlfQmf_ZgdSaH>]eD[gUd?nao]3?_kGI^ Vb`3dgF<0==jC<]M6b0m<2l26innnL6ekKn]:W7a:PnUG2hA:5VhZ<;K4k7NlmUT Vd]=iVTSU<2@f/ZfW?KOPkd?mGR8[HNaO=[f`MGeYf]9 oZORYTFXm0[]KWWlkLZE^1GSe_?iEoigVGcb4>/n]7_6eXDKPIJ^3Y6[ic?Hl5JN =So5]h5=g2]5nREXgEkSWe;djFdbo4N];of]Ph=M7g`8gWQ5QV6^0CZoeNoUXNl6 B4No]J>OM<5l2Fgkh>[j/gFT0>gjh4_VALm?:K]`bW=URRCNRVOPnHc_k=k1Kbg? 6bZBAAWkUP>11Lm=_PLaN^cR jnM@1GN58H4R[U_Q5ameMHd/?JoeAm5oaR`f_M=WjCS<3j]S;j?FVm7]=^ 9kDmlS?R]gXWGnhP/@PSTjIee@_n1Q9GD/VSZoB:USPh8L >lL7_AV/ih@[Sd_3Ajo8XeROgoLc6I3^Bd`LcA]al^6SUji]o63e8M[?DmEE<`:U FVQg2GihT`H=S/^YUM3cN1k8ZHbgnjSW_BDG_/N]:gP`H_@leVZW[?/TkOCDoeWQ bgY`a:KALm69UDCbka^[lm9Y7A@dOJ373fhn;XgBWi@>UhK9T7?Si?Tc;oaSfJWY OeT;GoDOG_W3E[`AFoKDm3n_AjaI[0m4?3n]7k]R7D6`LnC2ma2ano;YlO`96fA4 ^Qi?lIHGL_aR[RE][4cb]PhNIchVD=eE=gb5EiRfg4C?_cAjM>:nKLVK0m55j_U0 D0g]>[LE>A4AN]j:Fj_ePaGcaT]K635]43/6/NUF_bA3OGUF/=DeN[kkYnkBn_cC j1jSFDi`dm3cmkcnN?`e_=JGl;NQGjkgU_JNbEgMAf`@c7n S7RcPM0]/;5QZd9gOOGjdFl?k7SoB/[ZcllNVgonHnQ[a=nek7Q]cg_EQhcjBhlo F;5Xm9P0aP=>_?ZK]`l]?GcR`=^kd`l^?gP:^Sm]S4`T=occFoeFVV6= WSOm^M5>jWbmj8M3R5W8^3[Vm[UCeQS?hb_`14cGc5][j_Ec0>KVWgRhED0JE[YX W`V>EYKHiVjV>PnTU9hlN4PL i^BaQLkO_61NJgc>o9h`H63/TD^WCJfhZN33/m3k_dj8:cWf?nfQ^Oc/SMbMmOEm8i5OT::84bBLEE SdOJZ0;ilfMiWT;i4jcmmaA;bW8o_b@1Y`Bf5O/nO?Ble_77iZMmLWC1VBnQHig8 ;iBM/Da6aVTmlohhkgg1[G?ZMZ@m8lm1]f?N`<[9X[mcfYi`:8oio>>_GMn5L@[< UO/joh2a5:aGK?TON^fP5o5ch@M>elD=2LbO=:WD1fm^ FQcSMVMi1;kGnaO<6CnnN9H5n2D961;8hkZEYg9C`C29Tj?Wda4c3N?9S/O3]@i^ Me4N:jESgZCeT8NmeZoJ1[GFknTeGlQiUmhWNV;WH9cRQiVogijRloURg<:W64@j o]e3obFekoeoDQ2iP9aN3b^_/;h6TC1fh[C_`BYoh@59hPBbXC1eF>cM]J_6;I_f H]FL3X>oW2hg=ZLbg4L2MP@`;emH5EGQ4RL7Jl@?_ok]=dimkY1G5KUF/JkKfcEN T:g`TCndi`:YMBCaJSo=T1jN7_>;E=T4?;R[9PY`acEXIlC h?N8>Aa_[jfSlhG@/eH`fYeFC`[JbA3^mhk0gRfKElenm]UK2LBbZN:eLN>:k]_j i[Y/M_=[4S0Rl4=ebA<OY;MlB9Lk[Fjg@OJ@^O[eV;M1aFKfBdeR>89@?O lc<_o;;4Jk_EVg>7dC6GQ/XPn2UP_26aiOE57[:g;KWhnE/o?HonfYJlohJaVURJ1^`VTeYK4D9Mg l:_6n?3E@O:TTkHNkbo]lfXM_fJ6@a_a]Xkaf?0HXlMj>BOWS/JbR?V367^nf?Ho MYLFQKB^7kOIfGGAAR iJbJnD[MXPD:g5Da?ZmnmIEjR8/g]4_G^oKa0`Th9A3ZmSa/@lAWAbag4iWT:O?M @>VHAn_hKI=UX>LkhfdV6ch@lFn=fn;0[PfE>WfekBoZf8B8SOoDFljNco0/QW4G [nQD_;6m3H>>l>BfPjc47_oGeAIeF_SbS9[KhS>lgcYgCc:H: kRH1F`9WjdR1HT>YCMl>6oU@?md4WJ l6KS^UTaQVd?SPMF73P3Wkf/b^CdgNG>d[RXSYmWiKecL0d_SY3Q:A/nCZAEM]mSW1jnm8QSimBO?k/jXoek bgMBneEPWH9C5[3[fAG?idG4_DG`6P435d_NXnnnm Cf7;5`WhT`3lkD=AIV7=6^`b9o7GH0?2Sf_9;1W^^4mj3K`Ebdk7D7LbM^3h?0i/ ddRY6gkhl:6dl^;Z>A4WoCZ_in/Cm7=K/_K7=ci>S`jlNj>LAI]MJWVlXR7G>URTSRh0nLfo68kHYiGB^> ^nWiF:jBTn^:/G^/LclnjnJkC^e/n5YPcAgFCYRN4cU/lMbFgTnjVQk3LVISoN?R iPAH:TEGmARKKeVoPA[EXiM[h/11Mn8=alG4Z<892M45Pkd=285@e??@1GPKbee] 8cKoTmA[lDMYhN_ef^nO^T][ho=Aac_BlAj^l:U4?P8[cY7nfo>mbGJI 7Z=1;_^[7NAnTo8XPnLfn?ic3/IhZC[WDlL[;1Umo9 g82Y;6BiK7B;7U=7G1_Bn h/]k0[DZEU8OK]nboOf=jem6O]ZU;dj]U57?XnIMjeJ?Go7Bm>[NWhE7TX1BXNB7 ilehoE_JYakc]iRK=mHIF/LSWP]lkS2nJgbL3g:AilRPJcAoj=i3B`nOLPeJF?:Tn?g6KSknOjmf4Q:E7GEY1SeT/2JEfOFQenmInglY463hc;[NLBo Igak;`7c/3/4D^^6c[XjYn?el:g7_>gG@jBcZMc7^3kb[B7GZYGhO>5eojD4Y]J7PEgOT2Ol`9o11lZHU2jLl ElIcA5IjO/JXD@VCg][j^] n7H>ah`SE]oViW>9_QhHEk7F`3VH[dOo:CPGnlT[^eS?dYkkGOGd8Wn?C]A IR9^RjnidifLTfE]m8_FmAS7@IiQ9o?^Kk`R`f3GVoYTI1Rokl9[HW==73kk`IOG >nTCgDOY^ON9jejKeLQ38B/mSaShKjeJ?]QCQU/BL4:PP2YT5@n5nOWDifCn/OUY WiS:gi@AdPfiJI1[e_@HJka0alRofEVJV1k3L_kE1mWbK2gg7UUdhS3VDk8]TeWg j>N31omKZWGiG[ZK7Z?GChi7g2G1Zo egilF<>?n?^Vif0i/g_VJ6F9KNi^Yf;d?kk<22@E;:@`Ahllm=>O6YEoaHcYeN27 ej[Q0`ZO4NC?IkVm>?gFCEXQGY9o7SZURW[X3HF9H5o4lRWlR_TV_BgW7IJgle>dSQU bmj;R2]_LRc6jk66cWRlG]]_gb`lMA2nGRKe/daPI;lC[YN7bP34/L>mHGBL7X=_ lQNYKSan[l]Sk1iSn4Kenf6/8Y[>DdYA;oeKdY[miM;57VgdX7Yaa;?WB j=69kI/nY=`^k>6;1;`SP3cBXB1kh7l5NmjX;KO7jkLkb3=kN^[o[3Rbn?PA9oiM AVfQk?LZ7YhYfmA9Oo]MSdf=T;IFB=OdXaDankKaJN?W1fP[a/FSo;VMe7V`XN DKA2c@@hi^8c[Ylg>hZUB<2<@35E8]O]NN@CBid/LdgT9lKY4@oWO0mif:@lL/QS oMb5DO:dBGVFjAP7kc^Wh_Bj?/O]il`aS9>9NFO_Y>M?WPX3edc=O 4F7KCd_obHFe^gaUCJ1fYLYF7Y^nSkG?^P2o9@4O2;RE>mOVijeeKU/o^6CZHmoj 9fV1?6DVV^Eg6jOSmXN7B]K3>Gi_nR=aWdWKT>H2?_dUIUW5nOgeH jRM>efLSZa4GIl?LfDdaCkmSnM;NLlJ?;hk_<[lciZC?YRYnC@:o8X0h>KTU/lj= UfVV/NoBNTX[c<]ONl`/ObWRjR6o>LO[WL_Sg;XOCh]PenY]D6K=5QY_D SOEelod[nl8]K1>iJ2F@AdO:bIDh>GYL 5Oiae`I83a>InM1oBNg17lQPTk:>hnY5f1RY2J>`;N<`S]fI9jD=h^BU6nC6`AP@ H_?le4FJQBfO4;jGMbMMMRZNXZIlXaXeUNTkJZ2`XghSHYN^HmoOmn9:/mbe^7N< hcSTa^lVSLOVWoohk7RIHJ8_^QfEGXQaJe;F JE`mTcYI9/BN0oAHT9l:8WU=WRUQbl>VQfg?jajHjhilFFKBRJE8P0Cl @@1aLZhfTg;1U6Tg>d[35>eo1cllfo=Z7jZlN]`Elo>fIKF]PkQjF4]WDYIU0R?7 Pl;EBA`k?MIO@RC^l52cF?V8bj?Wj/L5YAmQK9mkbnO20i:4mKalT@0918M0K/C9 `CYUj6H7L97GoEdZKU7DJElnTCYH9gFN1X`_>O6TJafkdMQWFhXoBd>AjGQXV @`joO^bHBEVFLGioW:Q6NainM/Q3Fji4BD_@Fgigb5USllHa`M43TH LkdbF?ZHbnnWifn>gF:;3BYUfFLbnM@HgJmUkA3WQ^Cf3UHYj6d S`ORgm_e`o;7fkkWlXgfL[mMFNigOQmQo;2FZd4TRE77OGUchO`fN1L_E=Pje_?I I>_hI3`PjPT4>dh>H/bWJ1UZTSL4_];8BFLRabdONl`5D3I7CV`LPc5]f=dGAiR] Vf_eFfV6g0PV^QTa59W7c[T>=f6;A7FLWbZc_iUkNJe:FI@8W_h?=5WT;[3b41/l4ao];Nb]^SYj_ ]f/WM;`E;mVPG[^j^3oknjfKdbonoN^1]DQIn99N7V8dWVMC7<[nnkc1_68f_ c?5/CClckVddgRfnmaW?dmL>?MK=Vi`GlFdA3mFT;<_lF]J6 >a<[IX;fcKQ^4?<>]Sa/NY1fiHHfLj7hAh31NjfLNf]MIYK_PhcBBnCSP`2/Df8[m6=;jbRW6kn]EGj^gO _WGW`RW?UNWIiU7Eh_kj2]]5cdlYRnmGcGbU;XkSR`BL4XQCLL69Tj?7e;46jZN^ d]9>g_cHGE[TPinmPKnD4kln^o=bOoPn1cSaVf_mFfU^U=/6mjcfnl3j?MhKPKTg ]QHi[R?V<6I>SdOJZ7gKTSOGZ50aBa5NZf8UmN6fi6BDhh/4W188EYbLVifU2ObU C6`Sa3Aii2Oki`78g]]nOHaM5ZBiUe3EMdkli[I?UX6V/IN>_gIm5o8ZQVZo8j5M In]8PJJ^j=IO>eL/j`Lk?ROi3K]nahYUOG8Z`gdTT1D1?4UOJBYU0Rd_;PfGXJHi ?n_l8RGOWVRO1aanO@Mf_7l5JnL3gGkF7aQkcYmLhO]Qi3NWigP@43g`mC_kT6?d^5i2Tbb9K=Tm;Qh;93 9fg;lAkcJOgMhnjnOY=YhESAW/dKiR0FGTi]CejdX=fNcA_WiEB6ndPP:`;1RW_k mJ8O3R5^^9flQ3mdII44^g;H3klna;P6jb]k798n9^/i [36S]gNWHa]Y_4:Y?m5^cbmhK_8ml:EoJOCXa7calGN9JWannNVW2f3oP/VCB]ne Tam8`810DEDll?kfl6OB^Ci_?Rj=k6C;n4db`VQ^gX5OWmdi^CmbWP4/_kWNmSV< /f0amk=Mnl3kboSkZ5=??@5Y5KY722@UZek[E4j7;mfkI_0ZfoHXI dj]QRlmHQjOgSdLi_TS0:H5h5Am`Og/W?WP?oejJ_[QBA][9C9dW_6W:i_gWkLYa _oNb=acI8@oRfO4b`jk]Uc]9XeR/jC2`oNV;5oQkZ5O1HM0PTX<^3g_a0N_W8j1QcSTMW8J^D^`I]Z^ 7?L7GTJ74^=chnAii2ddJA?FKUij@Y[HUJD_G^3_XJk^8L4AN65`5[O;YJZD:J_Z geOMf^8cGbCP2h54EB3PN]ja3ij>FFhWNdm?nn]Z8klnnTOii1mUMae2KSoliYHO ?6GB[POn9YGYRaMh7Fib;FS?nb;5NB`9i4c0RY9e?BHmkOB@iH_gcW_GCN8ffMG5oEToEibX9WVR=CIN cQ:JNdW0M`;1l<S=0aW;Z7NM^BTWaRo`7NQaQY8P0C^8Q2Nk?GYi6 Qj^ciNJbNe4AO?[QcfhgkS?57PkjNUnCodGJRa1Q8PPK/81=ZNaeRW5MON H9jleRmBo?