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1. Harmonic Oscillators
1.1 Classical Harmonic Oscillators

 Harmonic oscillators appear in many applications in
physics (lattice vibrations i.e. phonons, photons etc.)

* For interacting atoms in a classical solid lattice we
can write in general
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For small displacements u; = 7; — R; around the
equilibrium positions 2, the interaction potential can
be expanded in Taylor series as
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which is called the Harmonic Approximation



* By diagonalizing (in normal coordinates) the classical

harmonic Hamiltonian can be written as
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for identical but distinguishable particles in 3D space.

* The equations of motion can be obtained from the
standard Hamilton equations as
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* The equations of motion are linear and can be easily
solved (1D homework problem)...



1.2 Quantum Harmonic Oscillators

* Consider a single 1D QHO whose Hamiltonian is given

by 52
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which we have obtained by simple quantization from
the classical Hamiltonian as  — Q. p — P where
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Next it is useful to define adimensional operators as
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which now satisfy
q,p] =1

This gives us the Hamiltonian
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The next trick is to introduce two new operators that
are Hermitian conjugates as
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that now satisfy
G,a'] =1



The 1D Q.H.O. Hamiltonian can now be written as
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H = Shw(aa’ +a'a) = hw(aa’ - 5) = hw(a'a + o)
Note that no matter how you write this, it has to be

Hermitian (why?)

* The importance of this form is that it allows us to obtain
a fully algebraic solution for the QHO without having to
explicitly solve for the Schrodinger equation. The
formal solution is given by
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where N is the eigenvalue of the operator a'éa which
Is called the number operator
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N =d'a
It obeys (homework)

e Let us assume that N has a cgmplete set of
orthogonal eigenvectors s.t. N|n) = n|n). Then it
follows that

Naln) = a(N — 1)|n) = (n — 1)aln)



Similarly
Nat|n) = a"(N + 1)|n) = (n + D)af|n)

It was shown in Lecture 6 that the eigenvalues must
be non-negative and the spectrum is bounded from
below by the ground state for which n = 0.

» The squared norm of a'|n) can be calculated as

((nfa)(a|n)) = (n|(N +1)[n) = (n+ 1){n|n)
and thus a'ln) =vn+1ln+1)
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Thus any eigenstate | n > can be written as

n) = (n!)~+/2(a")"10)

Another important result is that the all the matrix
elements can be simply calculated as
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laln) = n'26, h_
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* Finally, we can read off the eigenvalues of the
Hamiltonian as

Hln) = Eyln) = hw(n + )ln)
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