Lecture 1:
 Structure of crystalline materials

- Basics of crystalline materials
- Dimensionality of solids
- Molecular vs. non-molecular solids
- X-ray diffraction
- Unit cell
- Crystal systems
- Symmetry

- Point group symmetry and translational symmetry
- Crystal classes
- Lattice
- Lattice types and Bravais lattices
- Space groups

Basics of crystalline materials

States of bulk matter

Fluids (flow in response to forces such as gravity) Molecular chemistry

Dimensionality of solids

Diamond (3D)

Crystalline materials

- A material is a crystal if it has essentially a sharp diffraction pattern (IUCr definition)
- The definition includes
- Periodic crystals
- Aperiodic crystals
- Quasicrystals
- Periodic crystal is a regular arrangement of atoms in three dimensions. These include
a) Single crystals
b) Polycrystals composed of many crystallites
- Amorphous materials are non-crystalline and lack long-range order

Figure: Susan Lehman / physics.wooster.edu

- Not discussed on this course

Silicon single crystal grown by Czochralski process (Deutsches Museum, München) 5

Non-molecular crystalline solids

lonic bonding (e.g. NaCl)

Covalent bonding (e.g. silicon)

Metallic bonding (e.g. copper)

- Coordination polymers such as metal-organic frameworks show covalent bonding of metal atoms and organic molecules
- They are challenging the traditional classifications of solid state structures (see e.g. review of H. Furukawa et al., Science 2013, 341, 1230444).

Molecular crystalline solids

- Composed of molecules that are held together by (weak) van der Waals forces
- Discussed only little here, but can be interesting for intercalation chemistry
- Much more relevant for small-molecule chemistry
- Crystal engineering using e.g. hydrogen and halogen bonding is making the boundary between molecular and non-molecular solids less clear!

Solid CO_{2} (space group Pa-3, \#205) Acta Cryst. B 1980, 36, 2750.

Solid C_{60} (space group Pa-3, \#205) Nature 1991, 353, 147.

Structure determination of crystalline materials

Structure determination

X-ray diffraction (1)

- X-rays are electromagnetic radiation of wavelength $\sim 1 \AA\left(10^{-10} \mathrm{~m}\right)$
- Matches the scale of atomic-level structure!

X-ray diffraction (2)

 experiments, we use monochromatic X-rays high-energy charged particles, e.g. electrons accelerated through a voltage of 30000 V , collide with matter

- For X-ray diffraction

Figure 5.3. (a) Generation of $\mathrm{Cu} \mathrm{K} \alpha \mathrm{X}$-rays. A 1 s electron is ionised, a $2 p$ electron falls into the empty 1 s level (blue) and the excess energy is released as X -rays.
(b) X -ray emission spectrum of Cu

(a)

Bragg's law

- Consider crystals as built up from planes acting as semi-transparent mirrors
- Bragg's law: $2 d \sin \theta=n \lambda$, where $n=$ positive integer and $\lambda=$ wavelength
- When BL satisfied, the reflected beams are in-phase and interfere constructively, giving rise to a diffraction pattern, that can be used to solve the crystal structure
- For some simple crystal structures, the planes also correspond to layers of atoms, but this is not generally the case (they are a concept, not physical reality)!

Single crystal vs. powder X-ray

- X-ray diffraction pattern of aluminum single crystal (left) and aluminum powder (right)
- Polycrystalline powder sample has random orientation of crystallites
- 1D summation of 3D diffraction process!
- The crystal structure might be deduced from a powder pattern with Rietveld refinement (typically requires a good model structure)
- X-ray diffraction powder pattern of crystalline (top) and amorphous (bottom) material

Key concepts for crystal structures

Key concepts for crystal structures

- To describe crystal structures, we will need the key concepts outlined below
- The following slides will introduce the concepts one by one, culminating in the concept of a space group

Unit cell

- Crystal: Regular arrangement of atoms in three dimensions
- The regular arrangement can be represented by a repeat unit called the unit cell
- Unit cell: The smallest repeating unit which shows the full symmetry of the crystal