>Wk7>3@hhSAXj9O6JI`<_VD6<^Hn3_bm A7_n;_7<3bCP5`:1WYo7F:LeGfZPih^;a68/eDi_W9kj?b_>_?3;4[]bg1mh^AbB S:eH]EomH=8fhg_>R]_o8/4B<0_10:mOQkjf2CO5nM:@dOFQ_dc T?H5LN0CD/O89dCWFfALY/3OXn/:7_B;G0_eBY17g]]gZ?N=k@/m0XR7MlePC=eK fHoaMHbcfag_c?OiZaoXnaahVF]gcD9i_nTJSoIYdW7Tfc;<]Rlj__fQ9DN>fiH; h6lY6/hM;G[NRV^[HmTSW[gaFlNhAeUoJi6FmA^XMmJllOBkJeN=7MNgGhbojfMm ^Do06[L?H9bLTboogfBMDfjVWHcjLZAdZjG7D>g:HCoGHYZcloJeN>ngfk=j=Ug;iWVdNE]fmoJ`gTabUEY:R:LK_EcYG; 1e@XaIAhoVJLfoD5fPo_QiVogfjbU_V3/M;7=7lHaV@Amh`beCNI6/Wl42oabV3Y HmO7LI]UA;];d/j^W1FcHMdWJGKU^=ngNi9nN<7E27F[E5DKi/a^hST[k7WJm1hJ TK<=m;Xj[7lclIUkNj8<@;aa4cUiL?N^gc46ZFobe8Ac>9O1N_O;@fF0GAnNFb<]OE1ENg]6ojT9DScg?FkZdODK>NNJJ`ic>gTD4P d75b[7G7HfFBWAcMZESPleXih?;_9L>E^PkOW_iecMTcI69][9 ]_GCI6RC_dQe^g9FWQ;4ej=M5E2k:]ci7Ue`mW>Cg4Vc5/V8Qon??6SGga_]iOhD WE?1[QcgIjo3CMQ4/cfO9cIFSGfbSg_Co;T]geVcL]B^mF/VonZmK_E4ObX:Jman k^bVWSXiK^lQ4EWKHZZ4DMa?TmmXEVF@2cc=`9i7O]07om]PcUf_VJ8mki//cNXj AMYgAaNTOW59[hFcjaO/nEJoUFIfiBak?WWO1K]bg>oK_KT/HGmT2ES3g^C?TdNm _F[5D?SQkmfbNMG]kLYmfi8gFkkin__g=jionKgeJjHHEVUD39W]?Gih/OC3EDl@PYPgVia_mCJ[H]T?7:[GVioGF]Ra]oZRenA7geVAnO/YZ 6FTd?hoH>cXO4nligoBh7KnMaDj5XaSe^Ld_SAjM27gN^fdkZbkl?FW@h3QlPTKh>OYH:M 7<1ndaPX9WFaC63UMVka=OFg7km9A[Bm8Vg]fWVc/cA9XKmm`9lKebJVQ:BL37BS X6OOG3RoSNLl6ODl_R^LT:3fK=hhkoVQ`o=hbW1;0ZH4lZ/4MJf5E;BCLmk^]mK? Ci2GkHkoM;CdZ_>;U;@[QodYFcnhQ?UBTk8/4iUjg>jjO[GTjnoCndTG^g:8TH=H >GKUm;ZjIU`o7oQkJF>Q`jJR:j;:OKQ]bmIGaX`Yj>WDoQeKMkd`KWgAle?: `^KfU>6F14`9a:/ljUX0hnBL=/coTOZT]2TS4VlWKk7o`8X3Ifkd];O1C>YRVL3; k]aPW;;QhcB/NKLkMjMCdWGP?QU/EniF?ZI39ng:LKm_mm?F8/M=AEM4UO/PNMXG?2ijKO8oWM:fNkCWYYaO`nMKL^0I>e/3EoElY_GnSG/RFh^c=5_d6_NQWKYZUJn?:Y_To2X_4G>QV_lKYe?Bo[4fM8P/YFVM7: 1gc:F_VHm1bDGCW^mnfNS=Hh>CDZE5AcaXl_GZ9`4D]d ^ed^]NZEUf]3eg_N/?6aoXh_4W1:8=1aLR`oICeGJR;oZ_m;RW`ee=igjZcfjh>Kg0e7OYN7B3ob:f_5Kah_dnc:LKm_mm_^4YLc3UDk5FLA EkiVaDZZDok>[ So]mTkWQbPmaVC2gHm]n?DMTnH@Ha68`SK]SNdk>5NDhEaB]LG:29o5iYVPT4:]R eMD0a/V1g4_ALL@@Cla>1V8MlmQTNinXWkY;JjiaRThMKWL?HCoFLZI>T]UfIC57 Q;TR^g;HKldmjAcd9VEIa_]kljfRIj9A3;??911@0X6>T`>IQkWBjkg/Lgl>Ndn6 ?_JS];NETo2Wg_7nUA_]Y8i]FGenUXT^1XMO?gK/jT3YIGOM?gYJN]OjAH[KUL=n i:[379A9FIKaoWiKDn3;PdaZF?=Ua[I@H>kT_L:nUmCBjelHOVlmk ;ASGNFG2Ya4YImTY4/Q=0X6>T`?Il5Fd/cCLHlSMLcV4jc^=h kgLUWLm=LIQ[imjlH5i[iZS9=O`AOn:0alV17_;7i4ghQD>>iP[112DhV@=bA]XnF?i@0nB9ng>hl@G3f>YR4MZEbOgibaK 8hG?CNB8ekTgSnb2F0F3U[2jFXbdfTM:1TUF=O?0=IoN=X6G]d`IT_0mEVe^^kg0hV `g?Si?U_iegHKg;>Y_lU=NV35g[G=e[Si0c_f]fe=gWc/Y:56KhnLSE]J?C/QnZB adA6NU?6RBmN9I7l1hM;Ek_cH?dle]5OOeAZf9GUo]2CjOjn9WSV^c1:W[J]Ecm3 ^WFlfl^MYK5MFGgOdPL_R3hPka@k6a[2<9=[9?Fog>o75jgU8nSinfSk>?MYbN?5gGb=WZ;O]hW6A XOoa[6LJ>nW;TM:]RYSMjjJamGPOnNLnFYGhNHA9EK?^N=KCgmWZMO;8CiOi_Go7 eUeV=K8D2FA=h7@]bAl`NJEmlC1gJ^8gMkbo]2lY4VOBU[O:V;`S70Fk5f02YfY:_T3::/bM6_W=jK`R2B:^]1kb/5ekO^XR cE;No?174ml[^kZhgg/iWM_/_YnM_Q]i36gKXNn]hW[Mo@23ml20[WOS=kGiFnYZ^KhKO_FVnLL[/`<_/H3>67FoZIcmTS`aim8XlJ];6 KaJN?W3Q:AUUDYIUO;^_n/J<2IaPHldT@09g2:CF=_==lTFVFGicNRkE]XkK^L6_ MY3kkLXRacg6kWoZ:Rg]bW:oKo8hi?QY^ccUSBmCdo_I[lm0ff_X?4W_Si>nM_fh hmO7MO=1RKOh^;__7CTDcGoD[UAICAP`<7K>n?75/iZ[Go3Li7^RV@okkS^14cD2 ]jk>8eL]_kWG[^obO@^@m =QV7_m1E7X[AjnWBmC>TgKf0NB1C_cjk^[SOo[k[5c?FM`4FiSD/OV5:>L^oO^Nf ?GNfn3_SInJ[2o>[W?_=?e]72PAJ9]gaVc?8BOOIDm:S[4RlR@cGmCI=fK;g8]OB fl_D@5oSH=IoK?jiclhm:e==c]WiQ7B3[ke9FF>o?_f/HE8ObnC<:M[]NLC9PCj7 ggf=2QDEoWiUc9R2MJ]DEN?jmX_I^fGcZZGCYUK6VWZnB<0G0X6NWoO8^P<[3Ya9 kb>?NciW^mES/ZGen[ZD4M8]fc8Ii2alo8clnC;cle>dQSnMmOK BTgK=VPK?Tj_hCSOGE[HU/DJD<`3jFM7fk:lUocbW=GY2?ClY463hcbOZiF_X?I_gkZcMm]fWZnh9@6_20CJgmhSOR =SA]LEn_2g`^Bjk26n WlT04iUj_INdBmVlokcAF2k]]J3IJbKGcTTIi2Yn^GCDFOWRN=R5ogMHURc]k?V<;Ngk?iPec Xke/MfbCenGl]=ZVKINaU L:Pa^]iKfU_?LXKiRakiBE[fnlCX0I/MoSLCa`h:;KB?FGDd2iM5F;K[gkeUGXAeG5f9^P4A/BmX:jeT8Y1 TBUJIjM/o>SlcAkBa^AlR9USTTLDMETnoASCeKJIBMd/4ejj7S6AC7g/;gNBA/Q= IcC_0olkkMnAoZAdh3dAW7]RLn5_55SgSHg^>3U]6cMAl<>kYeRB9OLClnEC^mJ_ VHaiN/lJ^`nB=bfYD:Ydd?D2CaQi1>Zi7UAOEIBHHe^B6]>YdbRj5c NJP<>;CTb75o]9=eV=eCNEDnmI3kDEE2DGmUeRKih^?EV=i?^Q4c1f_[RQDXV;T8 ?i>0e`BF9NbgW[43;J/lND9^6iW9^L h7<1Na_jf:@MigDNY5RmU^iJNjUWDQiaK]?6b4BC/RcSWo^U[:^Reg::1i802GQ? H6NaDd7Ali2EanJWOG9^_4`cTI^HYll;^FfbGU[GOG6TS4A/6lLm2J`/ l4W@m?be0M8SIFE:J[Y1O3c8jaIoU0Jm_iCn9[8KIN2GKK[6f[A>UP^nC[3^T`dO Yb4GTPWohofU?G8KYa_jjYfLlJN=S9/Lo>]JAUE`:9dR/gRCfWGDS56S4Z3C?Jo2 2@WZcDGcff9n7S5b41o?/hmK4_2E`=HRah>Via7CmZ/UggagoVTIIb:o;gBCI_2[ HldOJKm=a=Lc:Llbo[^W4UBR [n8Z8Xj77of^MJ_7InceS[m]7Cd[^hB:bY[ijC^7[1 kW^TWjnHm/3SBjWgeZnIP]Sf7QIa]m[ZhDV9iWSKF6]hS[CZQGGdAFf1nkKe_biXca l1[G[6GU/^WBl^4kOD=l_?Lg[Imii`_n@@8n47Rcb=6PjoTK?JD]LXNHa[5K>4N6 Ea39Jk[>3Skmb9mS^^jJNSihLSlkeSmeUmK@`DHiSc0^Y=n?WiH^l;o;[/kg?E7g4f8YgSmSjmK1?HVKehfLlbH@QhNR8n3LOZTPWNnDWP>n73K UZfN<]bBP2l4J[[ZZh^=Y4B`IAgRf65=_M5imKanXkm9UNi7i4VSlUX7F?5cm;<4 O;YVLChocV?Y^81j>TkQj>KFGnlc_T`/= 9LV]g;j8Z8Pk5_WZ4>_Fdk6M:iL?N6O=6dmk?V>;V7Vk=jjKTO4koTd2_Q0XZNiA KbAn5UBkgVTL>l@jLcYnOgFPm6;>DG>IW2_jBlM:?;ch^jlM[I>h?EjoOYX<=Ffc TkQjYWFbW?fmMJ:Ji?55=TGR/B>jmK3bcfmK^ZAKl^:5kF7;Ila;RckS>F3Co;T] 8k7ok5?^4FSYkQ1D?@lI2Il[9n^KW8kOhac8IhNlXjIc19CMm[;KWh`@aa3n6ZI[ ;G5^Yn?eC^?ZnK=odEhGaPYSE4c^2KH@?7>N cdi0`jlNklb_@_TCe;eUbfFi;g=IORH19`@NMWD<^Yj7g3PgCYjghX`KiZOcS=mo =EBjVNlOCcGUIel[_0g0nG6T]9/;ghP1CWo?cMTWSQU>O:S>[AbgGg]oa40X4W<23f fEcAlk2ga7loFEeg]9>oS`8cJ>lGThC^>GLJZ=Q@j[In9O DnlUG@bll0Zc_n[maS N]dlhoDhWcoKck[aRCAIhKn7dMVgo^o]A= F_Vc7jc[ggX6LbDH>d7nXY/MYJ4C=Yi[nmI4/acdZ3_3N;eA[R@WkF7IOeoGk5R/ :gQ@GGY@B^dYLHenI]U8OV/mgNdeMGOna^Mi8i/6niA`0?hMmFUKQPb8@/cj77ki67a_:;Mc3_3Y/_SmKe YoY9^bc[cFW//YmdPFmHjVBIRgUoalOWE7Ndk^/WGA5Wm^a4VNVDjKFfD[?j_jA8 ^d_jFSZh7UPSSkT1a6GP=L`MGCl/m_WL4ehl<`V@P361O2ZoVY5g[K[LA4[WQ[c4 F>o1IEomX7G4;2OWgcAE1R?V^I>iG4omb4MnB8lSO3__`Wk>fO^P8oALo=T9lS;R 3ElI;7dlO8fgn][GoTE:??:C]7Bbo_5jKfV?LAWVFoj7G^n_W1K_[iMU_aEGD a6?_5^WZ7OW9__2;3lVYMOm:K:ShXHj>gn?75?MmaB`:18U37mH0jEeL:i;I/`UPjH]HjUNFk aT]on>6_V2W3_>d3l]O3]XL^LCZ^h>di`n4hi9hioN;?Kb0?TKLf??YiCZn;;jiS h7@j9EfMn=cQF?P1<1NQfO=H8>hYS=F?RYf^[SBEgO2Q1;JSWo7 HjlSKTi6?Hl>[i[iB]fgERdO776MIhM2U/0kaLkVjUXk[7E7_=XC[okVKJNjh7@O JE]49:K;mm;MjG>2AcIRSEoZ99V=>@CHSo3Ilnb;]ReH`3lB;;1N3WhDgS9hFjnA @0bLf@^Mcj]O6Ri3hLo_90n>]ngTLEToBib]8`E2EVR5L<=fKeSg8/K/?Dgao/U1hdMdd?Ua?f3cSO;G7CNBEko73KUZfN<]bB@:09k4XjWn]j7[87NQK[kA0;aJV^aiQ0VgAYOHm8o8oM YHFM;<]Y?o:OWISi^ig@=FQ;9=^DeoEJmW??b]BDUBVYQeoomY_d_]ki>mcQZLL3 F_aA6U@ABKcLfOVhb=E1lRBhnm`>?Q=hoDb@G?QK5Joo=G0e2kCXRLSj4M]njKBY UCfMbd[?8bk^Nn_GL?621a:g0BO@bME?NOa]k/S[G9:C=m[;oIRC?CgeOeHhe_Fj cLn]TA7`co]P[1M[^c?e6K7JClkhddKHmml/?7g0FX_Wa8l/DgficCKSnFofT3Ho c?cmmYB]7ea2g=Z[0jFG=k`ceWUAia66OVon9cd>X]O@IMaWl[OU:`4M[mM3V9AW VJc7fggUlVGI_k/3;W@Rn0@[GiiALmoFi8e52mbJm/R/il/F;jUPlb=?O@ASH=M2 T41;M`OefCeoM_TZ8oaa?=I;@mMkIMM[gO[UB>UFDnT[gn4o=MgbXVGYkeHZQ>4n=2QG31aIK6W@2SkUkQOb/N3=jW/l]VQmk=o8H]gkEEJao?L?OQiD_Z[0=jW63cPWV] ZNO_I/=?Ma=h:ViJb>Qib1__fa]CSYIa4lOn0ii=Jho?V?Oa`]HogJ[P`f_9F;a/_W1[@;1kO1LI?DW7cKeIChIGL;1WkbRP3dk/`aH`Y]GK:hf4gHdgn/OUYWf2<7ll3O]Fa]lo[dNW80GQle/eghL=hh>gMjISc@4`2n;Ai ngbD4fOHl?Go;^El/N6a1Q;cJT ene5c9gcCl/hf?QgM;nfFj6;hM<7_@aO@oRjHm`J>]VJVmJaP=eiV`4LMLo3Nl[4kk]YSDZO[fGEnOF^]obNM?SdiN6bR3Hh?23Pkk7N0GVcJ7g4?b` OA4OcYYKell2F0^0V3IN]LFYcJc?cIUHgJkkDNOVF9S2a`J`cT?