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1.3 QHO in the position basis

* Another way of solving for the eigenfunctions and
-values of the QHO is based on writing the
Schrodinger equation in it's natural position basis,
where we define the wave function as ¥ (z) = (z|y)

* This is a coordinate representation by using the basis
set {| x >} of the position operator ¢

* The Schrodinger equation becomes
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To simplify the equation, it is useful to define
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This is an inhomogeneous but linear DE which
can be solved in multiple ways. The easiest is to
write u(q) as
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where the functions (polynomials) H(q) satisfy the DE
H" —2qH"+ (A—1)H =0

* The solutions of this DE are polynomial Hermite
functions of order n that can be explicitly constructed
by inserting a power law expansion to the DE
(homework problem). This requires that A\ =2n + 1
which gives




* The Hermite polynomials can be generated through

* The complete, normalized eigenfunctions of the QHO
are given by
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* The importance of the Hermite functions is that they
form a complete, orthogonal set of eigenfunctions in
the Hilbert space, where the inner product is defined
by oo
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The complete set of orthonormal eigenfunctions
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