NaCl crystal: Regular arrangement of Na and Cl (space-filling representation)

filling representation

Crystal systems

Figure 1.3 (a) The seven crystal systems and their unit cell shapes; $a, b, c, \alpha, \beta, y=$ Lattice parameters

a
Triclinic

a
Trigonal

Table 1.1 The seven crystal systems

Crystal system	Unit cell shape b	Essential symmetry	Allowed lattices
Cubic	$a=b=c, \alpha=\beta=\gamma=90^{\circ}$	Four threefold axes	$\mathrm{P}, \mathrm{F}, \mathrm{I}$
Tetragonal	$a=b \neq c, \alpha=\beta=\gamma=90^{\circ}$	One fourfold axis	P, I
Orthorhombic	$a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}$	Three twofold axes or mirror planes	$\mathrm{P}, \mathrm{F}, \mathrm{I}, \mathrm{A}(\mathrm{B}$ or C)
Hexagonal	$a=b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	One sixfold axis	P
Trigonal (a)	$a=b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	One threefold axis	P
Trigonal (b)	$a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}$	One threefold axis	R
Monoclinic ${ }^{a}$	$a \neq b \neq c, \alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}$	One twofold axis or mirror plane	P, C
Triclinic	$a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	None	P
Ref: West p. 3-4			

Symmetry

- The most characteristic feature of any crystal structure is its symmetry
- The shape of the unit cell is not enough to determine the crystal system. It is the symmetry of the unit cell that really determines the crystal system
- For example, a "pseudocubic" crystal structure could have $a=b=c$ and $\alpha=\beta=$ $\gamma=90^{\circ}$, but it would not possess the correct cubic symmetry
- In the context of crystals, we will encounter two types of symmetry:
- Point group symmetry (both in crystals and molecules)
- Translational symmetry of the crystal lattice (only in crystals)
- We describe the symmetry properties of crystals and molecules in terms of:
- Symmetry elements (for example, a mirror plane)
- Symmetry operations (the actual process of applying a symmetry element)
- In crystals and molecules, a symmetry operation transfers an atom into a new spatial position that cannot be distinguished from its original position

Mirror plane in a water molecule

Point group symmetry

- In point group symmetry operations, at least one point stays unchanged during the symmetry operation
- For learning point group symmetry, we will utilize the Symmetry@Otterbein website: https://symotter.org/
- The point group of a molecule is based on the present symmetry elements

Synmmetry element	Symmetry operation	
Symmetry plane (mirror plane)	Reflection through plane	Schönflies symbol
Inversion	Every point x, y, z translated to $-x,-y,-z$	σ
Proper axis (rotation)	Rotation about axis by $360 / n$ degrees	i
Improper axis (improper rotation)	Rotation by $360 / n$ degrees followed by reflection through plane perpendicular to rotation axis	C_{n}
	S_{n}	

Figures: AJK

$$
\mathrm{H}_{2} \mathrm{O} \text { (point group } \mathrm{C}_{2 v} \text {) }
$$

Mirror plane $\sigma_{y z}$

Mirror plane $\sigma_{x z}$

Symmetry elements in crystals

- Crystals may display rotational symmetries $2,3,4$, and 6 , not others
- In crystallography, the symmetries are labeled with Hermann-Mauguin symbols
- Crystals show several symmetry elements that are not present in molecules

Symmetry element	Hermann-Mauguin symbol (crystals)	Schönflies symbol (molecules)
Symmetry plane (mirror plane)	m	σ
Inversion	$\overline{1}$	i
Proper axis (rotation)	$n=2,3,4,6$	C_{n}
Improper axis (improper rotation)	-	S_{n}
Elements only in crystals		
Inversion axis (point symmetry)	$\bar{n}=\overline{3}, \overline{4}, \overline{6}$	-
Glide plane (includes translation)	a, b, c, d, n	-
Screw axis (includes translation)	$2,3_{1}$, etc.	-

Crystal symmetry: Inversion axis

- Denoted by \bar{n}. Rotation of $360^{\circ} / n$ followed by inversion.
- $\overline{1}$ = equal to inversion center
- $\overline{2}$ = equal to mirror plane (m)
- $\overline{3}, \overline{4}, \overline{6}$ are actual inversion axes
- For example, $\overline{3}$ inversion axis (equal to S_{6} improper rotation):

Crystal symmetry: Glide plane

- Reflection followed by a translation
- Simple glide planes are denoted as a, b, c (axis of the glide)
- n glide: reflection followed by translation of $1 / 2$ along two cell edges
- d glide (diamond glide): reflection followed by translation of $1 / 4$ along two cell edges