/B` mHF5]CINSfWP6LNGNWR/kc[nDVK`]lNoWO`ZlLj ^mH?=58^OihTVkZPif]F[9C=GWi=0[lVD<_E@24VEZS9EOR@`nK563KVkgeYgnE> dZS=3FTEXoEmWlnU?f;[nE9OA1b[O@bA<`0aQf[m8/FmRFUg5`O]_f3U[=M[nKPf gWLMOAMKYfSgfbSm]JjjK]NnSl?I/gcW]Uc9R2 miH]imnCjM[J=VjRMVmL=`LfDglOQ9F6;44?6]]o25Ko5T7o<_PQinb jX^ceWbfUo;>djKc>XKN`knGYT[[NnA7]gBKeTnNoM6`aAa6mjnUMchmYe7W5bVe neWYjn]j@CbC7Ef@n/G1IHM>AW9L`E2o?a3kiUX;ZGRV]RALJ2Q9EgA^VSPE5k5b :i@j1_mg:ikmVi/FH4`O>WoWb^D3A_GX5@`C?iA@/2dQBT3;Q6:Q;<<`EhnH;bMO n^=VOoRPHOani=/b;4WWF:/TTWo6E/mmk1lS_KE_hWd^oHcCkZ8l i^_h_=DWoHcTFC<77lY0n?gW>S/OWbf3fOiQ/Ln[9^kFZZ>[SbZW:ZUALM=3E>94 K[?L;YMUMg_bdVOcJlG]o7 MO6i>dio^YKTagEi;YjYdG9Kg^J;SeOmfWMDbH/G]_OHmKWM9YjO140P@BDZn>_l 6>9f?FCI7M]NajCgQfg_dE^8fmh[AO[1_/Ll?/KeednCXOj8ZN/iAl2gn_T4cbW` >BbUMC]bbL4_hO1@_HK?GoeK=Z;ECoLUYb<NAUWn@aXPmSnND7XNT co7n>]n[_gCkkK5[[1Vdi^6e3Hle4KmZcnebo3hh^_mZLbT?eSEMmB=82XE?Ea2k O/JXD@W_KeXo4kXMmS]RhXg_?b2VN:72hMCGUSelND8^QThfn/>bkCMn M=k:YJiSePA2_l2NgcAE1T>?HShON[oV?jEHnanU`l8ik13WkoBd_ji6O5g4oJ4=7a`mW]XC2]F4Kc0Rajb474 TDVM9;gm>P1mmAVk@lfJoIYH:107XN:bQkmbRYHZ; hI[5@31VWH4U4:obZ:>E9CJSG0We_noHW3Z?o:WYOej?G7S1JS?dN=OOY/cF5TYAJOFTh=NE9?I@>G5O KR:U^BHn/78`YmZC2QK:JCOgTD1H470[]nXIM<^?DQF>g5FQ<:i0oGiWK>0nED/QUcAnRgcU7P7?FWS;m`jn m@kN^MMZWYT4k0UPW13n_4keAbRFQhlhL^4QOfb:m]4oll8_Ba3[9ACK6/Pf`KM> im8MomFB[km7g]_DifCnS@iB?i3WI=eVloK8>g?U8BT;G^M_onhJ^Y[Koe1I8^04 9PlN4SMYd>2kg^]W_mKhmUZjL@^W?5OVaA4Slf6[emJ=`oO[GY_E29cNRS5 0Z0=GnVST[mg]G2eEc^:WUC88o]fDZZjAdN`iB_d2=B]DUDQCmg`[]fcS5lo/TM? 5o;=e:UL9O@JcaJA@3H4OZP^NK;BVN7lgHffDQ/f_QE?En]lf;S`gL=c@;S?Cn>i 1Ll_N8hi/>?m:lQkScUhiYTa/jf3LEmklTC2S/OiS]f[efK`5AH44>]^kF^_iSRI P_eHNaLF7F8SBD0CZ>6ZYdiDTccQjYMW:kNeco_EPM8;?W/YJclmQc7]7eki`eKh Y0EcSIi]>k>aNc4NWmi77/McRSDVScUgW@l0NFKPInM]_C`^LLo=ejVGAX^@f5C`lOO 9cf[c`OO^>^mY1g64a2c9_GiObg>[=?a6NO5>BgMKj=OK?_9hnoh^O^KeOOgBObn TSMMegA84l>V;7T_ak8mn^cdW_@OMgUIK@oO3MQelOL[`LFW;T>?ci3najkbIlgPkZ W2mO;o[Q4>;:HC`0HnWOcKflmo/iEoMP;A_Fn1nKOnjcKaJN?V0MZf?@IChFWQjjMW_7I`6>cNki3gPSl[2^kZUVokU:Z[8[CooP:C`8e:eIBnkHUKlKj ^/d;i[F6?oj@cTlXK=mL>;l=_]ng=GUS]O8E`[>3K3D9J0;`1kk@D98lLXcKC?XW Tdd>FooRB1V9i`:/Jd/K8a?amhFWI1CFm5_nkc[nWcec?LoeZSP ^iAbog9OJBYUC]JDO9alSbcANOnmmjUge[ca];FfGZnS/mKDHj_OkjaI>@[knB:1 L2N0=Cn_9nb9K[^N^S=X^S>c;PgUcheL;ACFb=Ec?JRZ^VZZSZhnhOicIo^c8@1m ?^b9KZh9o@O6H4_mWPdXOQff119DH_C=ee>gDkMW^0N@DnKBPe8:caeWjdP1K5^i 7`oKgc@KCP8T@0:I2L1N@D`?n1J5/Xg5]VFJFlRPZlS6NcK87gNoZhUjZnPIED@U ZHf53Z]:RV>fVND4?i<02H@oPE=j3Y;j`W]m@GKQ`Nk20kOlDS`fo>UJTSolOkg/ PCL4RQDXZ;ZgOTB=jm/_9W=LG7bN>71@[3OelQPB25D2R:GcgKdBOkFIU:?>2PnM aN_To3XQGg=:fEoLF1ngXO0Q]KoDKnUR5jY2:H3]NVk8d7R/[K/[Yhg77`miKVko 7L0V/6XBb3D27iKhSH_j`kWn8;?@I^JIUn;LNjj9UY0iLMMF[AGdn:KiLe^fNk29 mCMbf7A^dE;=WC2Q1=K>;idf]G:S6SE3Y/e/20WhTd0eEfee_[hDXMh:KKg5jf=o OC0VWechFf]=bOSh^EHnYdOMCoScil:j`Y30U]LGMMbmHMf;K]N]XAcXo8bijE[L Geo]gk5eEi]6395gNjQ03f?LGc?IfbAUcIidH9f6KoSgb@@J@C:JJmSa=91GZi_ ZdXLkDMkni6OfYDO/JgcdR4OdLZ0LCgk1CCck:11/@nbkEg]>m3f[ioe=EE8Kl< g[3Q>kQkAnY?TogbPL2^MJ/WHSkND`GRgb7n[NLc]T]OW5[YPnA=Bc9nakm981X8 7=A[SFVciZk=6^glcmFE0_2Y^o:@U?G4KSiI@o:2BeOgT6Sh6K:??Q9HnO:Jh:^0YJmbGFQ_950WH4NSgJE^_ai>Ak RREIAD/D;Z9P^fMLHoOQmRgKjeK96anJ1:3cGa/g[^R6>K>Kc1To_WSEnb:G6DS:JM0ok6YaW6lAVk>c^[k0^[Z6k^H;Oo1?^@NZ34^T^f?5lT@09T009 18O0lo7;JMM[6i?jgcL6V6/7@lnj>iUU8P0A8P0Ab8Y17iEGOE99Hf5m[ 2Wa9WDnMkmDccb]i=bWXmSdU[[WPjhWeL3WMMma70RA00R@@G0;8lhEG2EMYMNgf _2YlXVWWnVKWAP8oShfNEEllmdR_V97:[OlED8F/njRH^Q?2a?[U]f?Gcc4H/DmQ]cgDOFN3kb7UeY :VD`3PnK7MOH4b]iK=b[XGUS/UDT@08T@09n8h3hXi?c;5KgZEYZCJ4_MKBMA;Dh oo_ZH^=KNQmjPNo`IO1FdC>F_Choom]jI[fd`]`=aW?PGmO8eL9_ma4[8P4B804B 22l2^i<^Fo>cWUPXR8gRlLfRgPl=_HniMHl_7FafG9LO6dQAJg/kM/e1?MlNGWLN Fd/29402910<0PEEHB_Nc]ShEjdl^8Rc=c1f_1DOQGXn=?Cl_Y8gGDo7_Zb>j1a` 3kTOEMoM:o6=G@n[;l[lk>hOIn]mgoIlEBllhBVKNGiKm>feeda^GiDR014R018`9H:dEm15/BIfG[=SBQ7fF ;DTmkk^Nmk0lG45RMQHkYJ3KWhUokOm_kcb3[3SFocbkB`iRbD5TPA1I285020A2 L352@PR48Y98@X0@BHRL/`Q;C[//ba8T;ULXgE_U;`kUL]UES^Gd;iOo[_8GUkoi XcniG?8l_Kb7g]hiQce`c[;/nHeZ=G=jNSXlfILdg^cUmGnm];>Z7 5MYaOAQHW4d]baa;o27If/E_Z67SoHHQKh_S8^Qo8R028R028Y1W0VSA_ggQSiJl MnmNeomNQ9iGM?QWK^gNCmgn_^Ro_O973ljcMPlO/]nkoDlGYjW[OTG7V47l; G0>oTJAfeRDHG_A;e;aXL?A_eRehYV^[2IQD_L75V5[dGoMMa=MlgKJYjcg]X QQNmi=H^/[I]D_6fkL?[;XiFQPdI17Qjl[AD04A404A:0A 4/0_78goUlomdIcmOgWaS`jlPaEKmWlJnDMk`_SnZM_OSo>OhgNn<7O=_;FmonEO g3mWLKTF?`9/1glGYlWemXjHOaiohhOOof747ff9loMaFWmgOddJO^^L/cSo?_h6 :n=ak17h8g3^GlOSLALWmWEWonn6o]6:l_:nXCQ>5l:`GK3WODCJA404A404A:1@ 2C3_o6f;Tnim;_>;UdBO=E/O_EPd8M[KjU[l=]H^dHVf?k_g/_:]gC754j>5cEI4 7iN/S_SnnJiFiG6]o]KK95XkMhS`c]QUcCkcXfkYaCoPfQ3 Rf=Agj:1;Pif2kjg?R0NYJmX]SfJEOAna;QlCO>3;Pao>V`I1e_OS?[48MY4@0A4 @0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4 @0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4 @0A4@0A4@0A4@0A4h949o9oo7DGokho6ndOi]3EY0]Nn?c;mKkM_o9b_B_KXf2TR oNlgOO]/__9X3>T^V?jVZnOl=jHgQ^:X328P0Xf501[OV;O6G[k6c>hY:A/jomMK eGOcEMb2d_UK=gjBc^O[BE:j8_2D4VS/>][HboNDg_K6E>b^7DZS?]fjije8d_Vl XEG28R02C`>1aZjSSKelCl[_F;6RkIf;IeOL?W_jdg>kMPi_ gJ95PI9@]MgLO6?6T0>Mmm_iGYfkA6MgkASfBmGETkmEGk]LO^S0a06mJZI]>kAY 6aeN_kkk_J_UngnoLKgjiZVCllL?6ej7C^Ofcd@K?_^lnODCafHCmjlgZfoO^gYU CmVf;@?kmNQI9oki?K]7CYhai:B7g:;;lJC=f[e[e3;nY?cc/PTk]fdO< QOmLFG7HbXH]NMc@HFknf8o;=DWclgkL`KgkA9Caen^EIgnkDEE9o=631U]f3mgk mkm_makAQKfkAmOLojZ:Z^?OciXdJWAR6/eR?V/nn[STQg>W5i7_[mN_GJ`jMWCV Fi=NZa?O;fnMTg60LO??nO?Y[``OhCS`C9;?YOekabHmBecoK9N^kQWn]J[be6oE EAGE9hk=NOfU/I6OWYl?cc3?ehlGcR`UKNk93nM?OlimX8kQ]_7c;i[cC;kl`]1X k^]CXa]U9nJB3llMo3QgmLRQ:N5emY^dNBI:fkJe8>fO08698dNUL]ffoGcg>_oC@^WGMJ;oSl]hQ CO[^j3oQW:L_@Se3ON[H[Yg;7akX`>HUbeZRcc2R;OmPiYoZU8GlkeELfGGcE=T2 N947h`JK4jJ_A1cbZcajN1YY7_efHbnhW=nmJ`CQRCXOQo^IVFk268fUkd4nYkM_ 6``c`WYg[EOG:?;_?mY8OJf^Y4=j8A_j@=Ko@1ngOkVR3OOJ/HcIL7eBNL>jFIbd >QoGVfN7Ihgn1oU@IoSoG5Un/5g[fTdccbUm53PBSg8h9_7e5oO^6D>hg@_;^ocP P@UXM=WF;@?^ej>Dii`lhW/deN;IWSYHnSbcIgI/7k9UjK9FnmN/jD@L[^4lI@Vg 5`LokoX1G1>NdnlWAh0a`LJO]>Eg;YiKfB:n U[4>VT7lM>>f<0enVhJR2FRAKF>737EUYAhgbTk>lfedf338VkKMh[=W;=OUV@in T3_VF_XNY1F>mbaok219OAP7LBkD@ZNWLKPOggBNn:5^OC;k;EMG dago^ZASoohc[_7S3>gGgk6Q[ZfJYd`BdCLOOe;2Lh6Fn_7mO/bXi`JUCUUi`kYI Q;@j7nO1_@W]A_2SkZ/FO_3P9/N9EA`j>8U`k32F=__YhlHk9TVlNWJZmERW;__f RlD]R1ofLIc>anGRfOCkYGKQ[8V_^[cXMeVHkNTOTbKmCFf=Q`3?BRO]O?an7=mF=I^YAeMVdFKUZCM]<59Hih`7O_=V8XaD:e6n?i9nQRdPHb[ d4V>5ljHJIOFJfljVmAfDcoBA7?2SK4eM@W3doeN?@k W7dk7SFeVGRDlUoCKkSmSnJAbHL>PG7io8Ykc F<BiG`7^;gVLfKWm1J/COC;2/:=HV;lg SWhmo??QLO/fKN[DPcRVlmRl`V_hcK>=C@LkV=oGY7o8oFNn:>TjQNFN07H^n^CQ 7odnfmIm/ZP46iome[h02NA0Ao=:;@OU/gHnjEVWcJ;]3Ij?cc:7hJMSaoO^baWiW f]_mCcNWK??JUQOSN/[9g4MB^ZK1oS?c>3ZoK=kl>]e2NbiYajdKiWXLiS?l9OPgiAk>=`W_^J^/oaTcJF?ocQJ4NkUkZYC?lbMf`fIn8TOkCCe/;SgD3?;WcdoKS/Lloh;CXGAc/i=O 79>ecUM9;^@ i@LSk4=nWhha9GjOf0Vd?GT2n=;RFj;klNC_aA<_@@id=:meb47i[9g?QLhcc/;n RgmmTSnafN=m?CDnf83aYjIo4;NAMeS_TVdo>i>nIJ_cn7CCWXNfNLY[L`bnIQ2N :GoVh=4=_ngW6]]8Ro>QMRNEne5ddo89mgKo/ag?ojGld^H`;GjWa_=WCWeXildo H]?R9HV;UgQV`_jR/b<4^VcY/@len576lcJGKWdH?ggFAHAiL=id7WokC1_fSZG7`;[5gK9Cli:ME6Cb07>Y[G>^JPO=K>id;W /LOC=^8S7MJK^EoV;6Wk@Ye7coVgaY`_jeg@0m;9m]mN9Ye=dT/[Hm9h7WmmO>/] S[ngoTXf>_n`nOTS6cKdPnKGeNKWFLTTjKe_iP;]ccH/fj: ?<9kaQ`khJ5?7F/`H4SlLbHoj7OB9Pf4A21ATHP1cZJea[UX7cF cRN=]BPkkF3HeUVMT_C4eSbQmKb[Q_EhLA^g79nl>1fg]]POce/KS3n?NhKVIfG ]HaFI_I9iLj7gIilh8d??oN@LCbnQm@gk6]QVn2M>>PPllkgeiegI4dkHN6j@NYQ jmC`AJMOMg3]fZj<_LV?/X02nEnMd ?Vj7T^HXhDlKQChWg@^WZ`W[lFSOOSaoIS7S6?@McF2=7Wd9K?>VlhBQ;OaIV9o? Vn=NLOWccS76Q0oKdYF7jia6agTWYA6Fbn;`7SGj7fPmHe76n<`eYi/kcYBoYHU? ?oWa?Sch<5o1^`Q/[SSd;dlZ]m?in;j/GoAI[Cj1iE6OLUQLoohcUlck2KTOf6G@ L_nmHGH=NnIJ/7^Slm@3AVQf9Sod[colZ1RK?kH;bXQMPc5mDWWCb gXkkAAfhOoQLYD/?Nco[;ERS@3fX3cka?6e9NFBSlfeJ]WC_FZ:oa?^P]8V028R0 21@^0LJNj4Zjml`F;YVW]nJlg`NK@;ZeOTm_cEAb4A014A21M0C2=O[4ZgUGH;cF 8?ICc7J=@KYl5?kT2CSOPkS_mRQ[A9mljED24A014A21Ab70VT?/foP]h?N6WIci HnK1oONZ?4[J^^K94l1_ToL2^nm3a6=io0:NO:UD0Q4@0A4@PHHR`9`jkhYS3Qam I`c?nh2Ce^TgE9VDCnh8V1l0oZ?hm8GOf/UMCTY914A014A014A014A014A014A0 14A014A014A014A014A014A014A014A014A014A014A014A014A014A014A014A0 14A014A014A014A014A014A014A014A014A014A014A014A014A014A014A014A0 14A014CPJBG`3gnlmHoobDmgoeMSoJ=lnFK[_QTJOd/ngoTDL_Ylchc_VREmViO_ e?ihhLaB_Ve:W?2k]OGUi[iS7emOgoS4Bo[nNSKG:jh8R808=7H2j7]S;V=3U2mG >Ro=B?lTlCej_TTKjScO]H4Kkl?W^kElngc4P87Y4lY`a^UlW4N6:7E>jIkE@J80 4A219TJP8GCdLI0eA?VTlhmcQnYgKLMfkJ8ngKY7AD7dTe/fmdOo>OnhVgCnL@WZ NQ4@PJI8X25dm76h=DCiY?>?LhLNkm[:XhNWX_>?Ud[=eM;iG51D6R8P0Tf=@4?X j><`bfGiU/bMEoCSnC>;Okma_OYNaIEMnkkn^V?[5RfR99dWO?D77aJS@cmEG=kQ Oemei<3WJUG9OJLc]SfSEmR1oCo/d1KioCMWA7bcnnkU2n^IRoken[F;edlLVog^ e6TFYEikbfon6m>SBJ=6AeG7S/kl[KZZP^noHQnWk6a3n_J;;^gKnm:_EIFW>S3A;mOFIL]KFagmS=;YO4Ua LLBgLV?^JgnoNOgVgMPGhk_5Be/fRl?9=kk7fMd0?ekNoU5hJVhZ7]=dnE;D2;VH/n]6iM]io:;fnUG=mn /KQ6W5>adaoHmko?kMXiW;;@MmRaHTEKnPbVFi@OKKmbH?mhcYDO?321LcnL?oei V3;e^gNeO?oYkM/6`fGgZUG?>4OohNS63Cfi1mDWS/faNXAJWdkW :AoGF=n5Ih7W`<:UldILNa4@PJI885LjVRlf^BSOj463gKR=M]kG1/IcYQ^QcQ<_ e2[Zf>FI3Q7m0_c3`cZS9ITdXeOW;^4UDG5ADGCeb:4Yj6GWm/oD>IlDH>=Y[QTk i44oP[SdBbP7hemlg?`=[D@gYhlKk`M7gDXke_Y]?aK>V>VhHMN`73OM? AFPaNJaJn46]Jd:M]h_BJC?nNXbmOkeNNKigenhFgNd?O?==InY8?lToTICFg=NW ^S[@1n9nfhJMP_4mILedcbbnmR8P0R;`]1;8QHkV/nji:=nA3A]jd9iSi`jgLD>7 >Ad8MCj=@A3DCc `W>>5_M9InR1m^nAoO_:V?7liacdjMGAiWMVio`CnG[Lj_nfAA2OL< nkZO3/MX=6?lgfiDEF:C]be9ib/>7ia<>[iMaN9K?AkUWUTJfX^028Q0HbN@2ag= IaecDCkFK=7FXd596n?R99dOlo`;4GZ5KIfa9AZInX_C2nOY>IM9`0oceE_EM_fbDedo;lTmJidj1^1ImmJo9E^NI4h09mDWJC=<7?O^PZf=Q OWaGWi_EMnZ0RR?QZd1IY[?N^NRO;6mOPfJdK`TFDJI V`ieWS4fN/LLmoWM^dH`KkgalboL_;_YBCQ6c:@If>a=Lm0EO0BHTfM>fSB@hoZ` M3XKebNCOB8Y;MJJL9=lC0JThg>kencYQ?G96Vc_B/VBI_3_?VMBFM]7R8Y[BBM 7mIoP==UO=ZCa[``N18jKn=io?VC=]=dO21]/c3kcMkjETUeA2Ao?991OU>kanOGLd5Wd<=oc867n6F/KJ gcd^@nRkCUc[=bAYLe9J^MCi>Jm=M_EOoi[?n^BSORh>OMndi o_I]FkE:5ALkO_G9hflWjCacdVQ9YoJeYkWA7N8WjCcfhK2oH9VaMXe[YXimfH;L O_:;HeRoMhMcCd;WlC6P?XbOoH:E]VdK>C]8@QnX8GBN/CIn4jcmajo0gf8ob8jD >O@cB1[?_c?UMENod=nN]A@fWj?a_4mGab8P0Tf=@2id=9mkaccjHc_VJmgjjiSG@k]mVGK]Pa4[eU7SVHc9[Gi Hoc5l>G3C/0jO=JKGmjoKa`f07MM[5]IjG`L?fT>85^k?OL>oc_:cAY3bXDO?gdF K1>/<`ok;TkWdnA?NVQ`Z9gIc/nCcQM_cdf]WfO=Q;mnWWVEl1dnBCY?>WJod7G^ >oNONgincniABFGU6VdR808Rd5@85=;gj[1=eg`G;ODn_59/`>imN?4kj/9kRXkN >W?Z@kBMMldaiQg@jmVJMn8Tj7b7=VdS=1bo_Z@a>WI`eZPaIlbj<=iSaeYfYlea N_EMkiIY?9dY;CLO7NN3[ieOEo@Bo`7dW7OiX8N/Il?NTL@VDojTBilQe_VYOQkX ?7fJ93ll`_fho_74TJ>bNQmNDUZ/9eSgjJ:Jmn75oBcZ^FWaTQJ/bD/ZZinoSTE0 14A014A014A014A014A014A014A014A014A014A014A014A014A014A014A014A0 14A014A014A014A014A014A014A014A014A014A014A014A014A014A014A014A0 14A014A014A014A014A014A014A014A014A014A014A014A014A014A014A014A0 14A014A014A014CPJBE@51E5cdO36oDOIM@V0R8P0R8P0R:@?@4doWmenJnnakWVJodLi7^de36G=@cWfUTN_kbVJoB5P4AN7@2d_Vjk1ZccVoh k??VO2lme7VnJdmho=gheM^FOmV6N:n=O]5E;^WklGE[oGPQCT?So1l_UOaNCAVC _TfOgebKE^[YW[nVED_EAPBJ5P7YO=gkfIQe_Ug[eU6OK]fSiRDU]@[ngN:U;M7i T@>OZaG>SejM^kRo>RMb6?0dj7cG3ZF>G@j[GG19BNL;kYJ[`Tf0P7BnkTe/c3YO ]k@e8L`aX??MBc^URi;Gl:M1io<:X40BUlhGb8eF=I/DPD;CnA431TIWMV`OLZoR bZkOKejoNNmZnOkb@`LV_SGY]MAmCJOc_K]fSk29gcaE]^2GJeN?LSdflD?[eWG[ lTb7e?Gn`H;YKdKE9hk=LO5_G:onZOcbE_:KlmYT?eXdj=WNdJU]F`NA7^TBomKY /XEkEZgZh7/QQ_>SYaK?;egfbZ:AI LG6]l]V?]bM?RBSGkcNZZWj^[3QlH_=gOC^gObK:E^O73a/N7Ejo__^?5lh/oOGj ]H^Tml?idinS8dUi]f[N?5Zoj;=Va27nKmGG;]nmO67]jNgK1PoYfln:Ug7_bQSh 48`K>/ca8mo1_O]4UoO_6oO[mLZc_mfXZRCnj463jjCYgh?I[dj:KYBMW4OlGjZ^ W^@NYW/Ff[IZ5FeM][`eS:U_WCITdJWBM?>bncWmSNSAUc4^>;o7YbmF9 70BD]VdKkOcZZgIg;YiKnE]eE@GehIRnHWE>aoKXckd=Ib0>f?:?3nPm8aKD3 GnNOM=gkM^lA7O]^DfonCO5_i^O:lX=UfkH NXKFKejb[2EJLn_Z>BC^OGO?Aa2GYhK]O>hG]G[bkM/F95FgB1]_ONeB]k d3]ofk9dFB_d5cgJmoGG7LW_j;LKNj5EIgI^Ol7RX_6dnkC9]5?48gki`@oWBD@KB;/mYUC7e<>O>ohcEo[5RgLMNUdW[9@_[nDGmYlI<>67VQ3eO7_ Ia4FliSZ;_Kn]f;nndFL@ll>[5gK1Lf27NWO?W_jdoYXT2E7gNk6_X5UFkL3JKL];OPQGL5koc[RFKLIoD5c6]^kA_kd]XMLGQPi>i [o@OVUPoP[i;BM1?`/h29aPAKmO:UNgY7m;O9>bS?lgb /hRLc/OQU8]Wm^;N?F?PCIe[A@an<9o3ldJJJ3EePAO?6oO]mIO6YZj`^Uli/7ll caUilNbi^]n/_TgMaSbONTcMMHfUk_Am^3LaVm]WMndHiYj7n5Vbo]?cOOZVjZT3 4BQd0XFRloejm4CSKm?FLAa^oQP/WLjShf7kCCXCAhj:d8@3ggccH;0DQiR7UlU^WjCckkli`heSJB?3lUTNBmmm;fE: P8Vc7FRLbo?37UGjdKkmHg89dO?_:Lg4oR?C9ahm[ab4S 2`ogVGBN?1Tknm/W/mmbnNiO/jKFI8SS4iN7/FooW[glBb9dV;@HjoXKNO>Gmh^fi]J9? 7cONYH=OYgnR/ohV?I/fKci :Ne:MmoCjGbjn8CoL>kd8/IAOQad?PiK7nZX7hMSdgWj2`oKC8GXaPfYcYSY?6?oK=?chfOB nF_7S/c`hg:<;/;XiZVCloecYWGdBOa`SYV?@6LIAm/iK2j46FU2=?BV^bi>/no;i2hZB nRIFB6aJW4oZce/LkDFPT0PDR/kCE_=__cicMiUdo[eYKdCHMYToScGP3^fgoC4O h3lkf:;9kiiDao6UFQWdYH;WLNfBkVHcbBm l8oiInc9c8=K6MbH?Kh67D_Jc2JMM2hYS;V8]ImlF/9mHEadiT7 /G>;gY[S`[2SQjciSAf8^_>lf3FVll`EFEQmm_CK:3?m;QQRTaWJ[goRYEIg_doU AkAjnWeS2g^BMLL7PVN1NHlTWYOfkag;nIV_e7Z4o:[YF0@:RT2Qj3aS5_k]ngK; M3LjWLkS4dMkS0KROlIlZKDcjGB>M]KVc[VFlN65_K]7X`OnaWXh=dLLfa`Y9g5S OjdEn;giVkFcSc>NIhj2m5dni9GV3jf`_>WK42oM6:Wji?6g>FoakAQV` Pm1N/bk@F1;^nd^@5_[5W3Jn1:jlLAcj8FQSONhYJFCBNO8VC[PUcGVT^`MLVoC/ d9nY3fmOKdgWfFNkLGoYIf3G=UKdBnVo`MhfdoUdHgo[Wn3oJ=LdQ[YG73XhZChl `gTHZh?f8U1X10Y5iamg?jfNn`XVie0OCU<:/9n@IdcjKaMa?`3Jl2`ne]H Y_fCdWWFYe6WM??cBFG>ULiKfSbSU07kRHFIc]=7]C1oKkcZcmM>HYmn@2n:F=O=?2S] SZocn=jm>?Qi?jXkI[a^MWcc5FJ^>Gbo7I5G;Oc0]FO<3eQ2^M9ia/>DnObNgJ>B O?7@OklO@Q]^o3Sf=mHIQ_GgchO7_3^0n66OROj2cGoh>Xm_OY:o0_IYb/@k4<8l TWjKK_WWC>^BnRo4bhGMWWC`lh_;NPO^BA^nQWGlkAmQ?8oo?n_W`fghoKh6ja?] W=FMicILVhS]RG/DmP7B?GnTVJCcQ>NjkZaEHGd[oRGh]RA]e4fK28Q03H52dGUZ baYUfU[FQmWjnH=[egKU_CNa[Tb]8I:n_K8eDhb5dBSV@=41i]7=ClcB@3]Y9k7? hcO4nUkFg;>fVWKeo>iM8b`^F/]LO>O<6:=_9FA_E/o7lNWSHDKMJ;?