Crystal symmetry: Screw axis

- Combination of rotation and translation, denoted as x_{y} :
- Rotation of $360^{\circ} / x$; translation of y / x units along the screw axis
-2_{1} screw axis: rotation of $360^{\circ} / 2=180^{\circ}$; translation of $1 / 2$ units
-4_{2} screw axis: rotation of $360^{\circ} / 4=90^{\circ}$; translation of $2 / 4=1 / 2$ units

Crystal classes

- By combining the seven crystal systems and 32 crystallographic point groups, we obtain the following 32 crystal classes:

Crystal system	Crystal classes (point groups) in Hermann-Mauguin notation	Crystal classes (point groups) in Schönflies notation
Triclinic	$1, \overline{1}$	C_{1}, C_{i}
Monoclinic	$2, m, 2 / m$	$C_{2}, C_{s}, C_{2 h}$
Orthorhombic	$222, m m 2, m m m$	$D_{2}, C_{2 v,} D_{2 h}$
Tetragonal	$4, \overline{4}, 4 / m, 422,4 m m, \overline{4} 2 m, 4 / m m m$	$C_{4}, S_{4}, C_{4 h}, D_{4}, C_{4 v}, D_{2 d}, D_{4 h}$
Trigonal	$3, \overline{3}, 32,3 m, \overline{3} m$	$C_{3}, S_{6}\left(C_{3 i}\right), D_{3}, C_{3 v}, D_{3 d}$
Hexagonal	$6, \overline{6}, 6 / m, 622,6 m m, \overline{6} m 2,6 / m m m$	$C_{6}, C_{3 h}, C_{6 h}, D_{6}, C_{6 v}, D_{3 h}, D_{6 h}$
Cubic	$23, \overline{4} 3 m, m \overline{3}, 432, m \overline{3} m$	$T, T_{d}, T_{h}, O, O_{h}$

Ref: Müller p. 24, Wikipedia

Lattice

- The most characteristic feature of any crystal structure is its symmetry

1. Point group symmetry (discussed above)
2. Translational symmetry of the crystal lattice

- Crystal structure $=$ basis (atoms) + crystal lattice

Basis
Lattice
Crystal Structure

Lattice types

- Every crystal structure belongs to one of five lattice types:
- The balls are lattice points, not atoms!

Lattice type

Base-centered

Body-centered

Face-centered

Rhombohedral

Symbol	P	$A / B / C$	I	F	R
$V($ C-cell $) / V($ P-cell $)$	1	2	2	4	3

- Primitive unit cell: unit cell with the smallest possible volume
- Centered unit cell: the smallest repeating unit which shows the full symmetry of the crystal
- The centered unit cell is 2,3 , or 4 times larger than the primitive cell (table: V(C-cell)/V(P-cell))

Ref: Müller p. 8

Bravais lattices (1)

- By combining 7 crystal systems and 5 lattice types we obtain 14 Bravais lattices

Triclinic

Monoclinic

Orthorhombic

Bravais lattices (2)

Space groups

- The $\mathbf{3 2}$ crystal classes and $\mathbf{1 4}$ Bravais lattices give rise to $\mathbf{2 3 0}$ space groups
- The Hermann-Mauguin symbol for the space group of NaCl : $\mathbf{F m} \overline{\mathbf{3}} \boldsymbol{m}$ (or $\mathbf{F m} \mathbf{- 3 m}$)
- The symbol begins with a capital letter P, A, B, C, F, I or R, specifying the presence of translational symmetry in three dimensions and the lattice type (centering)
- The letter is followed by a listing of the other symmetry elements
- Some examples:
- All triclinic space groups: $P 1$ and $P-1$
- Some monoclinic space groups: $P 2, P m, C 2 / c$
- Some hexagonal space groups: $P 6, P 6 / \mathrm{mmm}, P 6 / m c c$
- Some cubic space groups: $\mathrm{Pm}-3 m, I m-3 m$
- Note that some space groups can be defined with alternate axes and/or origin (see e.g. orthorhombic SGs in http://img.chem.ucl.ac.uk/sgp/large/ortho.htm)
- Everything about space groups: International Tables of Crystallography
- Good resource: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm
- Wikipedia: https://en.wikipedia.org/wiki/List of space groups

Defining a crystal structure

- A crystal structure is defined by
- Space group
- Lattice parameters
- Atomic coordinates (positions) in fractional coordinates ($0.0 \leq x, y, z<1.0$)
- Normally only symmetry-independent atoms in the asymmetric unit are listed
- For example, NaCl (ICSD code 655785)
- Fm-3m
$-a=b=c=5.6402 \AA\left(\alpha=\beta=\gamma=90^{\circ}\right.$ by definition for a cubic space group)
- Atomic coordinates (x, y, z): Cl: 0.0, 0.0, 0.0; Na: 0.5, 0.5, 0.5
- Typically, crystal structures are distributed in Crystallographic Information Files (CIF)
- A definition of a crystal structure is not usually enough to understand the real chemistry. For this, we need a description of the crystal structure
- Concepts such as bonding, packing of spheres, coordination, polyhedra, ...