`S[hK=K?S1RK>lHa =eoWWNK4nC:WCcfICnJm1cKoG1lK3NEoTSY?WlCVMV06Ie_ccO?4OO0ebnKW/kGK `h:n3m[:l`T[iSF`NO3/nkiYY_>l0`;K3/lOlEU[Cecl@]>]Wjo_N1k^nJPkLeWV _lWcR^l:eonAMj=^VaD]JHfd1H`6d S3J1mhClJL;4e_;jlObIaG7KMIKe_o@MJ;_2]NZIM9klTmikjlJTlOZnE0Fm 0mjK@YlRaB/?iN5XV7]?dW]fc^SflhNX;FHHmU DPG=lo]Ma4EoN8L?HgLdROLBX4_f[Ik4C8;0Y38j[H_clgg=o<^Bf:Fk1ebGk]WQ 77hAc5W@[jA?@keIM`UonZ2nCNMAkOKH[NR3hXo2l`H[nV7dJo7kl3OCNN[3_`_d 4^fTchV=:/U?_c7EWFNMOgofki6bhhO0^ZFX70OZHhK^lA4H4A404A:3Y4Y3>=mekjmLW5mdnLn[SlT<79WIZgci3k<8h]F?5R[Ig;YiMLO_/jDo?kMXi_7F;5XEA lCBeW?gZY>S7lfLFongFSIn6m^^O9UIQ14lIle9din:iUGnnM7keVXln;RVWJXCBZ?7YhF]an;8O9/WWcR`ZWm/TeKEIL7=dX >cT?SH79Q/lnKihLDj7i8]2Zn@?TBmmm[nSPf[EMliGGdi;^a96SDTGM]_c;=U^G ;FnM2RS0PkkMNdBm^gIgkENQjocMbaOFm^SH:BZ9fbkjPOejm2c09n91ULL>6AXm gjM_99f_HL8h2Ai/]:gd1`_m6H55RfK=f4EdNVjDWIPkH/10me_oJgP2S4l>O?== ihK?^O7V>6?lQ>STU/gm6fl96jiTekho<[f@MGkDLh>RlX<79QQao[eXC1m5m7^T loIDe=iOf;]km8@A8f/75_0_m?kFjK:5d_V6O`Pf;eWFlZObbe_i]mZnCI^6;d0S c_7B_[d_cGemJR<^HLmnc DnOX;eL^K_9]Y/Ta2b@c]MmOZCcMIVPkHaK/@MZNd00 GbOl5o[gk?DPD4L=BZ1kZNa_1Wc1m3NSjQ?7i^13XZf6@:7[_;?KakjZmSc8KUm3 @SY_CdC=_[RX:<:WNOWl1@G_PeNKCg00_Y5`fAnN?Coi8MGLo>aCf]no/4oQ1>K _n^kNmFZIaj45?IAQcI]8e^ce;bT9:XjMWCVjbn=;F`X3Eck/k]f3>?O:6gFaKek aWA^[lLcmY5MliObBi]_WCWe8Gl7eZk]d/2gYE5UQngaYh[;>gjoLKgjg]GboKh_ FZ0Ma[okOJ=WemnHFQ^4V`2ZH`K>Rb2bN=n:i?g9i;>o3NV ?cJEM6GR?DGTlMPI=602akkKe9/blji=KB8P0R8P0_TUP9Ka3PoYo0?>CU=S9^/G OEKchL`7Yk8jLSXOYi=_WOo[[NZkFAD/ci4OeWOlO]>gco;D_0R8P0S4 1:CcMAl3g/?IYe_gZ5g[eWE?IQ7B43[O]D>Y:f/FaLYke8LmDagK]G=Ue/_Ocn0`dQWIHF3]nJhG]IO>^In7acUVn]QF>_;/mdL>oRi_^IjA8S7NIG `nm8SQchW2^Gofkc@n_FMD_j?X:KEhjeX2CnmP]U^7?ag<[OKejoRDfGO0UO=Vmn 4NGh]J[be6lgZR[iK_N5_K]7CaPa/UKAN=OnbBfKno>>nMnZZb[hhcZn`E@[h_dO =So<]eJ8ll>idh_Pb;LaRI9^;WaX_ok^fo:lTo^GZZ/WNKLoNNkljZ]fKEZf[9?E XnQlJM^fdM5_=oKj^K;l86GRONSHoM>E:FUngXlkH/30j?;nONV Tg^>H_K4hG/F`c=lUnRc>Nm4?6^oGZllCoUhYonA3A]j?=^UZj/omhQWPkcLW^?k _`f@lDnbflmiKK;kYXVUck_?nFI0dSLRbN_^UH/K/Km`3oSn1;Pib=dT^n:W=ZfMA3G G=ZoMba]hYD3nlN7lo=>an=fNT0_9kVeT^_D_WdDYg?WA]W9NOh9_UE2>1[;Mdbf ;OnbcKUM>hLCM^oZUCgHUog=M?kB_[d_dBm0fkH^FmijaObJKe>B1_E1PoN/F]EQ bm9U[M07_PfgHlF:]WiJMbjNGO7SnC>;SfoNe8Mh1kkiYS=QG4nH7iMSValVKoX@ m16hk[_5BieHnc[YGg]`kMZ^U?GdmVf3dAFn?fHjBoh]VmFNc/mFiiTW@7>i7jC; OJ:/g3_j=hCC9o;;I1cm<2/omi5kC9l>IZC5oF>Sch:^`h=[`^n/d>lR 7IRR[c3VO_4loG;]jW7c@J1_AWn9/Y8OiNG?mgD`oZ7>L`m8onO:R/>T_og;5Fg@ NL98^jVd NWO]S/KOIVa[>V8Wa`lK7Z4UJ;j5/CMmI6cL]UD[oiCkGREiQ7d9RaC6Cn91G3M^ S==QC>]_CVORNZ<7XMH@cg@be=A^YAgmI5;7m77P29]DH7b@[LhOG[nn>oFV3n6W PbK3Ug=QVC;Y??4on]NgokgVRTSNO_?U:G3?TWW/Bg14>gVVjGnAWnLcOfmJFnTR/iHW_KCK=:Y4oL?/766KC9fD=Y9f_X` ?^=FaW^nSa[SKM98mogXlk]gSD2Wo?6^jE?Hmb0o_T]=VAVWQOUWla]m99eeWbjZ =M0fWETbMejR3:CCnDaiHfNVWnG7bDKWjJMQ2b4MnbjgWiJE>A^MCcOgl^JhEa`G a/]n7WK;OTGjmS4A014FR/11QGVVdJVbiJU_Z;fdYog8>FL@kOZ:CjV7j4HboV0/:fgW@C g`0o[NZCamlV;[Y16aon?aMoSi^dh>:W HLL^[OQl=SXOe]_B`]i>GVMfK1lBgR]nUfgMII6YSeY`3el Y^`JhnoKD^RCL4fBIW>MJK[O1b:<;AMkd=o0[ fkAhRN?1o3WG`LGR/cM>?CXV_jLUWLiSUb0mK23h4c1oCQWiHka;>Oal/]5im8Rd dEho3C^No>8HMmjo]ia;hYR^o9JFVan8llYd_cQWlm]V4`[kMiIN^:NQlb]k8l[0`FCg/A404AJ6`4d37JD?=kl/]WlnZn5ScZN9iddFnd 5BeU;1_kFag5AbXdM^c;3hZiJ n44aHJI95/kNiWcCjK`oW_B_Bm99eR^@3ki]HOfi5[]:Z3WIj7`na_?nLn3GSoUo k]OD/Bok`FV?6o=h?VA^UI3>6`W]AD04WSH2i@L?C4RWZFI[mm]g6h^U/`OK>2YY k;GfTdnM;N3SFK5>VM??cHGanIj?co_Gd?LS;O?6`COALjcgX_d_;m3jeLeYl8=BLKWGoHo;c==o_g=Qg7Y7j:UIGm[8V_^[ZTViog hmXam_7jc/oS3l4mNFGh2;^le]k/:GhobnKWlFT<=mK/H@m:VYl?VM^edWTSXKd8 R<3CA/1d;Ab;HMN=OMg^d;j6F^3FVJn5XGiV?aUnN]0Og [[=<;N[K_HOc1lO6S/mD^>6?kM_/>Im9io6GIW`KK]PEK6fnf@iMWX?7EeoK@hWEd[EmH/O[/?P?G/Sn9_7ch7aYncoM]9dg^[nlSca`ALJUodYJTlcI?56_iNSl][[Le QKkO2N6bfd=1V`R8@5`OGO[inU_KcWb5nF;i=PGF49Y?77dAKmgnKN>A2ifWk?AgH8Do6]`IHc>?`C`2Jm4B MCj^Am8LRlo2SUVKaYRE?:Z>7Ig9FSKbH>h4SS09kfdBahN=ilV?ihSe5:B9WbAl FDN9?hJE`ON3@OhMNcGXjO[7m8WhcW0Ah@oZfNBcW>> NdOj_2>8m67/e/o7HMBCoXVoBNMm6SXF0A5XBP@HJk662ggSgGIX`_Aahf_FOLM] H]9L=N=KgXU3O?jHIfJ/f9aj9n>]V>ikWF_@m_hhJNm1nHlkme i]B7J6RjK=cn`_h@bA]f4e^U9fHBeb^8Ckg =oBCWo_je8Rb^oDPmilOBblCo`O_`k]f4LJDSG5lJ43D:IFiTKf9Z2S20_AVU/M6Eb82m6K65dIDAUHfmTIB0n?PYcM79UHFd:N07/ W@NL5DFfon_N2L2@HLR3I2A7@G:@899ccT5b5RA94/TB9JMQ218URXX>82Z88648 TXN`^kjgKmnVYo]fWn^oo_E[J;`<c9U5bH8_6CM?7aHVmZaM=Ka@gWaYDaSNU@A8P0A8P0A8 `:/4E/nJDK56^O9N_@Lc9`4B804B804BB7d2nG;T5?_F[iV0OSdg4R014R014R21 `240gKiSnM;>CJ[G29a:/BHT@08T@08T@0;2jG283G?We1cDXB=]l?PnT009T009 T4204GSokHT_cAPf;4^0EH_E8@4B804B886P9e2iI2WalHi]ngN^G=icihYUgGN/ F=JeG^DZ@Ln504R014R014R014R014R014R014R014R014R014R014R014R014R0 14R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R0 14R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R0 14R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R0 14R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R0 14R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R0 14R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R0 14R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R0 14R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R0 14R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R0 14R014R014R014R014R014R014R014R014R014R014R014R014R014R014R014R0 1?b7P48/90@ ojTHBdX2940294020Dh0>Qaj^gFmnV94efk>>J=6iE`kNeJE3cmHg^_@e/d[?m^c lnb9oG/N7MokhNE?MnlhmLV7>ckkN>Nf@dNganc4inWXOoM_dljaO>ZD4Qm]G3omRgfkKd9gkejcL]26^G=ZcQ/k=/nHW[e2 >kcFB5@_DeHDR<`U@Ye>FhE5gkm2/N:RANdjHVRWc/kI8dITFcEcAXDMbiMf?Q`C _C5fgnjkAkI5AfnLnek]/KejQkiJ]Qae_bg2C4`294029402`QQ3Kej[]UPfIG9a EifnKNWkKMhI2V?kEEl^;DKgj1VbO/jke@o7K5WgA?M_SH7^ 7mBQXb=kYTbYGRkNT0A8P0A8P0AlW@3dhl1f7AcKUbgYl73L^J ESYMUiNYnlOdj1FbOMWBSTo:_WkVe3L7Aa@_4:FK3M>A00V@00V@@<0AP1j4?_aX doZId8o@Thc41` 8`4B804B88709I0n;4`H5dbSHfeL/joijSIZjU`I<>_P7[7QWJZUPIQ0`3i;oATTU_5ehhhJd2RGglYeH/:@Wh5`7hVF?N7N?bV7__ gK9e`8k;YoC9e2QGGT1FZCkn=MS`Ld`oYDAiOJ0C@3onH?BV9HQmaHd4B21e2J3o SWhZm3]/j/XG;IJj1O3S^l7f47?g6=>7?b7mlochHK;XGRF0F5Icahc9kMFK<7Fn43mn9lBe 7D8LOdN8SCf5V?Zj4=g:2VO]8T;TBBlBN]Zf;41W5PXPmAUGGICTY <54nQeQHnfb6d=9iaJBjAl9cEZ/ZFSBNiZS@hDfANG@WDFg; IiW5gQ7RiOQOA5k3fk/OdlE0aV@`8nA`2a;a7Of^L:aP:A@80AP>fhRP7JmT/`JGdlF`Oji=3EU PI^_b4PSCDFIaDRSm_MEfU^_b5ageGUlhY[:UkN?UMeKWI:=Zod/RjFCdQ6Z?QGn EnK9NFBS@c@^99:[YSD1G9ihZX[5B`PEfgO`9k]fO0hKHfhT4>`4SAZoL9h7B20H 2<2WC^^SfP71`8=e905?473]`f>^^9A3fK^Y[KZcW[4_kJQXk;>8K6X6oDUO4gX/ >Mf8LnPCMhZEgCRMRXGicXUjo>LUbLEggFTF7_ RBAeFWeIm;WV29O[e=j_:b77QRlAeIC^`:<=nLJZ@M1hYm<3imNRk8f:g7;Vn [MFAO;1561OnnNkMUm273g4heAcc4e/aWKkj2gYGOGieG=ckaajd5RFK^kX J[a?fDFT/@lC_mTYVKj9TB:?Ckec;0`9n0/1[4]M/^1;PW[NGihHbiV@0;@hiYYO 3J/_;[kmmbG7=galO7N5/n4C`YN97Z4Sa=k86j:TXj`aYjb]Wa[:4U>Gbd6IY7Bn nSnbi1N3I;]heJOG_UiGgoUA^Y]ZKZ;5IMWJZLHcg[P^Fj3?Wa8Nd>o@lbNGOOWm WDJbA6=7Fk4[/X;OO_o/fC<;hSiod4BFLE_o:5fnOX[/UdO:/?:ob;aWNl/FK^OUAc[LCQg_ ]Y1E6mnESIG]XNSfVN`IWd;NElO:fK6KSmj8EgelWG:<2E_Pn^ROnfkfoIlkb1lT h2<44=?NF;oVJIakaUoEjC4c_gH4=UAcDEW:R9Ua>7Q/V^Zm]oEn<6S 5[9JO1Oia^gn/^neTG;RUKOo]NcBe;n__CS]ca^oWo6OM?Vbm=oN_jbi?o lL7EW[n`N6gghi_GQLUaRief?oE15iRPYbXXfc]jR]K>G`5Poi_naKLefS_emCokA SW_L6ENKYJ@8H_dDL6ORl `KM=fGWUQ9j;gG[Xi/dgiF1GGF3W>f;JE?jWO2VGU:6[gi7mD]9F/;b_V^mng5hf _35DS[`hoKnR<@JQK=9n>;5ggb?dJC66oLg2bbO>cgjd1nfF^?5b;_Zkd>W6Agg7 /KR9_bj6gSlkomYWGbkiiUc/^Tn^WmRmkd5/c<7K9iNM^_SMNoL>G1d]YlEgTjd` ?ViI[QB7 ==3kf9^aPf27PKP7BFfVO4gZ?8nCP3L8@8o_GKmVO5Q8B:;IhcSFb4@k8=44:Ca8 ?Im2P;cLh`APLhDn>cK4Jl5f_<1?cVNbGnU;m7NQgaidU/fN7KNS[e@Nj8MRo;W_ 0MWGB[NhL`od/M5GQNkjl_dcgikHlM7Mf=G7[ijMOnlYKP?=9iXeciL^CTo;`g`39?]`WDMS@A mf[;PXMb?G@PM/g9P]:9o[^Q8iAnoVi>o7kdHann8B/WYcNB>XLn_9Yoco?b[c;K mHhZGYf;STSYMnQAeElOSKifk?H3Mm1WSg];cXM>Qai;JOif[gnPa]?A5X;^=l^4 =POJ6HoKZKYkd;k`_YZ[Ka@_6fIFmX]^mngEllGlA>c:f;Q7cFEE^oDedelY9c>N :bW3dNm76o6n6P7kko?L6?g39[8La/V=LGRUfj5?XN^meGMna/>=mXTiaW1QiQmf aVkln0Klff07l;R=[9>BO5f_QJe3]QCfkNF/[Y[gYkj_RW;ElHkEmQA @XBXOn4RWAY5b^nEmi^ITP36kK4^I[;SmVYL7nU8R`@2T@1Re/26j^cRd1mMKGK_E5aS[368V3j8f`>mchd4?4TPXAfNlnW2dK0GNKE/>K5]jO]]_6V7ilVj<2lB d25PaT798G8IbA4[?EVI[?[al9Tco>KL/>/n=D2fSE1fhCf?b=hYeF5XKo``A0k7 f3Oj`k29BlWhL[;eMZ>okVinJ9o0?_3;9Emo1k/7c3Fh>boRFXJ?Ql[>H3mP[aXo LF>>h=YX>@GUlIJ^Mbf[nKfRheGS_Lc[R3;fIQ`Vb6Bf0@`ToWU70SFei20Si706^NXOl>_cR/TE;OdEc0K/ZD/Bo/UHho>ooj 9fLFG?T2>_J5laJjL=Xb>BQ3U:ef>?gcS> S@ClUH0IglH/?nKP4l[E97n[nGC4C<=h/^gaL:F3VmjB[nMEk[n:k14c/7haCOcoaa^o9M_8EaRaC585;nOKGn9/^En7lb2mH2 /_/lh/K9>O2kliFaTf`RQo5:HmeRK5RcV1/9T00912>1IIV?66^Gm@TK9a3777I? ^S8N?^:Wgoof6k/fMoNKbHXEoToVPeng^ciN:2=/i4l]nNXlo=[_mTWUf3UFkHmD ?8lh?;1oQ8lon]K^S:/HcebeVKYo8W/QW[0k/@KAeX2?8>`NMMlQKjGk9=nO7;3M FiOUY>6k=b;lGH4a06hT@08T42`4c?Rdao;nd@6O9/BgPL`ehi]HbMm[Xn@Tn5KI UNW`Th]D0nK_FlFGSZ9ZKd26;9`?Klb]^o;76kgfYe7cloOk^Ok0dk1Hbg^3^FSgEmdJnO_5;5k[G1 0ll4Hcb8oF_W^]A:2ieOaoW4?oW=4b>n?Nc^ T_SPVR34aB[k4@7He/7_oK?lOgM0gYdY:T?=^:BjLQIfeAPO_]MKM]6m1^W>mi3= dR/M_fJJcCkRDaeSm^4aAPmo>C_g3/JdR?V367/YjM_od5kFcJYdoLS=m]YU/0^< EOif:HUgkCoj:fIA?D5Pbl;iSO39UCFKTIgiFfO_RO/c 3a;`=07<^F>^<[b8iFhWSg>mI?=dB/M_6bmkfKW>B9^P3anX =_Bf^FSf/E?J]knUHQ_2NJc/SZb 2m>>cm=oRlb?14R01;a10;55_Rd^`aI7O:A]HoN2o5Ach8R30gl^>gkFUm@j:]3a ^lJZ=E9]bVkHl3mI0ogDAOKQIA6koCZRcQ@9j:TljB:hK`ifcLR[Yc<=2Y/[SOn79TW2I00 2JBH@7iAdjZ9/VbCk9bMS4cV6L7[Kd R6=Weiho/OahC1HaK2NEG@Gl5>cb@;lNHoPcU]RK[hLM1MHj/??Nf2fK=ma4jmKZSinXbZgAJ]k?6e[e?S@5Q?`5S?ePmiGbXSBBSnWA:`CfNLVUhCTBl3H1/c5j_I;H@emC` CkM8nnbN:^I:_NSnU/SNUSk1ink^MW?mYS]il=F`_h g<5gh]Wc]^2?=FcAKX__;]_ZG^>[jC3gaBg`2>SXnLT31fDh/Ve[C>3EWSGb5`8i AFja8L^GQQfA9oDlM04nfW9GmA7[o5UF[?/WFLEFGeaMIjaI[gbo7kNG3KG_Ij5S V4oRloZ`ZLAj14JL8oGM3ZMUJX`6JmWONd=Fd[d>kCKHo__k76:mGOGTk/G2`5TeaeINg5BMMjGR/b@IKOS]c0lVEWNLd gP4eYXjh=YPoQjfN7FJ];/QfiGjA^Ngh?l0Fd5o7ka>b@M`M7;]AFFHgol0IFmLT hAokigcVUIi?bVOnfG6EIW27C^J`ZGmDTZD<20:eW8e5JDM54B4bY/QW;Z4LLfNl oT=UDhoiFlc=9l`_bMm:ab>N2fc^<;jKI3X?]EfHO`;m[oQ3miiJN_Z2;OjZSO3: ck9Xho^bTBkC@1ZoMjgc^?15QRbIT6hYhnSkTEAM=752e<89KaG07SYoihYUgO4k hFO1n77iY[hi>:9>aDYnE3/F=I0830UkAf0/4O4nG6E?B[oK7Jn7KCgVKKo^:e]Y ga/jAZfgQ[EFkH`IJ>O?]X7N^feL7H;914C57GAVIl?2Q2/Y4lBJ>Y/Wb9KnXCb2[m]SmL[^k_LJ]fi ^O=]a4eC^^GbU9mF6o7]K8hI9eIV7T_@CkOKaU7?0nbWHem^9Jo_j3k:I /[^[J^NNElO:VHSKT]:edngLTfT]fP9:eff[4/G6Y[XECQnJ>^F=M>73/fLJ08N904_4=RIli:H 4[hZaC5`G>FbdLmB_^^?flYj[/NCo:kjoUQSeTkLN^B=>2f1h4^M91LOec]FiHK] ?MKlaMZ0EVW=loNJbbZfa^nE7Amln15ogl`ST?OOUi;Y6SYJR@^UIKXNXBmT0lHYDNdakK=g^n3ed?7Bm ;jaEWm[_fHcdVhboHcYY6ASBo;o3OG45`7Wgji=;`70UhP/21g?LM60?L TO=kSn[iAbeUmMR]QfhQ[[b>c<=h?GcX]efng/Lk/iDWo^n:[aNNo/V?OYEFF0=D3_U;g^75b3V8Kj3hgLo`NlG6ejZ1R hL;^dfklGJfloN3M^5MK5TAM[ZVoJeBB;em]^G;Nf8/O_TkXSc>eL^kiUL 6YhS0GL9Y1?YAOo@RLKUUl_:24o;>7>U;e^C4>4cOaelFjeliI:0NEo[O NZKa_KJ0SAbMLOdiQohfS?=gFd MemXl4YK1:3;dEN7;_mXho[YBjM<:_[>T26I/V^ki8bd^bkF/?YIJ>Aoj8QH=fQ6kOcQmULc2D6KKgR6VT>gh? 7@mM[f]SmngLfhMefi[1`1]e?9KgScCCBdH^N_YDA;Yd0W[mj8jH_M3[iPNoUdjN E0CW^I60]`PD54DlJW?W:RL_c?c3CZ`CigX/ZNn8FnnDD]aYZFN[5loaN[fh/dZV 9lGLIhkK7KmGjC5f?fnNIXa4_2][?kfVfbk`6BiNOWJ8]h0FclMM86DiYc9F@h>oK1Z05Hif0Pd3=d U3RLii6SWJ>OEo[cedK;:KZakjigU0d`;gooMKgeBa5G3n^KLk`n/?@mHQoHRF=G kFMIK=QF>D17;l>o3SIi>VV3;Lgnb3^RR[=F<8Rm=:mSXKciA==GJhP>[cE:lk:` 085?0>]NNDfNZG5Ef_SiUT29@^n97H/Gm[i fG[cbRK?_4>edVG4TFgAdHfZECL?LDl27R7@e]WGNgZnQf`O^c8fCZNoOK^=[85i NAeI3OUlJNYOem^9ZdNIoZ97=Z;^G;Z:OEmblTZm]F_akVS7L@S2m^6^ 7776?=k7nOk3TEM4NDC><1Xn;GKej5>3PcQPg;/_KMFEFQkegI`>inlM/C 2[XNhgLBL9L0i^BaM@lIkSDmOgKnSF=GAl]Y>_ZTgAWI2C5^MM;JSJ^WTbOCn5Pk @8d5fHUSMgBHk5a8b_@jKD[diM6WAmnNccgainhJ8j]?f3Qga@b_Lb40>g_dec5V SfeLkciQ2ODlh]]KaM9abI9OBB1I0XR3VE?T5ZliFg]5ccmZ;Z_6:_/kf>5IbU9U @iENSK]RO]hb[NYO8JhNO>UddS9=hW;L;kSHRF>Wa_YcBaUf^YmN[7c4iE5cmB?m PT=DjNF3cQ_OP>fLVCTc?Hjdjm?W===bC@4X8k2DR9nR_?K9mjoHYPmil]Xi=HWXNlNgAi`mj F0CP4@;;jbJk[dRJVicO>OJofW[F[QPLS7mKIl`B`][bgi1MRc=JIQ`E=]Oc0RT8LU`dLD;DdNda>eo:TmNXKD8mGji8DH7in]TSAV@;0Qb/XQL9 U1AUSMaGI3[V=Cf?n:Fj?_>=kl]6WF9UmjCTR^_aZf?Uk7=ckaab?LK_PM=gCnYI H]d2Hae2SKK3nAjbVA4gAlgG9iFONA`jgXRG[96_N@gg//S]EfGNK2:75jEDH6H= oGihFoCV0i/gc^_KZXfH>fIo>N/8en2N^@J>QUc?DKJi`X Ob^Mm4`CF?glbi?olL7gn2STaIf97OjjXdWjN@GK6U:>bXV8FUh >2T2F:]VD8N>SVEC9QO7O3cVk8Mfj^c0WH8X3i=Fo:8/@>ekESAQak nO9e0hNR=NV2M36k94l3h?6;U99n:IdTP i@@@ll8KOnM6WVY<7Ci@Sm_:NUKgn:6m[9/1M_HJmU9fk?Z/k/_co]/>/6Lb8>kF^?15_R;ZO:hLFaK>KkAVe/c:?UL`5RSP27Rc?gmkP>bW^nIW nEmTWUeS[ML1QegORAdOgHG__3o;@9KMoKjR:c_HOVSIcJTi7/C@Vj g_Dno>kNlkYJW[5dTU8J/;EGo_>kJeNPkF9BS7SL<`BlfIn7COBE]onec596?YG1 lA[ckDo/n[kmaS;?8>o[1P/Of7kXf/eEnHL/53e1m[ITddFnLG;IZH^FjOR>JOWO aIFGVLJ4co><`0ZPG;3Fo=[I/jXLgA6c5cKf8k]e3nWHZ;6a1Sg>^Gh2Z=Z/BQX@ P=n[]nCIeh^n?hFhhEKi`ajjZ=BcnhMM7n;SF>G9lnke_ob=6f`oS3Rh6_jE7Dk9 [S[n7^cnZN?1lhk@33KZjcmA[6V:>_o4oiT/jc =f8cM;GfoM39RfVN_6_XDkAemQE>mHnK4>Rkjgk8R`CL8F36[KYHFZgAkHGaAc/f N?EoU3DW[iB3[3YLieUR7LB[XnDdZkAgF/YZXO3Yd>Sk daK?Nnm@K_5T_GEgi1J_8@4Bd2>0=JHnSoZ7HYMFAWHVW@kmII>mB>3MiG RbjL_]e?`ejJNUk;3SZainJ?ak2^c@U=^cWHh[Dm:c]JeM>`aM^mkh5>g2J[_7Sn nGK5[Qaa@CU7_gOmV_5kejdNVcoWTgJ>lA_7[3kZ6PfacR@Tl1b172:Geo_cYiJN _Q2_nUUFj9llo;gL3PHMQ=jNaMZ4MFcc4N7[DG5H=13jn EXO[UFCF>/jVclVU@?naKofJ2ORHN]kl[K=@Z4gM[bP;No=^7_Ib> CWkS^V`aH:o/IeDFf^05WVjfN^Ifc//Wi^:L=dlXH?o@<=>gjM_9SV aONgNlQ`c`/giTP2960@P?fMEnF>RU5oH^nnAo4=I@V[nmCnRjb`K;HLH9D>O_SO ;;addRXMcklXCh>12G@lM;eEGNlgUND@5llZ7LkSONKYC89402GR;P kOhlaSZ=^?HJlnAUOi6iS[mY_CHhi3QRi>S8IjKaWVcfEKK@aeXaUYE?WA7oEVH;mG@lkVT3DgOB]7;f22YQk1[7e^kgX0;5bWZ4 @;P85oMZbh;^o6gZG>>]_QGlY7G^ccC1Yn]Q2j8mQ_A_6LTaY;AoAhJ5c_B8??