Formula units (Z)

- Counting the contents of a unit cell for NaCl :
- $8 \mathrm{Cl}^{-}$ions in the 8 vertices, each belonging to 8 adjacent cells $=8 / 8=1 \mathrm{Cl}^{-}$ion in total
- $6 \mathrm{Cl}^{-}$ions in the 6 centers of the faces, each belonging to two cells $=6 / 2=3 \mathrm{Cl}^{-}$ions
- $1 \mathrm{Na}^{+}$ion in the center of the cell, not shared with other cells
- $12 \mathrm{Na}^{+}$ions in the centers of the 12 edges, each belonging to 4 cells = $12 / 4=3 \mathrm{Na}^{+}$ions
- In total $4 \mathrm{Na}^{+}$ions and $4 \mathrm{Cl}^{-}$ions
- NaCl is said to have 4 "formula units" per unit cell
- Denoted with $Z=4$

Extra slides

Trigonal crystal system

Table 1.1 The seven crystal systems

Crystal system	Unit cell shape b	Essential symmetry	Allowed lattices
Cubic	$a=b=c, \alpha=\beta=\gamma=90^{\circ}$	Four threefold axes	$\mathrm{P}, \mathrm{F}, \mathrm{I}$
Tetragonal	$a=b \neq c, \alpha=\beta=\gamma=90^{\circ}$	One fourfold axis	P, I
Orthorhombic	$a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}$	Three twofold axes or mirror planes	$\mathrm{P}, \mathrm{F}, \mathrm{I}, \mathrm{A}(\mathrm{B}$ or C)
Hexagonal	$a=b \neq \mathrm{c}, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	One sixfold axis	P
Trigonal (a)	$a=b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	One threefold axis	P
Trigonal (b)	$\mathrm{a}=b=c, \alpha=\beta=\gamma \neq 90^{\circ}$	One threefold axis	R
Monoclinic ${ }^{a}$	$a \neq b \neq c, \alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}$	One twofold axis or mirror plane	P, C
Triclinic	$a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	None	P

Quasicrystals (1)

- Quasicrystals exhibit long-range order, but do not have translational periodicity
- Quasicrystals can show "forbidden" rotational symmetries of 5, 8, 10, 12, etc.
- Discovered by Daniel Schechtman in 1982, Nobel prize 2011 (link)

Penrose tiling (no translational periodicity)

Figure: Nobel committee
Electron diffraction pattern from an icosahedral quasicrystal

Quasicrystals (2)

- Icosahedral symmetry is allowed together with translational symmetry in 6dimensional space
- Refinement of quasicrystal models involves the refinement of the position and shape of the atomic surfaces in 6-dimensional space for icosahedral quasicrystals

Polyhedral arrangements in icosahedral quasicrystal approximants in the system $\mathrm{Ca}-\mathrm{Cd}$ (Angew. Chem. 2001, 40, 4037-4039)

Ho-Mg-Zn dodecahedral quasicrystal mm

Perfect crystals do not exist

- Crystal structures from X-ray diffraction are "average" structures
- Real crystals possess defects (lecture 13)
- Point defects, line defects, grain boundaries, stacking faults, bulk defects, etc.
- Some defects can be characterized using techniques other than XRD (lecture 8)

Cl NaCl NaCl NaCl NaCl
NaCl NaCl NaCl NaCl Na
Cl NaCl NaCl NaCl NaCl
$\mathrm{NaCl} \square \mathrm{Cl} \mathrm{NaCl} \mathrm{NaCl} \mathrm{Na}$
$\mathrm{Cl} \mathrm{NaCl} \mathrm{NaCl} \mathrm{Na} \square \mathrm{NaCl}$
NaClNaCl NaCl NaCl Na
Cl NaCl NaCl NaCl NaCl
NaClNaCl NaCl NaCl Na
Figure 2.2 2D representation of a Schottky defect with cation and anion vacancies.