>G C9::JF_4_SGSg2KL?hf3jbmeI3UmQh2goNNQSgGFnn9LJM[;fX1Y4bUK41/f8NFe K4;DNX^6`WH9H1hN?Lea]CMe@4HGlLh^mGemVbO_obN]/oNTkUFclXOc^_j N3Bk;Y/?fRGkFmI9aKLo]NB[liKY_?Rg50cgGYOUY5dA5Q3YjeNYRWEYMcJZESgA nSBYG/XE^U`W[kGbZE=:97O[5M>V_XadbJEaiib:ecmWo[QMaiOih73IEGOm<8c98^hIIF[:I6XPld>la;]m I5N[>XkL;0Lf_BfKFZDcHSJ/nnBjECZNCmTk^CcSakh/;[eF]/l3_eim^U=6X6cmkIO7OcOM6cVMXfE?A5_G4M>W]bo m`n<@IXbNJ[3fIoC`=omCSoIdjX>KjfA0a/mU0f/dSeZ:J/KJm]cG=j[LICgAMh: 7>5ZXbJ7XSL_Fc]kE[:3lV_OWEDEjFaTJiVdFLeJH]kH/GWdK_RIVSaRAcOc= OF0@l7JL7gk]fWWB>cB0FgK >g1naC]CBbEfg]eScF_EYYig5ihOGNO]o_agkmdkL7fH76/UfmI?TOeZo5fF/TYW [5>2n7[/EgVeGnG_O25ZjY^38k37Ka`o^6GCHSCCLKo5kF]TYWm>NS3mndB/Oc:G/gUfDl6UP2eTI]XR9cRhecgj]] n=K3EmkU/d7YHYcgm8K10m<>;iAfN9k6jc?i6N_BNS5>S[6VR4I<6lc?Eo]I5[>D TbYFZC4o[oJFJMWW3mXn?n;Nj/c?CeP]1fW=cb?fSUZ?RNmLb_Bh5KnM>BoiS6a< Zh94I/TZ6[iBCKA]d=3HhkLg=oSE`JM>ODKB1/nKY=<^kl`RZeOklk[fmQn=U=fZ o4:lK0dDW;jKa[]a>:kjjm_JS=lV1CNk:9UKUO=A:eXRU_KgGfhe[^G_Nl9lO8jMKGOoY4=VYo2lbSeDjW8n=>GPKljDj JITVo5>3VG=MOoR>/R6aF@<]a:g^;lRADW[Sc/J=d7dlV;JK`_^m>2LNb6HmOQ lfiekiJGI=]NQfDOZgA?eVbE[MTnMC9Y=mUYob_MB=YECgCk;Zg?UbX5EMWZc7M>VT ECZNCmTk]B;C/@2E]:`F2J@M0JM`R[^eI9Bgi1=/WV7kK9WodkG0ha]InmKYn^YI gY=fNUjOKdf;If371jk2olUlAhO9cUKUa=[c>^/aFNG3llVg0oKV_9Uf`Y1g9X40 9N3]>3WagF@[gODo/TTIL[>M]HoCYJUoGa/g@BjTc4aNIPH[7lcYW5anlY9>oO>[ ^B;<6EVU=MISDW=@E^Uh?VG_I;36b@U@mL9Zn@P1KlO9WTbCL[T[Sob^m=GM/OLSTkIB>[]4Kli]5bRUDjWWO_OK_` /T`7M_]cgdTd7Yb?R4/FP`ClTX2ghn@lRenWiTb]I23RhJfKHQf[m=HP>@SacZcb hgWgI:joLd=L9/c]F=I3cA4I=R4J/AQdhniHgY=cAHW>5KEbmQ0CdRdE_D97njDL IJ59`9L9Q8Y@LK^jWSnK^c8/E/DA@c`aZn_Qac`lf]XVjW5kfI0nC/6Y`jgN8Ib7 ;fOL>3W7:RgVR31GI9D>ihfi9kD6_DiJY[7oKWH>7Nc;HS;EbYHe8Z>XnW9YdKYN OM7Q]DJ9OU:]<;aA@16XkfP^;YNE4MkbXlMLjH=>eV]om]lWnkgnPfaV:BMQCkgS Xk/?Vl[bUVWIOdZdoaC8g4joOoK/_EjbTeDM?ahZ>iOmANJbBXOcF:/>Le0jJIW6 _Yi_kN`ED3;EKVD@LgK>Z54iSfcK6X=HmXUn40MGWK>K=m>CP2/1j7Y_b:R_5geo BRL6jK4Q/V>IOl^L>VGhl_dcgn[8LYflVbShj]l[ko^Ra_c9MZc>DKHk8@fkUbNLl@eJoWAP;N 972U_icd_VgfIZIgg0^oJ mHiJkm[X/o?i[WWS^FLDV@CFf4SWB>M=dNKcNAn>RMkhcY0QVGbnX2bPga>hD?Z9 Kh^WoihO]i<=M>gVK?FaEQmW7l]7afXnJb :^GVKg8cf5W0;_inCmW1RP=/@L[nFdIJYL=if8;Xi:VC5m[>RJD?0Foeib3K31[Zgk68UincHhV4/5O58[O;TnNMUJj3b N8@eh]EJQ_4=I@V[>]YYCikH^OoN`bJbW5FN?:ogW]f[;@_N[?[4gSK:DCQ]Q9d? gWEP^`h>c=?33ZmA]N[RUE:U4oghH=5I93lR45M1I_JF[;9]RjLQZglH8XNOFG3U 2fnEVOWZbFeOhGA]Y9chkKbKAgG:Do=_/Pa]l=;VnB;fGF572A6MkE/A[_iaNd80 nQgcm8Wje;WhfY4G2JB4`1MAogCZb4Qgd]RaaB/RILC90K:]eGgP?`lonPN=IFV[ ]3bO=S8m=KVScGMc/1aZNDoEQWBZN;MgF/WZEVWENd/K?0oKP=alADHRgSJgg`R< j]hS17ie1kM/F[cP[O7i9oHKT0ij?k7?KeOa6`WH9i17i1LWXZCcCPfIcd[nfCe_ aaJ_hbWI[LEUjcSg:^E^OUFfk1@[^n^T?KGd m8Gh7[:mCUZVBOkm^_mdG>1ZNIWIMjBMKi@4LO1V31^FaCM:`e840h5eFDijG/n[ _g7o:1SNfFE5llW;jMmVLmgLn;gHae3 bc:ZMb^GlY^of=dj3[DcWR==NX<^kji]`ocODSInf3fhcMV?Fg8;:bAbNei0_gK]7=PKSi7IPie ?4n6_ka5H4FVHekAlgK/i_J?T]edoI]QMjnkgSQUM/YT]Rob@cmNeljnk`7I]o5M fERW7]l/_7cRiY]b/4iJYTWj_MZMljZ0;mgQ?8mXO9N4dGeJVKg[ehc_ e;R9:5hPB^C9UR?ACa9Il309f2:`8lM5[nQib4;3KTk=YE[:aJM[Pmmk@eJbBX/e kS5fokR][6NEU^NCU/MnbDKebf?^;DXh:XZZcSRdi54b9HF]_n=>INaLo>ULo^jXDhWc]_lSbHcIH[c>2]9NWo;@J?_XjnC9=h>Qj[5V8MHmea^5_]YFe @Y@oGKaZ@eZm0iP7d[G[/lX[Fm9j`29>M54bM4HGiNia_ OGI]U9bTTkKE1MT>]_HjJKG]nY@NdlT_6=?0CgMfQZfRTZ>63dPd5X44B20a0PdM [KcB[cnah/BEn:jbQJG/DoXmWo:_RadXfeVVEO8F=WiJm_bDc@6QVajeU=EQOoNP RBaSnGjX?WbHl^6hdEkF]D`;7e3<0jVfXfEJ_T/__4]gJlTXL2/TRRLVEWR<14S0 Q`Sd21gQ5Cf?;FfMF=7Fg6nU4bGAFCc8FWV ?dG9UCFK@7ck3Zle4Xf[_B[`Va/9N8]0:fL?[nQi8cJNjRoYj>?kCFDiXNIDkkK@ FiO^VhFGCUhM;JMYbG?:LM]bg5Nh`^HBlc@jJb2Rc:EnUMVgSINmM I;I>FZIiMg;V5NAP0F1_CU_ NTGG`lI9:aJiT]6_?ICe^gdVNn[8e0NMI=?HcDM_J8gUD/ok[Ik7FXEa4nA2WGL2 hO36V>i?jMheSN?cZXibd4JQ:WhCNoOn>jJK2k QflMk?8V3abD0G_4`lGaScJ^WdkonR@0lW2:2IAaE_:h[[leD0k0F[Dj<_2BT]=6 K1<=>Hgl_UFaCN8Vo[YH9fnVlClk/PNMIC>S;JNiO]5[SfFmkYoXmNGSa/^i/<7S Nj7gGYSmn6gI;aQb9[>3XNkL4KQcAXg:2Edn_4]GIl;a4?`Ne[V;4nOO7CTbQc_i laXB/28@;]8ILBhl:_^DcXkMn?6=AaeT8iel4C=7IaeAi6GHm6=fGO4Mi5_n4YMOKdL7nJh8^kFU0DncOOWQ>[9 BZc`_0/1[6>3/GVG@bmlaGVTNn443i201`PD54DlgYn7o;[bmRm;;/cl`dhMFHHe aW98iNNWJF?goL`O]glohcmSM?9V6_oAloMjbbjaZcjoZS<6SnOJj:5/d?:BGPbM >oeTce=;_S[?md7oOH2];]JB[na8eebJGR> 1=`UP;FR_eOf/ijFOnHj8@leHhiEoHL/3?]kWG8HljaZWSjnVfbUTiiYm6EkF[62 c@Gjfm37>VFhXMI12UFnM?NKbHXjjA7Wm_X`>EHWKC2V^EmG5/IJLjSkVJ8b5?_Q HK?L5B^lcXG0PLdKibfM?:V8bj4G_RjIm7IQY7_Q10n@P8L8I1GIaJ:8OL;CJm>O WGomTf^SiA@M^HUin_B@fc[ndTX6gAXT1b4VjP>=n6LjmfNJ]6d;H8cV^oO^7M1m 3XRWf?>8k:fCWW6F[9l]M7af4BWNcgQ0@1i]VbOCFN/4CcSfV=gX]gMYn[ZXGjFZj=bTZESlmXB2j_Q>j?Tb QI?]lY_ILDl2:B:0=BDoc_LOS]_EIAhMNF^IA/Flng;9=nM^39DS;McWJ`= ^bZMmFf@7lO_4iOM>Zam9HgMlGZD^n:oI849ZnDPWCXHldO:KQ?amGCB1e^J_I4g a92`MlCa0SliDb@lN76b11ZnDTdLS=jd17KeY]nl/ENoLA`aLkRA@6XBF9?i2loI i]VQ/W<^ZNJ?=Od`kLCE2`HM3o]i e=>KlnkKnQhLOlXVF3]4=hkM`_OTP49BY]Oe/h==?mK?dOFkmTBMVO71Bk>AN?n1WLB804PYM0LdMGSnQib4o4 /H=?_IH/EO?jeGjFaMYo9K]XYEOi6o5cE5/2=Ufjec1MbWBe^oc@_hiMOObZ[]d6 k_=eGmTZPa[WdKGM@3`L>g7eg:f;?eb7mIRN]a_73[7>k8kOgn/U>g7=dKCAgM[jC/f[WeilkV]KOQ9?an_G Ci7mM>mS9jjNKYknVPiajO57GMoAG;3ooTblNNe;H[IfcmWNkMRfohGOCngc_5HX IT`2BA306=o]EfENa=2hDTiVC:VLPlfE7OlV^n?g:1oF/l>jXkYc12V]4jngeji0 74?HJnSjFX:_gO5j^g7e0^dI8/h=O>E^E99IhC]c[hilROXm2B7WQLedgI6=3mn@UK7N:>IV]JigHo`nGUecO_JS?FLFG?U2ebIKZba:KS9MbQRP3@KO 2=dHRN1]Mk`Njb6OG7KZh/dgiN1POEk3@VN:IXi>XVOX:57:DD5?MNLCfiYD[f6L[eNiBV:WNH`4DYg0ZH9Z3M0Dj;a[8nE48ljhYUnD>Gko ICoIF_NnT?G@lk33XZi?VFkFIFjEk_Y`>@jfmHQ=IiGF?7ooMETn]k:_]c=NOnG] ObdcfWRZ_FOV4nQk8LB:JE=O A[[Td_0L2J@F0LCB>IC[XN=F=IWK;OVYi2oVC^gH@NlO9K]5:1^/ffeT3Mek@]Mo _NSkDnOVgSUTIhaH=gnVdfloo3143/OjQHoKb3[Jg5@b]K=W9C/X_oKMFEFAcWk^_884_4L0/GC>UI3Qk/Y1^n?gV7N_ ndOiR^4oKF=<5^_L`>k[k?a[Wd4G^5]NGVNoWH1WK8cEZgPeM_S=VbL7AZZHMkY[ dB7_H1V_Ga2aAi`^94?@OenMiKQQ9h/e9kWi;X6EdjNEPGemocK]4We@0mZfMn3l RWNVU_;MF[1T`DaPM?QLmo[eKXcO8aiJROlW/gCoA?JbXcNNc=O7OHki0]feD^cT ck@9fP1Zc1fa4V;GOH;in=Yfn9cY;E_0Wo9ZIoVJkWG1<5ioGmWF6^37S g9SkH9I1_Ukg0Y6iW/BfEkYlkk[EXaM=W10emLg14MSS=gCl`BfK5^O?6NW[EF7i PYA0AY59G2XSKN?]jGZaLgNhH:h4HbMH_nQALeWECQkV/oe`[=hJmnE9jkC`Imf@kICA SUhJLDCLZbd;c/j`=DPUSGmG>bXb]mPhmkgJQVlmO>EM?Q_VcZV9lma8`9L9Y1?Y SCF_g96;a_Smd]?^@74IO1W_[45OcElELlFTf4HWlLj_8GHkdWUggi_M8A/gGBVfTf CI9m4??LcUb^NBgF8cnUaQ6nWGOc:>O/Dc1^[nKR[hjAda5_n6hOfMGTZkeGckkL ;c;gJhmU?C_nS`ljbfHHUl7L_?JmO;BME/eAEo@87B7Z>9^:fXhVXToH>17U:Wgcikml_dcgm[bSCOe[N:_O>ObeO^SlWMGk@GMifO4EE@aMfh= TX=d[o6EM9QSa`OU@KlMn`K>5_knYlkbFa38U47eOCYgLL:VO^>lmnY^GS2_HB:O 1QKIl3@9n1`1Yg2:YAT?Rf/EI6H]>H^aGoSEfkBCnf26k9mNjOZ;kXcQ@nOdT>fa O]Ygkmdk`;jmQ[hgno3ZFAWSm3Id]?TNH3jnm;mUcPJoEoKh=Zk7_3oJ5O2SSU:>lcog]/T2N8e0XKciaH?>6mhbeJec/kea]lHc_ b^kNLgMUCRB@^PAjQhimeZo7nQ[9bFDS?RYRX3OEGfLLnDE?T;daGhmhjK^ckokH>nI1EN?fk[>hYdcjnK9_MUW QbdMlSEoOem:L/7ge1DoJGhga<217YldH63jO3Ub<]Y1VSlA5/0K110LHUMTW<2J Mb?2gkEL2`MSjHQIJeNFkad]Nl0>OlEjkPkSgmhCZ/?G=i lSln`3Y4k_KQDLm[bRlnUhZ1do:BK6_7iPkG`Pk0GmHRK>g/9Fjm8W?e2i]Pf:L^ bgc4j;]S;CU_o8daCmlUL6S[USEFlO1l]o@/6@WH8`1mKfiVO7`co/Mc^Tki^R=N kHEI_m]UEaMLkRZKI9LbY?Eg/[gMMX9I1_ShaHfCLc27P?hSK?KEPAn4^Peg:A`8aL>H/]3n_OW^0k0MkOS_[h;QKcYANQc6[Q?5[c7OOg9]o1m`7 ?X73h=ND=BB1i`T<3i/U40MTNJJ?SMRM2FD[nXmO;_Wj^h_Cob_J[Zjo mhJ/11_^JSo;HYP7CYRgkVo<7EbNl]=Zm64_COg[nXN_bhZjeoYm>]GF<]NHfiKS`K0kOU=g@/o2g @b`D^kXNlNlJaL^6nJDjOI9ERDVJjdl[n^e>X1/@ZogR]3m_A?onVhFG CaRnN7K/b1;Tmd`Gn/3aAaeTXnmWo[Pm=^KPKLB]_MM;MW:7]f^MKZUeQ:7OjoaI SHg=N2[:oEUKG3X4> [cDBF<_Vj?JHWH_OWU1`H;/>3Qa;k6]4JI] ?_bUXN_Mj]L[7O[58=T^RhZ9SohmHZnUE1o0=QoaLa5W9gK]YmL@Elm^;?NDU/4C ejJakO5 IASNbfWYej[8Sj56W>M2X[QXjNP^j?o^Sm8VmLY/n/`midNWO>PSniR 3ClSgXbJio34oFn[?WbUOlTXm>?MREf4<]c^;o/JHoDZ?[4WbV@W3c?FPcVVM?=Y o=TOZ/PLR0O1S@C/4^SHZ;7@oMS=>jWd;nG9:j9biA68aD 37eAa5_5g?gMFS;:[RcgF]oNk8L[WHLn?G@[bXUnOGYO DjMS3L3c/ao]P@gSREgkhc7WPIP4/6Uc]gfD76?dhB_oDaI]VHVeJaP>dOK0?@QX3M W;WF>mI]>>OR4mOKDko^_bo9]clZ>CRU5B_[`l:44Pm>;cgf= ]Y^WbYMD?XSEm7EQ6A:Chic01n//3PjMJ_QgIQ7IP^L?RSGeJ`:8TooQZ^Em4WhJ EJ_n[5kDllm@l8^O4^SM/[Dh__O3RifK=1FV3KA]OJol_V0[Q_P]3Gl_jma^KMog :bUmT^aaYO/=VcLe?WfkWnb=?SS/h:3_D@>nRKQIM>8Pho n[j83fO<[J^f07`14=GS_nSGSGoR/FcgF doFSW_LdDNJG5P@ZUb`U?]fmloBF4N/[ge5nNG/SKhRhLS;CIAESmm=lOcIRUYPj 8;TmnZJ8XHNnJH_;/SER/2NG?RS?:CdlHhTLU?W964Q9a;1=2@NCS N^g:c9l8[0>7=Mg?UI3QR3dKTofl4I]QE_X]0[XNjbe`8h7D8Q2A;]dCfgMUDgmX jnIE/;]GniF7]dE_=Vg`?mZhO_ZnmF/VN;YECf5iW;WIQfcg5CmP_6V_G:UlmC__7V/ndE>UYTEYjI/:N3oe]i ab_6Nh0mk>D;RR:6gfJZ_jBlHM0BN6O8T4c@iaQga8K_hg[g2L?g2/F:Rag;UgKN /VQnTk2@41cbb=JTNPfaOn>jJDNfKHgiJ=>6McNl=jN6Ac9V9RB@QPC`=k9QkYbJ agI^?e:k`_>H`fWl]>fM@La[UOi5imhnBgE;Z;`Ro_S<;hSho^NcDAK]a1Kn8 nZLCmW9H3dWi^dGR6GjWK3G0gQbk@CaUKRCPB`Cf[5de7?eZ/db^NQk7/VG ElGNG3NNmOFCd]bSJa Y4>eLI[NTZnWM7cN:;]Z8iTnLeSgcQfkOoRg`LNb^J>[dBn7kAc6KTJ7ceGoIa3M @XLm6lM9iQGQ:A98E@;XDllH=^cIPPM7MlC/OK_o`>MdnZ:94j9DNf1TZQJ<=b<1 ?bJ@?EFb/7LM/kaL[^j=mS7QoSn^^Wb7jNR:W[NQn_OUO] 4kACH7>HEnUf[2D7^hCCoI@?WjOV9ecklUheWPofj;2M54fNkQ8n?_dW0i`W/G;Vlio:YDdZH1HeN_;0In^h>lh3Jakbo Z2G/ked>lB/9T80V0MNnOIf:UCB_nRfIZafOfLnlEDgVQPk6fRJH`ajcG_J_lPmI 27?i:UkiOG=o_YA^^Hfkj7N9F0eUTdbCI1gXDloW@nfGn;GB3EM?mCWKim_>`5?Ok:ck8XK>VPfj_n;8^P7I8BWoOTfQ>8lgMibTn[4EmgejSM 3BjDUAVVY5lU3^Mii80mI4:F;D>j2k14[4=^9128111gm[gAXg?UcYKMZ9kChA2[ IT`_1ee_O]37QolM=a8PPI@A25MfNIP7@f`M]:GcihacWJcmYAYS GcM5mQdN;@Nf^R3KXGeAlEnbP:WCb?VklA XbM^W9b3mFL@SnmA:aD;eeTc0B7n904B<0W0[keUWKZRO=5RiR7^BH04?4@PDhH< 0WH`WnoMMFG9Y;L;`jo5Dm^2R3f6[/OjYHRm_c;SYlHH0>;e8MKZcHJbf;2NYg?3 7kgJmU=IgkPRgbSbl?oBUOZGc8iiLX`19?c0kSgQc]k TAb8F;k^j7ACSk_^MnF84k21^j@nj8oSgg9M4;MD;=kHSLN^ WI_eH3_Rnlk946>TPFdl=a88MP:_U2X]k8hQ1S/ceYl4?4DPCkHLH/f/VIEEookb c673/VH83oM8eTE4BB=6BdkUbHLebc>82?6BXjR:c^l@;c_:6OLX9TZ;4?D_D^@A R:TN8C::mc9oH=b3FC0I71S7XSFj>Hm]g7_iXoLIg^UAZobB=Xk:aQbm3^?9j hdH2`Dh0LnmcAXofk>1Q/4=UoDW09X4Rn@/HmZkXgjmhIfZY4U45KNKPVN@5A261 n2o`mD?A4F[?__R7;UbmD;7=4Q83_ ;g`F3fgM/ZI5kCX_Y>414R21g`PPE^OdXDcSkRb:>TTJiZXeD5cd31]Ya8J1 oA[61CZ73SK636XkVXPjcZJZaegBR1^3L@:/chJaQ>hQ``GJ4_0U[>UlCF1c`45Ph hJd2dH/F=omda?GZ5K51[D1n>RMhH^foggL?KXSNSKM:hfZ/RU7>6WW`M V1L9T009T4204h1O7^9FHfgLoA_GCG?EoK3W7m>cEfS7AXe5mC9U1FclDjYWHA]G XEQa0AngHIfk>15?6kKa[SXM_g5Og1?fMMa8P0A8P0A8P0@lAj1hPBQ3ml=f7k5i /8HEK71QcgmRoih7/7W3>]EZ7J_QR<6oKNWkKA3cN_>2N@gEY`7/N>2K/ggIdXjk EZgXIebkNnOG[]O^G_?1d8gcgZ^kH?bhO:=km0bQC_OLlf=>94029402990B0Y5I /Sk[Tj>_gngeIP;ci@?KMG0kLMl5HUlfK?8I3o`PU_5O3F?G`Qghj=6Q_ek?1J8elX3/]00RCP:`BPhgei loGbnC8k?bTKm?cA7C5k_EGLX=;c>kK]YikgeY_4O4W0C`Wh^QkemO;ijF?gYF;W bYY=54I1gTIZNN3o0D8d^Y?6c`hhnhe :`O_G;Vli`OCgbVK8C`lB4V`f/KL_2mSl82NMiGcnG=6RYGCYiDi6;eYbN6H;N/f c9eC/dSn9m>fFB6Mhm/faZcOMVB3]G;U7f1C/kSCN]W;YdbZFRQ_?UNB;mZiX`:V1o^ek[]2nLVmQ^@3^M`gaM>9W9P goXe4oJ^GcW[WRVGMVeB_HEcQD?n?k]4cIk=hQCZOXgjJMHmfk/j/Qgb?K]fh7UhgcgZ]K[g:EA>h^Q7Uob8`I`hIU `FoD7cc<2g9TcR``5giPllIiI]T`UUb]M1USo]Pe;Ji9K7kN=Ff9Z882ICbdMO?: `m^R=b=maN8Uc=]IkUfOod]ilX[E/fIDO?;lXcM6;ekH[7J5RXWV4J[hS>cF?NC3 3iKg`Wd?KMfb9W[APZH]J]Mi8Ke[NElhZ@jHg5c?^LjW_eZfW<41kbC^/oKMFEDC NiM`OH78GaKNWkKG0O_7OPQg>Ki/n]Uo0jlcObaS^A;F=6 la3gJD2PI_T:cnhjIM2K4I<73/[`k02o11L13nQA[`;c@?U<>@omL73;Y/EK5/e_ l/j@8IVPkcmFliWZf8:Xb=`2nW37lZFMXKlFCI`@1ET5VHQaIMN]IIfj0W9_kNaI EFJ?694MOco82gXBah/GR79=;S:VCfo8NN@5WFE^=LZE5iRGQU`<2`Ta3bNkQkkH _g7M=o@oS^g;e_J4Ka`3o@Kc3UQ]9F@1_OK_61N@nBih:ga nL5UeHcYiG0lDCf_S[_Nc=BKH0`MRkH7k[=ljY@BH8ISDKVdVTK2mOU3=j:nIUfA 3o9;b0I]8;?m0OdhmLg14GSF1T_51]LWE]j4MC?C9:WWEKgak^1M@o/3md6M`Oo0 iPg_IL[`_6S6NhXf2SPR7LYQ<57G[iTe/c:>Vlo2_?N6mnKDP8iN>WUBTJOeb8Kg 7?M@cjR1VLkLX`iVoWQWEdbKn_:T0@?C_c]bI0jT`CDhSk8Tg2ZE:6Vd0g1=`W?l WGH4d0MH<^W]`VUG0]hiC@Uh@8mj]O`N:9lYib6Kd3mc;NnHW[e28NlP>nN<6YGC mEckQZlIWP3;gPVS7HX1f4L`UeXJ5?eG7Gm:JNAoZ4NZ]7laI6 GDfmhgYMH]mMWcoj=JiYBQLZK;11GM>7?A^B4:>jm`S1N`5MjY[N]AeCXESaIjO< lRJ/ViTPBCf_kX5WTg3L2?a@mf6MogmkioeUAK7fnbI8AXHL90]8AT@@A114>2a4 0D74P195TT<@bCTOlY1QP648b^]ASg[N]MjOk_eCkVoggkRg?cdlViZJj/g/VKf7 HOJgeaZjMgEeQDlgmJejjZW^cioMi3RalQ?7Ya:>7LKBISm[hZB4BHQGkbkE7^_< ICn^F=V:n7hO9m7i^5`lVfjoe2jL>nGM92ojGAIVNo[7Y4UoDe_S8L1cS6e6Fi4B b8>>5YAL7/YWkG`lo]cZUkE7BNNTcJ9=2fTgKG1Xc>>WHklIDc46Z]H8?ce97h/Wad]Uck=9JkDeW@fdgmB===U[HCJMInc]i/malfK=4VeVG/Do5oY]minaO:QLf30XUm^O R>Ll=S?>3mTWmfihiWAYjW5N3nTTOIo[g3[Dkdb@S3SV9Q k]hh^_E`co_77M^eZe4?hYS>Ho?b[n4gccHf7NaPKUnCoR7gWoVRd7D:bcl1k5cd bOdonWffKOUZN@]/O?IKnb8TT0LM;BRe?9C?f_W@/djKAM_YSgF]C]S8@ngFS0U_ AoBAKGjN=39o/FIP4`m]f52CN76L^]SAd5W6WZ6dVF]6[mba_ij3ac:6hJM_cd_Vbf gmWfM_oCiYA]G]_bHUa?>IWk2:E[6^`nCkVV@bUhmmk=dhbQamOno6dIm?dZaMn fXadegnf]9X=`[e>a`e;P6NK>CkO;]N`YE1^;ia07WBdX7G8@oV/WDmkC`Y]4n?M D3g@=NHfgG>dbeb3gUkL/g/8Lijd/OcQ3dLkf[cNIW<=J1c]=oD`nKBOLdPOokL]>eho;3QR@jUcLe> Ng=lcSY?FBamMin=Pa^?Hk_on4WjioQ]iF;>PMlfKVKnPmonAY_9oGO]@gGFnOPi l1UKO_ic^G36c2AOWSN;hnjGOc@oh[Ubdl?f@Ce82gm2o2W`oKCWeLn3m3Q7>R6k T>D78na3KYn>ca[YhJ7fc0n5?C?hSKb2N/MlVeWie=gg;ENGbjJLmmfccU]CT6Ec<8 ciHoLo3XQ]_fLhe]Y_3^>Vc;/;?Po>VloSKIm^`So7l h8=_oWMYOJU/jNQLH@P`ml@co2QnC_TkEU[J[C0i:ME6Cb0?>U[@>^JQO=K>id?W /LOC=^8SkMNK^EoV;6WkO9e7coVoaY`_jeg@0m;9mOmN=Yd=jJFERM3i]O]ilambjf_`lJmSlcNKWZHnM/cV;d3>6Gc[g ^[hjKgJ6G>KW[Ko6?9>oHG>_SlkSJlOef87/nGYNgl0_Pgj;P0Pd084lj6Q1BiV7 l^ECijT[?W^dfJi?5oKAa=LlK_M2>/nJ;<;MmEPfWck_gJVeAYQ?WDml1N8bnCie GoaSK]9nDeiGnbQT]_`iWkCg<@=o[BinfgGa]oOk1>C1m[abEl7nW>I_cob5ViK[KllHeSK^?g?Om2F8Ha][4VhM>cXY7cY?V]KoHRkLlV3?^RWb l>lILnb4ncie[<608O7m>J_JS^O9UoDS/6?nQghSHMY4@0@J6H4lj6Q1JiB7lUTk 7aY[DGKJ@Kn]/cZ5m9n/bhSZ@o][5Bj[e?JYZXGm5@0AN>84Rn5iMX_=a >aBJXh@oKACj7;XGRJh6e^?A__eb]F`UhaSd7LePSAim2FccY_>4XBglFIRKchLC gdWbiieSS0VO]jFEQn/BSHkc3ZGQUl_Rl1henQmX?F=Aa_S<=JO=7FO;gm;4Yiol N1lNO9R_h5d4=UO/niN7bYgXO7aO]RkoYUZO`?:XCCT/[W_oVD_VoHCL3n`bJ;Wk gS2kQSec;MRmdGWZ0Bi/OnZIUGcC7iXo]PS9Ref1<7bY_6V<[@mYcBIn@mGKL ;n[0oL?W:Rdmk?f/]f2=0_FP?_S4lkB5l/Q5im^eKYflJhWn4^n3dRH28R028U2l 11QkXR]YkiT]GS8_Klei_`lfPKBeORm_cEAb4A014A21=0;n6WgREKd[<5i[4?/Y i[[682dOQKmh0XW_@MagZl/JdAMONYE014A014BP;PAHLhQm6kl5o=j`Tc=oc3bh nejE^ZB]Jehl0O`fNBm`lWf8N2b?Gl2;;iE:808R808Rd504V5?WGG75i 7g1XWGi3UDWii8n0n@7P?hY?Won]WOcUY9A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4 @0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4@0A4 @0A4@0A4@0A4@0A4@0A4@0A4@